JPH08156580A - Heat pump type heating, cooling and dehumidifying control device for electric vehicle - Google Patents

Heat pump type heating, cooling and dehumidifying control device for electric vehicle

Info

Publication number
JPH08156580A
JPH08156580A JP30204294A JP30204294A JPH08156580A JP H08156580 A JPH08156580 A JP H08156580A JP 30204294 A JP30204294 A JP 30204294A JP 30204294 A JP30204294 A JP 30204294A JP H08156580 A JPH08156580 A JP H08156580A
Authority
JP
Japan
Prior art keywords
rotation speed
air
output
operation mode
revolution speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30204294A
Other languages
Japanese (ja)
Other versions
JP3279104B2 (en
Inventor
Yasufumi Kurahashi
康文 倉橋
Minoru Fukumoto
稔 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30204294A priority Critical patent/JP3279104B2/en
Publication of JPH08156580A publication Critical patent/JPH08156580A/en
Application granted granted Critical
Publication of JP3279104B2 publication Critical patent/JP3279104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE: To materialize an energy saving operation for an air conditioner by providing an air conditioner operation means with an operation mode setting means setting an operation mode for the revolution speed of a motor driven compressor, and with a revolution speed reducing means which reduces its revolution speed operated by a revolution speed operating means when an operation mode is set by the operation setting means. CONSTITUTION: When the blow-off temperature of air fed into a cabin is changed while a cooling operation is being carried out with a cooling switch tuned on, out of a control mode selection switch 24, the revolution speed of a motor driven compressor 25 is changed so as to allow the amount of circulating coolant to be increased/ decreased. In this case, the output temperature signal of a temperature setting unit 32 is inputted into a revolution speed operating means 33, and when the output signal is in a cooling mode, the revolution speed corresponding to the output temperature signal of the temperature setting unit 32, is operated. The operated revolution speed is then inputted into a revolution speed reducing means 9, and when an operation mode SW 19 is set so as to be operated, the revolution speed is then reduced so as to be inputted into a revolution speed output means 34, and the revolution speed of the motor driven compressor 25 is thereby reduced via an inverter 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車の車室内を
空気調和する電気自動車用ヒートポンプ冷暖房除湿制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump cooling / heating / dehumidifying control device for an electric vehicle that air-conditions the interior of the electric vehicle.

【0002】[0002]

【従来の技術】従来の電気自動車用ヒートポンプ冷暖房
除湿制御装置は、例えば図7の構成図に示すように、モ
ータを内蔵した電動圧縮機25と、車室外空気熱交換器
2と、前記車室外空気熱交換器2をバイパスさせるよう
に配されたバイパス回路16と、前記バイパス回路16
の入口側に配された第1の三方切替え弁17と、前記バ
イパス回路16の出口側に入口側と対になるように配さ
れた第2の三方切替え弁18と、車室外空気熱交換器用
送風装置3と、車室内もしくは車室外もしくは車室内外
の混合の空気導入の選択を行う車室内外空気導入装置6
と、車室内空気熱交換器用送風装置7と、前記車室内空
気熱交換器用送風装置7と車室内吹出口を結ぶ第1の通
風回路28と、前記第1の通風回路28内に配された第
1の車室内空気熱交換器26と、前記第1の通風回路2
8の前記第1の車室内空気熱交換器26の下流側から分
岐し再度前記第1の通風回路28に合流している第2の
通風回路29と、前記第1の通風回路28と前記第2の
通風回路29の切替えを行う通風回路切替えダンパ30
と、前記通風回路切替えダンパ30の駆動用の通風回路
切替えアクチュエータ23と、前記第2の通風回路29
内に配された第2の車室内空気熱交換器14と、四方切
替え弁22と、前記電動圧縮機25と前記各熱交換器と
前記四方切替え弁22を結ぶ冷媒配管31と、前記第1
の車室内空気熱交換器26と前記第2の車室内空気熱交
換器14間の前記冷媒配管31に配された第1の冷媒絞
り装置15と、前記第2の車室内空気熱交換器14と前
記車室外空気熱交換器2間の前記冷媒配管31に配され
た第2の冷媒絞り装置27とで構成されている電気自動
車用ヒートポンプ冷暖房除湿装置において、電動圧縮機
25のモータを可変回転数で駆動するインバータ21
と、空調操作パネル10内に、車室内へ吹き出す空気温
度に対応もしくは関連した設定を行う可変VRを使用し
た温度設定手段32と、同じく空調操作パネル10内に
冷房モード、暖房モード、除湿暖房モードの制御モード
を設定するための3つのSW(A/C SW、暖房S
W、ドライSW)を使用した制御モード設定手段24
と、更に、前記車室内空気熱交換器用送風装置7の送風
量を設定するためのSWで構成されている風量設定手段
1と、前記風量設定手段1のSW位置に応じて前記車室
内空気熱交換器用送風装置7の送風量を可変駆動するた
めの前記車室内空気熱交換器用送風装置7の下流に配さ
れたレジスタ8と、空調制御手段20と、前記空調制御
手段20は、前記第1の冷媒絞り装置15及び、前記第
2の冷媒絞り装置27及び、前記第1の三方切替え弁1
7及び、前記第2の三方切替え弁18及び、前記通風回
路切替えアクチュエータ23の制御を行う出力制御手段
35、更に、前記制御モード選択SW24からの信号に
基づき、前記温度設定手段32の出力温度信号に対応す
る回転数を演算する回転数演算手段33と、前記回転数
演算手段33で演算した回転数に基づき前記インバータ
21への回転数を出力する回転数出力手段34とで構成
されている。
2. Description of the Related Art A conventional heat pump cooling / heating / dehumidifying control device for an electric vehicle is, for example, as shown in the configuration diagram of FIG. 7, an electric compressor 25 having a built-in motor, an outside air heat exchanger 2, and the outside A bypass circuit 16 arranged to bypass the air heat exchanger 2, and the bypass circuit 16
A first three-way switching valve 17 arranged on the inlet side of the vehicle, a second three-way switching valve 18 arranged on the outlet side of the bypass circuit 16 so as to be paired with the inlet side, and for a vehicle exterior air heat exchanger The air blower device 3 and the vehicle interior / external air introduction device 6 for selecting introduction of mixed air into the vehicle interior / outside the vehicle interior / outside
And a first ventilation circuit 28 connecting the vehicle interior air heat exchanger air blower 7, the vehicle interior air heat exchanger air blower 7 and the vehicle interior air outlet, and the first ventilation circuit 28. The first vehicle interior air heat exchanger 26 and the first ventilation circuit 2
8, a second ventilation circuit 29 that branches from the downstream side of the first vehicle interior air heat exchanger 26 and merges with the first ventilation circuit 28 again, the first ventilation circuit 28, and the second ventilation circuit 29. Ventilation circuit switching damper 30 for switching the ventilation circuit 29 of 2
A ventilation circuit switching actuator 23 for driving the ventilation circuit switching damper 30; and the second ventilation circuit 29.
A second vehicle interior air heat exchanger 14 disposed inside, a four-way switching valve 22, a refrigerant pipe 31 connecting the electric compressor 25, the heat exchangers, and the four-way switching valve 22, and the first
First refrigerant expansion device 15 arranged in the refrigerant pipe 31 between the vehicle interior air heat exchanger 26 and the second vehicle interior air heat exchanger 14, and the second vehicle interior air heat exchanger 14 In the heat pump cooling and heating dehumidification device for an electric vehicle, which is configured by the second refrigerant expansion device 27 arranged in the refrigerant pipe 31 between the vehicle exterior air heat exchanger 2, the motor of the electric compressor 25 is variably rotated. Inverter 21 driven by number
And a temperature setting means 32 using a variable VR for making settings corresponding to or related to the temperature of air blown into the passenger compartment in the air conditioning operation panel 10, and also in the air conditioning operation panel 10 in a cooling mode, a heating mode and a dehumidifying and heating mode. Three SWs (A / C SW, heating S
Control mode setting means 24 using W, dry SW)
And further, the air volume setting means 1 configured by SW for setting the air volume of the air ventilation device 7 for the vehicle interior air heat exchanger, and the vehicle interior air heat according to the SW position of the air volume setting means 1. The register 8 arranged downstream of the vehicle interior air heat exchanger blower 7 for variably driving the blower amount of the exchanger blower 7, the air conditioning control means 20, and the air conditioning control means 20 include the first Refrigerant expansion device 15, the second refrigerant expansion device 27, and the first three-way switching valve 1
7, output control means 35 for controlling the second three-way switching valve 18 and the ventilation circuit switching actuator 23, and an output temperature signal of the temperature setting means 32 based on a signal from the control mode selection SW 24. And a rotation speed output means 34 for outputting the rotation speed to the inverter 21 based on the rotation speed calculated by the rotation speed calculation means 33.

【0003】よって、冷房を行う場合は、操作により、
空調操作パネル10内の制御モード選択SW24の冷房
SWをONさせ、この信号に基づき空調制御手段20内
の出力制御手段35は、通風回路切替えダンパ30が図
7のニの位置となるよう(風が第1の通風回路28に流
れるよう)に通風回路切替えアクチュエータ23を制御
し、電動圧縮機25から吐出された高温、高圧の冷媒が
車室外空気熱交換器2へ流れるように、四方切替え弁2
2を実線で示す回路に切替え、第1の三方切替え弁17
と第2の三方切替え弁18を冷媒が車室外空気熱交換器
2に流れるように実線に示す回路に切替え、第1の冷媒
絞り装置15は全開(絞りのない状態)の状態とし、第
2の冷媒絞り装置27は絞り有りの状態にする。よっ
て、電動圧縮機25から吐出した冷媒は四方切替え弁2
2を経由し、車室外空気熱交換器2と車室外空気熱交換
器用送風装置3で車室外空気に放熱して、冷媒を凝縮液
化させた後、その冷媒を第2の冷媒絞り装置27で減圧
して第2の車室内空気熱交換器14、第1の冷媒絞り装
置15、第1の車室内空気熱交換器26に導きここで車
室内空気熱交換器用送風装置7で車室内もしくは車室外
の空気を冷却、減湿しながら蒸発し冷房作用を行い、こ
の冷却された空気は第1の通風回路28を流れ車室内に
供給される。
Therefore, when performing cooling,
The cooling SW of the control mode selection switch 24 in the air conditioning operation panel 10 is turned on, and based on this signal, the output control means 35 in the air conditioning control means 20 causes the ventilation circuit switching damper 30 to be in the position of D in FIG. The four-way switching valve so that the high-temperature, high-pressure refrigerant discharged from the electric compressor 25 flows to the vehicle exterior air heat exchanger 2 by controlling the ventilation circuit switching actuator 23 so that the air flows to the first ventilation circuit 28). Two
2 is switched to the circuit shown by the solid line, and the first three-way switching valve 17
And the second three-way switching valve 18 are switched to the circuit shown by the solid line so that the refrigerant flows to the vehicle exterior air heat exchanger 2, and the first refrigerant expansion device 15 is fully opened (no expansion), and the second The refrigerant expansion device 27 is set to have a restriction. Therefore, the refrigerant discharged from the electric compressor 25 is transferred to the four-way switching valve 2
After passing through 2, the vehicle exterior air heat exchanger 2 and the vehicle exterior air heat exchanger blower 3 radiate heat to the vehicle exterior air to condense and liquefy the refrigerant, and then the second refrigerant expansion device 27. The air is depressurized and led to the second vehicle interior air heat exchanger 14, the first refrigerant expansion device 15, and the first vehicle interior air heat exchanger 26, where the vehicle interior air heat exchanger blower device 7 is used for the vehicle interior or the vehicle. The outdoor air is cooled and dehumidified and evaporated to perform a cooling action, and the cooled air flows through the first ventilation circuit 28 and is supplied into the vehicle interior.

【0004】ここで車室内に供給する空気の吹出温度を
可変したい場合、電動圧縮機25の回転数を可変し、冷
媒循環量を増減させることにより、吹出温度制御を行っ
ている。このため、図7のように、温度設定器32の出
力温度信号を空調制御手段20内の回転数演算手段33
に入力し、この回転数演算手段33は、例えば図8に示
すように、制御モード設定手段24からの出力信号が、
冷房モードの場合は、Aの特性カーブを参照し、温度設
定器32の出力温度信号に対応した回転数を演算して、
回転数出力手段34へ出力する。回転数出力手段34
は、この回転数の信号をインバータ21に出力し、イン
バータ21はこの指示された回転数で電動圧縮機25を
駆動する。従って、冷房時は、温度設定器32の出力温
度信号が低い温度信号(温度設定器32のレバーがCO
LD側)である時、電動圧縮機25の回転数が大きくな
り冷媒循環量が増加し、車室内への空気の吹き出し温度
は低下し、逆に、温度設定器32の出力温度信号が高い
温度信号(温度設定器32のレバーHOT側)である
時、電動圧縮機25の回転数が小さくなり冷媒循環量が
減少し、車室内への空気の吹き出し温度は上昇する。
When it is desired to change the blowout temperature of the air supplied to the vehicle compartment, the blowout temperature is controlled by changing the rotation speed of the electric compressor 25 and increasing or decreasing the refrigerant circulation amount. Therefore, as shown in FIG. 7, the output temperature signal of the temperature setter 32 is used as the rotation speed calculation means 33 in the air conditioning control means 20.
The output signal from the control mode setting means 24 is input to the rotation speed calculating means 33 as shown in FIG.
In the case of the cooling mode, the characteristic curve of A is referred to, the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated,
It outputs to the rotation speed output means 34. Rotation speed output means 34
Outputs a signal of this rotation speed to the inverter 21, and the inverter 21 drives the electric compressor 25 at this designated rotation speed. Therefore, during cooling, the output temperature signal of the temperature setting device 32 is low (the lever of the temperature setting device 32 is
(LD side), the rotation speed of the electric compressor 25 increases, the refrigerant circulation amount increases, the temperature at which air blows into the passenger compartment decreases, and conversely, the output temperature signal of the temperature setter 32 rises to a high temperature. When it is a signal (on the lever HOT side of the temperature setting device 32), the rotation speed of the electric compressor 25 decreases, the refrigerant circulation amount decreases, and the temperature of air blown into the passenger compartment rises.

【0005】一方、暖房を行う場合は、操作により、空
調操作パネル10内の制御モード選択SW24の暖房S
WをONさせ、この信号に基づき空調制御手段20内の
出力制御手段35は、通風回路切替えダンパ30が図5
のハの位置となるよう(風が第2の通風回路29に流れ
るよう)に通風回路切替えアクチュエータ23を制御
し、四方切替え弁22を冷房時の冷媒流路と逆転(波線
で示す回路)させ、冷房時と同様に第1の冷媒絞り装置
15の絞りを開(絞りのない状態)とし、第2の冷媒絞
り装置27の絞りを絞りのある状態とする。更に第1の
三方切替え弁17と第2の三方切替え弁18を冷媒が車
室外空気熱交換器2に通過するように実線の回路に切替
えた状態とする。
On the other hand, when heating is performed, the heating S of the control mode selection SW 24 in the air conditioning operation panel 10 is operated by an operation.
W is turned on, and based on this signal, the output control means 35 in the air conditioning control means 20 has the ventilation circuit switching damper 30 shown in FIG.
The ventilation circuit switching actuator 23 is controlled so as to be in the position of C (the wind flows to the second ventilation circuit 29), and the four-way switching valve 22 is reversed (indicated by a broken line) from the refrigerant flow passage during cooling. In the same manner as during cooling, the throttle of the first refrigerant expansion device 15 is opened (no expansion) and the throttle of the second refrigerant expansion device 27 is opened. Further, the first three-way switching valve 17 and the second three-way switching valve 18 are switched to a solid line circuit so that the refrigerant passes through the vehicle exterior air heat exchanger 2.

【0006】よって電動圧縮機25から吐出された冷媒
は四方切替え弁22を経由し、高圧、高温状態で第1の
車室内空気熱交換器26及び第2の車室内空気熱交換器
14で車室内空気に放熱して冷媒を凝縮液化させた後、
その冷媒を第2の冷媒絞り装置27を介して車室外空気
熱交換器2に導き、ここで車室内外の空気を冷却、減湿
しながら冷媒が吸熱、蒸発させるヒートポンプ暖房を行
う。
Therefore, the refrigerant discharged from the electric compressor 25 passes through the four-way switching valve 22 and is supplied to the first vehicle interior air heat exchanger 26 and the second vehicle interior air heat exchanger 14 under high pressure and high temperature conditions. After radiating heat to indoor air to condense and liquefy the refrigerant,
The refrigerant is guided to the vehicle exterior air heat exchanger 2 via the second refrigerant expansion device 27, and heat pump heating is performed in which the refrigerant absorbs and evaporates while cooling and dehumidifying the air inside and outside the vehicle.

【0007】ここで車室内に供給する空気の吹出温度を
可変したい場合、冷房時と同様に、電動圧縮機25の回
転数を可変し、冷媒循環量を増減させることにより、吹
出温度制御を行う。このため、図7のように、温度設定
器32の出力温度信号を空調制御手段20内の回転数演
算手段33に入力し、この回転数演算手段33は、例え
ば図8に示すように、制御モード設定手段24からの出
力信号が、暖房モードの場合は、Bの特性カーブを参照
し、温度設定器32の出力温度信号に対応した回転数を
演算して、回転数出力手段34へ出力する。回転数出力
手段34は、この回転数の信号をインバータ21に出力
し、インバータ21はこの指示された回転数で電動圧縮
機25を駆動する。従って、暖房時は、温度設定器32
の出力温度信号が低い(温度設定器32のレバーがCO
LD側)温度信号である時、電動圧縮機25の回転数が
小さくなり冷媒循環量が低下し、車室内への空気の吹き
出し温度は低下し、逆に、温度設定器32の出力温度信
号が高い温度(温度設定器32のレバーがHOT側)信
号である時、電動圧縮機25の回転数が大きくなり冷媒
循環量が増加し、車室内への空気の吹き出し温度は上昇
する。
When it is desired to change the blowout temperature of the air supplied to the passenger compartment, the blowout temperature is controlled by changing the rotation speed of the electric compressor 25 and increasing or decreasing the refrigerant circulation amount, as in the case of cooling. . Therefore, as shown in FIG. 7, the output temperature signal of the temperature setting device 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and the rotation speed calculation means 33 controls the rotation speed calculation means 33 as shown in FIG. When the output signal from the mode setting means 24 is in the heating mode, the characteristic curve of B is referred to, the rotation speed corresponding to the output temperature signal of the temperature setting device 32 is calculated, and the calculated rotation speed is output to the rotation speed output means 34. . The rotation speed output means 34 outputs a signal of this rotation speed to the inverter 21, and the inverter 21 drives the electric compressor 25 at this instructed rotation speed. Therefore, during heating, the temperature setter 32
Output temperature signal is low (the lever of temperature setting device 32 is CO
(LD side) When it is a temperature signal, the rotation speed of the electric compressor 25 decreases, the refrigerant circulation amount decreases, the temperature of air blown into the vehicle interior decreases, and conversely, the output temperature signal of the temperature setter 32 changes. When the signal is a high temperature (the lever of the temperature setting device 32 is on the HOT side), the rotation speed of the electric compressor 25 increases, the amount of refrigerant circulation increases, and the temperature at which air blows into the passenger compartment rises.

【0008】除湿暖房を行う場合、操作により、空調操
作パネル10内の制御モード選択SW24のドライSW
をONさせ、空調制御手段20は、通風回路切替えダン
パ30が図5のハの位置となるよう(風が第2の通風回
路29に流れるよう)に通風回路切替えアクチュエータ
23を制御し、四方切替え弁22を実線で示す回路に切
替え、第1の冷媒絞り装置15を絞り状態とし、第2の
冷媒絞り装置27を開の状態(絞りのない状態)とす
る。更に第1の三方切替え弁17と第2の三方切替え弁
18を冷媒が車室外空気熱交換器2をバイパスするよう
に切替えた状態とする。よって、電動圧縮機25から吐
出された冷媒は高圧、高温状態で第2の車室内空気熱交
換器14に入るため、第2の車室内空気熱交換器14は
高温となり、車室内空気に放熱して、冷媒を凝縮液化さ
せた後、第1の冷媒絞り装置15に導き、液化、低圧と
なり、第1の車室内空気熱交換器26で車室内外の空気
を冷却、減湿しながら冷媒が、吸熱、蒸発し、電動圧縮
機25へ戻る。従って、風の流れの面から説明すると、
車室内空気熱交換器用送風装置7により車室内外の空気
を導き、第1の車室内空気熱交換器26で冷却、除湿さ
れた後、第2の車室内空気熱交換器14により再加熱さ
れ、車室内に放熱し、除湿暖房を行う。
When performing dehumidifying heating, the dry SW of the control mode selection SW 24 in the air conditioning operation panel 10 is operated by an operation.
The air conditioning control means 20 controls the ventilation circuit switching actuator 23 so that the ventilation circuit switching damper 30 is in the position of C in FIG. 5 (the wind flows to the second ventilation circuit 29), and the four-way switching is performed. The valve 22 is switched to the circuit shown by the solid line, the first refrigerant expansion device 15 is in the throttled state, and the second refrigerant expansion device 27 is in the open state (the state without the throttle). Further, the first three-way switching valve 17 and the second three-way switching valve 18 are switched to a state in which the refrigerant bypasses the vehicle exterior air heat exchanger 2. Therefore, since the refrigerant discharged from the electric compressor 25 enters the second vehicle interior air heat exchanger 14 under high pressure and high temperature, the temperature of the second vehicle interior air heat exchanger 14 becomes high and heat is radiated to the vehicle interior air. Then, after the refrigerant is condensed and liquefied, it is guided to the first refrigerant expansion device 15, liquefied and becomes low pressure, and the refrigerant is cooled and dehumidified by the first vehicle interior air heat exchanger 26 while cooling and dehumidifying the air. Absorbs heat, evaporates, and returns to the electric compressor 25. Therefore, in terms of wind flow,
Air inside and outside the vehicle is guided by the air blower 7 for the vehicle interior air heat exchanger, cooled and dehumidified by the first vehicle interior air heat exchanger 26, and then reheated by the second vehicle interior air heat exchanger 14. , Radiates heat into the passenger compartment and performs dehumidifying and heating.

【0009】ここで車室内に供給する空気の吹出温度を
可変したい場合、前述と同様に、電動圧縮機25の回転
数を可変し、冷媒循環量を増減させることにより、吹出
温度制御を行う。このため、図7のように、温度設定器
32の出力温度信号を空調制御手段20内の回転数演算
手段33に入力し、この回転数演算手段33は、例えば
図8に示すように、制御モード設定手段24からの出力
信号が、除湿暖房モードの場合は、Cの特性カーブを参
照し、温度設定器32の出力温度信号に対応した回転数
を演算して、回転数出力手段34へ出力する。回転数出
力手段34は、この回転数の信号をインバータ21に出
力し、インバータ21はこの指示された回転数で電動圧
縮機25を駆動する。従って、暖房時は、温度設定器3
2の出力温度信号が低い温度信号(温度設定器32のレ
バーがCOLD側)である時、電動圧縮機25の回転数
が小さくなり冷媒循環量が低下し、車室内への空気の吹
き出し温度は低下し、逆に、温度設定器32の出力温度
信号が高い温度信号(温度設定器32のレバーがHOT
側)である時、電動圧縮機25の回転数が大きくなり冷
媒循環量が増加し、車室内への空気の吹き出し温度は上
昇する。
When it is desired to change the blowout temperature of the air supplied to the vehicle compartment, the blowout temperature is controlled by changing the rotational speed of the electric compressor 25 and increasing or decreasing the amount of refrigerant circulation, as described above. Therefore, as shown in FIG. 7, the output temperature signal of the temperature setting device 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and the rotation speed calculation means 33 controls the rotation speed calculation means 33 as shown in FIG. When the output signal from the mode setting means 24 is in the dehumidifying and heating mode, the characteristic curve of C is referred to, the rotation speed corresponding to the output temperature signal of the temperature setting device 32 is calculated, and output to the rotation speed output means 34. To do. The rotation speed output means 34 outputs a signal of this rotation speed to the inverter 21, and the inverter 21 drives the electric compressor 25 at this instructed rotation speed. Therefore, during heating, the temperature setter 3
When the output temperature signal of 2 is a low temperature signal (the lever of the temperature setting device 32 is on the COLD side), the rotation speed of the electric compressor 25 decreases, the refrigerant circulation amount decreases, and the temperature at which air blows into the vehicle interior is On the contrary, the output temperature signal of the temperature setting device 32 is high.
Side), the rotation speed of the electric compressor 25 increases, the amount of refrigerant circulation increases, and the temperature at which air blows into the passenger compartment rises.

【0010】[0010]

【発明が解決しようとする課題】上記のように、電気自
動車用ヒートポンプ式除湿冷暖房装置において、電気自
動車における車の追い越し、または登り坂等において、
多量に電力を使用する状況、もしくは電池の残量が余り
ない場合に空調に費やす電力を抑えたい状況において、
空調の消費電力を軽減するため、冷房モードの場合、設
定温度を上げる、暖房モードの場合、設定温度を下げれ
ば、電動圧縮機の回転数は低下し、電動圧縮機の回転数
にほぼ比例して、消費電力は下がり、効果があるが、専
門知識を有さないユーザーにとっては、設定温度の操作
によって消費電力を低下させるといった操作は一般に期
待できず、上記と同様に、運転に専念することが難しい
といった課題を有していた。
As described above, in the heat pump type dehumidifying cooling / heating apparatus for an electric vehicle, when passing a vehicle in an electric vehicle or climbing a slope,
In situations where a large amount of power is used, or when it is desired to reduce the power consumed for air conditioning when the battery level is low,
In order to reduce the power consumption of the air conditioning, if the set temperature is raised in the cooling mode and the set temperature is lowered in the heating mode, the rotation speed of the electric compressor will decrease and it will be almost proportional to the rotation speed of the electric compressor. Power consumption is reduced and effective, but for users who do not have specialized knowledge, operations such as lowering power consumption by operating the set temperature are generally not expected, and as with the above, concentrate on driving. It was difficult to do.

【0011】従って、本発明は、空調の省電力運転を一
般のユーザーでも容易に操作することができ、更に低コ
ストで、効果的な省エネの向上を実現する電気自動車用
ヒートポンプ冷暖房除湿制御装置を提供することを目的
とする。
Therefore, the present invention provides a heat pump cooling / heating dehumidification control device for an electric vehicle, which enables a general user to easily operate the power-saving operation of the air conditioner, and further realizes an effective energy saving at a low cost. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

(請求項1)本発明は、第1の手段として上記の課題を
解決するために、電気自動車用ヒートポンプ冷暖房除湿
装置において、モータを内蔵する電動圧縮機と、前記電
動圧縮機のモータに通電し前記電動圧縮機を可変回転数
にて駆動するインバータと、前記インバータに前記電動
圧縮機の回転数を指示する空調制御手段と、前記空調制
御手段に対して少なくとも吹き出し温度もしくは前記電
動圧縮機の回転数に関連した設定を行う空調操作手段
と、前記空調制御手段に、前記空調操作手段からの吹き
出し温度もしくは前記電動圧縮機の回転数に関連した設
定信号に対応する回転数を運算を行う回転数演算手段を
具備し、前記空調操作手段に、少なくとも前記電動圧縮
機の回転数の運転モードの設定を行う運転モード設定手
段と、前記空調制御手段に、前記運転モード設定手段が
設定された時、前記回転数演算手段にて演算された回転
数を低減させる回転数低減手段を備える。
(Claim 1) As a first means, in order to solve the above problems, in a heat pump cooling and heating dehumidifying device for an electric vehicle, an electric compressor having a built-in motor and a motor of the electric compressor are energized. An inverter that drives the electric compressor at a variable rotation speed, an air-conditioning control unit that instructs the inverter to the rotation speed of the electric compressor, and at least a blowout temperature or a rotation of the electric compressor with respect to the air-conditioning control unit. The number of rotations for calculating the number of rotations corresponding to the setting signal related to the blowout temperature from the air conditioning operation means or the number of rotations of the electric compressor in the air conditioning operation means for performing setting related to the number and the air conditioning control means. An operation mode setting means for setting the operation mode of at least the number of revolutions of the electric compressor in the air conditioning operation means; The stage, when the operation mode setting means is set, and a rotational speed reduction means for reducing the rotational speed Ne that is calculated by said rotational speed calculation means.

【0013】(請求項2)本発明は、第2の手段として
上記課題を解決するために、第1の手段と、第1の手段
における回転数低減手段を、運転モード設定手段が設定
された時、回転数演算手段にて演算された回転数が大き
くなる程、前記回転数演算手段にて演算された回転数を
低減させる度合いを大きくすることとした。
(Claim 2) In order to solve the above problems as a second means, the present invention is provided with an operation mode setting means as the first means and the rotation speed reducing means in the first means. At this time, the greater the number of revolutions calculated by the number-of-revolutions calculation means, the greater the degree of reduction of the number of revolutions calculated by the number-of-revolutions calculation means.

【0014】(請求項3)本発明は、第3の手段として
上記課題を解決するために、回転数低減手段を、運転モ
ード設定手段が設定された時、回転数演算手段にて演算
された回転数の上限を制限することとした。
(Claim 3) As a third means, in order to solve the above problems, the rotation speed reducing means is calculated by the rotation speed calculating means when the operation mode setting means is set. We decided to limit the upper limit of the number of rotations.

【0015】[0015]

【作用】本発明の第1の手段によれば、空調操作手段
に、少なくとも電動圧縮機の回転数の運転モードの設定
を行う運転モード設定手段と、前記空調制御手段に、前
記運転モード設定手段が設定された時、前記回転数演算
手段にて演算された回転数を低減させる回転数低減手段
を備えているので、電気自動車における車の追い越し、
または登り坂等において、多量に電力を使用する状況、
もしくは電池の残量が余りない場合に空調に費やす電力
を抑えたい状況において、空調の消費電力を軽減するた
め、運転モード設定手段を設定操作することにより、回
転数低減手段により回転数演算手段にて演算された回転
数を低減させるので、空調の消費電力を低下させること
ができる。
According to the first means of the present invention, the operation mode setting means for setting at least the operation mode of the rotation speed of the electric compressor in the air conditioning operation means, and the operation mode setting means in the air conditioning control means. When is set, since it is equipped with a rotation speed reduction means for reducing the rotation speed calculated by the rotation speed calculation means, overtaking the vehicle in the electric vehicle,
Or the situation where a large amount of electric power is used on an uphill slope,
Alternatively, in a situation where it is desired to reduce the power consumption for air conditioning when the remaining battery level is low, in order to reduce the power consumption of the air conditioning, by operating the operation mode setting means, the rotation speed reducing means causes the rotation speed calculating means to operate. Since the rotation speed calculated by the above is reduced, the power consumption of the air conditioning can be reduced.

【0016】本発明の第2の手段によれば、第1の手段
と、第1の手段における回転数低減手段を、運転モード
設定手段が設定された時、回転数演算手段にて演算され
た回転数が大きくなる程、前記回転数演算手段にて演算
された回転数を低減させる度合いを大きくすることとし
ているので、特に、回転数演算手段によって演算された
回転数が、高回転になる程、回転数を低減する度合いが
大きいので、電動圧縮機の高回転領域で、消費電力の低
減を大幅にはかることができる。
According to the second means of the present invention, the first means and the rotation speed reducing means in the first means are calculated by the rotation speed calculating means when the operation mode setting means is set. As the number of revolutions increases, the degree of reducing the number of revolutions calculated by the number-of-revolutions calculation unit is increased. Therefore, in particular, as the number of revolutions calculated by the number-of-revolutions calculation unit becomes higher, Since the number of rotations is reduced to a large extent, it is possible to significantly reduce the power consumption in the high rotation region of the electric compressor.

【0017】本発明の第3の手段によれば、第1の手段
と、第1の手段における回転数低減手段を、運転モード
設定手段が設定された時、回転数演算手段にて演算され
た回転数の上限を制限することとしているので、少なく
とも、所定の消費電力以下に制限することができる。
According to the third means of the present invention, the first means and the rotation speed reducing means in the first means are calculated by the rotation speed calculating means when the operation mode setting means is set. Since the upper limit of the rotation speed is limited, it can be limited to at least a predetermined power consumption or less.

【0018】[0018]

【実施例】以下、本発明の実施例を図面により説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は、請求項1の電気自動車用ヒートポ
ンプ冷暖房除湿制御装置の一実施例の構成図である。
FIG. 1 is a block diagram of an embodiment of a heat pump cooling / heating / dehumidifying control device for an electric vehicle according to the present invention.

【0020】図1の構成図に示すように、モータを内蔵
した電動圧縮機25と、車室外空気熱交換器2と、前記
車室外空気熱交換器2をバイパスさせるように配された
バイパス回路16と、前記バイパス回路16の入口側に
配された第1の三方切替え弁17と、前記バイパス回路
16の出口側に入口側と対になるように配された第2の
三方切替え弁18と、車室外空気熱交換器用送風装置3
と、車室内もしくは車室外もしくは車室内外の混合の空
気導入の選択を行う車室内外空気導入装置6と、車室内
空気熱交換器用送風装置7と、前記車室内空気熱交換器
用送風装置7と車室内吹出口を結ぶ第1の通風回路28
と、前記第1の通風回路28内に配された第1の車室内
空気熱交換器26と、前記第1の通風回路28の前記第
1の車室内空気熱交換器26の下流側から分岐し再度前
記第1の通風回路28に合流している第2の通風回路2
9と、前記第1の通風回路28と前記第2の通風回路2
9の切替えを行う通風回路切替えダンパ30と、前記通
風回路切替えダンパ30の駆動用の通風回路切替えアク
チュエータ23と、前記第2の通風回路29内に配され
た第2の車室内空気熱交換器14と、四方切替え弁22
と、前記電動圧縮機25と前記各熱交換器と前記四方切
替え弁22を結ぶ冷媒配管31と、前記第1の車室内空
気熱交換器26と前記第2の車室内空気熱交換器14間
の前記冷媒配管31に配された第1の冷媒絞り装置15
と、前記第2の車室内空気熱交換器14と前記車室外空
気熱交換器2間の前記冷媒配管31に配された第2の冷
媒絞り装置27とで構成されている電気自動車用ヒート
ポンプ冷暖房除湿装置において、電動圧縮機25のモー
タを可変回転数で駆動するインバータ21と、空調操作
パネル10内に、車室内へ吹き出す空気温度に対応もし
くは関連した設定を行う可変VRを使用した温度設定手
段32と、同じく空調操作パネル10内に冷房モード、
暖房モード、除湿暖房モードの制御モードを設定するた
めの3つのSW(A/C SW、暖房SW、ドライS
W)を使用した制御モード設定手段24と、電動圧縮機
25の運転モードを設定するための運転モードSW1
9、更に、前記車室内空気熱交換器用送風装置7の送風
量を設定するためのSWで構成されている風量設定手段
1と、前記風量設定手段1のSW位置に応じて前記車室
内空気熱交換器用送風装置7の送風量を可変駆動するた
めの前記車室内空気熱交換器用送風装置7の下流に配さ
れたレジスタ8と、空調制御手段20と、前記空調制御
手段20は、前記第1の冷媒絞り装置15及び、前記第
2の冷媒絞り装置27及び、前記第1の三方切替え弁1
7及び、前記第2の三方切替え弁18及び、前記通風回
路切替えアクチュエータ23の制御を行う出力制御手段
35、更に、前記制御モード選択SW24からの信号に
基づき、前記温度設定手段32の出力温度信号に対応す
る回転数を演算する回転数演算手段33と、前記運転モ
ードSW19が設定操作された時、回転数演算手段33
にて演算された回転数を低減させる回転数低減手段9
と、前記回転数低減手段9にて演算された回転数に基づ
き前記インバータ21への回転数を出力する回転数出力
手段34とで構成されている。
As shown in the configuration diagram of FIG. 1, an electric compressor 25 having a built-in motor, a vehicle exterior air heat exchanger 2, and a bypass circuit arranged so as to bypass the vehicle exterior air heat exchanger 2. 16, a first three-way switching valve 17 arranged on the inlet side of the bypass circuit 16, and a second three-way switching valve 18 arranged on the outlet side of the bypass circuit 16 so as to form a pair with the inlet side. , Blower 3 for outside air heat exchanger
And a vehicle interior / exterior air introduction device 6 for selecting introduction of mixed air into the vehicle interior, vehicle exterior, or vehicle interior / exterior, vehicle interior air heat exchanger air blower 7, and vehicle interior air heat exchanger air blower 7 First ventilation circuit 28 that connects the air outlet to the vehicle interior
A first passenger compartment air heat exchanger 26 arranged in the first ventilation circuit 28, and a branch of the first ventilation circuit 28 from a downstream side of the first passenger compartment air heat exchanger 26. Then, the second ventilation circuit 2 that joins the first ventilation circuit 28 again
9, the first ventilation circuit 28 and the second ventilation circuit 2
9, a ventilation circuit switching damper 30, a ventilation circuit switching actuator 23 for driving the ventilation circuit switching damper 30, and a second vehicle interior air heat exchanger arranged in the second ventilation circuit 29. 14 and four-way switching valve 22
A refrigerant pipe 31 connecting the electric compressor 25, the heat exchangers, and the four-way switching valve 22, between the first vehicle interior air heat exchanger 26 and the second vehicle interior air heat exchanger 14. First refrigerant expansion device 15 arranged in the refrigerant pipe 31 of
And a second refrigerant expansion device 27 arranged in the refrigerant pipe 31 between the second vehicle interior air heat exchanger 14 and the vehicle exterior air heat exchanger 2, and a heat pump cooling and heating system for an electric vehicle. In the dehumidifier, a temperature setting means using an inverter 21 for driving the motor of the electric compressor 25 at a variable rotation speed and a variable VR for making a setting corresponding to or related to the temperature of the air blown into the vehicle interior in the air conditioning operation panel 10. 32, likewise the cooling mode in the air conditioning operation panel 10,
Three SWs (A / C SW, heating SW, dry S) for setting control modes of heating mode and dehumidifying heating mode
Control mode setting means 24 using W) and an operation mode SW1 for setting an operation mode of the electric compressor 25.
9. Further, according to the SW position of the air volume setting means 1 configured by a SW for setting the air volume of the air ventilation device 7 for the vehicle interior air heat exchanger, the vehicle interior air heat The register 8 arranged downstream of the vehicle interior air heat exchanger blower 7 for variably driving the blower amount of the exchanger blower 7, the air conditioning control means 20, and the air conditioning control means 20 include the first Refrigerant expansion device 15, the second refrigerant expansion device 27, and the first three-way switching valve 1
7, output control means 35 for controlling the second three-way switching valve 18, the ventilation circuit switching actuator 23, and an output temperature signal of the temperature setting means 32 based on a signal from the control mode selection SW 24. The rotation speed calculation means 33 for calculating the rotation speed corresponding to, and the rotation speed calculation means 33 when the operation mode SW 19 is set and operated.
Rotation speed reducing means 9 for reducing the rotation speed calculated by
And a rotation speed output means 34 for outputting the rotation speed to the inverter 21 based on the rotation speed calculated by the rotation speed reduction means 9.

【0021】よって、冷房を行う場合は、操作により、
空調操作パネル10内の制御モード選択SW24の冷房
SWをONさせ、この信号に基づき空調制御手段20内
の出力制御手段35は、通風回路切替えダンパ30が図
1のニの位置となるよう(風が第1の通風回路28に流
れるよう)に通風回路切替えアクチュエータ23を制御
し、電動圧縮機25から吐出された高温、高圧の冷媒が
車室外空気熱交換器2へ流れるように、四方切替え弁2
2を実線で示す回路に切替え、第1の三方切替え弁17
と第2の三方切替え弁18を冷媒が車室外空気熱交換器
2に流れるように実線に示す回路に切替え、第1の冷媒
絞り装置15は全開(絞りのない状態)の状態とし、第
2の冷媒絞り装置27は絞り有りの状態にする。よっ
て、電動圧縮機25から吐出した冷媒は四方切替え弁2
2を経由し、車室外空気熱交換器2と車室外空気熱交換
器用送風装置3で車室外空気に放熱して、冷媒を凝縮液
化させた後、その冷媒を第2の冷媒絞り装置27で減圧
して第2の車室内空気熱交換器14、第1の冷媒絞り装
置15、第1の車室内空気熱交換器26に導きここで車
室内空気熱交換器用送風装置7で車室内もしくは車室外
の空気を冷却、減湿しながら蒸発し冷房作用を行い、こ
の冷却された空気は第1の通風回路28を流れ車室内に
供給される。
Therefore, when performing cooling,
The cooling SW of the control mode selection switch 24 in the air conditioning operation panel 10 is turned on, and based on this signal, the output control means 35 in the air conditioning control means 20 causes the ventilation circuit switching damper 30 to be in the position of D in FIG. The four-way switching valve so that the high-temperature, high-pressure refrigerant discharged from the electric compressor 25 flows to the vehicle exterior air heat exchanger 2 by controlling the ventilation circuit switching actuator 23 so that the air flows to the first ventilation circuit 28). Two
2 is switched to the circuit shown by the solid line, and the first three-way switching valve 17
And the second three-way switching valve 18 are switched to the circuit shown by the solid line so that the refrigerant flows to the vehicle exterior air heat exchanger 2, and the first refrigerant expansion device 15 is fully opened (no expansion), and the second The refrigerant expansion device 27 is set to have a restriction. Therefore, the refrigerant discharged from the electric compressor 25 is transferred to the four-way switching valve 2
After passing through 2, the vehicle exterior air heat exchanger 2 and the vehicle exterior air heat exchanger blower 3 radiate heat to the vehicle exterior air to condense and liquefy the refrigerant, and then the second refrigerant expansion device 27. The air is depressurized and led to the second vehicle interior air heat exchanger 14, the first refrigerant expansion device 15, and the first vehicle interior air heat exchanger 26, where the vehicle interior air heat exchanger blower device 7 is used for the vehicle interior or the vehicle. The outdoor air is cooled and dehumidified and evaporated to perform a cooling action, and the cooled air flows through the first ventilation circuit 28 and is supplied into the vehicle interior.

【0022】ここで車室内に供給する空気の吹出温度を
可変したい場合、電動圧縮機25の回転数を可変し、冷
媒循環量を増減させることにより、吹出温度制御を行っ
ている。このため、図1のように、温度設定器32の出
力温度信号を空調制御手段20内の回転数演算手段33
に入力し、この回転数演算手段33は、例えば図2に示
すように、制御モード設定手段24からの出力信号が、
冷房モードの場合は、Aの特性カーブの直線a−1を参
照し、温度設定器32の出力温度信号に対応した回転数
を演算する。次に回転数演算手段33から出力された信
号は回転数低減手段9に入力され、運転モードSW19
が設定操作されていない場合、回転数を低減させること
なく、回転数演算手段33にて演算された回転数をその
まま回転数出力手段34へ出力する。一方、運転モード
SW19が設定操作された場合、例えば図2のAの特性
カーブの直線a−2のように回転数を低減させて、回転
数出力手段34へ出力する。回転数出力手段34は、こ
の回転数の信号をインバータ21に出力し、インバータ
21はこの指示された回転数で電動圧縮機25を駆動す
る。
When it is desired to change the blowout temperature of the air supplied to the passenger compartment, the blowout temperature is controlled by changing the rotation speed of the electric compressor 25 and increasing or decreasing the refrigerant circulation amount. Therefore, as shown in FIG. 1, the output temperature signal of the temperature setter 32 is used as the rotation speed calculation means 33 in the air conditioning control means 20.
The output signal from the control mode setting means 24 is input to the rotation speed calculation means 33, as shown in FIG.
In the case of the cooling mode, the straight line a-1 of the characteristic curve A is referred to, and the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated. Next, the signal output from the rotation speed calculation means 33 is input to the rotation speed reduction means 9, and the operation mode SW19
When the setting operation is not performed, the rotation speed calculated by the rotation speed calculation means 33 is directly output to the rotation speed output means 34 without reducing the rotation speed. On the other hand, when the operation mode SW19 is set and operated, the rotation speed is reduced and output to the rotation speed output means 34, for example, as indicated by a straight line a-2 of the characteristic curve of A in FIG. The rotation speed output means 34 outputs a signal of this rotation speed to the inverter 21, and the inverter 21 drives the electric compressor 25 at this instructed rotation speed.

【0023】従って、冷房モード時、電気自動車におけ
る車の追い越し、または登り坂等において、多量に電力
を使用する状況、もしくは電池の残量が余りない場合に
空調に費やす電力を抑えたい状況において、空調の消費
電力を軽減するため、運転モードSW19を設定操作す
ることにより、回転数低減手段9により回転数演算手段
33にて演算された回転数を低減させるので、空調の消
費電力を低下させることができる。
Therefore, in the cooling mode, when overtaking a car in an electric vehicle, or when climbing uphill, in a situation where a large amount of electric power is used, or in a situation where it is desired to suppress the electric power consumed for air conditioning when the battery level is low. In order to reduce the power consumption of the air conditioning, by setting the operation mode SW19, the rotation speed calculated by the rotation speed calculation means 33 by the rotation speed reduction means 9 is reduced, so that the power consumption of the air conditioning is reduced. You can

【0024】一方、暖房を行う場合は、操作により、空
調操作パネル10内の制御モード選択SW24の暖房S
WをONさせ、この信号に基づき空調制御手段20内の
出力制御手段35は、通風回路切替えダンパ30が図1
のハの位置となるよう(風が第2の通風回路29に流れ
るよう)に通風回路切替えアクチュエータ23を制御
し、四方切替え弁22を冷房時の冷媒流路と逆転(波線
で示す回路)させ、冷房時と同様に第1の冷媒絞り装置
15の絞りを開(絞りのない状態)とし、第2の冷媒絞
り装置27の絞りを絞りのある状態とする。更に第1の
三方切替え弁17と第2の三方切替え弁18を冷媒が車
室外空気熱交換器2に通過するように実線の回路に切替
えた状態とする。
On the other hand, when heating is performed, the heating S of the control mode selection SW 24 in the air conditioning operation panel 10 is operated by an operation.
W is turned on, and based on this signal, the output control means 35 in the air conditioning control means 20 has the ventilation circuit switching damper 30 shown in FIG.
The ventilation circuit switching actuator 23 is controlled so as to be in the position of C (the wind flows to the second ventilation circuit 29), and the four-way switching valve 22 is reversed (indicated by a broken line) from the refrigerant flow passage during cooling. In the same manner as during cooling, the throttle of the first refrigerant expansion device 15 is opened (no expansion) and the throttle of the second refrigerant expansion device 27 is opened. Further, the first three-way switching valve 17 and the second three-way switching valve 18 are switched to a solid line circuit so that the refrigerant passes through the vehicle exterior air heat exchanger 2.

【0025】よって電動圧縮機25から吐出された冷媒
は四方切替え弁22を経由し、高圧、高温状態で第1の
車室内空気熱交換器26及び第2の車室内空気熱交換器
14で車室内空気に放熱して冷媒を凝縮液化させた後、
その冷媒を第2の冷媒絞り装置27を介して車室外空気
熱交換器2に導き、ここで車室内外の空気を冷却、減湿
しながら冷媒が吸熱、蒸発させるヒートポンプ暖房を行
う。
Therefore, the refrigerant discharged from the electric compressor 25 passes through the four-way switching valve 22 and is supplied to the first vehicle interior air heat exchanger 26 and the second vehicle interior air heat exchanger 14 under high pressure and high temperature conditions. After radiating heat to indoor air to condense and liquefy the refrigerant,
The refrigerant is guided to the vehicle exterior air heat exchanger 2 via the second refrigerant expansion device 27, and heat pump heating is performed in which the refrigerant absorbs and evaporates while cooling and dehumidifying the air inside and outside the vehicle.

【0026】ここで車室内に供給する空気の吹出温度を
可変したい場合、冷房時と同様に、電動圧縮機25の回
転数を可変し、冷媒循環量を増減させることにより、吹
出温度制御を行う。このため、図1のように、温度設定
器32の出力温度信号を空調制御手段20内の回転数演
算手段33に入力し、この回転数演算手段33は、例え
ば図2に示すように、制御モード設定手段24からの出
力信号が、暖房モードの場合は、Bの特性カーブの直線
b−1を参照し、温度設定器32の出力温度信号に対応
した回転数を演算する。次に回転数演算手段33から出
力された信号は回転数低減手段9に入力され、運転モー
ドSW19が設定操作されていない場合、回転数を低減
させることなく、回転数演算手段33にて演算された回
転数をそのまま回転数出力手段34へ出力する。一方、
運転モードSW19が設定操作された場合、例えば図2
のBの特性カーブの直線b−2のように回転数を低減さ
せて、回転数出力手段34へ出力する。回転数出力手段
34は、この回転数の信号をインバータ21に出力し、
インバータ21はこの指示された回転数で電動圧縮機2
5を駆動する。
When it is desired to change the blowout temperature of the air supplied to the vehicle compartment, the blowout temperature is controlled by changing the rotation speed of the electric compressor 25 and increasing / decreasing the refrigerant circulation amount as in the case of cooling. . Therefore, as shown in FIG. 1, the output temperature signal of the temperature setting device 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and the rotation speed calculation means 33 controls the rotation speed calculation means 33, for example, as shown in FIG. When the output signal from the mode setting means 24 is the heating mode, the straight line b-1 of the characteristic curve B is referred to, and the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated. Next, the signal output from the rotation speed calculation means 33 is input to the rotation speed reduction means 9, and when the operation mode SW 19 is not set and operated, the rotation speed calculation means 33 calculates the rotation speed without reducing the rotation speed. The rotation speed is output as it is to the rotation speed output means 34. on the other hand,
When the operation mode SW19 is set and operated, for example, as shown in FIG.
The rotation speed is reduced as indicated by the straight line b-2 of the characteristic curve B, and is output to the rotation speed output means 34. The rotation speed output means 34 outputs a signal of this rotation speed to the inverter 21,
The inverter 21 is driven by the electric compressor 2 at this designated rotation speed.
5 is driven.

【0027】従って、暖房モード時、前述した冷房モー
ド時と同様に電気自動車における車の追い越し、または
登り坂等において、多量に電力を使用する状況、もしく
は電池の残量が余りない場合に空調に費やす電力を抑え
たい状況において、空調の消費電力を軽減するため、運
転モードSW19を設定操作することにより、回転数低
減手段9により回転数演算手段33にて演算された回転
数を低減させるので、空調の消費電力を低下させること
ができる。
Therefore, in the heating mode, as in the above-described cooling mode, when the electric vehicle overtakes, or climbs uphill, when a large amount of electric power is used or when the battery level is low, air conditioning is performed. In order to reduce the power consumption of the air conditioning in a situation where it is desired to suppress the consumed electric power, the rotational speed calculated by the rotational speed calculation means 33 by the rotational speed reduction means 9 is reduced by setting the operation mode SW19. The power consumption of air conditioning can be reduced.

【0028】除湿暖房モード時については、冷凍サイク
ルの作動の違いのみで制御の作動、効果は上記と同様な
ので説明を省略する。
In the dehumidifying and heating mode, the control operation and effects are the same as those described above except for the operation of the refrigeration cycle, and the description thereof will be omitted.

【0029】図3は、請求項2の電気自動車用ヒートポ
ンプ冷暖房除湿制御装置の一実施例の構成図である。
FIG. 3 is a block diagram of an embodiment of the heat pump cooling / heating / dehumidifying control device for an electric vehicle according to the present invention.

【0030】冷凍サイクルの構成の説明については、請
求項1の実施例と同様なので、説明を省略する。制御シ
ステムの構成についても、概ね請求項1の実施例と同様
なので相違点のみ説明する。
The description of the structure of the refrigeration cycle is the same as that of the embodiment of claim 1, so that the description is omitted. The configuration of the control system is substantially the same as that of the embodiment of claim 1, so that only the differences will be described.

【0031】回転数低減手段9は、運転モードSW19
が設定された時、回転数演算手段33にて演算された回
転数が大きくなる程、前記回転数演算手段33にて演算
された回転数を低減させる度合いを大きくすることとし
ている。
The rotation speed reducing means 9 operates in the operation mode SW19.
When is set, the greater the number of rotations calculated by the number-of-revolutions calculation means 33, the greater the degree of reduction of the number of rotations calculated by the number-of-revolutions calculation means 33.

【0032】従って、冷房モード時、図3のように、温
度設定器32の出力温度信号を空調制御手段20内の回
転数演算手段33に入力し、この回転数演算手段33
は、例えば図4に示すように、制御モード設定手段24
からの出力信号が、冷房モードの場合は、Aの特性カー
ブの直線a−1を参照し、温度設定器32の出力温度信
号に対応した回転数を演算する。次に回転数演算手段3
3から出力された信号は回転数低減手段9に入力され、
運転モードSW19が設定操作されていない場合、回転
数を低減させることなく、回転数演算手段33にて演算
された回転数をそのまま回転数出力手段34へ出力す
る。一方、運転モードSW19が設定操作された場合、
例えば図2のAの特性カーブの直線a−2のように、回
転数演算手段33にて演算された回転数が大きくなる
程、前記回転数演算手段33にて演算された回転数を低
減させる度合いを大きくしており、回転数出力手段34
へ出力する。回転数出力手段34は、この回転数の信号
をインバータ21に出力し、インバータ21はこの指示
された回転数で電動圧縮機25を駆動する。
Therefore, in the cooling mode, as shown in FIG. 3, the output temperature signal of the temperature setting device 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and this rotation speed calculation means 33 is input.
Is, for example, as shown in FIG.
When the output signal from is in the cooling mode, the straight line a-1 of the characteristic curve of A is referred to, and the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated. Next, the rotation speed calculation means 3
The signal output from 3 is input to the rotation speed reducing means 9,
When the operation mode SW 19 is not set and operated, the rotation speed calculated by the rotation speed calculation means 33 is directly output to the rotation speed output means 34 without reducing the rotation speed. On the other hand, when the operation mode SW19 is set and operated,
For example, as indicated by the straight line a-2 of the characteristic curve of FIG. 2A, the higher the rotation speed calculated by the rotation speed calculation means 33, the more the rotation speed calculated by the rotation speed calculation means 33 is reduced. The degree is increased and the rotation speed output means 34
Output to. The rotation speed output means 34 outputs a signal of this rotation speed to the inverter 21, and the inverter 21 drives the electric compressor 25 at this instructed rotation speed.

【0033】従って、冷房モード時、電気自動車におけ
る車の追い越し、または登り坂等において、多量に電力
を使用する状況、もしくは電池の残量が余りない場合に
空調に費やす電力を抑えたい状況において、空調の消費
電力を軽減するため、運転モードSW19を設定操作す
ることにより、回転数低減手段9により回転数演算手段
33にて演算された回転数が大きくなる程、低減させる
度合いを大きくしているので、特に比較的、空調の消費
電力が大きい使用条件において、大きく消費電力を低下
させるこができる。
Therefore, in the cooling mode, when overtaking a car in an electric vehicle, or when climbing uphill, when a large amount of electric power is used, or when it is desired to suppress the electric power consumed for air conditioning when the battery level is low. In order to reduce the power consumption of the air conditioning, the operation mode SW 19 is set and operated, and the degree of reduction is increased as the rotation speed calculated by the rotation speed calculation means 33 by the rotation speed reduction means 9 increases. Therefore, it is possible to greatly reduce the power consumption particularly under the use condition in which the power consumption of the air conditioning is relatively high.

【0034】暖房モード時、図3のように、温度設定器
32の出力温度信号を空調制御手段20内の回転数演算
手段33に入力し、この回転数演算手段33は、例えば
図4に示すように、制御モード設定手段24からの出力
信号が、暖房モードの場合は、Bの特性カーブの直線b
−1を参照し、温度設定器32の出力温度信号に対応し
た回転数を演算する。次に回転数演算手段33から出力
された信号は回転数低減手段9に入力され、運転モード
SW19が設定操作されていない場合、回転数を低減さ
せることなく、回転数演算手段33にて演算された回転
数をそのまま回転数出力手段34へ出力する。一方、運
転モードSW19が設定操作された場合、例えば図2の
Aの特性カーブの直線b−2のように、回転数演算手段
33にて演算された回転数が大きくなる程、前記回転数
演算手段33にて演算された回転数を低減させる度合い
を大きくしており、回転数出力手段34へ出力する。回
転数出力手段34は、この回転数の信号をインバータ2
1に出力し、インバータ21はこの指示された回転数で
電動圧縮機25を駆動する。
In the heating mode, as shown in FIG. 3, the output temperature signal of the temperature setter 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and this rotation speed calculation means 33 is shown in FIG. 4, for example. As described above, when the output signal from the control mode setting means 24 is the heating mode, the straight line b of the characteristic curve B is obtained.
With reference to -1, the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated. Next, the signal output from the rotation speed calculation means 33 is input to the rotation speed reduction means 9, and when the operation mode SW 19 is not set and operated, the rotation speed calculation means 33 calculates the rotation speed without reducing the rotation speed. The rotation speed is output as it is to the rotation speed output means 34. On the other hand, when the operation mode SW19 is set and operated, the rotation speed calculation is performed as the rotation speed calculated by the rotation speed calculation means 33 increases, as indicated by the straight line b-2 of the characteristic curve of FIG. The degree of reducing the rotation speed calculated by the means 33 is increased, and the rotation speed is output to the rotation speed output means 34. The rotation speed output means 34 outputs the rotation speed signal to the inverter 2
The inverter 21 drives the electric compressor 25 at the instructed rotation speed.

【0035】従って、暖房モード時、電気自動車におけ
る車の追い越し、または登り坂等において、多量に電力
を使用する状況、もしくは電池の残量が余りない場合に
空調に費やす電力を抑えたい状況において、空調の消費
電力を軽減するため、運転モードSW19を設定操作す
ることにより、回転数低減手段9により回転数演算手段
33にて演算された回転数が大きくなる程、低減させる
度合いを大きくしているので、特に比較的、空調の消費
電力が大きい使用条件において、大きく消費電力を低下
させることができる。
Therefore, in the heating mode, when a large amount of electric power is used when overtaking a car in an electric vehicle, or when climbing uphill, or when it is desired to suppress the electric power consumed for air conditioning when the remaining battery level is low. In order to reduce the power consumption of the air conditioning, the operation mode SW 19 is set and operated, and the degree of reduction is increased as the rotation speed calculated by the rotation speed calculation means 33 by the rotation speed reduction means 9 increases. Therefore, it is possible to greatly reduce the power consumption particularly under a use condition in which the power consumption of the air conditioning is relatively high.

【0036】除湿暖房モード時については、冷凍サイク
ルの作動の違いのみで制御の作動、効果は上記と同様な
ので説明を省略する。
In the dehumidifying and heating mode, the control operation and effect are the same as the above except for the operation of the refrigeration cycle, and therefore the description thereof is omitted.

【0037】図5は、請求項3の電気自動車用ヒートポ
ンプ冷暖房除湿制御装置の一実施例の構成図である。
FIG. 5 is a block diagram of an embodiment of the heat pump cooling / heating / dehumidifying control device for an electric vehicle according to the present invention.

【0038】冷凍サイクルの構成の説明については、請
求項1の実施例と同様なので、説明を省略する。制御シ
ステムの構成についても、概ね請求項1の実施例と同様
なので相違点のみ説明する。
The description of the structure of the refrigeration cycle is the same as that of the embodiment of claim 1, so that the description is omitted. The configuration of the control system is substantially the same as that of the embodiment of claim 1, so that only the differences will be described.

【0039】回転数低減手段9は、運転モードSW19
が設定された時、回転数演算手段33にて演算された回
転数の上限を制限することとしている。
The rotation speed reducing means 9 operates in the operation mode SW19.
When is set, the upper limit of the rotation speed calculated by the rotation speed calculation means 33 is limited.

【0040】従って、冷房モード時、図5のように、温
度設定器32の出力温度信号を空調制御手段20内の回
転数演算手段33に入力し、この回転数演算手段33
は、例えば図6に示すように、制御モード設定手段24
からの出力信号が、冷房モードの場合は、Aの特性カー
ブの直線a−1を参照し、温度設定器32の出力温度信
号に対応した回転数を演算する。次に回転数演算手段3
3から出力された信号は回転数低減手段9に入力され、
運転モードSW19が設定操作されていない場合、回転
数を低減させることなく、回転数演算手段33にて演算
された回転数をそのまま回転数出力手段34へ出力す
る。一方、運転モードSW19が設定操作された場合、
例えば図6のAの特性カーブの直線a−1の上限を制限
し破線部a−2、回転数出力手段34へ出力する。回転
数出力手段34は、この回転数の信号をインバータ21
に出力し、インバータ21はこの指示された回転数で電
動圧縮機25を駆動する。
Therefore, in the cooling mode, as shown in FIG. 5, the output temperature signal of the temperature setter 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and this rotation speed calculation means 33 is inputted.
Is, for example, as shown in FIG.
When the output signal from is in the cooling mode, the straight line a-1 of the characteristic curve of A is referred to, and the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated. Next, the rotation speed calculation means 3
The signal output from 3 is input to the rotation speed reducing means 9,
When the operation mode SW 19 is not set and operated, the rotation speed calculated by the rotation speed calculation means 33 is directly output to the rotation speed output means 34 without reducing the rotation speed. On the other hand, when the operation mode SW19 is set and operated,
For example, the upper limit of the straight line a-1 of the characteristic curve of FIG. 6A is limited and output to the broken line portion a-2 and the rotation speed output means 34. The rotation speed output means 34 outputs the rotation speed signal to the inverter 21.
The inverter 21 drives the electric compressor 25 at the instructed rotation speed.

【0041】従って、冷房モード時、電気自動車におけ
る車の追い越し、または登り坂等において、多量に電力
を使用する状況、もしくは電池の残量が余りない場合に
空調に費やす電力を抑えたい状況において、空調の消費
電力を軽減するため、運転モードSW19を設定操作す
ることにより、回転数低減手段9により回転数演算手段
33にて演算された回転数を所定の回転数で制限してい
るので、特に、空調の消費電力が大きい使用条件におい
て、所定の消費電力以下に制限させることができる。
Therefore, in the cooling mode, when overtaking a vehicle in an electric vehicle, or when climbing uphill, when a large amount of electric power is used, or when it is desired to suppress the electric power consumed for air conditioning when the battery level is low. In order to reduce the power consumption of the air conditioning, by setting the operation mode SW 19, the rotation speed calculated by the rotation speed calculation means 33 by the rotation speed reduction means 9 is limited to a predetermined rotation speed. It is possible to limit the power consumption to a predetermined power consumption or less under the use condition where the power consumption of the air conditioning is large.

【0042】暖房モード時、図5のように、温度設定器
32の出力温度信号を空調制御手段20内の回転数演算
手段33に入力し、この回転数演算手段33は、例えば
図6に示すように、制御モード設定手段24からの出力
信号が、暖房モードの場合は、Bの特性カーブの直線b
−1を参照し、温度設定器32の出力温度信号に対応し
た回転数を演算する。次に回転数演算手段33から出力
された信号は回転数低減手段9に入力され、運転モード
SW19が設定操作されていない場合、回転数を低減さ
せることなく、回転数演算手段33にて演算された回転
数をそのまま回転数出力手段34へ出力する。一方、運
転モードSW19が設定操作された場合、例えば図6の
Bの特性カーブの直線b−1の上限を制限し破線部b−
2、回転数出力手段34へ出力する。回転数出力手段3
4は、この回転数の信号をインバータ21に出力し、イ
ンバータ21はこの指示された回転数で電動圧縮機25
を駆動する。
In the heating mode, as shown in FIG. 5, the output temperature signal of the temperature setter 32 is input to the rotation speed calculation means 33 in the air conditioning control means 20, and this rotation speed calculation means 33 is shown in FIG. 6, for example. As described above, when the output signal from the control mode setting means 24 is the heating mode, the straight line b of the characteristic curve B is obtained.
With reference to -1, the rotation speed corresponding to the output temperature signal of the temperature setter 32 is calculated. Next, the signal output from the rotation speed calculation means 33 is input to the rotation speed reduction means 9, and when the operation mode SW 19 is not set and operated, the rotation speed calculation means 33 calculates the rotation speed without reducing the rotation speed. The rotation speed is output as it is to the rotation speed output means 34. On the other hand, when the operation mode SW19 is set and operated, for example, the upper limit of the straight line b-1 of the characteristic curve of B of FIG.
2. Output to the rotation speed output means 34. Rotation speed output means 3
4 outputs a signal of this rotation speed to the inverter 21, and the inverter 21 outputs the electric compressor 25 at this designated rotation speed.
Drive.

【0043】従って、暖房モード時、電気自動車におけ
る車の追い越し、または登り坂等において、多量に電力
を使用する状況、もしくは電池の残量が余りない場合に
空調に費やす電力を抑えたい状況において、空調の消費
電力を軽減するため、運転モードSW19を設定操作す
ることにより、回転数低減手段9により回転数演算手段
33にて演算された回転数が大きくなる程、低減させる
度合いを大きくしているので、特に比較的、空調の消費
電力が大きい使用条件において、大きく消費電力を低下
させることができる。
Therefore, in the heating mode, when a large amount of electric power is used when overtaking a car in an electric vehicle, or when climbing uphill, or when it is desired to suppress the electric power consumed for air conditioning when the battery level is low. In order to reduce the power consumption of the air conditioning, the operation mode SW 19 is set and operated, and the degree of reduction is increased as the rotation speed calculated by the rotation speed calculation means 33 by the rotation speed reduction means 9 increases. Therefore, it is possible to greatly reduce the power consumption particularly under a use condition in which the power consumption of the air conditioning is relatively high.

【0044】除湿暖房モード時については、冷凍サイク
ルの作動の違いのみで制御の作動、効果は上記と同様な
ので説明を省略する。
In the dehumidifying and heating mode, the control operation and effect are the same as the above except for the operation of the refrigeration cycle, and the description thereof will be omitted.

【0045】以上、請求項1〜3までの実施例を説明し
たが、例えば請求項2と3または請求項1と3の組み合
わせにて実施すれば、電動圧縮機の回転数の低回転領域
から高回転領域に至る範囲までの消費電力の低減及び最
大電力の制限を行うことができ、よりいっそう高い効果
が期待できる。
Although the embodiments of claims 1 to 3 have been described above, for example, if the invention is carried out according to the combination of claims 2 and 3 or claims 1 and 3, from the low rotation speed range of the electric compressor. It is possible to reduce the power consumption up to the range up to the high rotation speed and limit the maximum power, and it is possible to expect an even higher effect.

【0046】また、前述では温度設定手段32にて説明
したが直接電動圧縮機25の回転数を設定する回転数設
定手段に置換えても同等の効果が得られる。
Although the temperature setting means 32 has been described above, the same effect can be obtained by substituting the rotation speed setting means for directly setting the rotation speed of the electric compressor 25.

【0047】[0047]

【発明の効果】【The invention's effect】

(請求項1)本発明の第1の手段によれば、上記の説明
から明らかなように、空調操作手段に、少なくとも電動
圧縮機の回転数の運転モードの設定を行う運転モード設
定手段と、前記空調制御手段に、前記運転モード設定手
段が設定された時、前記回転数演算手段にて演算された
回転数を低減させる回転数低減手段を備えているので、
電気自動車における車の追い越し、または登り坂等にお
いて、多量に電力を使用する状況、もしくは電池の残量
が余りない場合に空調に費やす電力を抑えたい状況にお
いて、空調の消費電力を軽減するため、運転モード設定
手段を設定操作することにより、回転数低減手段により
回転数演算手段にて演算された回転数を低減させるの
で、空調の消費電力を低下させることができ、一般の専
門知識を有さないユーザーでも容易に空調の省エネ運転
を実現することができる。
(Claim 1) According to the first means of the present invention, as is clear from the above description, the air-conditioning operation means, and the operation mode setting means for setting the operation mode of at least the rotation speed of the electric compressor, Since the air conditioning control means is provided with a rotation speed reduction means for reducing the rotation speed calculated by the rotation speed calculation means when the operation mode setting means is set,
In order to reduce the power consumption of the air conditioner in the situation where a large amount of power is used, such as when overtaking a car in an electric vehicle, or when climbing uphill, or when it is desired to reduce the power consumed for air conditioning when the battery level is low, By setting the operation mode setting means, the number of rotations calculated by the number-of-revolutions calculation means is reduced by the number-of-revolutions reduction means, so that it is possible to reduce the power consumption of the air conditioning, and to have general expertise. Even users who do not have it can easily realize energy-saving operation of air conditioning.

【0048】(請求項2)本発明の第2の手段によれ
ば、第1の手段と、第1の手段における回転数低減手段
を、運転モード設定手段が設定された時、回転数演算手
段にて演算された回転数が大きくなる程、前記回転数演
算手段にて演算された回転数を低減させる度合いを大き
くすることとしているので、特に、回転数演算手段によ
って演算された回転数が、高回転になる程、回転数を低
減する度合いが大きいので、電動圧縮機の高回転領域
で、消費電力の低減を大幅にはかることができる。更に
第1の手段と同様に一般の専門知識を有さないユーザー
でも容易に空調の省エネ運転を実現することができる。
(Claim 2) According to the second means of the present invention, when the operation mode setting means is set, the first means and the rotation speed reducing means in the first means are operated as the rotation speed calculating means. Since the degree of decreasing the rotation speed calculated by the rotation speed calculation means is increased as the rotation speed calculated by the rotation speed calculation means is increased, in particular, the rotation speed calculated by the rotation speed calculation means is The higher the rotation speed, the greater the degree to which the rotation speed is reduced. Therefore, it is possible to significantly reduce the power consumption in the high rotation region of the electric compressor. Further, like the first means, even a user who does not have general expertise can easily realize the energy-saving operation of the air conditioning.

【0049】(請求項3)本発明の第3の手段によれ
ば、第1の手段と、第1の手段における回転数低減手段
を、運転モード設定手段が設定された時、回転数演算手
段にて演算された回転数の上限を制限することとしてい
るので、少なくとも、所定の消費電力以下に制限するこ
とができる。更に第1の手段と同様に一般の専門知識を
有さないユーザーでも容易に空調の省エネ運転を実現す
ることができる。
(Claim 3) According to the third means of the present invention, the first means and the rotation speed reducing means in the first means are the rotation speed calculating means when the operation mode setting means is set. Since the upper limit of the rotation speed calculated in step 1 is limited, it can be limited to at least a predetermined power consumption or less. Further, like the first means, even a user who does not have general expertise can easily realize the energy-saving operation of the air conditioning.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における電気自動車用ヒ
ートポンプ冷暖房除湿装置の構成図
FIG. 1 is a configuration diagram of a heat pump cooling and heating dehumidifying device for an electric vehicle according to a first embodiment of the present invention.

【図2】同回転数演算手段の演算説明図FIG. 2 is a diagram for explaining calculation by the same rotation speed calculation means.

【図3】本発明の第2の実施例における電気自動車用ヒ
ートポンプ冷暖房除湿装置の構成図
FIG. 3 is a configuration diagram of a heat pump cooling / heating / dehumidifying device for an electric vehicle according to a second embodiment of the present invention.

【図4】同回転数演算手段の演算説明図FIG. 4 is an explanatory diagram of calculation of the rotation speed calculation means.

【図5】本発明の第3の実施例における電気自動車用ヒ
ートポンプ冷暖房除湿装置の一実施例の構成図
FIG. 5 is a configuration diagram of an embodiment of a heat pump cooling and heating dehumidifying device for an electric vehicle according to a third embodiment of the present invention.

【図6】同回転数演算手段の演算説明図FIG. 6 is a diagram for explaining calculation by the same rotation speed calculation means.

【図7】従来の電気自動車用ヒートポンプ冷暖房除湿装
置の一実施例の構成図
FIG. 7 is a configuration diagram of an embodiment of a conventional heat pump cooling and heating dehumidifying device for an electric vehicle.

【図8】同回転数演算手段の演算説明図FIG. 8 is an explanatory diagram of calculation performed by the same rotation speed calculation means.

【符号の説明】[Explanation of symbols]

1 風量設定手段 2 車室外空気熱交換器 3 車室外空気熱交換器用送風装置 4 冷媒絞り装置 5 車室内空気熱交換器 6 車室内外空気導入装置 7 車室内空気熱交換器用送風装置 8 レジスタ 9 回転数低減手段 10 空調操作パネル 14 第2の車室内空気熱交換器 15 第1の冷媒絞り装置 16 バイパス回路 17 第1の三方切替え弁 18 第2の三方切替え弁 19 運転モードSW 20 空調制御手段 21 インバータ 22 四方切替え弁 23 通風回路切替えアクチュエータ 24 制御モード選択SW 25 電動圧縮機 26 第1の車室内空気熱交換器 27 第2の冷媒絞り装置 28 第1の通風回路 29 第2の通風回路 30 通風回路切替えダンパ 31 冷媒配管 32 温度設定手段 33 回転数演算手段 34 回転数出力手段 35 出力制御手段 1 Air Volume Setting Means 2 Outside Air Heat Exchanger 3 Air Blower for Outside Air Heat Exchanger 4 Refrigerant Throttling Device 5 Inside Air Heat Exchanger 6 Inside / Outside Air Introducer 7 Blower for Inside Air Heat Exchanger 8 Register 9 Rotation speed reducing means 10 Air conditioning operation panel 14 Second vehicle interior air heat exchanger 15 First refrigerant expansion device 16 Bypass circuit 17 First three-way switching valve 18 Second three-way switching valve 19 Operating mode SW 20 Air conditioning control means 21 Inverter 22 Four-way switching valve 23 Ventilation circuit switching actuator 24 Control mode selection SW 25 Electric compressor 26 First cabin air heat exchanger 27 Second refrigerant expansion device 28 First ventilation circuit 29 Second ventilation circuit 30 Ventilation circuit switching damper 31 Refrigerant piping 32 Temperature setting means 33 Rotation speed calculation means 34 Rotation speed output means 35 Output control hand

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電気自動車用ヒートポンプ冷暖房除湿装置
において、モータを内蔵する電動圧縮機と、前記電動圧
縮機のモータに通電し前記電動圧縮機を可変回転数にて
駆動するインバータと、前記インバータに前記電動圧縮
機の回転数を指示する空調制御手段と、前記空調制御手
段に対して少なくとも吹き出し温度もしくは前記電動圧
縮機の回転数に関連した設定を行う空調操作手段と、前
記空調制御手段に、前記空調操作手段からの吹き出し温
度もしくは前記電動圧縮機の回転数に関連した設定信号
に対応する回転数を演算を行う回転数演算手段を具備
し、前記空調操作手段に、少なくとも前記電動圧縮機の
回転数の運転モードの設定を行う運転モード設定手段
と、前記空調制御手段に、前記運転モード設定手段が設
定された時、前記回転数演算手段にて演算された回転数
を低減させる回転数低減手段を設けたことを特徴とする
電気自動車用ヒートポンプ冷暖房除湿制御装置。
1. A heat pump cooling and heating dehumidifying device for an electric vehicle, comprising: an electric compressor having a built-in motor; an inverter for energizing a motor of the electric compressor to drive the electric compressor at a variable rotation speed; An air conditioning control means for instructing the number of revolutions of the electric compressor, an air conditioning operating means for performing at least a blowout temperature or a setting related to the number of revolutions of the electric compressor for the air conditioning control means, and the air conditioning control means, The air-conditioning operation means comprises at least a rotation speed calculation means for calculating a rotation speed corresponding to a setting signal related to a blowout temperature from the air-conditioning operation means or a rotation speed of the electric compressor. When the operation mode setting means is set in the air-conditioning control means and the operation mode setting means for setting the operation mode of the rotation speed, the rotation Calculating means at the calculated electric vehicle heat pump air conditioning, characterized in that the rotational speed reduction means for reducing the rotational speed provided dehumidification controller.
【請求項2】回転数低減手段を、運転モード設定手段が
設定された時、回転数演算手段にて演算された回転数が
大きくなる程、前記回転数演算手段にて演算された回転
数を低減させる度合いを大きくすることとした請求項1
記載の電気自動車用ヒートポンプ冷暖房除湿制御装置。
2. When the operation mode setting means is set in the rotation speed reducing means, the larger the rotation speed calculated by the rotation speed calculating means, the higher the rotation speed calculated by the rotation speed calculating means becomes. Claim 1 which decided to make the degree to reduce large.
A heat pump cooling and heating dehumidification control device for an electric vehicle as described above.
【請求項3】回転数低減手段を、運転モード設定手段が
設定された時、回転数演算手段にて演算された回転数の
上限を制限することとした請求項1記載の電気自動車用
ヒートポンプ冷暖房除湿制御装置。
3. The heat pump cooling and heating for an electric vehicle according to claim 1, wherein the rotation speed reduction means limits the upper limit of the rotation speed calculated by the rotation speed calculation means when the operation mode setting means is set. Dehumidification control device.
JP30204294A 1994-12-06 1994-12-06 Heat pump cooling / heating dehumidification control device for electric vehicles Expired - Lifetime JP3279104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30204294A JP3279104B2 (en) 1994-12-06 1994-12-06 Heat pump cooling / heating dehumidification control device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30204294A JP3279104B2 (en) 1994-12-06 1994-12-06 Heat pump cooling / heating dehumidification control device for electric vehicles

Publications (2)

Publication Number Publication Date
JPH08156580A true JPH08156580A (en) 1996-06-18
JP3279104B2 JP3279104B2 (en) 2002-04-30

Family

ID=17904214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30204294A Expired - Lifetime JP3279104B2 (en) 1994-12-06 1994-12-06 Heat pump cooling / heating dehumidification control device for electric vehicles

Country Status (1)

Country Link
JP (1) JP3279104B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520795A (en) * 2009-03-20 2012-09-10 アクサ パワー アンパーツゼルスカブ Pre-adjustable air unit with self-contained cooling module
JP2012520796A (en) * 2009-03-20 2012-09-10 アクサ パワー アンパーツゼルスカブ Pre-adjustable air unit with variable frequency drive
WO2012120843A1 (en) * 2011-03-04 2012-09-13 株式会社テージーケー Vehicle heating/air-conditioning device
JP2013014327A (en) * 2012-09-19 2013-01-24 Denso Corp Vehicular air conditioning apparatus
JP2013082343A (en) * 2011-10-11 2013-05-09 Denso Corp Air conditioning device for vehicle
WO2014109103A1 (en) * 2013-01-08 2014-07-17 クラリオン株式会社 Air conditioning control device and air conditioning control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520795A (en) * 2009-03-20 2012-09-10 アクサ パワー アンパーツゼルスカブ Pre-adjustable air unit with self-contained cooling module
JP2012520796A (en) * 2009-03-20 2012-09-10 アクサ パワー アンパーツゼルスカブ Pre-adjustable air unit with variable frequency drive
US9771169B2 (en) 2009-03-20 2017-09-26 Axa Power Aps Preconditioned air unit with variable frequency driving
US9902505B2 (en) 2009-03-20 2018-02-27 Axa Power Aps Preconditioned air unit with self-contained cooling modules
WO2012120843A1 (en) * 2011-03-04 2012-09-13 株式会社テージーケー Vehicle heating/air-conditioning device
JP2012183905A (en) * 2011-03-04 2012-09-27 Tgk Co Ltd Vehicle heating/air-conditioning device
JP2013082343A (en) * 2011-10-11 2013-05-09 Denso Corp Air conditioning device for vehicle
JP2013014327A (en) * 2012-09-19 2013-01-24 Denso Corp Vehicular air conditioning apparatus
WO2014109103A1 (en) * 2013-01-08 2014-07-17 クラリオン株式会社 Air conditioning control device and air conditioning control method

Also Published As

Publication number Publication date
JP3279104B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
JPH05221233A (en) Air conditioner for vehicle
JP3325421B2 (en) Cooling and heating system for electric vehicles
JP3596090B2 (en) Vehicle air conditioner
WO2018116962A1 (en) Air conditioning device for vehicle
JPH0842938A (en) Dehumidifying device and method of air conditioner
JP2013154749A (en) Vehicle air conditioner
JP3279104B2 (en) Heat pump cooling / heating dehumidification control device for electric vehicles
CN111380256A (en) Heat pump system
JPH11237135A (en) Air conditioner
JP4972022B2 (en) Air conditioning apparatus and control method thereof
JP2746013B2 (en) Heat pump type air conditioner for vehicles
JP2019073053A (en) Air-conditioner for vehicle
KR20030023024A (en) System combining a cooling engine with a conditioning air
JP2998115B2 (en) Automotive air conditioners
JP3246249B2 (en) Heat pump cooling / heating dehumidification control device for electric vehicles
JP3246290B2 (en) Air conditioning controller for electric vehicles
JPH1183125A (en) Air conditioner
JPH07172160A (en) Heat pump cooling, heating and dehumidifying apparatus for electric vehicle
JP3279111B2 (en) Heat pump cooling / heating dehumidification control device for electric vehicles
JPH07294059A (en) Air conditioner
JPH06344764A (en) Air conditioner for vehicle
JPH10332221A (en) Multi-room air conditioner and operation method thereof
JP3257294B2 (en) Heat pump cooling / heating dehumidification control device for electric vehicles
JPH08310228A (en) Heat pump cooling, heating, and dehumidification control device for electric car
JP3271423B2 (en) Heat pump air conditioner dehumidifier for electric vehicles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

EXPY Cancellation because of completion of term