JPH07294059A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07294059A
JPH07294059A JP9227194A JP9227194A JPH07294059A JP H07294059 A JPH07294059 A JP H07294059A JP 9227194 A JP9227194 A JP 9227194A JP 9227194 A JP9227194 A JP 9227194A JP H07294059 A JPH07294059 A JP H07294059A
Authority
JP
Japan
Prior art keywords
condenser
control valve
flow control
refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9227194A
Other languages
Japanese (ja)
Other versions
JP2963002B2 (en
Inventor
Shozo Kato
昇三 加藤
Kazuhiro Tajima
一弘 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9227194A priority Critical patent/JP2963002B2/en
Publication of JPH07294059A publication Critical patent/JPH07294059A/en
Application granted granted Critical
Publication of JP2963002B2 publication Critical patent/JP2963002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a split type air conditioner in which an efficient operation can be executed by avoiding an operation for additionally reheating refrigerant while radiating by a condenser for reheating. CONSTITUTION:An air conditioner has a compressor 1, a condenser 5, a condenser flow control valve 10 sequentially located in series, a bypass flow rate control valve 9 connected in series with a series circuit of the condenser and the condenser flow control valve, a reheater 14a and an evaporator 14b for forming a refrigerating cycle for circulating refrigerant, and comprises a means for controlling a diffusing temperature of an indoor unit by controlling a flow rate of the refrigerant flowing through the valve 9 in response to a difference between the indoor temperature and a set temperature. Thus, an operation for additionally reheating the refrigerant while radiating by the condenser for reheating is avoided to perform an efficient operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、除湿運転が可能な空気
調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of dehumidifying operation.

【0002】[0002]

【従来の技術】一般に、圧縮機と凝縮器と凝縮器流量制
御弁と再熱器と蒸発器とを順に接続した冷凍サイクルを
有する空気調和機は知られている。
2. Description of the Related Art Generally, an air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater, and an evaporator are sequentially connected is known.

【0003】この種のものは、例えば凝縮器を通った冷
媒を再熱器に入れて、そこで放熱させた後に、蒸発器に
入れて吸熱させることができるので、蒸発器から再熱器
に向けて空気を送れば、いわゆる加熱気味の除湿が行え
るというメリットがある(例えば特公平2−43014
号公報、特公平1−45532号公報)。
In this type, for example, the refrigerant that has passed through the condenser can be put into the reheater, and after radiating the heat there, it can be put into the evaporator to absorb the heat, so that it is directed from the evaporator to the reheater. There is a merit that so-called dehumidification with heating can be performed by sending air (for example, Japanese Patent Publication No. 2-43014).
Japanese Patent Publication No. 1-45532).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ものでは、圧縮機から吐出される冷媒の全てが必ず凝縮
器を通る構成になっているので、そこで一旦放熱してし
まうので、そののちに冷媒が再熱器に導かれたとして
も、そこで再加熱する熱量は、蒸発器で吸熱される熱量
に比べて、あまり多くならない。これでは加熱気味の除
湿に限界がある。
However, in the prior art, since all the refrigerant discharged from the compressor always passes through the condenser, the heat is temporarily dissipated there. Even if the heat is introduced into the reheater, the amount of heat reheated there is not so large as compared with the amount of heat absorbed in the evaporator. In this case, there is a limit to dehumidification that tends to be heated.

【0005】このために、室外機に冷媒を加熱する装置
を追加して設けて、この冷媒加熱装置により、必要に応
じて再加熱量を調整するようにしている。
For this reason, a device for heating the refrigerant is additionally provided in the outdoor unit, and the reheating amount is adjusted by the refrigerant heating device as needed.

【0006】しかしながら、このような方式では、凝縮
器で放熱して、その熱量を補充するために冷媒加熱装置
により加熱するために、エネルギー面から考えると、極
めて効率が悪いという問題がある。
However, in such a system, there is a problem that the efficiency is extremely low from an energy point of view, because heat is radiated by the condenser and is heated by the refrigerant heating device in order to supplement the amount of heat.

【0007】従って、本発明は上記課題を解決するため
になされたものであり、効率の高い運転を行える空気調
和機を提供することを目的としている。
Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide an air conditioner capable of highly efficient operation.

【0008】[0008]

【課題を解決するための手段】第1の発明は、圧縮機と
凝縮器と凝縮器流量制御弁と再熱器と蒸発器とを順に接
続した冷凍サイクルを有する空気調和機において、前記
凝縮器と前記凝縮器流量制御弁とをバイパスするバイパ
ス通路を設け、このバイパス通路にはバイパス流量制御
弁を設け、このバイパス流量制御弁の弁開度を室内温度
と設定温度の差に応じて制御する制御手段を設けたこと
を特徴とする。
A first aspect of the present invention is an air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected. And a bypass passage for bypassing the condenser flow control valve, a bypass flow control valve is provided in the bypass passage, and the valve opening degree of the bypass flow control valve is controlled according to the difference between the indoor temperature and the set temperature. A control means is provided.

【0009】第2の発明は、圧縮機と凝縮器と凝縮器流
量制御弁と再熱器と蒸発器とを順に接続した冷凍サイク
ルを有する空気調和機において、前記凝縮器と前記凝縮
器流量制御弁とをバイパスするバイパス通路を設け、こ
のバイパス通路にはバイパス流量制御弁を設け、さらに
室内温度と設定温度の差に応じて室内の吹き出し温度を
設定する設定手段を設け、この設定手段に従って設定さ
れる吹き出し温度に応じて前記バイパス流量制御弁の弁
開度を制御する制御手段を設けたことを特徴とする。
A second aspect of the present invention is an air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, and the condenser and the condenser flow control are provided. A bypass passage for bypassing the valve is provided, a bypass flow rate control valve is provided in this bypass passage, and a setting means for setting the indoor blowout temperature according to the difference between the room temperature and the set temperature is provided, and the setting is performed according to this setting means. Control means for controlling the valve opening degree of the bypass flow rate control valve according to the blowout temperature is provided.

【0010】第3の発明は、圧縮機と凝縮器と凝縮器流
量制御弁と再熱器と蒸発器とを順に接続した冷凍サイク
ルを有する空気調和機において、前記凝縮器と前記凝縮
器流量制御弁とをバイパスするバイパス通路を設け、こ
のバイパス通路にはバイパス流量制御弁を設け、さらに
前記圧縮機につながる冷媒加熱器を設け、前記凝縮器流
量制御弁を閉じて前記バイパス流量制御弁を開いたとき
に前記冷媒加熱器を動作させる制御手段を設けたことを
特徴とする。
A third aspect of the invention is an air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, and the condenser and the condenser flow control are provided. A bypass passage for bypassing the valve is provided, a bypass flow rate control valve is provided in the bypass passage, a refrigerant heater connected to the compressor is further provided, the condenser flow rate control valve is closed, and the bypass flow rate control valve is opened. It is characterized in that a control means for operating the refrigerant heater is provided.

【0011】第4の発明は、圧縮機と凝縮器と凝縮器流
量制御弁と再熱器と蒸発器とを順に接続した冷凍サイク
ルを有する空気調和機において、前記凝縮器と前記凝縮
器流量制御弁とをバイパスするバイパス通路を設け、こ
のバイパス通路にはバイパス流量制御弁を設け、且つ前
記再熱器と前記蒸発器の間には膨張弁を設け、前記バイ
パス流量制御弁を閉じたときに前記膨張弁と前記凝縮器
流量制御弁の開度を関連付けて制御する制御手段を設け
たことを特徴とする。
A fourth invention is an air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, and the condenser and the condenser flow control are provided. A bypass passage for bypassing the valve is provided, a bypass flow rate control valve is provided in the bypass passage, and an expansion valve is provided between the reheater and the evaporator, and when the bypass flow rate control valve is closed. It is characterized in that control means for controlling the opening degree of the expansion valve and the condenser flow control valve in association with each other is provided.

【0012】[0012]

【作用】第1の発明によれば、室内温度と設定温度の差
に応じてバイパス流量制御弁を流れる冷媒の量を制御し
て、室内機の室内吹き出し温度を制御しているので、室
内放熱量と室外機の放熱量の割合を大きく変化でき、冷
房から、冷房気味除湿、暖房気味除湿まで連続的に調整
可能なように室内吹き出し温度を制御でき、且つエネル
ギー的に不要な放熱がなく、高い効率で運転することが
できる。
According to the first aspect of the invention, the amount of the refrigerant flowing through the bypass flow rate control valve is controlled according to the difference between the indoor temperature and the set temperature to control the indoor blowout temperature of the indoor unit. The ratio of the amount of heat and the amount of heat radiated from the outdoor unit can be changed significantly, and the indoor blowout temperature can be controlled so that it can be continuously adjusted from cooling to dehumidifying to cooling, to dehumidifying to heating, and there is no unnecessary heat dissipation in terms of energy. It can be operated with high efficiency.

【0013】第2の発明によれば、室内温度と設定温度
の差に応じて室内機の室内吹き出し温度を設定し、バイ
パス流量制御弁を流れる冷媒の量を制御しているので、
室内放熱量と室外機の放熱量の割合を大きく変化でき、
冷房から、冷房気味除湿、暖房気味除湿まで連続的に調
整可能なように室内吹き出し温度を制御でき、且つエネ
ルギー的に不要な放熱がなく、高い効率で運転すること
ができる。
According to the second aspect of the invention, the indoor blowout temperature of the indoor unit is set according to the difference between the indoor temperature and the set temperature, and the amount of refrigerant flowing through the bypass flow control valve is controlled.
The ratio of indoor heat dissipation to outdoor unit heat dissipation can be changed significantly,
The indoor blowout temperature can be controlled so as to be continuously adjustable from cooling to cooling-like dehumidification to heating-like dehumidification, and there is no unnecessary heat release in terms of energy, and it is possible to operate with high efficiency.

【0014】第3の発明によれば、圧縮機と凝縮器と凝
縮器流量制御弁を順に直列に配置し、凝縮器と凝縮器流
量制御弁の直列回路に並列にバイパス流量制御弁を接続
し、圧縮機と直列に冷媒加熱装置を設け、凝縮器に冷媒
を循環させない時に、冷媒を加熱しているので、暖房能
力が不足するとき、冷媒加熱器により冷媒を加熱し、強
力な暖房を行うことができる。
According to the third invention, the compressor, the condenser, and the condenser flow control valve are arranged in series in this order, and the bypass flow control valve is connected in parallel to the series circuit of the condenser and the condenser flow control valve. , The refrigerant heating device is provided in series with the compressor, and the refrigerant is heated when the refrigerant is not circulated in the condenser, so when the heating capacity is insufficient, the refrigerant heater heats the refrigerant to provide strong heating. be able to.

【0015】第4の発明によれば、膨張弁と凝縮器流量
制御弁の開度を調整することにより、再熱器の放熱量と
蒸発器の吸熱量を連続的に調整でき、高い効率で運転す
ることができる。
According to the fourth aspect of the present invention, the heat radiation amount of the reheater and the heat absorption amount of the evaporator can be continuously adjusted by adjusting the openings of the expansion valve and the condenser flow control valve, and the efficiency is high. You can drive.

【0016】[0016]

【実施例】以下、本発明の好適な実施例を、図1に基づ
いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to FIG.

【0017】図1において、分離型空気調和機は、室外
ユニット(室外機)15と、室内ユニット(室内機)1
6を有している。
In FIG. 1, the separation type air conditioner includes an outdoor unit (outdoor unit) 15 and an indoor unit (indoor unit) 1.
Have six.

【0018】まず、分離型空気調和機の室外ユニット1
5について説明する。
First, the outdoor unit 1 of the separation type air conditioner.
5 will be described.

【0019】室外ユニット15は、圧縮機1、凝縮器
5、送風機6、凝縮器流量制御弁10、そしてバイパス
流量制御弁9などを備えている。
The outdoor unit 15 includes a compressor 1, a condenser 5, a blower 6, a condenser flow control valve 10, a bypass flow control valve 9 and the like.

【0020】凝縮器5と凝縮器流量制御弁10は、圧縮
機1に順に直列に接続されている。これに対して、バイ
パス流量制御弁9は、凝縮器5と凝縮器流量制御弁10
の直列回路に対して、並列に接続されている。
The condenser 5 and the condenser flow control valve 10 are connected in series to the compressor 1 in order. On the other hand, the bypass flow rate control valve 9 includes the condenser 5 and the condenser flow rate control valve 10.
Are connected in parallel to the series circuit.

【0021】このバイパス流量制御弁9は、凝縮器5と
凝縮器流量制御弁10をバイパスするバイパス通路40
に設けられている。また、送風機6は、矢印W2方向に
そって凝縮器5に送風する。
The bypass flow control valve 9 bypasses the condenser 5 and the condenser flow control valve 10.
It is provided in. Further, the blower 6 blows air to the condenser 5 along the arrow W2 direction.

【0022】室外ユニット15では、好ましくは制御部
を介して、凝縮器用の送風機6の動作と、流量制御弁1
0の動作を関連して制御するようになっている。
In the outdoor unit 15, the operation of the blower 6 for the condenser and the flow control valve 1 are preferably carried out via the control section.
It is adapted to control the operation of zero.

【0023】次に、分離型空気調和機の室内ユニット1
6について説明する。
Next, the indoor unit 1 of the separation type air conditioner
6 will be described.

【0024】室内ユニット16は、再熱器14a、膨張
弁11、そして蒸発器14bを有している。これらの再
熱器14aと蒸発器14bの間には、流量制御弁ともい
う膨張弁11が配置されている。すなわち、配管18か
ら、順に再熱器14a、膨張弁11、蒸発器14bを直
列に配置している。蒸発器14bは配管17に接続され
ている。
The indoor unit 16 has a reheater 14a, an expansion valve 11 and an evaporator 14b. An expansion valve 11, which is also called a flow rate control valve, is arranged between the reheater 14a and the evaporator 14b. That is, the reheater 14a, the expansion valve 11, and the evaporator 14b are sequentially arranged in series from the pipe 18. The evaporator 14b is connected to the pipe 17.

【0025】室内ユニット16には、送風機19が配置
されている。この送風機19は、再熱器14aと蒸発器
14bに矢印W1方向に送風するためのものである。
A blower 19 is arranged in the indoor unit 16. The blower 19 is for blowing air to the reheater 14a and the evaporator 14b in the arrow W1 direction.

【0026】次に、図示の分離型空気調和機の制御方法
の好ましい例を説明する。
Next, a preferred example of the control method of the illustrated separation type air conditioner will be described.

【0027】図1の実施例の分離型空気調和機では、制
御装置30により凝縮器流量制御弁10とバイパス流量
制御弁9を流れる冷媒の流量を変えることにより、室外
機15での放熱量Qcを変える。これにより、室内機1
6における放熱量と室外機15における放熱量の割合を
大きく変化させることができる。
In the separation type air conditioner of the embodiment of FIG. 1, the controller 30 changes the flow rate of the refrigerant flowing through the condenser flow rate control valve 10 and the bypass flow rate control valve 9 to thereby radiate the heat Qc in the outdoor unit 15. change. As a result, the indoor unit 1
The ratio of the heat radiation amount in 6 and the heat radiation amount in the outdoor unit 15 can be greatly changed.

【0028】これについて説明する前に、まず、通常の
冷房運転と、除湿を伴う冷房運転と、暖房運転時の冷媒
の流れについて説明しておく。
Before describing this, first, the flow of the refrigerant during the normal cooling operation, the cooling operation with dehumidification, and the heating operation will be described.

【0029】通常の冷房運転では、図5のバイパス流量
制御弁9を閉じ、凝縮器流量制御弁10を少し絞ってお
く。
In the normal cooling operation, the bypass flow rate control valve 9 in FIG. 5 is closed and the condenser flow rate control valve 10 is slightly throttled.

【0030】通常の冷房運転(強制冷房運転)では、図
5の破線の矢印で示す方向に冷媒が流れる。圧縮機1か
らの冷媒は、凝縮器5、凝縮器流量制御弁10を通り、
冷媒はこの凝縮器流量制御弁10で絞られて、再熱器1
4aで一部の冷媒が潜熱を奪って蒸発した(吸熱量Q
r)後、全開の膨張弁11により残りの放熱器14bで
潜熱を奪って蒸発する(吸熱量Qe)。従って、蒸発器
14b及び再熱器14aの両方で風を冷却後、室内に向
けて送風する。通常の強力冷房運転におけるモリエル線
図を図6に示す。
In the normal cooling operation (forced cooling operation), the refrigerant flows in the direction shown by the broken line arrow in FIG. The refrigerant from the compressor 1 passes through the condenser 5 and the condenser flow control valve 10,
The refrigerant is throttled by the condenser flow control valve 10, and the reheater 1
At 4a, some of the refrigerant took away latent heat and evaporated (endotherm Q
After r), latent heat is taken by the remaining radiator 14b by the fully open expansion valve 11 to evaporate (heat absorption amount Qe). Therefore, after the air is cooled by both the evaporator 14b and the reheater 14a, it is blown indoors. FIG. 6 shows a Mollier diagram in the normal high-power cooling operation.

【0031】次に、図1と図2に示す除湿を伴う冷房運
転では、凝縮器流量制御弁10とバイパス流量制御弁9
の開度を変え、膨張弁11を絞る。これにより、上述し
た通常の冷房運転と同様にして冷媒は循環するが、凝縮
器5とバイパス通路40を通る冷媒がある。圧縮機1か
らの冷媒の一部を凝縮器5をバイパスさせることによ
り、再熱器14aでの放熱量Qrの調整ができ且つ熱的
ロスを低減できる。そして、冷媒は再熱器14aで放熱
(放熱量Qr)し、蒸発器14bで吸熱(吸熱量Qe)
する。
Next, in the cooling operation with dehumidification shown in FIGS. 1 and 2, the condenser flow control valve 10 and the bypass flow control valve 9 are
And the expansion valve 11 is throttled. As a result, the refrigerant circulates in the same manner as in the normal cooling operation described above, but some refrigerant passes through the condenser 5 and the bypass passage 40. By bypassing the condenser 5 with a part of the refrigerant from the compressor 1, the heat radiation amount Qr in the reheater 14a can be adjusted and the thermal loss can be reduced. The refrigerant radiates heat in the reheater 14a (heat radiation amount Qr) and absorbs heat in the evaporator 14b (heat absorption amount Qe).
To do.

【0032】除湿冷房時には、図2のモリエル線図(冷
房気味除湿から暖房気味除湿)に示すように、蒸発器1
4bの蒸発熱量Qeに対して、圧縮機1において冷媒に
投入される熱量を加えた熱量を、室外ユニット15の凝
縮器5で熱量Qc放熱し、残りの熱量Qrは室内ユニッ
ト16の再熱器14aに移る。従って、室内ユニット1
6の蒸発器14bで除湿冷却された空気を、再熱器14
bにおいてこの残りの熱量Qr分で加熱され、室内に吹
き出され、除湿冷房される。
During dehumidifying and cooling, as shown in the Mollier diagram of FIG. 2 (from dehumidifying from cooling to dehumidifying to heating), the evaporator 1
A heat amount Qc of the outdoor unit 15 is radiated as a heat amount obtained by adding the heat amount of the refrigerant in the compressor 1 to the evaporation heat amount Qe of 4b, and the remaining heat amount Qr is the reheater of the indoor unit 16. Move to 14a. Therefore, the indoor unit 1
The air dehumidified and cooled by the evaporator 14b of No. 6 is supplied to the reheater 14
In b, it is heated by the remaining heat amount Qr, blown out into the room, and is dehumidified and cooled.

【0033】この時、室外ユニット15の凝縮器5で放
熱する熱量Qcは、バイパス流量制御弁9の開度を調整
することにより、凝縮器5を流れる冷媒循環量と、凝縮
器5をバイパスして放熱しないでバイパス流量制御弁9
を介して室内ユニット16の再熱器14aに流れ込む冷
媒循環量を調整することにより、室外ユニット15の凝
縮器5での冷媒の放熱量Qcを調整することができ、き
め細かな湿度と温度との制御が可能となる。
At this time, the amount of heat Qc radiated by the condenser 5 of the outdoor unit 15 is adjusted by adjusting the opening degree of the bypass flow control valve 9 so that the refrigerant circulating amount flowing through the condenser 5 and the condenser 5 are bypassed. Bypass flow control valve 9 without radiating heat
By adjusting the circulation amount of the refrigerant flowing into the reheater 14a of the indoor unit 16 via the heat exchanger, the heat radiation amount Qc of the refrigerant in the condenser 5 of the outdoor unit 15 can be adjusted, and the fine humidity and the temperature can be adjusted. It becomes possible to control.

【0034】たとえば、流量制御弁10を閉めて全ての
冷媒を流量制御弁9側に流すことにより、室外ユニット
15の凝縮器5での放熱量Qcをゼロまで落とすことが
でき、極めて大きな幅で凝縮器5の放熱量Qcを変化さ
せることができる。
For example, by closing the flow control valve 10 and causing all the refrigerant to flow to the flow control valve 9 side, the heat radiation amount Qc in the condenser 5 of the outdoor unit 15 can be reduced to zero, which is extremely wide. The heat radiation amount Qc of the condenser 5 can be changed.

【0035】したがって、室内ユニット16の再熱器1
4aでの放熱量と、室外ユニット15の凝縮器5での放
熱量の割合を大きく変えることができる。
Therefore, the reheater 1 of the indoor unit 16
The ratio of the heat radiation amount in 4a and the heat radiation amount in the condenser 5 of the outdoor unit 15 can be largely changed.

【0036】流量制御弁9の開度を小さくして、冷媒の
バイパス40に通る流量を少なくすることにより(凝縮
器5を流れる冷媒流量を多くすることにより)、室外放
熱量Qcを大きくすることで、再熱器14aによる室内
再加熱に利用される熱量が少なくなる。
To increase the outdoor heat radiation amount Qc by decreasing the opening of the flow control valve 9 and decreasing the flow rate of the refrigerant passing through the bypass 40 (by increasing the flow rate of the refrigerant flowing through the condenser 5). Thus, the amount of heat used for reheating the room by the reheater 14a is reduced.

【0037】したがって、室内空気吹き出し温度は低く
なり、冷房気味除湿となる。
Therefore, the temperature at which the indoor air is blown out is lowered, and the air is dehumidified with cooling.

【0038】つまり、室内温度が設定温度より高い時に
は、流量制御弁9を流れる冷媒循環量を減らして(凝縮
器5を流れる冷媒循環量を多くして)、再熱器14aに
よる室内での再加熱量を少なくして、冷房気味除湿運転
をする。
That is, when the room temperature is higher than the set temperature, the refrigerant circulation amount flowing through the flow rate control valve 9 is reduced (the refrigerant circulation amount flowing through the condenser 5 is increased), and the reheater 14a is used to reheat the inside of the room. Decrease the heating amount and perform a dehumidifying operation with a slight cooling effect.

【0039】次に、暖房気味除湿運転の場合について説
明する。
Next, the case of the heating dehumidifying operation will be described.

【0040】この場合の冷媒の流れは、図1の破線で示
すように冷房運転時と同じ流れであるが、流量制御弁9
の開度を大きくして、バイパス流量制御弁9を通る冷媒
のバイパス40の流量を多くすることにより(凝縮器5
を流れる冷媒流量を少なくすることにより)、室外放熱
量Qcを小さくし、再熱器14aによる室内再加熱に利
用される熱量Qrが多くなる。したがって、室内空気吹
き出し温度は高くなり、暖房気味除湿となる。
The flow of the refrigerant in this case is the same as that in the cooling operation as shown by the broken line in FIG. 1, but the flow control valve 9
Is increased to increase the flow rate of the refrigerant passing through the bypass flow rate control valve 9 in the bypass 40 (condenser 5
(By reducing the flow rate of the refrigerant flowing through), the outdoor heat radiation amount Qc is reduced, and the heat amount Qr used for indoor reheating by the reheater 14a is increased. Therefore, the indoor air blowing temperature becomes high, and the heating dehumidification is performed.

【0041】つまり、室内温度が設定温度より低い時に
は、バイパス流量制御弁9を流れる冷媒循環量を増やし
て(凝縮器5を流れる冷媒循環量を少なくして)、再熱
器14aによる室内での再加熱量Qrを多くして、暖房
気味除湿運転をする。
That is, when the indoor temperature is lower than the set temperature, the refrigerant circulation amount flowing through the bypass flow rate control valve 9 is increased (the refrigerant circulation amount flowing through the condenser 5 is decreased), and the indoor temperature by the reheater 14a is increased. The reheating amount Qr is increased and the heating dehumidifying operation is performed.

【0042】このようにして、除湿しながら、室温を設
定温度に調整することができる。
In this way, the room temperature can be adjusted to the set temperature while dehumidifying.

【0043】次に、通常の暖房運転では、図5の冷房時
と逆の冷媒の流れである。つまり、冷媒は、蒸発器14
b、再熱器14a、凝縮器流量制御弁10、凝縮器5を
通って圧縮機1に戻る。
Next, in the normal heating operation, the flow of the refrigerant is opposite to that in the cooling operation shown in FIG. That is, the refrigerant is the evaporator 14
b, the reheater 14 a, the condenser flow control valve 10, and the condenser 5 to return to the compressor 1.

【0044】上述したような図1に示す暖房気味除湿運
転や冷房気味除湿運転などを行う際には、測定した現状
の室内温度と設定された設定温度の差に応じて、バイパ
ス流量制御弁9を流れる冷媒の量を制御する。これによ
り、図1の室内機16の吹き出しファン20による吹き
出し温度を調整でき、さらに室内の快適性を向上するこ
とができる。
When performing the heating-like dehumidifying operation or the cooling-like dehumidifying operation shown in FIG. 1 as described above, the bypass flow rate control valve 9 is operated according to the difference between the measured current indoor temperature and the set temperature. Control the amount of refrigerant flowing through. As a result, the blowing temperature of the blowing fan 20 of the indoor unit 16 in FIG. 1 can be adjusted, and the indoor comfort can be further improved.

【0045】あるいは、図1の室内機16の送風量と冷
媒比率との関係を示したテーブル(実験データ)を予め
作成しておき、暖房気味除湿運転や冷房気味除湿運転な
どを行う際には、測定した現状の室内温度と設定された
設定温度の差に応じて、テーブル(実験データ)に基づ
いて吹き出し温度を設定して、この吹き出し温度により
バイパス流量制御弁9を制御することができる。
Alternatively, a table (experimental data) showing the relationship between the blown air amount and the refrigerant ratio of the indoor unit 16 in FIG. 1 is prepared in advance, and when performing heating dehumidifying operation or cooling taste dehumidifying operation, etc. The blowoff temperature can be set based on the table (experimental data) according to the difference between the measured current indoor temperature and the set temperature that has been set, and the bypass flow control valve 9 can be controlled by this blowout temperature.

【0046】この方式によりバイパス流量制御弁9に流
れる冷媒の量を制御して、図1の室内機16の吹き出し
ファン20による吹き出し温度を調整でき、さらに室内
の快適性を向上することができる。
With this method, the amount of the refrigerant flowing through the bypass flow control valve 9 can be controlled to adjust the blowout temperature of the blowout fan 20 of the indoor unit 16 shown in FIG. 1, and the indoor comfort can be improved.

【0047】さらに、上述した暖房気味運転状態から図
3と図4に示す強力な暖房除湿にする場合においては、
図3と図4に示すように、凝縮器5に冷媒を流さない場
合でも暖房能力が不足なときには、図3に示すように、
冷媒加熱装置30により追加的に冷媒を加熱して、冷媒
の再加熱量をさらに多くして、従来の冷媒加熱装置を備
えた空調機に比べてさらに強力な暖房をすることができ
る。このように、従来の方式のものと比較して、本発明
の実施例では、従来凝縮器で放熱していた放熱量だけ暖
房能力が高くなり、エネルギ使用効率が良くなる。この
強力な暖房除湿の場合におけるモリエル線図を図4に示
す。
Further, in the case where the above heating operation mode is changed to the strong heating dehumidification shown in FIGS. 3 and 4,
As shown in FIGS. 3 and 4, when the heating capacity is insufficient even when the refrigerant does not flow into the condenser 5, as shown in FIG.
It is possible to additionally heat the refrigerant by the refrigerant heating device 30 to further increase the amount of reheating of the refrigerant, and perform more powerful heating as compared with an air conditioner equipped with a conventional refrigerant heating device. As described above, in the embodiment of the present invention, the heating capacity is increased by the amount of heat radiated by the conventional condenser, and the energy use efficiency is improved, as compared with the conventional method. The Mollier diagram in the case of this strong heating dehumidification is shown in FIG.

【0048】上記冷房気味運転状態からさらに冷房能力
を上昇させる時には、図5と図6に示すように、バイパ
ス流量制御弁9を全閉の状態で、膨張弁11の開度を大
きくし、且つ凝縮器流量制御弁10の開度を小さくする
ことにより、再熱器14aの圧力が下がり、再熱器14
aでの放熱量が少なくなる。これを進めると、再熱器1
4aは、低圧側になり、冷却器に変化して、冷房能力を
多くすることになる(凝縮器流量制御弁10が膨張弁と
しての動作に変わる)。
When the cooling capacity is further increased from the above cooling mode, the bypass flow control valve 9 is fully closed and the opening degree of the expansion valve 11 is increased, as shown in FIGS. 5 and 6. By reducing the opening degree of the condenser flow control valve 10, the pressure of the reheater 14a decreases and the reheater 14a
The amount of heat radiation at a is reduced. If you proceed with this, reheater 1
4a becomes a low pressure side and changes to a cooler to increase the cooling capacity (the condenser flow control valve 10 changes to the operation as an expansion valve).

【0049】以上のようにして、本発明の空気調和機で
は、除湿量に関係なく安定して広範囲に再熱量の調整運
転が可能であり、冷房から、冷房気味除湿、暖房気味除
湿、暖房強力除湿運転まで、連続的に運転調整可能であ
り、且つエネルギー的には不要な放熱はなく、全ての冷
媒の熱を利用でき、経済運転が可能である。
As described above, in the air conditioner of the present invention, it is possible to stably adjust the reheat amount in a wide range irrespective of the dehumidifying amount, and from the cooling to the cooling dehumidifying, the heating dehumidifying dehumidifying, and the heating strong. The operation can be continuously adjusted until the dehumidifying operation, and there is no unnecessary heat dissipation in terms of energy, the heat of all the refrigerants can be used, and economical operation is possible.

【0050】次に、図7ないし図9を参照して、現時点
の室内温度T1と設定温度T2の差に基づく、凝縮器流
量制御弁10とバイパス流量制御弁9の制御の例を説明
する。
Next, an example of control of the condenser flow control valve 10 and the bypass flow control valve 9 based on the difference between the present room temperature T1 and the set temperature T2 will be described with reference to FIGS.

【0051】まず、図7を参照する。First, referring to FIG.

【0052】図7の制御例では、検出室内温度T1と室
温設定温度T2の差に応じて、バイパス流量制御弁9に
流れる冷媒の量を制御して、室内吹き出し温度T4を制
御し、しかも強力暖房除湿運転で凝縮器5に冷媒を循環
させないときに、冷媒を図3の冷媒加熱装置30で加熱
する例を示している。
In the control example of FIG. 7, the amount of the refrigerant flowing through the bypass flow rate control valve 9 is controlled according to the difference between the detected room temperature T1 and the room temperature set temperature T2 to control the room blowout temperature T4, and yet the strength is strong. An example in which the refrigerant is heated by the refrigerant heating device 30 in FIG. 3 when the refrigerant is not circulated in the condenser 5 in the heating dehumidifying operation is shown.

【0053】図7において、室内温度T1を検出し、か
つこの検出室内温度T1と室内設定温度T2と比較して
温度差を取る。そして、この温度差と、凝縮器流量制御
弁10の全閉比較信号RSを比較して、図3の冷媒加熱
装置30による冷媒加熱量の制御をする。また、この温
度差により、凝縮器流量制御弁10の開度を調整する。
さらに、温度差と、バイパス流量制御弁9の基準開度を
比較してバイパス流量制御弁9の開度を調整する。
In FIG. 7, the room temperature T1 is detected, and the detected room temperature T1 is compared with the room set temperature T2 to obtain the temperature difference. Then, the temperature difference is compared with the fully closed comparison signal RS of the condenser flow control valve 10 to control the refrigerant heating amount by the refrigerant heating device 30 of FIG. Further, the opening of the condenser flow control valve 10 is adjusted by this temperature difference.
Further, the temperature difference is compared with the reference opening degree of the bypass flow rate control valve 9 to adjust the opening degree of the bypass flow rate control valve 9.

【0054】次に、図8を参照する。Next, refer to FIG.

【0055】図8の制御例は、室内温度と設定温度の差
に応じて、所定のテーブル(実験データ)に基づいて室
内吹き出し温度T3を設定して、バイパス流量制御弁9
を流れる冷媒の量を制御し、しかも強力暖房除湿運転で
凝縮器5に冷媒を循環させないときに、冷媒を図3の冷
媒加熱装置30で加熱する例を示している。
In the control example of FIG. 8, the indoor blowout temperature T3 is set based on a predetermined table (experimental data) according to the difference between the indoor temperature and the set temperature, and the bypass flow control valve 9 is set.
An example in which the refrigerant is heated by the refrigerant heating device 30 of FIG. 3 when the amount of the refrigerant flowing through the refrigerant is controlled and when the refrigerant is not circulated through the condenser 5 in the powerful heating dehumidifying operation is shown.

【0056】図8において、室内温度T1を検出し、か
つこの検出室内温度T1と設定温度T2と比較して温度
差を取る。そして、この温度差と、テーブル(実験デー
タ)に基づく室内吹き出し温度T3を比較して差をと
る。
In FIG. 8, the room temperature T1 is detected, and the detected room temperature T1 is compared with the set temperature T2 to obtain the temperature difference. Then, this temperature difference is compared with the indoor blowout temperature T3 based on the table (experimental data) to obtain the difference.

【0057】この温度差と、凝縮器流量制御弁10の全
閉比較信号RSを比較して、図3の冷媒加熱装置30に
よる冷媒加熱量の制御をする。また、この温度差によ
り、凝縮器流量制御弁10の開度を調整する。さらに、
温度差と、バイパス流量制御弁9の基準開度を比較して
バイパス流量制御弁9の開度を調整する。
This temperature difference is compared with the fully closed comparison signal RS of the condenser flow control valve 10 to control the refrigerant heating amount by the refrigerant heating device 30 of FIG. Further, the opening of the condenser flow control valve 10 is adjusted by this temperature difference. further,
The opening of the bypass flow control valve 9 is adjusted by comparing the temperature difference with the reference opening of the bypass flow control valve 9.

【0058】さらに、図9を参照する。Further, referring to FIG.

【0059】図9の制御例は、室内温度T1を検出し、
かつこの検出室内温度T1と設定温度T2と比較して温
度差を取る。
In the control example of FIG. 9, the room temperature T1 is detected,
Moreover, the temperature difference between the detection chamber temperature T1 and the set temperature T2 is calculated.

【0060】そして、バイパス流量制御弁9を全閉とし
て、この温度差により室内ユニット16の膨張弁11の
開度を調整し、この温度差と流量調整弁10の基準開度
を比較して凝縮器流量制御弁10の開度を調整する。こ
れにより、強制暖房除湿運転から冷房運転まで連続的に
調整可能になっている。
Then, the bypass flow rate control valve 9 is fully closed, the opening degree of the expansion valve 11 of the indoor unit 16 is adjusted by this temperature difference, and this temperature difference is compared with the reference opening degree of the flow rate adjusting valve 10 to condense. The opening degree of the instrument flow control valve 10 is adjusted. This allows continuous adjustment from the forced heating / dehumidifying operation to the cooling operation.

【0061】図9において、室内温度T1を検出し、か
つこの室内温度T1と設定温度T2と比較して温度差を
取る。この温度差により、室内機16の膨張弁11の開
度を制御し、しかもこの温度差と凝縮器流量制御弁10
の基準開度を比較して凝縮器流量制御弁10の開度を調
整する。
In FIG. 9, the room temperature T1 is detected, and the room temperature T1 is compared with the set temperature T2 to obtain the temperature difference. The temperature difference controls the opening degree of the expansion valve 11 of the indoor unit 16, and the temperature difference and the condenser flow control valve 10 are controlled.
The reference opening of the condenser flow control valve 10 is compared to adjust the opening of the condenser flow control valve 10.

【0062】本発明は上述した実施例に限定されるもの
ではなく、本発明の趣旨を逸脱しない範囲において種々
変形可能である。
The present invention is not limited to the above-mentioned embodiments, but can be variously modified without departing from the spirit of the present invention.

【0063】[0063]

【発明の効果】以上述べたように、本発明によれば、圧
縮機と凝縮器と凝縮器流量制御弁を順に直列に配置し、
凝縮器と凝縮器流量制御弁の直列回路に並列にバイパス
流量制御弁を接続し、室内温度と設定温度の差に応じて
バイパス流量制御弁を流れる冷媒の量を制御して、室内
機の室内吹き出し温度を制御するので、室内放熱量と室
外機の放熱量の割合を大きく変化でき、冷房から、冷房
気味除湿、暖房気味除湿まで連続的に調整可能なように
室内吹き出し温度を制御でき、且つエネルギー的に不要
な放熱がなく、高い運転効率で運転することができる。
As described above, according to the present invention, the compressor, the condenser, and the condenser flow control valve are sequentially arranged in series,
By connecting the bypass flow control valve in parallel to the series circuit of the condenser and the condenser flow control valve, and controlling the amount of refrigerant flowing through the bypass flow control valve according to the difference between the room temperature and the set temperature, the indoor unit indoor Since the blowout temperature is controlled, the ratio of the indoor heat radiation amount to the outdoor unit heat radiation amount can be greatly changed, and the indoor blowing temperature can be controlled so that it can be continuously adjusted from cooling to cooling dehumidification and heating dehumidification, and There is no unnecessary heat release in terms of energy, and it is possible to operate with high operating efficiency.

【0064】また、本発明によれば、室内温度と設定温
度の差に応じて室内機の室内吹き出し温度を設定し、こ
の設定温度に応じてバイパス流量制御弁を流れる冷媒の
量を制御するようになっているので、室内放熱量と室外
機の放熱量の割合を大きく変化でき、冷房から、冷房気
味除湿、暖房気味除湿まで連続的に調整可能なように室
内吹き出し温度を制御でき、且つエネルギー的に不要な
放熱がなく、高い効率で運転することができる。
Further, according to the present invention, the indoor blowing temperature of the indoor unit is set according to the difference between the indoor temperature and the set temperature, and the amount of the refrigerant flowing through the bypass flow control valve is controlled according to the set temperature. Therefore, it is possible to greatly change the ratio between the indoor heat radiation amount and the outdoor unit heat radiation amount, and it is possible to control the indoor blowing temperature so that it can be continuously adjusted from cooling to cooling dehumidification and heating dehumidification, and energy consumption can be controlled. It is possible to operate with high efficiency without unnecessary heat dissipation.

【0065】また、本発明によれば、圧縮機と直列に冷
媒加熱装置を設け、凝縮器に冷媒を循環させない時に、
冷媒を加熱するようになっているので、冷房から、冷房
気味除湿、暖房気味除湿、そして強力暖房除湿まで連続
的に調整可能で、高い効率で運転することができる。
Further, according to the present invention, when the refrigerant heating device is provided in series with the compressor and the refrigerant is not circulated in the condenser,
Since the refrigerant is heated, it is possible to continuously adjust from cooling to dehumidifying for cooling, dehumidifying for heating, and dehumidifying for intense heating, and it is possible to operate with high efficiency.

【0066】さらに、本発明によれば、圧縮機と凝縮器
と凝縮器流量制御弁を順に直列に配置し、凝縮器と凝縮
器流量制御弁の直列回路に並列にバイパス流量制御弁を
接続し、バイパス流量制御弁を全閉とし、膨張弁と凝縮
器流量制御弁の開度を調整することにより、除湿運転か
ら冷房運転まで連続的に調整できるようになっているの
で、室内放熱量と室外機の放熱量の割合を大きく変化で
き、冷房から、冷房気味除湿、暖房気味除湿まで連続的
に調整可能で、且つエネルギー的に不要な放熱がなく、
高い効率で運転することができる。
Further, according to the present invention, the compressor, the condenser, and the condenser flow control valve are sequentially arranged in series, and the bypass flow control valve is connected in parallel to the series circuit of the condenser and the condenser flow control valve. By fully closing the bypass flow control valve and adjusting the opening of the expansion valve and condenser flow control valve, it is possible to continuously adjust from the dehumidifying operation to the cooling operation. The rate of heat radiation of the machine can be changed greatly, it is possible to continuously adjust from cooling to dehumidifying to cooling, to dehumidifying to heating, and there is no unnecessary heat radiation in terms of energy.
It can be operated with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空気調和機の好適な実施例の配管系統
(冷房気味除湿から暖房気味除湿運転)を示す図であ
る。
FIG. 1 is a diagram showing a pipe system (cooling dehumidifying to heating dehumidifying operation) of a preferred embodiment of an air conditioner of the present invention.

【図2】図1におけるモリエル線図(冷房気味除湿から
暖房気味除湿運転)の例を示す図である。
FIG. 2 is a diagram showing an example of the Mollier diagram in FIG. 1 (from cooling dehumidifying to heating dehumidifying operation).

【図3】本発明の空気調和機の好適な実施例の配管系統
(強力暖房除湿運転)を示す図である。
FIG. 3 is a diagram showing a piping system (powerful heating dehumidifying operation) of a preferred embodiment of the air conditioner of the present invention.

【図4】図3におけるモリエル線図(強力暖房除湿運
転)の例を示す図である。
FIG. 4 is a diagram showing an example of a Mollier diagram (strong heating dehumidifying operation) in FIG. 3.

【図5】本発明の空気調和機の好適な実施例の配管系統
(強力冷房運転)を示す図である。
FIG. 5 is a diagram showing a piping system (strong cooling operation) of a preferred embodiment of the air conditioner of the present invention.

【図6】図5におけるモリエル線図(強力冷房運転)の
例を示す図である。
FIG. 6 is a diagram showing an example of the Mollier diagram (strong cooling operation) in FIG.

【図7】本発明における制御例を示す図である。FIG. 7 is a diagram showing a control example in the present invention.

【図8】本発明における制御例を示す図である。FIG. 8 is a diagram showing a control example in the present invention.

【図9】本発明における制御例を示す図である。FIG. 9 is a diagram showing a control example in the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 5 凝縮器 9 バイパス流量制御弁 10 凝縮器流量制御弁 14a 再熱器 14b 放熱器 15 室外ユニット 16 室内ユニット 1 Compressor 5 Condenser 9 Bypass flow control valve 10 Condenser flow control valve 14a Reheater 14b Radiator 15 Outdoor unit 16 Indoor unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と凝縮器と凝縮器流量制御弁と再
熱器と蒸発器とを順に接続した冷凍サイクルを有する空
気調和機において、 前記凝縮器と前記凝縮器流量制御弁とをバイパスするバ
イパス通路を設け、このバイパス通路にはバイパス流量
制御弁を設け、このバイパス流量制御弁の弁開度を室内
温度と設定温度の差に応じて制御する制御手段を設けた
ことを特徴とする空気調和機。
1. An air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, wherein the condenser and the condenser flow control valve are bypassed. Is provided with a bypass passage, a bypass flow rate control valve is provided in the bypass passage, and control means is provided for controlling the valve opening degree of the bypass flow rate control valve according to the difference between the room temperature and the set temperature. Air conditioner.
【請求項2】 圧縮機と凝縮器と凝縮器流量制御弁と再
熱器と蒸発器とを順に接続した冷凍サイクルを有する空
気調和機において、 前記凝縮器と前記凝縮器流量制御弁とをバイパスするバ
イパス通路を設け、このバイパス通路にはバイパス流量
制御弁を設け、さらに室内温度と設定温度の差に応じて
室内の吹き出し温度を設定する設定手段を設け、この設
定手段に従って設定される吹き出し温度に応じて前記バ
イパス流量制御弁の弁開度を制御する制御手段を設けた
ことを特徴とする空気調和機。
2. An air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, wherein the condenser and the condenser flow control valve are bypassed. A bypass passage is provided, a bypass flow rate control valve is provided in the bypass passage, and setting means for setting the indoor blowing temperature according to the difference between the indoor temperature and the set temperature is provided, and the blowing temperature set according to the setting means. An air conditioner comprising control means for controlling a valve opening degree of the bypass flow control valve according to the above.
【請求項3】 圧縮機と凝縮器と凝縮器流量制御弁と再
熱器と蒸発器とを順に接続した冷凍サイクルを有する空
気調和機において、 前記凝縮器と前記凝縮器流量制御弁とをバイパスするバ
イパス通路を設け、このバイパス通路にはバイパス流量
制御弁を設け、さらに前記圧縮機につながる冷媒加熱器
を設け、前記凝縮器流量制御弁を閉じて前記バイパス流
量制御弁を開いたときに前記冷媒加熱器を動作させる制
御手段を設けたことを特徴とする空気調和機。
3. An air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, wherein the condenser and the condenser flow control valve are bypassed. A bypass passage is provided, a bypass flow control valve is provided in the bypass passage, a refrigerant heater connected to the compressor is further provided, and the condenser flow control valve is closed and the bypass flow control valve is opened. An air conditioner comprising control means for operating a refrigerant heater.
【請求項4】 圧縮機と凝縮器と凝縮器流量制御弁と再
熱器と蒸発器とを順に接続した冷凍サイクルを有する空
気調和機において、 前記凝縮器と前記凝縮器流量制御弁とをバイパスするバ
イパス通路を設け、このバイパス通路にはバイパス流量
制御弁を設け、且つ前記再熱器と前記蒸発器の間には膨
張弁を設け、前記バイパス流量制御弁を閉じたときに前
記膨張弁と前記凝縮器流量制御弁の開度を関連付けて制
御する制御手段を設けたことを特徴とする空気調和機。
4. An air conditioner having a refrigeration cycle in which a compressor, a condenser, a condenser flow control valve, a reheater and an evaporator are sequentially connected, wherein the condenser and the condenser flow control valve are bypassed. A bypass passage is provided, a bypass flow control valve is provided in the bypass passage, an expansion valve is provided between the reheater and the evaporator, and the expansion valve is provided when the bypass flow control valve is closed. An air conditioner provided with a control means for controlling the opening degree of the condenser flow control valve in association with each other.
JP9227194A 1994-04-28 1994-04-28 Air conditioner Expired - Fee Related JP2963002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9227194A JP2963002B2 (en) 1994-04-28 1994-04-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9227194A JP2963002B2 (en) 1994-04-28 1994-04-28 Air conditioner

Publications (2)

Publication Number Publication Date
JPH07294059A true JPH07294059A (en) 1995-11-10
JP2963002B2 JP2963002B2 (en) 1999-10-12

Family

ID=14049740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9227194A Expired - Fee Related JP2963002B2 (en) 1994-04-28 1994-04-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP2963002B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107001A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner
JP2003028537A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioner
JP2003028535A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioning equipment
JP2008232617A (en) * 2008-04-26 2008-10-02 Mitsubishi Electric Corp Air conditioner
JP2008298379A (en) * 2007-05-31 2008-12-11 Chubu Electric Power Co Inc Reheat type air conditioner
JPWO2021245791A1 (en) * 2020-06-02 2021-12-09

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107001A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner
JP2003028537A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioner
JP2003028535A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Air conditioning equipment
JP2008298379A (en) * 2007-05-31 2008-12-11 Chubu Electric Power Co Inc Reheat type air conditioner
JP2008232617A (en) * 2008-04-26 2008-10-02 Mitsubishi Electric Corp Air conditioner
JP4743223B2 (en) * 2008-04-26 2011-08-10 三菱電機株式会社 Air conditioner
JPWO2021245791A1 (en) * 2020-06-02 2021-12-09

Also Published As

Publication number Publication date
JP2963002B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US5231845A (en) Air conditioning apparatus with dehumidifying operation function
US5729994A (en) Radiation type air conditioning system having dew-condensation preventing mechanism
JP2009274517A (en) Air conditioning system
KR20200083294A (en) Constant temperature and humidity units
JP2006234293A (en) Heat pump type cooling device, air conditioner using the same, and heat pump type heating device
JP2963002B2 (en) Air conditioner
JP2002107001A (en) Air conditioner
JP2004132572A (en) Air conditioner
JP7205889B2 (en) air conditioning system
JP3675609B2 (en) Operation method of multi-room air conditioner
JPH1183125A (en) Air conditioner
JP3820956B2 (en) Air conditioner
JPH08156580A (en) Heat pump type heating, cooling and dehumidifying control device for electric vehicle
JPH03164647A (en) Air conditioner
JPH0942752A (en) Radiation type air conditioning equipment
JP3297105B2 (en) Air conditioner
JPH07294060A (en) Air conditioner
JPH06159857A (en) Air conditioner
JPH07239157A (en) Operation controlling method for air-conditioner
JPH04236062A (en) Air conditioner
JP2002106925A (en) Air conditioner
JPH07294052A (en) Air conditioner
JPH09145175A (en) Air conditioner
JPH07294050A (en) Air conditioner
JP2005134088A (en) Air conditioning system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees