WO2012120843A1 - Vehicle heating/air-conditioning device - Google Patents

Vehicle heating/air-conditioning device Download PDF

Info

Publication number
WO2012120843A1
WO2012120843A1 PCT/JP2012/001412 JP2012001412W WO2012120843A1 WO 2012120843 A1 WO2012120843 A1 WO 2012120843A1 JP 2012001412 W JP2012001412 W JP 2012001412W WO 2012120843 A1 WO2012120843 A1 WO 2012120843A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
proportional valve
refrigerant
evaporator
proportional
Prior art date
Application number
PCT/JP2012/001412
Other languages
French (fr)
Japanese (ja)
Inventor
広田 久寿
Original Assignee
株式会社テージーケー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テージーケー filed Critical 株式会社テージーケー
Publication of WO2012120843A1 publication Critical patent/WO2012120843A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a vehicle air conditioner having a plurality of refrigerant circulation passages.
  • Such a vehicle air conditioner has a refrigeration cycle including a compressor, an outdoor heat exchanger, an evaporator, an indoor heat exchanger, etc., and the function of the outdoor heat exchanger is switched between heating operation and cooling operation. It is done.
  • the outdoor heat exchanger functions as an evaporator.
  • the indoor heat exchanger dissipates heat while the refrigerant circulates through the refrigeration cycle, and the air in the passenger compartment is heated by the heat.
  • the outdoor heat exchanger functions as a condenser during the cooling operation. At that time, the refrigerant condensed in the outdoor heat exchanger evaporates in the evaporator, and the air in the passenger compartment is cooled by the latent heat of evaporation.
  • the refrigeration cycle is provided with a plurality of refrigerant circulation passages, and various controls for switching the refrigerant flow in each refrigerant circulation passage.
  • a valve is provided.
  • An object of the present invention is to provide a vehicle air conditioning apparatus in which a refrigerant circulation passage is switched according to an operation state, and to totally suppress the cost of building a system while ensuring the function of the device in each operation state. .
  • a vehicle air conditioning apparatus functions as a compressor that compresses and discharges a refrigerant, and an outdoor condenser that is disposed outside the passenger compartment and dissipates the refrigerant during cooling operation.
  • an outdoor heat exchanger that functions as an outdoor evaporator that evaporates the refrigerant during heating operation, an indoor evaporator that is disposed in the vehicle interior and evaporates the refrigerant, and an auxiliary condenser that radiates the refrigerant separately from the outdoor heat exchanger
  • a plurality of expansion devices arranged one by one and capable of expanding the refrigerant introduced from the condenser and leading to the evaporator.
  • the refrigerant circulation passage is formed and the devices are arranged so that one expansion device is arranged between the condenser and the evaporator in each of the plurality of refrigerant circulation passages. That is, for the purpose of configuring a refrigerant circulation system centered on the compressor, a plurality of refrigerant circulation passages have a common passage and an individual passage with other refrigerant circulation passages. An expansion device is disposed in the individual passage of the passage. Thereby, each expansion device adjusts the flow of the refrigerant in each refrigerant circulation passage, and a stable and appropriate operating state can be obtained without interfering with control among the plurality of expansion devices.
  • an expansion device is provided in the common passage, it is necessary to provide a device for opening or blocking the passage upstream of the expansion device in each refrigerant circulation passage.
  • a device for opening or blocking the passage upstream of the expansion device in each refrigerant circulation passage is provided. It can also be set as the structure which is not. As a result, the number of parts can be suppressed, and the cost for building the system can be suppressed in total.
  • the present invention in the vehicle air conditioning apparatus in which the refrigerant circulation passage is switched according to the operating state, it is possible to totally suppress the cost of building the system while ensuring the function of the apparatus in each operating state.
  • FIG. 1 is a diagram illustrating a system configuration of a vehicle air conditioning apparatus according to an embodiment.
  • the vehicle air conditioning apparatus of the present invention is embodied as an electric vehicle air conditioning apparatus.
  • the vehicle air conditioner 100 includes a refrigeration cycle (refrigerant circuit) in which a compressor 2, an indoor condenser 3, an outdoor heat exchanger 5, an evaporator 7, and an accumulator 8 are connected by piping.
  • the vehicle air conditioner 100 is a heat pump type air conditioner that uses the heat of the refrigerant to air-condition the passenger compartment in a process in which alternative chlorofluorocarbon (HFO-1234yf) as a refrigerant circulates while changing its state in the refrigeration cycle. It is configured as.
  • the vehicle air conditioning apparatus 100 is also operated so as to switch a plurality of refrigerant circulation passages between the cooling operation and the heating operation.
  • This refrigeration cycle is configured such that the indoor condenser 3 and the outdoor heat exchanger 5 can operate in parallel as a condenser, and the evaporator 7 and the outdoor heat exchanger 5 can operate in parallel as an evaporator.
  • a first refrigerant circulation passage through which the refrigerant circulates during the cooling operation a second refrigerant circulation passage through which the refrigerant circulates during the heating operation, and a third refrigerant circulation passage through which the refrigerant circulates during the dehumidifying operation are formed.
  • the first refrigerant circulation passage is a passage through which the refrigerant circulates as follows: compressor 2 ⁇ outdoor heat exchanger 5 ⁇ evaporator 7 ⁇ accumulator 8 ⁇ compressor 2.
  • the second refrigerant circulation passage is a passage through which the refrigerant circulates as follows: compressor 2 ⁇ indoor condenser 3 ⁇ outdoor heat exchanger 5 ⁇ accumulator 8 ⁇ compressor 2.
  • the third refrigerant circulation passage is a passage through which the refrigerant circulates like the compressor 2 ⁇ the indoor condenser 3 ⁇ the evaporator 7 ⁇ the accumulator 8 ⁇ the compressor 2.
  • the flow of the refrigerant flowing through the outdoor heat exchanger 5 is in the opposite direction between the first refrigerant circulation passage and the second refrigerant circulation passage.
  • a passage leading to the discharge chamber of the compressor 2 branches, the first passage 21 as one of them is connected to one of the entrances and exits of the outdoor heat exchanger 5, and the second passage 22 as the other is an indoor condenser. Connected to 3 entrance.
  • the other entrance / exit of the outdoor heat exchanger 5 is connected to the entrance of the evaporator 7 via the third passage 23.
  • the fourth passage 24 connected to the outlet of the indoor condenser 3 branches into a first branch passage 25 and a second branch passage 26 on the downstream side thereof, and is connected to the third passage 23, respectively.
  • the outlet of the evaporator 7 is connected to the inlet of the accumulator 8 through a fifth passage 27 (return passage).
  • a bypass passage 28 is branched at an intermediate portion of the first passage 21, and is connected to the accumulator 8 and the compressor 2.
  • the first control valve 4 is provided at the branch point between the first passage 21 and the second passage 22.
  • a second control valve 6 is provided at a branch point between the first branch passage 25 and the second branch passage 26.
  • a third control valve 9 is provided at the junction of the fifth passage 27 and the bypass passage 28.
  • the compressor 2 is configured as an electric compressor that houses a motor and a compression mechanism in a housing, is driven by a supply current from a battery (not shown), and the discharge capacity of the refrigerant changes according to the rotational speed of the motor.
  • the indoor condenser 3 is provided in the vehicle interior and functions as an auxiliary condenser that dissipates the refrigerant separately from the outdoor heat exchanger 5. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 2 dissipates heat when passing through the indoor condenser 3. The air introduced into the passenger compartment is warmed in the process of passing through the indoor condenser 3.
  • the outdoor heat exchanger 5 is disposed outside the passenger compartment and functions as an outdoor condenser that radiates the refrigerant that passes through the interior during the cooling operation, and functions as an outdoor evaporator that evaporates the refrigerant that passes through the interior during the heating operation.
  • the outdoor heat exchanger 5 functions as an evaporator, the refrigerant having a low temperature and a low pressure due to passage through an expansion device (a proportional valve 32 described later) evaporates when passing through the outdoor heat exchanger 5.
  • the evaporator 7 is disposed in the passenger compartment and functions as an indoor evaporator that evaporates the refrigerant passing through the interior. That is, the refrigerant having a low temperature and low pressure due to the passage through the expansion device (the proportional valve 31 and the proportional valve 33 described later) evaporates when passing through the evaporator 7.
  • the air introduced into the passenger compartment is cooled and dehumidified by the latent heat of vaporization. At this time, the cooled and dehumidified air is heated while passing through the indoor condenser 3.
  • the accumulator 8 is a device that stores the refrigerant sent from the evaporator by gas-liquid separation, and has a liquid phase part and a gas phase part. For this reason, even if liquid refrigerant more than expected is derived from the evaporator 7, the liquid refrigerant can be stored in the liquid phase part, and the refrigerant in the gas phase part can be derived to the compressor 2.
  • the first control valve 4 accommodates a proportional valve 34 (corresponding to a “fourth proportional valve”) and a proportional valve 37 (corresponding to a “seventh proportional valve”) in a common body, and these are combined into one actuator. It is comprised as a compound valve driven by.
  • the proportional valve 34 is a large-diameter valve and adjusts the opening degree of the first passage 21.
  • the proportional valve 37 is a large-diameter valve and adjusts the opening degree of the second passage 22.
  • an electric valve capable of adjusting the opening degree of each valve by driving a stepping motor is used as the first control valve 4, but an electromagnetic valve capable of adjusting the opening degree of each valve by energizing the solenoid is used. You may make it use. A specific configuration of the first control valve 4 will be described later.
  • the second control valve 6 includes a proportional valve 31 (corresponding to a “first proportional valve”), a proportional valve 32 (corresponding to a “second proportional valve”), and a proportional valve 33 (“third proportional valve”). Is configured as a composite valve.
  • the proportional valve 31 and the proportional valve 32 are driven by a common actuator, and the proportional valve 33 is driven by another actuator.
  • the proportional valve 31 is provided between the joining point of the third passage 23 with the first branch passage 25 and the joining point of the second branch passage 26.
  • the proportional valve 31 is a small-diameter valve and adjusts the opening degree of the third passage 23.
  • the proportional valve 32 is a small-diameter valve and adjusts the opening degree of the first branch passage 25.
  • the proportional valve 33 is a small-diameter valve that adjusts the opening of the second branch passage 26.
  • These proportional valve 31, proportional valve 32 and proportional valve 33 also function as an expansion device.
  • an electric valve capable of adjusting the opening degree of each valve by driving a stepping motor is used as the second control valve 6, but an electromagnetic valve capable of adjusting the opening degree of each valve by energizing the solenoid is used. You may make it use. A specific configuration of the second control valve 6 will be described later.
  • the third control valve 9 accommodates a proportional valve 35 (corresponding to a “fifth proportional valve”) and a proportional valve 36 (corresponding to a “sixth proportional valve”) in a common body, and these are combined into one actuator. It is comprised as a compound valve driven by.
  • the proportional valve 35 is a large-diameter valve and adjusts the opening degree of the bypass passage 28.
  • the proportional valve 36 is a large-diameter valve and adjusts the opening degree of the fifth passage 27.
  • an electric valve capable of adjusting the opening of each valve by driving a stepping motor is used as the third control valve 9, but an electromagnetic valve capable of adjusting the opening of each valve by energizing the solenoid is used. You may make it use.
  • a specific configuration of the third control valve 9 will be described later.
  • the vehicle air conditioning apparatus 100 configured as described above is controlled by a control unit (not shown).
  • the control unit calculates the control amount of each actuator to realize the room temperature set by the vehicle occupant, and outputs a control signal to the drive circuit of each actuator.
  • the control unit determines the control amount (valve opening degree and opening / closing state) of each control valve based on predetermined external information detected by various sensors such as the temperature inside and outside the vehicle interior and the temperature of air blown from the evaporator 7.
  • the current is supplied to the actuator so that the control amount is realized.
  • the control unit since a stepping motor is used as an actuator, the control unit outputs a control pulse signal to the stepping motor so that the control amount of each control valve is realized.
  • the compressor 2 introduces the refrigerant having the suction pressure Ps through the suction chamber, compresses the refrigerant, and discharges it as the refrigerant having the discharge pressure Pd.
  • the temperatures of the outlet of the indoor condenser 3, the one inlet / outlet of the outdoor heat exchanger 5, the other inlet / outlet, and the inlet and outlet of the evaporator 7 are detected.
  • a plurality of temperature sensors are installed.
  • FIG. 2 is an explanatory diagram illustrating the operation of the vehicle air conditioner.
  • A shows the state during special cooling operation
  • B shows the state during normal cooling operation
  • C shows the state during specific heating operation
  • D shows the state during normal heating operation
  • E shows the state during special heating operation.
  • the “special cooling operation” is an operation state in which the indoor condenser 3 is not functioned in the cooling operation.
  • the “specific heating operation” is an operation state in which the dehumidifying function is particularly enhanced in the heating operation.
  • the “special heating operation” is an operation state in which the outdoor heat exchanger 5 is not functioned.
  • the thick line and the arrow in a figure show the flow of the refrigerant
  • the proportional valve 34 is opened in the first control valve 4 and the proportional valve 37 is closed. Further, in the second control valve 6, the proportional valve 31 is opened, and the proportional valve 32 and the proportional valve 33 are closed. Further, in the third control valve 9, the proportional valve 35 is closed, and the proportional valve 36 is opened. Accordingly, the first refrigerant circulation passage is opened, and the second refrigerant circulation passage and the third refrigerant circulation passage are blocked. For this reason, the refrigerant discharged from the compressor 2 is guided to the evaporator 7 through the outdoor heat exchanger 5. At this time, the outdoor heat exchanger 5 functions as an outdoor condenser.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is condensed by passing through the outdoor heat exchanger 5. Then, the refrigerant passing through the outdoor heat exchanger 5 is adiabatically expanded by the proportional valve 31 to become a cold / low pressure gas-liquid two-phase refrigerant and introduced into the evaporator 7.
  • the refrigerant introduced into the inlet of the evaporator 7 evaporates in the process of passing through the evaporator 7 and cools the air in the passenger compartment.
  • the refrigerant derived from the evaporator 7 is introduced into the accumulator 8 through the proportional valve 36.
  • the control unit controls the opening degree of the proportional valve 31 based on the temperature on the outlet side of the outdoor heat exchanger 5 so that the degree of supercooling on the outlet side becomes appropriate.
  • both the proportional valve 34 and the proportional valve 37 are opened in the first control valve 4. Further, in the second control valve 6, the proportional valve 31 and the proportional valve 33 are opened, and the proportional valve 32 is closed. Further, in the third control valve 9, the proportional valve 35 is closed, and the proportional valve 36 is opened. Thereby, the first refrigerant circulation passage and the third refrigerant circulation passage are opened, and the second refrigerant circulation passage is blocked. For this reason, the refrigerant discharged from the compressor 2 is led to the evaporator 7 through the outdoor heat exchanger 5 on the one hand, and is led to the evaporator 7 through the indoor condenser 3 on the other hand. At this time, the outdoor heat exchanger 5 functions as an outdoor condenser.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is condensed by passing through the indoor condenser 3 on the one hand and the outdoor heat exchanger 5 on the other hand. Then, the refrigerant passing through the indoor condenser 3 is adiabatically expanded by the proportional valve 33, and is introduced into the evaporator 7 as a cold / low pressure gas-liquid two-phase refrigerant. Further, the refrigerant passing through the outdoor heat exchanger 5 is adiabatically expanded by the proportional valve 31 and is introduced into the evaporator 7 as a cold / low pressure gas-liquid two-phase refrigerant.
  • the control unit controls the opening degree of the proportional valve 33 based on the temperature on the outlet side of the indoor condenser 3 so that the degree of supercooling on the outlet side becomes appropriate.
  • the control unit also controls the opening degree of the proportional valve 31 based on the temperature on the outlet side of the outdoor heat exchanger 5 so that the degree of supercooling on the outlet side becomes appropriate.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is condensed through the indoor condenser 3.
  • the refrigerant derived from the indoor condenser 3 is adiabatically expanded by the proportional valve 32 to become a cold / low pressure gas-liquid two-phase refrigerant, and is evaporated when passing through the outdoor heat exchanger 5.
  • the refrigerant derived from the outdoor heat exchanger 5 is introduced into the accumulator 8 through the proportional valve 35.
  • the refrigerant derived from the indoor condenser 3 is adiabatically expanded by the proportional valve 33 to become a cold / low pressure gas-liquid two-phase refrigerant, and is evaporated when passing through the evaporator 7.
  • the refrigerant derived from the evaporator 7 is introduced into the accumulator 8 through the proportional valve 36.
  • control unit adjusts the other opening while maintaining one of the proportional valve 35 and the proportional valve 36 in the third control valve 9 in a fully opened state.
  • the proportional valve 36 is fully opened to control the opening degree of the proportional valve 35.
  • the proportional valve 35 is fully opened to control the opening degree of the proportional valve 36.
  • the opening degree of the proportional valve 35 is increased.
  • the degree of superheat is controlled so as to approach the set value (zero or a small appropriate value) by narrowing down.
  • the amount of heat absorbed from the outside in the outdoor heat exchanger 5 is adjusted by the throttle amount of the proportional valve 35.
  • the pressure difference ⁇ P Po ⁇ Pe between the evaporation pressure Po of the outdoor heat exchanger 5 and the pressure Pe at the outlet of the evaporator 7 is reduced by reducing the opening of the proportional valve 35 while keeping the proportional valve 36 fully open. Therefore, the ratio of evaporating the circulating refrigerant between the outdoor heat exchanger 5 and the evaporator 7 can be adjusted. That is, when the differential pressure ⁇ P increases, the evaporation amount in the outdoor heat exchanger 5 becomes relatively small (the evaporation amount in the evaporator 7 becomes relatively large).
  • a control part ensures the dehumidification function at the time of specific heating operation by controlling the opening degree of the proportional valve 35 to the exit side of the outdoor heat exchanger 5 according to the degree of superheat and appropriately adjusting the differential pressure ⁇ P.
  • size of the superheat degree at the exit side of the outdoor heat exchanger 5 can be specified by detecting the temperature of the inlet side of the outdoor heat exchanger 5 and the temperature of the outlet side.
  • the overheating is reduced by reducing the opening degree of the proportional valve 36.
  • the presence or absence of the superheat degree on the outlet side of the evaporator 7 and the magnitude thereof can be specified by detecting the temperature on the inlet side and the temperature on the outlet side of the evaporator 7.
  • the proportional valve 34 of the first control valve 4 is closed and the proportional valve 37 is opened. Further, in the second control valve 6, the proportional valve 31 and the proportional valve 33 are closed, and the proportional valve 32 is opened. Further, in the third control valve 9, the proportional valve 35 is opened, and the proportional valve 36 is closed. Thereby, the first refrigerant circulation passage and the third refrigerant circulation passage are blocked, and the second refrigerant circulation passage is opened. For this reason, the refrigerant derived from the indoor condenser 3 is guided to the outdoor heat exchanger 5.
  • the control unit controls the opening degree of the proportional valve 32 based on the temperature on the outlet side of the indoor condenser 3 so that the degree of supercooling on the outlet side becomes appropriate.
  • the proportional valve 34 of the first control valve 4 is closed and the proportional valve 37 is opened.
  • the proportional valve 31 and the proportional valve 32 are closed, and the proportional valve 33 is opened.
  • the proportional valve 35 is closed, and the proportional valve 36 is opened.
  • the refrigerant led out from the indoor condenser 3 is led to the evaporator 7. That is, since the refrigerant bypasses the outdoor heat exchanger 5, the outdoor heat exchanger 5 does not substantially function.
  • the refrigerant introduced into the evaporator 7 evaporates in the process of passing through the evaporator 7 and dehumidifies the air in the passenger compartment.
  • Such special air conditioning operation functions effectively when it is difficult to absorb heat from the outside, for example, when the vehicle is placed in an extremely cold state.
  • 3 to 5 are cross-sectional views showing the configuration and operation of the first control valve 4.
  • the first control valve 4 is configured as an electric valve driven by a stepping motor, and is configured by assembling a valve body 101 and a motor unit 102.
  • the valve body 101 is configured such that a large-diameter proportional valve 34 and a large-diameter proportional valve 37 are accommodated coaxially in a bottomed cylindrical body 104.
  • the 1st control valve 4 is comprised as a compound valve by which the opening degree of the other proportional valve is adjusted to a setting opening degree, maintaining the fully open state of one proportional valve.
  • An introduction port 110 is provided on one side of the body 104, and a first derivation port 112 and a second derivation port 114 are provided on the other side.
  • the introduction port 110 communicates with the discharge chamber of the compressor 2, the first outlet port 112 communicates with the first passage 21, and the second outlet port 114 communicates with the second passage 22. That is, the body 104 is formed with a first internal passage that connects the introduction port 110 and the first outlet port 112, and a second internal passage that connects the introduction port 110 and the second outlet port 114.
  • a cylindrical partition member 116 is disposed in the upper half of the body 104.
  • the partition member 116 is assembled concentrically to the body 104 via a seal member.
  • a lower end portion of the partition member 116 forms a valve hole 120.
  • a valve seat 122 is formed by the lower end opening edge of the valve hole 120.
  • a communication hole that communicates the inside and the outside is provided on the surface of the partition member 116 that faces the first outlet port 112.
  • a stepped cylindrical partition member 124 is disposed at the upper end of the body 104.
  • the partition member 124 partitions the interior of the valve body 101 and the interior of the motor unit 102.
  • a circular boss-shaped bearing 126 is provided at the center of the upper end of the partition member 124.
  • a female thread portion is provided on the inner peripheral surface of the bearing portion 126, and the outer peripheral surface functions as a sliding bearing.
  • a guide hole 128 is formed inward of the partition member 124, and an O-ring 130 as a seal member is fitted to the lower end portion thereof.
  • valve driving body 132 Inside the body 104, a valve driving body 132, a valve operating body 134, and a transmission member 136 are arranged coaxially.
  • the valve drive body 132 has a stepped cylindrical shape, and is arranged so that a reduced diameter portion at the center in the axial direction passes through the valve hole 120.
  • a common valve body 138 is provided at the lower end portion of the valve driver 132, and a guide portion 140 is provided at the upper end portion. That is, the common valve body 138 is disposed in the pressure chamber communicating with the introduction port 110 on the upstream side of the valve hole 120.
  • the guide portion 140 is disposed in a pressure chamber communicating with the first outlet port 112 on the downstream side of the valve hole 120 and is slidably supported by the partition member 124.
  • the shared valve body 138 has a stepped columnar shape, and the first valve member 141 is fitted to the upper end portion thereof, and the second valve member 142 is fitted to the lower end portion thereof. Both the first valve member 141 and the second valve member 142 are made of an annular elastic body (rubber in this embodiment).
  • a valve hole 144 is provided in a passage connecting the introduction port 110 and the second outlet port 114, and a valve seat 146 is formed at an upper end opening edge thereof.
  • the first valve member 141 contacts and separates from the valve seat 122 to adjust the opening degree of the proportional valve 34.
  • the second valve member 142 adjusts the opening degree of the proportional valve 37 by moving toward and away from the valve seat 146.
  • a plurality of legs are extended at the lower end of the shared valve body 138 and supported while sliding in the valve hole 144. That is, the valve driver 132 is stabilized in the axial direction by sliding a plurality of legs at the lower end along the valve hole 144 and sliding the guide 140 at the upper end along the guide hole 128. Can work.
  • a back pressure chamber 148 is formed between the guide part 140 and the partition member 124.
  • a communication passage 150 that penetrates the common valve body 138 in the axial direction is formed. For this reason, the back pressure chamber 148 is always filled with the downstream pressure Pout2 derived from the second outlet port 114.
  • the effective diameter A of the valve hole 120, the effective diameter B of the valve hole 144 (more precisely, the inner diameter of the O-ring 130), and the effective diameter C of the guide hole 128 are set equal. For this reason, the influence of the refrigerant pressure acting on the shared valve body 138 is cancelled.
  • the O-ring 130 by providing the O-ring 130, the sealing performance of the sliding portion of the guide portion 140 is ensured, and dust or the like is prevented from being caught in the sliding portion.
  • the spring receiver 152 and the transmission member 136 are coaxially inserted inside the guide portion 140 of the valve driver 132.
  • the spring receiver 152 has a disk shape, and a transmission member 136 passes through the center of the spring receiver 152.
  • a spring 154 (functioning as an “urging member”) is interposed between the upper end opening of the guide portion 140 and the spring receiver 152.
  • a disc-shaped spring receiver 156 is inserted inside the reduced diameter portion of the valve drive body 132.
  • a spring 158 (functioning as an “urging member”) is interposed between the shared valve body 138 and the spring receiver 156.
  • the valve operating body 134 and the valve driving body 132 are configured to be operatively connectable via the transmission member 136. That is, the upper end portion of the transmission member 136 passes through the bottom portion of the valve operating body 134, and the tip end portion thereof is caulked outward and connected. A locking portion 160 protruding outward in the radial direction is provided on a side portion of the transmission member 136, and the locking portion 160 is locked to the spring receiver 152, so that the valve operating body 134, the valve driving body 132, Are configured so as to be integrally operable upward. Further, the lower end of the transmission member 136 is locked to the spring receiver 156 so that the valve operating body 134 and the valve driving body 132 can be integrally operated downward.
  • valve driver 132 and the valve actuating body 134 are integrally displaced while being stretched by the urging force of the springs 154 and 158 (see FIG. 4). If either one is closed, relative displacement in the axial direction is possible (see FIGS. 3 and 5).
  • the springs 154 and 158 are set so that the load is larger than the sliding resistance between the valve driver 132 and the O-ring 130 (sliding force of the valve driver 132). As a result, the valve openings of the proportional valve 34 and the proportional valve 37 can be accurately controlled without contraction of the springs 154 and 158 when the valve operating body 134 and the valve driving body 132 are operating integrally. Yes.
  • the valve operating body 134 has a stepped cylindrical shape, and a male thread portion is formed on the outer peripheral portion thereof.
  • the male screw portion is screwed into the female screw portion of the bearing portion 126.
  • a plurality (four in this embodiment) of leg portions 153 extending outward in the radial direction are provided at the upper end portion of the valve operating body 134 and are fitted to the rotor of the motor unit 102.
  • the valve actuator 134 receives the rotational driving force of the motor unit 102 and rotates, and converts the rotational force into a translational force.
  • valve operating body 134 when the valve operating body 134 rotates, the valve operating body 134 is displaced in the axial direction by a screw mechanism (functioning as an “operation converting mechanism”), and the common valve body 138 is moved in the axial direction (the proportional valve 34 and the proportional valve 37 Drive in the opening and closing direction).
  • a screw mechanism functioning as an “operation converting mechanism”
  • the motor unit 102 is configured as a stepping motor including a rotor 172 and a stator 173.
  • the motor unit 102 is configured to rotatably support a rotor 172 inside a bottomed cylindrical sleeve 170.
  • a stator 173 that accommodates the exciting coil 171 is provided on the outer periphery of the sleeve 170.
  • the lower end opening of the sleeve 170 is assembled to the body 104 and constitutes the body of the first control valve 4 together with the body 104.
  • the rotor 172 includes a rotating shaft 174 formed in a cylindrical shape and a magnet 176 disposed on the outer periphery of the rotating shaft 174.
  • the magnet 176 is magnetized to 24 poles.
  • An internal space that extends over substantially the entire length of the motor unit 102 is formed inside the rotating shaft 174.
  • a guide portion 178 extending parallel to the axis is provided at a specific location on the inner peripheral surface of the rotation shaft 174.
  • the guide part 178 forms a protrusion for engaging with a rotation stopper, which will be described later, and is constituted by a single protrusion that extends parallel to the axis.
  • the lower end portion of the rotating shaft 174 is slightly reduced in diameter, and four guide portions 180 extending in parallel to the axis are provided on the inner peripheral surface thereof.
  • the guide portion 180 is constituted by a pair of protrusions extending in parallel to the axis, and is provided on the inner peripheral surface of the rotating shaft 174 every 90 degrees.
  • the four guide portions 180 are fitted with the four leg portions 153 of the valve operating body 134 described above so that the rotor 172 and the valve operating body 134 can rotate together.
  • the valve actuating member 134 is allowed to be displaced in the axial direction along the guide portion 180 although the relative displacement in the rotational direction with respect to the rotor 172 is restricted. That is, the valve operating body 134 is driven in the opening / closing direction of the common valve body 138 while rotating together with the rotor 172.
  • a long shaft 182 is disposed inside the rotor 172 along the axis thereof.
  • the upper end of the shaft 182 is fixed in a cantilever manner by being press-fitted into the center of the bottom of the sleeve 170, and extends into the internal space in parallel with the guide portion 178.
  • the shaft 182 is disposed on the same axis as the valve operating body 134.
  • the shaft 182 is provided with a spiral guide portion 184 that extends over substantially the entire length thereof.
  • the guide part 184 is made of a coil-shaped member and is fitted on the outer surface of the shaft 182. An upper end portion of the guide portion 184 is folded back to form a locking portion 186.
  • a helical rotation stopper 188 is rotatably engaged with the guide portion 184.
  • the rotation stopper 188 includes a helical engagement portion 190 that engages with the guide portion 184 and a power transmission portion 192 that is supported by the rotation shaft 174.
  • the engaging portion 190 has a shape of a one-turn coil, and a power transmission portion 192 that extends outward in the radial direction is continuously provided at a lower end portion of the engaging portion 190.
  • the distal end portion of the power transmission unit 192 is engaged with the guide unit 178. That is, the power transmission part 192 is brought into contact with and locked on one protrusion of the guide part 178. For this reason, the rotation stopper 188 is restricted in relative rotation in the rotation direction by the rotation shaft 174, but is allowed to move in the axial direction while sliding on the guide portion 178.
  • the rotation stopper 188 rotates integrally with the rotor 172 and is driven in the axial direction by the engagement portion 190 being guided along the guide portion 184.
  • the driving range of the rotation stopper 188 in the axial direction is restricted by the engaging portions formed at both ends of the guide portion 178.
  • This figure shows a state in which the rotation stopper 188 is locked at the bottom dead center. When the rotation stopper 188 is displaced upward and locked to the locking portion 186, the position becomes the top dead center.
  • the rotor 172 has an upper end portion rotatably supported by the shaft 182 and a lower end portion rotatably supported by the bearing portion 126.
  • a bottomed cylindrical end member 194 is provided so as to seal the upper end opening of the rotating shaft 174, and a portion of the cylindrical shaft 196 provided in the center of the end member 194 is a shaft 182. It is supported by. That is, the bearing portion 126 is a bearing portion on one end side, and the sliding portion of the shaft 182 with the cylindrical shaft 196 is a bearing portion on the other end side.
  • the first control valve 4 configured as described above functions as a stepping motor-operated control valve whose valve opening can be adjusted by drive control of the motor unit 102.
  • a control unit (not shown) of the vehicle air conditioner calculates the number of driving steps of the stepping motor according to the set opening and supplies a driving current (driving pulse) to the exciting coil 171.
  • the rotor 172 rotates, and on the one hand, the valve operating body 134 is driven to rotate, and the opening degree of the proportional valve 34 and the proportional valve 37 is adjusted to the set opening degree, and on the other hand, the rotation stopper 188 is driven along the guide portion 184. By doing so, the operating range of each valve element is regulated.
  • FIG. 3 shows a case where the proportional valve 34 is fully opened and the proportional valve 37 is closed.
  • the first control valve 4 takes such a state during, for example, a special cooling operation. Therefore, during the special cooling operation, the high-temperature gas refrigerant discharged from the compressor 2 is prevented from leaking to the indoor condenser 3.
  • FIG. 4 shows a case where both the proportional valve 34 and the proportional valve 37 are opened.
  • the first control valve 4 can take such a state according to the situation, for example, during normal cooling operation. That is, when the rotor 172 is driven to rotate in one direction (forward rotation) from the state of FIG. 3, the valve driver 132 is displaced in the valve opening direction of the proportional valve 37, and is proportional to the proportional valve 34 as shown in FIG. Both valves 37 are opened. That is, the valve operating body 134 that rotates together with the rotor 172 is raised by the screw mechanism, and the valve operating body 134 moves the valve driving body 132 in a state where the transmission member 136 is locked to the spring receiver 152 by the locking portion 160. Displace it by lifting.
  • FIG. 1 shows a case where both the proportional valve 34 and the proportional valve 37 are opened.
  • the first control valve 4 can take such a state according to the situation, for example, during normal cooling operation. That is, when the rotor 172 is driven to
  • valve opening degree of the proportional valve 37 is adjusted by driving the common valve body 138 in a range between the position shown in FIG. 3 and the position shown in FIG. In such a state where the valve opening degree of the proportional valve 37 is adjusted, the fully open state of the proportional valve 34 is maintained.
  • the “fully opened state” means that the valve opening becomes large and the refrigerant flow rate is saturated.
  • FIG. 5 shows a case where the proportional valve 34 is closed and the proportional valve 37 is fully opened.
  • the 1st control valve 4 takes such a state, for example at the time of heating operation.
  • the valve driver 132 is displaced in the valve closing direction of the proportional valve 34, resulting in the state of FIG. 5. Therefore, the high-temperature gas refrigerant discharged from the compressor 2 is prevented from leaking to the outdoor heat exchanger 5 during the heating operation.
  • the proportional valve 34 can be opened by rotationally driving the rotor 172 in the reverse direction from the state shown in FIG.
  • the valve opening degree of the proportional valve 34 is adjusted by driving the common valve body 138 in a range between the position shown in FIG. 5 and the position shown in FIG.
  • FIG. 5 shows a state in which the rotor 172 has rotated a predetermined amount after the proportional valve 34 is closed. That is, even if the rotor 172 does not stop simultaneously with the valve closing of the proportional valve 34, the idler mechanism prevents the valve seat 122 from being applied with excessive surface pressure by separating the transmission member 136 from the spring receiver 156 as shown in the figure. Is provided.
  • FIG. 3 shows a state in which the rotor 172 has rotated a predetermined amount after the proportional valve 37 is closed.
  • the idler mechanism prevents the valve seat 146 from being excessively pressurized by separating the transmission member 136 from the spring receiver 152 as shown. Is provided.
  • the proportional valve 34 and the proportional valve 37 are driven by the common motor unit 102, and the other is maintained in the fully opened state in the control state of one opening.
  • the opening degree of one proportional valve can be accurately controlled.
  • FIG. 6 is a cross-sectional view illustrating the configuration of the second control valve 6.
  • FIG. 7 is an enlarged cross-sectional view showing a portion of the valve body of the second control valve 6.
  • symbol is attached
  • the second control valve 6 is configured as an electric valve driven by a stepping motor, and is configured by assembling a valve body 201 and two motor units 102 and 202.
  • the valve main body 201 accommodates the small-diameter proportional valve 31 and the small-diameter proportional valve 32 coaxially in a bottomed cylindrical body 204, and the small-diameter proportional valve 33 in a direction perpendicular to the axis thereof. It is configured to be assembled.
  • the proportional valve 31 and the proportional valve 32 are driven by a common motor unit 102, and the proportional valve 33 is driven by another motor unit 202.
  • the motor unit 202 has a configuration similar to that of the motor unit 102.
  • the two motor units 102 and 202 are assembled to the body 204 so that their axes are orthogonal to each other.
  • the second control valve 6 is configured as a composite valve in which one of the proportional valve 31 and the proportional valve 32 is maintained in a closed state, and the other opening is adjusted to a set opening, and the composite valve and the proportional valve 33 is configured as a collective valve in which a common body 204 is incorporated.
  • an introduction port 210 On one side of the body 204, an introduction port 210, an introduction / exit port 212, and an outlet port 214 are provided.
  • the introduction port 210 communicates with the indoor condenser 3 through the fourth passage 24, the introduction / exit port 212 communicates with the outdoor heat exchanger 5 through the third passage 23, and the outlet port 214 passes through the third passage 23.
  • the body 204 includes a first internal passage connecting the introduction port 210 and the introduction / extraction port 212, a second internal passage connecting the introduction port 210 and the extraction port 214, and the introduction / extraction port 212 and the extraction port 214.
  • a connecting third internal passage is formed.
  • the first branch passage 25 and the second branch passage 26 are formed inside the body 204.
  • a stepped cylindrical partition member 220 is assembled to the middle portion of the body 204 so as to extend vertically.
  • a valve body 218 is inserted from above into the upper end opening of the partition member 220, and a valve body 224 is inserted from below into the lower end opening.
  • a communication hole 226 that communicates with the introduction port 210 from above, a communication hole 228 that communicates with the introduction / exit port 212, and a communication hole 230 that communicates with the outlet port 214 are provided on the side surface of the partition member 220.
  • a chamber 229 is formed between the lower end portion of the partition member 220 and the body 204.
  • An O-ring for sealing is fitted between the communication hole 226 and the communication hole 228, between the communication hole 228 and the communication hole 230, and between the communication hole 230 and the chamber 229 on the outer peripheral surface of the partition member 220.
  • a valve hole 232 is formed in a passage connecting the communication hole 226 and the communication hole 228 in the partition member 220, and a valve seat 234 is formed by an upper end opening edge thereof.
  • the valve hole 232 is configured to have a slightly smaller inner diameter than the upper end opening of the partition member 220. The opening degree of the proportional valve 32 is adjusted when the valve body 218 contacts and separates from the valve seat 234 from above.
  • a valve hole 236 is formed in a passage connecting the communication hole 228 and the communication hole 230 in the partition member 220, and a valve seat 238 is formed by the lower end opening edge thereof.
  • the valve hole 236 has a slightly smaller inner diameter than the lower end opening of the partition member 220.
  • the opening degree of the proportional valve 31 is adjusted when the valve body 224 contacts and separates from the valve seat 238 from below.
  • the partition member 220 is provided with a plurality of through holes 240 parallel to the axis at positions shifted from the axis. One end of the through hole 240 communicates with the introduction port 210, and the other end communicates with the chamber 229.
  • the elongate transmission rod 242 is each arrange
  • three through holes 240 and three transmission rods 242 are provided around the axis of the partition member 220 (only one is shown in the figure), but in the modified example, the through holes 240 and the transmission rods are provided. Two 242 may be provided.
  • a small-diameter valve body 218, a small-diameter valve body 224, and a valve operating body 134 are arranged coaxially.
  • the valve body 218 and the valve body 224 are disposed to face each other along the axis.
  • the valve body 218 has a stepped columnar shape, a lower half portion of the valve body 218 is slidably inserted into the upper end opening of the partition member 220, and a distal end portion thereof is disposed to face the valve seat 234.
  • the valve body 218 is configured as a so-called needle valve body, and a sharp tip portion thereof is inserted into and extracted from the valve hole 232.
  • the opening degree of the proportional valve 32 is adjusted by the valve body 218 coming into contact with and separating from the valve seat 234.
  • the upper half of the valve body 218 is slightly reduced in diameter and penetrates the bottom of the valve operating body 134, and its distal end is caulked outward to form a locking portion 235.
  • a spring 244 biases the valve body 218 in the valve closing direction (direction in which the locking portion 235 is pressed against the bottom of the valve operating body 134). Functioning as a “force member”).
  • a disc-shaped partition member 124 is disposed at the upper end of the body 104.
  • the partition member 124 partitions the interior of the valve body 101 and the interior of the motor unit 102.
  • a bearing 126 is provided at the center of the partition member 124.
  • a disk-shaped transmission member 246 is disposed between the partition member 124 and the partition member 220.
  • a through hole is provided in the center of the transmission member 246, and the upper half of the valve body 218 passes through the through hole.
  • the lower surface of the transmission member 246 is in contact with the upper end surface of the transmission rod 242.
  • a spring 248 that biases the transmission member 246 downward is interposed between the transmission member 246 and the partition member 124. With such a configuration, the urging force acting on the transmission member 246 is transmitted downward through the transmission rod 242.
  • the valve body 224 has a stepped columnar shape, is slidably inserted into the lower end opening of the partition member 220, and the upper end thereof is disposed to face the valve seat 238.
  • An O-ring 251 as a seal member is fitted on the outer peripheral surface of the valve body 224.
  • the valve body 224 is configured as a so-called needle valve body, and a sharp tip portion thereof is inserted into and extracted from the valve hole 236. Then, the opening degree of the proportional valve 31 is adjusted when the valve body 224 contacts and separates from the valve seat 238.
  • a flange portion 249 extending outward in the radial direction is provided at the lower end portion of the valve body 224 and is disposed in the chamber 229.
  • a spring 250 (functioning as an “urging member”) for biasing the valve body 224 in the valve closing direction is interposed between the lower surface of the flange portion 249 and the bottom portion of the body 204.
  • a proportional valve 33 is incorporated in the lower half of the body 204 from the side.
  • the proportional valve 33 has a structure approximate to that of the proportional valve 32. That is, a stepped cylindrical partition member 260 is assembled to the lower half of the body 204 so as to extend to the left and right.
  • the partition member 260 has a structure in which the upper half of the partition member 220 and the partition member 124 are integrated.
  • a valve body 262 and a valve operating body 134 are coaxially inserted into the partition member 260. Further, the partition member 260 is provided with a communication hole 264 communicating with the introduction port 210 and a communication hole 266 communicating with the outlet port 214.
  • a valve hole 268 is formed in a passage connecting the communication hole 264 and the communication hole 266 in the partition member 260, and a valve seat 270 is formed by an opening edge thereof.
  • the opening degree of the proportional valve 33 is adjusted when the valve hole 268 contacts and separates from the valve seat 270.
  • the valve body 262 has a stepped columnar shape, and one end side of the valve body 262 is slidably inserted into the partition member 260, and a tip end portion thereof is disposed to face the valve seat 270.
  • the valve body 262 is configured as a so-called needle valve body, and a sharp tip portion is inserted into and removed from the valve hole 268.
  • valve body 262 when the valve body 262 is attached to and detached from the valve seat 270, the proportional valve 33 is opened and closed.
  • the other end side of the valve body 262 is slightly reduced in diameter and penetrates the bottom portion of the valve operating body 134, and its distal end portion is caulked outward to form a locking portion 235.
  • a spring 244 that biases the valve body 262 in the valve closing direction is interposed between the upper end portion of the valve operating body 134 and the locking portion 235.
  • the second control valve 6 configured as described above functions as a stepping motor actuated control valve whose valve opening can be adjusted by drive control of the motor units 102 and 202. That is, for example, when the proportional valve 31 is closed, the proportional valve 32 is opened, and the proportional valve 33 is closed, for example, during normal heating operation, the states shown in FIGS. At this time, since the valve operating body 134 is separated from the transmission member 246, the driving force of the motor unit 102 is not transmitted to the valve body 224. On the other hand, the engaging portion 235 is pressed against the bottom of the valve operating body 134 by the urging force of the spring 244, and the valve body 218 is located at the bottom dead center with respect to the valve operating body 134.
  • valve body 218 Acts on the valve body 218 as it is. As a result, the valve body 218 is displaced according to the rotation amount of the rotor 172, and the proportional valve 32 is controlled to the set opening degree. That is, the opening degree of the proportional valve 32 is adjusted by driving the valve body 218 in a range between the fully open state and the fully closed position.
  • the rotor 172 of the motor unit 202 is driven to rotate in one direction from the state shown in FIG. ).
  • the valve body 262 is separated from the valve seat 270, and the proportional valve 33 is opened.
  • the valve body 262 is displaced according to the rotation amount of the rotor 172, and the proportional valve 33 is controlled to the set opening degree. That is, the opening degree of the proportional valve 33 is adjusted by driving the valve body 262 in a range between the fully open state and the fully closed position.
  • valve body 218 When the valve body 218 is seated on the valve seat 234, the valve body 218 can be relatively displaced with respect to the valve operating body 134 by pressing and contracting the spring 244 by the reaction force. It is not over-pressed against. Further, the rotor 172 of the motor unit 202 is rotationally driven (normally rotated) in one direction from the state shown in FIG. As a result, the valve body 262 is separated from the valve seat 270, and the proportional valve 33 is opened. The valve body 262 is displaced according to the rotation amount of the rotor 172, and the proportional valve 33 is controlled to the set opening degree. That is, the opening degree of the proportional valve 33 is adjusted by driving the valve body 262 in a range between the fully open state and the fully closed position.
  • the proportional valve 31 When the proportional valve 31 is opened, the proportional valve 32 is closed, and the proportional valve 33 is opened, such as during normal cooling operation, the rotor 172 of the motor unit 102 is further rotated in the same direction. Thereby, the driving force by the motor unit 102 is transmitted to the valve body 224 via the valve operating body 134, the transmission member 246, and the transmission rod 242, the valve body 224 is pushed down, and the proportional valve 31 is opened. That is, the opening degree of the proportional valve 31 is adjusted by driving the valve body 224 in a range between the fully closed state and the fully opened position.
  • the proportional valve 31 and the proportional valve 32 are driven by the shared motor unit 102, and the other is maintained in the closed state in the control state of one opening.
  • the opening degree of one proportional valve can be accurately controlled.
  • the proportional valve 33 is driven by an individual motor unit 202, the valve opening degree can be controlled independently of the proportional valve 31 and the proportional valve 32.
  • the third control valve 9 is configured as an electric valve driven by a stepping motor, and is configured by assembling a valve body 301 and a motor unit 102.
  • the valve main body 301 is configured by coaxially housing a large-diameter proportional valve 35 and a large-diameter proportional valve 36 in a bottomed cylindrical body 304, while maintaining the fully open state of one valve. It is comprised as a proportional valve which adjusts the opening degree of to a set opening degree.
  • a first introduction port 310 and a second introduction port 312 are provided on one side of the body 304, and a lead-out port 314 is provided on the other side.
  • the first introduction port 310 communicates with the fifth passage 27, the second introduction port 312 communicates with the bypass passage 28, and the outlet port 314 communicates with the downstream passage.
  • the downstream passage is connected to the inlet of the accumulator 8. That is, the body 304 is formed with a first internal passage that connects the first introduction port 310 and the outlet port 314 and a second internal passage that connects the second introduction port 312 and the outlet port 314.
  • the body 304 has a hole shape in which the inner diameters of the upper part, the central part, and the lower part gradually decrease from the upper end opening part toward the bottom part.
  • a port 314 is provided, and a first introduction port 310 is provided at the bottom.
  • a valve hole 320 is provided in the lower upper opening, and a valve seat 325 is formed by the upper opening edge.
  • a cylindrical partition member 330 is inserted in the upper part of the body 304.
  • the partition member 330 is assembled concentrically with the body 304, and a communication hole that communicates the inside and the outside is formed on the surface facing the second introduction port 312.
  • An O-ring 322 as a seal member is provided so as to be sandwiched between the lower end surface of the partition member 330 and the body 304.
  • a disc-shaped partition member 323 is disposed at the upper end of the body 304.
  • the partition member 323 partitions the inside of the valve main body 301 and the inside of the motor unit 102.
  • a bearing 126 is provided at the center of the partition member 323.
  • the guide member 338 is configured such that a plurality of leg portions (three in this embodiment) are concentrically provided on the body 304. Since the bottom portion of the guide member 338 partially overlaps the valve seat member 336, the valve seat member 336 is prevented from falling off.
  • a valve driving body 340 Inside the body 304, a valve driving body 340, a valve operating body 134, and a transmission rod 345 are disposed coaxially (on the same axis).
  • a female thread portion is provided on the inner peripheral surface of the bearing portion 126 of the partition member 323.
  • a transmission rod 345 is connected to the lower end portion of the valve operating body 134.
  • the valve driver 340 has a stepped cylindrical shape, and a large-diameter valve body portion 342 and a large-diameter guide portion 344 are integrally provided via a small-diameter reduced-diameter portion 346.
  • the valve body portion 342 integrally includes a first valve body 350 provided at the upper end opening and a second valve body 352 provided at the lower end.
  • the opening degree of the proportional valve 35 is adjusted by the first valve body 350 coming into contact with and separating from the valve seat member 336. Further, the opening degree of the proportional valve 36 is adjusted by the second valve body 352 coming into contact with and separating from the valve seat 325.
  • a communication hole is provided in the side portion of the valve body portion 342 to communicate the inside with the outlet port 314. Sealing of the outer peripheral portion of the valve body portion 342 is realized by an O-ring 322.
  • the O-ring 322 constitutes a guide part that supports the valve body part 342 in a slidable manner.
  • the guide portion 344 has a disc shape, and an outer peripheral surface thereof is slidably supported on a lower inner peripheral surface of the body 304. That is, a lower portion of the body 304 forms a guide hole 347 that supports the guide portion 344 so as to be slidable.
  • the reduced diameter portion 346 is disposed so as to penetrate the valve hole 320.
  • the transmission rod 345 has a stepped columnar shape and penetrates the valve driver 340 in the axial direction.
  • the upper end portion of the transmission rod 345 is reduced in diameter and penetrates the bottom portion of the valve operating body 134, and the distal end portion thereof is caulked outward to form a locking portion 355.
  • a spring 348 (functioning as an “urging member”) that biases the transmission rod 345 upward is interposed between the bottom of the valve operating body 134 and the locking portion 355. For this reason, in a normal state, as shown in the figure, the valve operating body 134 and the transmission rod 345 are in an integrated state by locking each other.
  • the lower half of the transmission rod 345 is reduced in diameter and penetrates the reduced diameter portion 346 of the valve driver 340, and its tip is crimped outward in the radial direction to form a locking portion.
  • a spring 349 (functioning as an “urging member”) that biases the valve driving body 340 downward is interposed. .
  • the transmission rod 345 and the valve drive body 340 are integrated with each other locked together.
  • the springs 348 and 349 are set such that the load is larger than the sliding resistance between the valve driver 340 and the O-ring 322 (sliding force of the valve driver 340). Thereby, when the valve operating body 134 and the valve driving body 340 are operating integrally, the valve openings of the proportional valve 35 and the proportional valve 36 can be accurately controlled without contracting the springs 348 and 349. Yes.
  • the effective diameter A of the valve portion of the first valve body 350 and the effective diameter B of the sliding portion of the valve driver 340 are set equal, and the effective diameter C of the valve hole 320 is Since the effective diameter D of the guide hole 347 is set equal, the influence of the refrigerant pressure acting on the valve driver 340 is substantially canceled. Therefore, an excessive load is not applied to the motor unit 102 due to a change in the refrigerant pressure, and the valve opening degree can be controlled stably.
  • the third control valve 9 configured as described above functions as a stepping motor actuated control valve whose valve opening can be adjusted by drive control of the motor unit 102. That is, when the proportional valve 35 is closed and the proportional valve 36 is fully opened according to the operating state of the vehicle air conditioner, the state shown in FIG. 8 is obtained.
  • the third control valve 9 takes such a state during, for example, a special cooling operation, a normal cooling operation, a special heating operation, and the like.
  • the rotor 172 when adjusting the opening degree of the proportional valve 35 or the proportional valve 36, the rotor 172 is driven to rotate in one direction (forward rotation) from the state shown in FIG. Accordingly, as shown in FIG. 9, the valve operating body 134 that rotates together with the rotor 172 is lowered by the screw mechanism and displaced so as to push down the valve driving body 340 (that is, the first valve body 350 and the second valve body 352). Thus, the proportional valve 35 is opened.
  • FIG. 9 shows a neutral state in which both the proportional valve 35 and the proportional valve 36 are fully opened. However, by reducing the opening degree of one of them and controlling the opening degree, it is made smaller. The flow rate of the refrigerant flowing through the side valve can be adjusted.
  • the opening degree of the proportional valve 35 is adjusted by driving the first valve body 350 in a range between the fully closed state shown in FIG. 8 and the fully opened position shown in FIG.
  • the rotor 172 is further rotated in the same direction from the state shown in FIG. Accordingly, as shown in FIG. 10, the valve driver 340 is further pushed down, the second valve body 352 operates in a direction closer to the valve seat 325, and the opening degree of the proportional valve 36 is adjusted. At this time, the first valve body 350 is further driven in the valve opening direction from the state shown in FIG. 9, but the proportional valve 35 is in a saturated state even when the opening degree is increased, and the state shown in FIG. The fully open state is maintained substantially unchanged.
  • the rotor 172 may be further rotated in the same direction from the state shown in FIG. That is, the opening degree of the proportional valve 36 is adjusted by driving the second valve body 352 in a range between the fully closed state and the fully opened position shown in FIG.
  • the spring 349 is compressed and the transmission rod 345 is displaced relative to the valve driver 340, so that the valve seat 325 is displaced.
  • a play mechanism is provided to prevent excessive surface pressure from being applied.
  • the spring 348 is compressed and the valve actuator 134 is displaced relative to the transmission rod 345, so that the valve seat 336 has an excessive surface.
  • a play mechanism is provided to prevent pressure from being applied.
  • the proportional valve 35 is provided with a valve seat member 336 and an O-ring 322 to ensure the sealing performance when the valve is closed. It is not a simple configuration. This is because, as shown in FIG. 2D, the proportional valve 36 is normally closed only during heating operation. In this case, the evaporator 7 is in a dormant state as shown in FIG. This is because the proportional valve 31 and the proportional valve 33 are in the closed state, so that the refrigerant does not substantially flow into the proportional valve 36. In addition, this operation is performed when the outdoor heat exchanger 5 is at a low pressure in a low temperature state, and therefore there is little fear of backflow from the outdoor heat exchanger 5 side.
  • the proportional valve 35 and the proportional valve 36 are driven by the common motor unit 102, and the other fully opened state is maintained in the control state of one opening.
  • the opening degree of one proportional valve can be accurately controlled.
  • each of the proportional valves 31 to 37 may be independently configured as a control valve including an individual body and a motor unit.
  • adopts a stepping motor as an actuator was shown in the said embodiment, you may comprise the actuator of at least any one composite valve by a solenoid etc.
  • the actuator of at least one of the proportional valves may be configured by a solenoid or the like.
  • the configuration example in which the proportional valve 33 is assembled in the direction perpendicular to the proportional valve 31 and the proportional valve 32 is shown as the second control valve 6.
  • the proportional valve 33 may be assembled in parallel with the proportional valve 31 and the proportional valve 32.
  • the motor unit 102 and the motor unit 202 may be assembled to a common body so that the axes thereof are parallel to each other. That is, you may change the structure of the collective valve as the 2nd control valve 6 according to the installation space in a vehicle.
  • FIG. 11 is a diagram illustrating a system configuration of a vehicle air conditioning apparatus according to a modification. In the figure, the same components as those in the embodiment shown in FIG.
  • the indoor condenser 3 and the outdoor heat exchanger 5 are configured to operate in series as a condenser, and the evaporator 7 and the outdoor heat exchanger 5 are arranged in parallel as an evaporator. It is good also as the vehicle air conditioning apparatus 200 comprised so that operation
  • the vehicle air conditioner 200 the first refrigerant circulation passage through which the refrigerant circulates during the cooling operation (dehumidification), the second refrigerant circulation passage through which the refrigerant circulates during the heating operation, and the third refrigerant circulates during the dehumidification during the heating operation.
  • a refrigerant circulation passage is formed.
  • the first refrigerant circulation passage is a passage through which the refrigerant circulates, such as compressor 2 ⁇ indoor condenser 3 ⁇ outdoor heat exchanger 5 ⁇ evaporator 7 ⁇ accumulator 8 ⁇ compressor 2.
  • the second refrigerant circulation passage is a passage through which the refrigerant circulates as follows: compressor 2 ⁇ indoor condenser 3 ⁇ outdoor heat exchanger 5 ⁇ accumulator 8 ⁇ compressor 2.
  • the third refrigerant circulation passage is a passage through which the refrigerant circulates like the compressor 2 ⁇ the indoor condenser 3 ⁇ the evaporator 7 ⁇ the accumulator 8 ⁇ the compressor 2.
  • the flow of the refrigerant flowing through the outdoor heat exchanger 5 is in the opposite direction between the first refrigerant circulation passage and the second refrigerant circulation passage.
  • the discharge chamber of the compressor 2 is connected to the inlet of the indoor condenser 3 via the first passage 221, and the outlet of the indoor condenser 3 is connected to one of the outdoor heat exchangers 5 via the second passage 222.
  • the other inlet / outlet of the outdoor heat exchanger 5 is connected to the inlet of the evaporator 7 through the third passage 23, and the outlet of the evaporator 7 is connected to the inlet of the accumulator 8 through the fifth passage 27.
  • the first passage 221, the second passage 222, the third passage 23, and the fifth passage 27 form a first refrigerant circulation passage.
  • a first branch point, a second branch point, and a third branch point are provided from the indoor condenser 3 side. That is, the second passage 222 branches to the bypass passage 225 at the first branch point, branches to the bypass passage 223 at the second branch point, and branches to the bypass passage 28 at the third branch point. Then, by connecting the bypass passage 225 to the third passage 23, the third refrigerant that can supply at least a part of the refrigerant derived from the indoor condenser 3 to the evaporator 7 by bypassing the outdoor heat exchanger 5. A circulation passage is formed. Further, the bypass passage 223 is connected to the other entrance / exit of the outdoor heat exchanger 5, and the bypass passage 28 is connected to the entrance of the accumulator 8, thereby forming a second refrigerant circulation passage.
  • a first control valve 404 is provided between the outlet of the indoor condenser 3 and one inlet / outlet of the outdoor heat exchanger 5.
  • a second control valve 406 is provided between the other inlet / outlet of the outdoor heat exchanger 5 and the inlet of the evaporator 7.
  • a third control valve 9 is provided between one inlet / outlet of the outdoor heat exchanger 5 and the outlet of the evaporator 7.
  • the first control valve 404 is configured as a composite valve including a common body and a common motor unit for the proportional valve 32 and the proportional valve 34.
  • the second control valve 406 is configured as a composite valve including a common body and a common motor unit for the proportional valve 31 and the proportional valve 33.
  • the third control valve 9 is the same as in the above embodiment.
  • each of the proportional valves 31 to 36 of this modified example may be configured independently as a control valve including an individual body and a motor unit.
  • the vehicle air conditioning apparatus of the present invention is applied to an electric vehicle.
  • the present invention can be provided to a vehicle equipped with an internal combustion engine or a hybrid vehicle equipped with an internal combustion engine and an electric motor. Needless to say.
  • an electric compressor is employed as the compressor 2
  • a variable capacity compressor that performs variable capacity by utilizing the rotation of the engine can also be employed.
  • the auxiliary condenser may be configured as a heat exchanger provided separately from the outdoor heat exchanger.
  • the heat exchanger may be disposed outside the passenger compartment, for example, and may perform heat exchange using cooling water (such as brine).
  • a heat exchanger is provided between the first control valve 4 and the second control valve 6 in FIG. 1, while a radiator is disposed in the passenger compartment, and the heat exchanger and the radiator are cooled. It may be connected by a water circulation circuit.
  • a heat exchanger is provided between the branch point to the bypass passage 225 in FIG.
  • a pump for pumping cooling water may be provided in the circulation circuit. If it does in this way, heat exchange can be performed between the high-temperature refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A vehicle heating/air-conditioning device (100) in one embodiment is provided with: a compressor (2) that compresses and discharges a refrigerant; an outside heat-exchanger (5) disposed outside the passenger compartment of the vehicle; an inside evaporator (7) that is disposed inside the passenger compartment and evaporates the refrigerant; an inside condenser (3); a plurality of refrigerant-circulation channels; and a plurality of expansion devices. When the heating/air-conditioning device is in an air-conditioning mode, the outside heat-exchanger dissipates heat from the refrigerant, thereby functioning as an outside condenser, and when the heating/air-conditioning device is in a heating mode, the outside heat-exchanger evaporates the refrigerant, thereby functioning as an outside evaporator. The inside condenser dissipates heat from the refrigerant separately from the outside heat-exchanger (5). Each of the refrigerant-circulation channels connects one of the condensers to one of the evaporators, and each refrigerant-circulation channel connects a different condenser/evaporator combination. One of the expansion devices is provided in each refrigerant-circulation channel, between the condenser and evaporator connected by that channel, and each expansion device expands the refrigerant from that condenser and sends said refrigerant to that evaporator.

Description

車両用冷暖房装置Air conditioning system for vehicles
 本発明は、複数の冷媒循環通路を備えた車両用冷暖房装置に関する。 The present invention relates to a vehicle air conditioner having a plurality of refrigerant circulation passages.
 近年、内燃機関を搭載した車両においてはエンジンの燃焼効率が向上したこともあり、熱源として利用してきた冷却水が暖房に必要な温度にまで上昇し難くなっている。一方、内燃機関と電動機を併用したハイブリッド車両においては内燃機関の稼働率が低いため、そのような冷却水の利用がさらに難しい。電気自動車に至っては内燃機関による熱源そのものがない。このため、冷房のみならず暖房にも冷媒を用いたサイクル運転を行い、車室内を除湿暖房可能なヒートポンプ式の車両用冷暖房装置が提案されている(例えば特許文献1参照)。 In recent years, in vehicles equipped with an internal combustion engine, the combustion efficiency of the engine has improved, and it has become difficult for the cooling water used as a heat source to reach the temperature required for heating. On the other hand, in a hybrid vehicle using both an internal combustion engine and an electric motor, the utilization rate of the internal combustion engine is low, so that it is more difficult to use such cooling water. There is no heat source by an internal combustion engine in an electric vehicle. For this reason, a heat pump type vehicle air conditioner that performs cycle operation using a refrigerant not only for cooling but also for heating to dehumidify and heat the vehicle interior has been proposed (see, for example, Patent Document 1).
 このような車両用冷暖房装置は、圧縮機、室外熱交換器、蒸発器、室内熱交換器等を含む冷凍サイクルを有し、暖房運転時と冷房運転時とで室外熱交換器の機能が切り替えられる。暖房運転時においては室外熱交換器が蒸発器として機能する。その際、冷凍サイクルを冷媒が循環する過程で室内熱交換器が放熱し、その熱により車室内の空気が加熱される。一方、冷房運転時においては室外熱交換器が凝縮器として機能する。その際、室外熱交換器にて凝縮された冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内の空気が冷却される。その際、除湿も行われる。そして、このように暖房運転時と冷房運転時とで装置の機能を切り替えるために、冷凍サイクルには複数の冷媒循環通路が設けられ、各冷媒循環通路の冷媒の流れを切り替えるための種々の制御弁が設けられる。 Such a vehicle air conditioner has a refrigeration cycle including a compressor, an outdoor heat exchanger, an evaporator, an indoor heat exchanger, etc., and the function of the outdoor heat exchanger is switched between heating operation and cooling operation. It is done. During the heating operation, the outdoor heat exchanger functions as an evaporator. At that time, the indoor heat exchanger dissipates heat while the refrigerant circulates through the refrigeration cycle, and the air in the passenger compartment is heated by the heat. On the other hand, the outdoor heat exchanger functions as a condenser during the cooling operation. At that time, the refrigerant condensed in the outdoor heat exchanger evaporates in the evaporator, and the air in the passenger compartment is cooled by the latent heat of evaporation. At that time, dehumidification is also performed. In order to switch the function of the apparatus between the heating operation and the cooling operation in this way, the refrigeration cycle is provided with a plurality of refrigerant circulation passages, and various controls for switching the refrigerant flow in each refrigerant circulation passage. A valve is provided.
特開平9-240266号公報JP-A-9-240266
 ところで、このような車両用冷暖房装置において制御弁が数多く用いられると、当然にコストが嵩み、また設置スペース上の問題も生じる。このため、制御弁のトータルの数や部品コストをできる限り少なくするのが望ましい。一方、そのように制御弁の数やコストを抑えつつも、運転状態に応じた空調性能を良好に確保する必要がある。 By the way, when many control valves are used in such a vehicle air conditioner, the cost is naturally increased, and there is a problem in installation space. For this reason, it is desirable to reduce the total number of control valves and component costs as much as possible. On the other hand, it is necessary to satisfactorily ensure the air conditioning performance according to the operation state while suppressing the number and cost of the control valves.
 本発明の目的は、運転状態に応じて冷媒循環通路が切り替えられる車両用冷暖房装置において、各運転状態における装置の機能を担保しつつ、システムの構築に嵩むコストをトータル的に抑制することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle air conditioning apparatus in which a refrigerant circulation passage is switched according to an operation state, and to totally suppress the cost of building a system while ensuring the function of the device in each operation state. .
 上記課題を解決するために、本発明のある態様の車両用冷暖房装置は、冷媒を圧縮して吐出する圧縮機と、車室外に配置され、冷房運転時に冷媒を放熱させる室外凝縮器として機能する一方、暖房運転時には冷媒を蒸発させる室外蒸発器として機能する室外熱交換器と、車室内に配置されて冷媒を蒸発させる室内蒸発器と、室外熱交換器とは別に冷媒を放熱させる補助凝縮器と、いずれかの凝縮器といずれかの蒸発器とを配し、その凝縮器と蒸発器の組合せが異なる複数の冷媒循環通路と、各冷媒循環通路における凝縮器と蒸発器との間に一つずつ配設され、その凝縮器から導入された冷媒を膨張させてその蒸発器に導出可能な複数の膨張装置と、を備える。 In order to solve the above-described problems, a vehicle air conditioning apparatus according to an aspect of the present invention functions as a compressor that compresses and discharges a refrigerant, and an outdoor condenser that is disposed outside the passenger compartment and dissipates the refrigerant during cooling operation. On the other hand, an outdoor heat exchanger that functions as an outdoor evaporator that evaporates the refrigerant during heating operation, an indoor evaporator that is disposed in the vehicle interior and evaporates the refrigerant, and an auxiliary condenser that radiates the refrigerant separately from the outdoor heat exchanger One of the condensers and one of the evaporators, a plurality of refrigerant circulation passages having a different combination of the condenser and the evaporator, and one condenser between the condenser and the evaporator in each refrigerant circulation passage. A plurality of expansion devices arranged one by one and capable of expanding the refrigerant introduced from the condenser and leading to the evaporator.
 この態様によると、複数の冷媒循環通路のそれぞれにおいて凝縮器と蒸発器との間に膨張装置が一つずつ配設されるよう、冷媒循環通路の形成および各機器の配置構成がなされている。すなわち、圧縮機を中心とする冷媒循環システムが構成される都合上、複数の冷媒循環通路には他の冷媒循環通路との共用通路と個別通路とが存在するところ、この態様では、各冷媒循環通路の個別通路に膨張装置が配置される。それにより、各膨張装置が各冷媒循環通路の冷媒の流れを調整するようになり、複数の膨張装置間で制御が干渉し合うこともなく、安定した適正な運転状態が得られるようになる。また、仮に共用通路に膨張装置を設けるとした場合、各冷媒循環通路におけるその膨張装置の上流側に通路を開放または遮断するための機器を設ける必要があるところ、この態様では、そうした機器を設けない構成とすることもできる。その結果、部品点数を抑えることができ、システムの構築に嵩むコストをトータル的に抑制することが可能となる。 According to this aspect, the refrigerant circulation passage is formed and the devices are arranged so that one expansion device is arranged between the condenser and the evaporator in each of the plurality of refrigerant circulation passages. That is, for the purpose of configuring a refrigerant circulation system centered on the compressor, a plurality of refrigerant circulation passages have a common passage and an individual passage with other refrigerant circulation passages. An expansion device is disposed in the individual passage of the passage. Thereby, each expansion device adjusts the flow of the refrigerant in each refrigerant circulation passage, and a stable and appropriate operating state can be obtained without interfering with control among the plurality of expansion devices. Also, if an expansion device is provided in the common passage, it is necessary to provide a device for opening or blocking the passage upstream of the expansion device in each refrigerant circulation passage. In this aspect, such a device is provided. It can also be set as the structure which is not. As a result, the number of parts can be suppressed, and the cost for building the system can be suppressed in total.
 本発明によれば、運転状態に応じて冷媒循環通路が切り替えられる車両用冷暖房装置において、各運転状態における装置の機能を担保しつつ、システムの構築に嵩むコストをトータル的に抑制できる。 According to the present invention, in the vehicle air conditioning apparatus in which the refrigerant circulation passage is switched according to the operating state, it is possible to totally suppress the cost of building the system while ensuring the function of the apparatus in each operating state.
実施形態に係る車両用冷暖房装置のシステム構成を表す図である。It is a figure showing the system configuration | structure of the vehicle air conditioner which concerns on embodiment. 車両用冷暖房装置の動作を表す説明図である。It is explanatory drawing showing operation | movement of the vehicle air conditioner. 第1制御弁の構成および動作を表す断面図である。It is sectional drawing showing the structure and operation | movement of a 1st control valve. 第1制御弁の構成および動作を表す断面図である。It is sectional drawing showing the structure and operation | movement of a 1st control valve. 第1制御弁の構成および動作を表す断面図である。It is sectional drawing showing the structure and operation | movement of a 1st control valve. 第2制御弁の構成を表す断面図である。It is sectional drawing showing the structure of a 2nd control valve. 第2制御弁の弁本体の部分を示す拡大断面図である。It is an expanded sectional view showing a portion of a valve body of the 2nd control valve. 第3制御弁の構成および動作を表す断面図である。It is sectional drawing showing the structure and operation | movement of a 3rd control valve. 第3制御弁の構成および動作を表す断面図である。It is sectional drawing showing the structure and operation | movement of a 3rd control valve. 第3制御弁の構成および動作を表す断面図である。It is sectional drawing showing the structure and operation | movement of a 3rd control valve. 変形例に係る車両用冷暖房装置のシステム構成を表す図である。It is a figure showing the system configuration | structure of the vehicle air conditioner which concerns on a modification.
 以下、本発明の実施形態を、図面を参照して詳細に説明する。 
 図1は、実施形態に係る車両用冷暖房装置のシステム構成を表す図である。本実施形態は、本発明の車両用冷暖房装置を電気自動車の冷暖房装置として具体化したものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a system configuration of a vehicle air conditioning apparatus according to an embodiment. In the present embodiment, the vehicle air conditioning apparatus of the present invention is embodied as an electric vehicle air conditioning apparatus.
 車両用冷暖房装置100は、圧縮機2、室内凝縮器3、室外熱交換器5、蒸発器7およびアキュムレータ8を配管にて接続した冷凍サイクル(冷媒循環回路)を備える。車両用冷暖房装置100は、冷媒としての代替フロン(HFO-1234yf)が冷凍サイクル内を状態変化しながら循環する過程で、その冷媒の熱を利用して車室内の空調を行うヒートポンプ式の冷暖房装置として構成されている。 The vehicle air conditioner 100 includes a refrigeration cycle (refrigerant circuit) in which a compressor 2, an indoor condenser 3, an outdoor heat exchanger 5, an evaporator 7, and an accumulator 8 are connected by piping. The vehicle air conditioner 100 is a heat pump type air conditioner that uses the heat of the refrigerant to air-condition the passenger compartment in a process in which alternative chlorofluorocarbon (HFO-1234yf) as a refrigerant circulates while changing its state in the refrigeration cycle. It is configured as.
 車両用冷暖房装置100は、また、冷房運転時と暖房運転時とで複数の冷媒循環通路を切り替えるように運転される。この冷凍サイクルは、室内凝縮器3と室外熱交換器5とが凝縮器として並列に動作可能に構成され、また、蒸発器7と室外熱交換器5とが蒸発器として並列に動作可能に構成されている。すなわち、冷房運転時に冷媒が循環する第1冷媒循環通路、暖房運転時に冷媒が循環する第2冷媒循環通路、除湿運転時に冷媒が循環する第3冷媒循環通路が形成される。 The vehicle air conditioning apparatus 100 is also operated so as to switch a plurality of refrigerant circulation passages between the cooling operation and the heating operation. This refrigeration cycle is configured such that the indoor condenser 3 and the outdoor heat exchanger 5 can operate in parallel as a condenser, and the evaporator 7 and the outdoor heat exchanger 5 can operate in parallel as an evaporator. Has been. That is, a first refrigerant circulation passage through which the refrigerant circulates during the cooling operation, a second refrigerant circulation passage through which the refrigerant circulates during the heating operation, and a third refrigerant circulation passage through which the refrigerant circulates during the dehumidifying operation are formed.
 第1冷媒循環通路は、圧縮機2→室外熱交換器5→蒸発器7→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。第2冷媒循環通路は、圧縮機2→室内凝縮器3→室外熱交換器5→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。第3冷媒循環通路は、圧縮機2→室内凝縮器3→蒸発器7→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。室外熱交換器5を流れる冷媒の流れは、第1冷媒循環通路と第2冷媒循環通路とで逆方向となっている。 The first refrigerant circulation passage is a passage through which the refrigerant circulates as follows: compressor 2 → outdoor heat exchanger 5 → evaporator 7 → accumulator 8 → compressor 2. The second refrigerant circulation passage is a passage through which the refrigerant circulates as follows: compressor 2 → indoor condenser 3 → outdoor heat exchanger 5 → accumulator 8 → compressor 2. The third refrigerant circulation passage is a passage through which the refrigerant circulates like the compressor 2 → the indoor condenser 3 → the evaporator 7 → the accumulator 8 → the compressor 2. The flow of the refrigerant flowing through the outdoor heat exchanger 5 is in the opposite direction between the first refrigerant circulation passage and the second refrigerant circulation passage.
 具体的には、圧縮機2の吐出室につながる通路が分岐し、その一方である第1通路21が室外熱交換器5の一方の出入口につながり、他方である第2通路22が室内凝縮器3の入口につながっている。室外熱交換器5の他方の出入口は、第3通路23を介して蒸発器7の入口につながっている。室内凝縮器3の出口につながる第4通路24は、その下流側にて第1分岐通路25と第2分岐通路26とに分岐しており、それぞれ第3通路23に接続されている。蒸発器7の出口は第5通路27(戻り通路)を介してアキュムレータ8の入口に接続されている。また、第1通路21の中間部においてバイパス通路28が分岐し、アキュムレータ8ひいては圧縮機2につながっている。 Specifically, a passage leading to the discharge chamber of the compressor 2 branches, the first passage 21 as one of them is connected to one of the entrances and exits of the outdoor heat exchanger 5, and the second passage 22 as the other is an indoor condenser. Connected to 3 entrance. The other entrance / exit of the outdoor heat exchanger 5 is connected to the entrance of the evaporator 7 via the third passage 23. The fourth passage 24 connected to the outlet of the indoor condenser 3 branches into a first branch passage 25 and a second branch passage 26 on the downstream side thereof, and is connected to the third passage 23, respectively. The outlet of the evaporator 7 is connected to the inlet of the accumulator 8 through a fifth passage 27 (return passage). In addition, a bypass passage 28 is branched at an intermediate portion of the first passage 21, and is connected to the accumulator 8 and the compressor 2.
 第1通路21と第2通路22との分岐点には第1制御弁4が設けられている。第1分岐通路25と第2分岐通路26との分岐点には第2制御弁6が設けられている。さらに、第5通路27とバイパス通路28との合流点には第3制御弁9が設けられている。 The first control valve 4 is provided at the branch point between the first passage 21 and the second passage 22. A second control valve 6 is provided at a branch point between the first branch passage 25 and the second branch passage 26. Further, a third control valve 9 is provided at the junction of the fifth passage 27 and the bypass passage 28.
 圧縮機2は、ハウジング内にモータと圧縮機構を収容する電動圧縮機として構成され、図示しないバッテリからの供給電流により駆動され、モータの回転数に応じて冷媒の吐出容量が変化する。 The compressor 2 is configured as an electric compressor that houses a motor and a compression mechanism in a housing, is driven by a supply current from a battery (not shown), and the discharge capacity of the refrigerant changes according to the rotational speed of the motor.
 室内凝縮器3は、車室内に設けられ、室外熱交換器5とは別に冷媒を放熱させる補助凝縮器として機能する。すなわち、圧縮機2から吐出された高温・高圧の冷媒が室内凝縮器3を通過する際に放熱する。車室内に導入された空気は、室内凝縮器3を通過する過程で温められる。 The indoor condenser 3 is provided in the vehicle interior and functions as an auxiliary condenser that dissipates the refrigerant separately from the outdoor heat exchanger 5. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 2 dissipates heat when passing through the indoor condenser 3. The air introduced into the passenger compartment is warmed in the process of passing through the indoor condenser 3.
 室外熱交換器5は、車室外に配置され、冷房運転時に内部を通過する冷媒を放熱させる室外凝縮器として機能する一方、暖房運転時には内部を通過する冷媒を蒸発させる室外蒸発器として機能する。室外熱交換器5が蒸発器として機能する際には、膨張装置(後述する比例弁32)の通過により低温・低圧となった冷媒が、室外熱交換器5を通過する際に蒸発する。 The outdoor heat exchanger 5 is disposed outside the passenger compartment and functions as an outdoor condenser that radiates the refrigerant that passes through the interior during the cooling operation, and functions as an outdoor evaporator that evaporates the refrigerant that passes through the interior during the heating operation. When the outdoor heat exchanger 5 functions as an evaporator, the refrigerant having a low temperature and a low pressure due to passage through an expansion device (a proportional valve 32 described later) evaporates when passing through the outdoor heat exchanger 5.
 蒸発器7は、車室内に配置され、内部を通過する冷媒を蒸発させる室内蒸発器として機能する。すなわち、膨張装置(後述する比例弁31や比例弁33)の通過により低温・低圧となった冷媒は、蒸発器7を通過する際に蒸発する。車室内に導入された空気は、その蒸発潜熱によって冷却され、除湿される。このとき冷却・除湿された空気は、室内凝縮器3の通過過程で加熱される。 The evaporator 7 is disposed in the passenger compartment and functions as an indoor evaporator that evaporates the refrigerant passing through the interior. That is, the refrigerant having a low temperature and low pressure due to the passage through the expansion device (the proportional valve 31 and the proportional valve 33 described later) evaporates when passing through the evaporator 7. The air introduced into the passenger compartment is cooled and dehumidified by the latent heat of vaporization. At this time, the cooled and dehumidified air is heated while passing through the indoor condenser 3.
 アキュムレータ8は、蒸発器から送出された冷媒を気液分離して溜めておく装置であり、液相部と気相部とを有する。このため、仮に蒸発器7から想定以上の液冷媒が導出されたとしても、その液冷媒を液相部に溜めおくことができ、気相部の冷媒を圧縮機2に導出することができる。 The accumulator 8 is a device that stores the refrigerant sent from the evaporator by gas-liquid separation, and has a liquid phase part and a gas phase part. For this reason, even if liquid refrigerant more than expected is derived from the evaporator 7, the liquid refrigerant can be stored in the liquid phase part, and the refrigerant in the gas phase part can be derived to the compressor 2.
 第1制御弁4は、共用のボディに比例弁34(「第4比例弁」に対応する)と比例弁37(「第7比例弁」に対応する)とを収容し、それらを1つのアクチュエータにて駆動する複合弁として構成されている。比例弁34は大口径の弁であり、第1通路21の開度を調整する。比例弁37は大口径の弁であり、第2通路22の開度を調整する。本実施形態では、第1制御弁4として、ステッピングモータの駆動により各弁の開度を調整可能な電動弁が用いられるが、ソレノイドへの通電によって各弁の開度を調整可能な電磁弁を用いるようにしてもよい。第1制御弁4の具体的構成については後述する。 The first control valve 4 accommodates a proportional valve 34 (corresponding to a “fourth proportional valve”) and a proportional valve 37 (corresponding to a “seventh proportional valve”) in a common body, and these are combined into one actuator. It is comprised as a compound valve driven by. The proportional valve 34 is a large-diameter valve and adjusts the opening degree of the first passage 21. The proportional valve 37 is a large-diameter valve and adjusts the opening degree of the second passage 22. In the present embodiment, an electric valve capable of adjusting the opening degree of each valve by driving a stepping motor is used as the first control valve 4, but an electromagnetic valve capable of adjusting the opening degree of each valve by energizing the solenoid is used. You may make it use. A specific configuration of the first control valve 4 will be described later.
 第2制御弁6は、共用のボディに比例弁31(「第1比例弁」に対応する)、比例弁32(「第2比例弁」に対応する)および比例弁33(「第3比例弁」に対応する)を収容する複合弁として構成されている。比例弁31と比例弁32は共用のアクチュエータにて駆動され、比例弁33はもう1つのアクチュエータにて駆動される。比例弁31は、第3通路23における第1分岐通路25との合流点と第2分岐通路26との合流点との間に設けられている。 The second control valve 6 includes a proportional valve 31 (corresponding to a “first proportional valve”), a proportional valve 32 (corresponding to a “second proportional valve”), and a proportional valve 33 (“third proportional valve”). Is configured as a composite valve. The proportional valve 31 and the proportional valve 32 are driven by a common actuator, and the proportional valve 33 is driven by another actuator. The proportional valve 31 is provided between the joining point of the third passage 23 with the first branch passage 25 and the joining point of the second branch passage 26.
 比例弁31は小口径の弁であり、第3通路23の開度を調整する。比例弁32は小口径の弁であり、第1分岐通路25の開度を調整する。比例弁33小口径の弁であり、第2分岐通路26の開度を調整する。これら比例弁31,比例弁32および比例弁33は、膨張装置としても機能する。本実施形態では、第2制御弁6として、ステッピングモータの駆動により各弁の開度を調整可能な電動弁が用いられるが、ソレノイドへの通電によって各弁の開度を調整可能な電磁弁を用いるようにしてもよい。第2制御弁6の具体的構成については後述する。 The proportional valve 31 is a small-diameter valve and adjusts the opening degree of the third passage 23. The proportional valve 32 is a small-diameter valve and adjusts the opening degree of the first branch passage 25. The proportional valve 33 is a small-diameter valve that adjusts the opening of the second branch passage 26. These proportional valve 31, proportional valve 32 and proportional valve 33 also function as an expansion device. In the present embodiment, an electric valve capable of adjusting the opening degree of each valve by driving a stepping motor is used as the second control valve 6, but an electromagnetic valve capable of adjusting the opening degree of each valve by energizing the solenoid is used. You may make it use. A specific configuration of the second control valve 6 will be described later.
 第3制御弁9は、共用のボディに比例弁35(「第5比例弁」に対応する)と比例弁36(「第6比例弁」に対応する)とを収容し、それらを1つのアクチュエータにて駆動する複合弁として構成されている。比例弁35は大口径の弁であり、バイパス通路28の開度を調整する。比例弁36は大口径の弁であり、第5通路27の開度を調整する。本実施形態では、第3制御弁9として、ステッピングモータの駆動により各弁の開度を調整可能な電動弁が用いられるが、ソレノイドへの通電によって各弁の開度を調整可能な電磁弁を用いるようにしてもよい。第3制御弁9の具体的構成については後述する。 The third control valve 9 accommodates a proportional valve 35 (corresponding to a “fifth proportional valve”) and a proportional valve 36 (corresponding to a “sixth proportional valve”) in a common body, and these are combined into one actuator. It is comprised as a compound valve driven by. The proportional valve 35 is a large-diameter valve and adjusts the opening degree of the bypass passage 28. The proportional valve 36 is a large-diameter valve and adjusts the opening degree of the fifth passage 27. In the present embodiment, an electric valve capable of adjusting the opening of each valve by driving a stepping motor is used as the third control valve 9, but an electromagnetic valve capable of adjusting the opening of each valve by energizing the solenoid is used. You may make it use. A specific configuration of the third control valve 9 will be described later.
 以上のように構成された車両用冷暖房装置100は、図示しない制御部により制御される。制御部は、車両の乗員によりセットされた室温を実現するために各アクチュエータの制御量を演算し、各アクチュエータの駆動回路に制御信号を出力する。制御部は、車室内外の温度、蒸発器7の吹き出し空気温度等、各種センサにて検出された所定の外部情報に基づいて各制御弁の制御量(弁開度や開閉状態)を決定し、その制御量が実現されるようアクチュエータに電流を供給する。本実施例ではアクチュエータとしてステッピングモータを用いるため、制御部は、各制御弁の制御量が実現されるようステッピングモータに制御パルス信号を出力する。このような制御により、圧縮機2は、その吸入室を介して吸入圧力Psの冷媒を導入し、これを圧縮して吐出圧力Pdの冷媒として吐出する。なお、本実施形態ではこのような制御を実現するために、室内凝縮器3の出口、室外熱交換器5の一方の出入口と他方の出入口、蒸発器7の入口と出口のそれぞれの温度を検出するための複数の温度センサが設置されている。 The vehicle air conditioning apparatus 100 configured as described above is controlled by a control unit (not shown). The control unit calculates the control amount of each actuator to realize the room temperature set by the vehicle occupant, and outputs a control signal to the drive circuit of each actuator. The control unit determines the control amount (valve opening degree and opening / closing state) of each control valve based on predetermined external information detected by various sensors such as the temperature inside and outside the vehicle interior and the temperature of air blown from the evaporator 7. The current is supplied to the actuator so that the control amount is realized. In this embodiment, since a stepping motor is used as an actuator, the control unit outputs a control pulse signal to the stepping motor so that the control amount of each control valve is realized. By such control, the compressor 2 introduces the refrigerant having the suction pressure Ps through the suction chamber, compresses the refrigerant, and discharges it as the refrigerant having the discharge pressure Pd. In this embodiment, in order to realize such control, the temperatures of the outlet of the indoor condenser 3, the one inlet / outlet of the outdoor heat exchanger 5, the other inlet / outlet, and the inlet and outlet of the evaporator 7 are detected. A plurality of temperature sensors are installed.
 次に、本実施形態の冷凍サイクルの動作について説明する。図2は、車両用冷暖房装置の動作を表す説明図である。(A)は特殊冷房運転時の状態を示し、(B)は通常冷房運転時の状態を示し、(C)は特定暖房運転時の状態を示し、(D)は通常暖房運転時の状態を示し、(E)は特殊暖房運転時の状態を示している。なお、「特殊冷房運転」は、冷房運転において室内凝縮器3を機能させない運転状態である。「特定暖房運転」は、暖房運転において特に除湿の機能を高めた運転状態である。「特殊暖房運転」は、室外熱交換器5を機能させない運転状態である。なお、図中の太線および矢印が冷媒の流れを示し、「×」は冷媒の流れが遮断されていることを示している。 Next, the operation of the refrigeration cycle of this embodiment will be described. FIG. 2 is an explanatory diagram illustrating the operation of the vehicle air conditioner. (A) shows the state during special cooling operation, (B) shows the state during normal cooling operation, (C) shows the state during specific heating operation, and (D) shows the state during normal heating operation. (E) shows the state during special heating operation. The “special cooling operation” is an operation state in which the indoor condenser 3 is not functioned in the cooling operation. The “specific heating operation” is an operation state in which the dehumidifying function is particularly enhanced in the heating operation. The “special heating operation” is an operation state in which the outdoor heat exchanger 5 is not functioned. In addition, the thick line and the arrow in a figure show the flow of the refrigerant | coolant, and "x" has shown that the flow of the refrigerant | coolant is interrupted | blocked.
 図2(A)に示すように、特殊冷房運転時においては、第1制御弁4において比例弁34が開弁状態とされ、比例弁37が閉弁状態とされる。また、第2制御弁6において比例弁31が開弁状態とされ、比例弁32および比例弁33が閉弁状態とされる。さらに、第3制御弁9において比例弁35が閉弁状態とされ、比例弁36が開弁状態とされる。それにより第1冷媒循環通路が開放され、第2冷媒循環通路および第3冷媒循環通路は遮断される。このため、圧縮機2から吐出された冷媒は、室外熱交換器5を経て蒸発器7に導かれる。このとき、室外熱交換器5は室外凝縮器として機能する。 As shown in FIG. 2 (A), during the special cooling operation, the proportional valve 34 is opened in the first control valve 4 and the proportional valve 37 is closed. Further, in the second control valve 6, the proportional valve 31 is opened, and the proportional valve 32 and the proportional valve 33 are closed. Further, in the third control valve 9, the proportional valve 35 is closed, and the proportional valve 36 is opened. Accordingly, the first refrigerant circulation passage is opened, and the second refrigerant circulation passage and the third refrigerant circulation passage are blocked. For this reason, the refrigerant discharged from the compressor 2 is guided to the evaporator 7 through the outdoor heat exchanger 5. At this time, the outdoor heat exchanger 5 functions as an outdoor condenser.
 すなわち、圧縮機2から吐出された高温・高圧のガス冷媒は、室外熱交換器5を経ることで凝縮される。そして、室外熱交換器5を経由した冷媒が比例弁31にて断熱膨張されて冷温・低圧の気液二相冷媒となり、蒸発器7に導入される。蒸発器7の入口に導入された冷媒は、その蒸発器7を通過する過程で蒸発し、車室内の空気を冷却する。蒸発器7から導出された冷媒は、比例弁36を経てアキュムレータ8に導入される。制御部は、室外熱交換器5の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁31の開度を制御する。 That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is condensed by passing through the outdoor heat exchanger 5. Then, the refrigerant passing through the outdoor heat exchanger 5 is adiabatically expanded by the proportional valve 31 to become a cold / low pressure gas-liquid two-phase refrigerant and introduced into the evaporator 7. The refrigerant introduced into the inlet of the evaporator 7 evaporates in the process of passing through the evaporator 7 and cools the air in the passenger compartment. The refrigerant derived from the evaporator 7 is introduced into the accumulator 8 through the proportional valve 36. The control unit controls the opening degree of the proportional valve 31 based on the temperature on the outlet side of the outdoor heat exchanger 5 so that the degree of supercooling on the outlet side becomes appropriate.
 図2(B)に示すように、通常冷房運転時においては、第1制御弁4において比例弁34および比例弁37がともに開弁状態とされる。また、第2制御弁6において比例弁31および比例弁33が開弁状態とされ、比例弁32が閉弁状態とされる。さらに、第3制御弁9において比例弁35が閉弁状態とされ、比例弁36が開弁状態とされる。それにより第1冷媒循環通路および第3冷媒循環通路が開放され、第2冷媒循環通路は遮断される。このため、圧縮機2から吐出された冷媒は、一方で室外熱交換器5を経て蒸発器7に導かれ、他方で室内凝縮器3を経て蒸発器7に導かれる。このとき、室外熱交換器5は室外凝縮器として機能する。 As shown in FIG. 2B, in the normal cooling operation, both the proportional valve 34 and the proportional valve 37 are opened in the first control valve 4. Further, in the second control valve 6, the proportional valve 31 and the proportional valve 33 are opened, and the proportional valve 32 is closed. Further, in the third control valve 9, the proportional valve 35 is closed, and the proportional valve 36 is opened. Thereby, the first refrigerant circulation passage and the third refrigerant circulation passage are opened, and the second refrigerant circulation passage is blocked. For this reason, the refrigerant discharged from the compressor 2 is led to the evaporator 7 through the outdoor heat exchanger 5 on the one hand, and is led to the evaporator 7 through the indoor condenser 3 on the other hand. At this time, the outdoor heat exchanger 5 functions as an outdoor condenser.
 すなわち、圧縮機2から吐出された高温・高圧のガス冷媒は、一方で室内凝縮器3を、他方で室外熱交換器5を経ることで凝縮される。そして、室内凝縮器3を経由した冷媒が比例弁33にて断熱膨張され、冷温・低圧の気液二相冷媒となって蒸発器7に導入される。また、室外熱交換器5を経由した冷媒が比例弁31にて断熱膨張され、冷温・低圧の気液二相冷媒となって蒸発器7に導入される。そして、その蒸発器7を通過する過程で蒸発し、車室内の空気を冷却する。このとき、蒸発器7から導出された冷媒は、アキュムレータ8を経て圧縮機2に導入される。制御部は、室内凝縮器3の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁33の開度を制御する。制御部は、また、室外熱交換器5の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁31の開度を制御する。 That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is condensed by passing through the indoor condenser 3 on the one hand and the outdoor heat exchanger 5 on the other hand. Then, the refrigerant passing through the indoor condenser 3 is adiabatically expanded by the proportional valve 33, and is introduced into the evaporator 7 as a cold / low pressure gas-liquid two-phase refrigerant. Further, the refrigerant passing through the outdoor heat exchanger 5 is adiabatically expanded by the proportional valve 31 and is introduced into the evaporator 7 as a cold / low pressure gas-liquid two-phase refrigerant. And it evaporates in the process which passes the evaporator 7, and cools the air in a vehicle interior. At this time, the refrigerant derived from the evaporator 7 is introduced into the compressor 2 through the accumulator 8. The control unit controls the opening degree of the proportional valve 33 based on the temperature on the outlet side of the indoor condenser 3 so that the degree of supercooling on the outlet side becomes appropriate. The control unit also controls the opening degree of the proportional valve 31 based on the temperature on the outlet side of the outdoor heat exchanger 5 so that the degree of supercooling on the outlet side becomes appropriate.
 図2(C)に示すように、特定暖房運転時においては、第1制御弁4の比例弁34が閉弁状態とされ、比例弁37が開弁状態とされる。また、第2制御弁6において比例弁31が閉弁状態とされ、比例弁32および比例弁33が開弁状態とされる。さらに、第3制御弁9において比例弁35および比例弁36がともに開弁状態とされる。それにより第1冷媒循環通路が遮断され、第2冷媒循環通路および第3冷媒循環通路が開放される。このため、圧縮機2から吐出された冷媒は、室内凝縮器3にて凝縮され、一方で室外熱交換器5に導かれ、他方で蒸発器7に導かれる。このとき、室外熱交換器5は室外蒸発器として機能する。 2 (C), during the specific heating operation, the proportional valve 34 of the first control valve 4 is closed and the proportional valve 37 is opened. Further, in the second control valve 6, the proportional valve 31 is closed, and the proportional valve 32 and the proportional valve 33 are opened. Furthermore, in the third control valve 9, both the proportional valve 35 and the proportional valve 36 are opened. Thereby, the first refrigerant circulation passage is blocked, and the second refrigerant circulation passage and the third refrigerant circulation passage are opened. For this reason, the refrigerant discharged from the compressor 2 is condensed by the indoor condenser 3 and led to the outdoor heat exchanger 5 on the one hand and to the evaporator 7 on the other hand. At this time, the outdoor heat exchanger 5 functions as an outdoor evaporator.
 すなわち、圧縮機2から吐出された高温・高圧のガス冷媒は、室内凝縮器3を経て凝縮される。室内凝縮器3から導出された冷媒は、一方で比例弁32にて断熱膨張されて冷温・低圧の気液二相冷媒となり、室外熱交換器5を通過する際に蒸発される。室外熱交換器5から導出された冷媒は、比例弁35を経てアキュムレータ8に導入される。また、室内凝縮器3から導出された冷媒は、他方で比例弁33にて断熱膨張されて冷温・低圧の気液二相冷媒となり、蒸発器7を通過する際に蒸発される。蒸発器7から導出された冷媒は、比例弁36を経てアキュムレータ8に導入される。 That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is condensed through the indoor condenser 3. On the other hand, the refrigerant derived from the indoor condenser 3 is adiabatically expanded by the proportional valve 32 to become a cold / low pressure gas-liquid two-phase refrigerant, and is evaporated when passing through the outdoor heat exchanger 5. The refrigerant derived from the outdoor heat exchanger 5 is introduced into the accumulator 8 through the proportional valve 35. On the other hand, the refrigerant derived from the indoor condenser 3 is adiabatically expanded by the proportional valve 33 to become a cold / low pressure gas-liquid two-phase refrigerant, and is evaporated when passing through the evaporator 7. The refrigerant derived from the evaporator 7 is introduced into the accumulator 8 through the proportional valve 36.
 このとき、制御部は、室外熱交換器5による熱吸収と蒸発器7による除湿とを適正に行うべく、室外熱交換器5における冷媒の蒸発量と蒸発器7における冷媒の蒸発量との比率を適正に調整する。このとき、室外熱交換器5および蒸発器7の両蒸発器にて蒸発される比率は、比例弁32と比例弁33の弁開度の比率により制御される。制御部は、比例弁32の開度と比例弁33の開度を調整することにより室内凝縮器3の出口側の過冷却度が設定値SCとなるように調整するとともに、その開度比率を調整することにより両蒸発器における蒸発量を調整する。その際、制御部は、蒸発器7が凍結することがないよう、蒸発器7の出口側の温度が適正範囲に保たれるように制御する。 At this time, the control unit ratio of the refrigerant evaporation amount in the outdoor heat exchanger 5 and the refrigerant evaporation amount in the evaporator 7 in order to appropriately perform heat absorption by the outdoor heat exchanger 5 and dehumidification by the evaporator 7. Adjust appropriately. At this time, the rate of evaporation in both the outdoor heat exchanger 5 and the evaporator 7 is controlled by the ratio of the valve opening degrees of the proportional valve 32 and the proportional valve 33. The controller adjusts the degree of supercooling on the outlet side of the indoor condenser 3 to the set value SC by adjusting the degree of opening of the proportional valve 32 and the degree of opening of the proportional valve 33, and the degree of opening is adjusted. By adjusting, the amount of evaporation in both evaporators is adjusted. At that time, the control unit performs control so that the temperature on the outlet side of the evaporator 7 is maintained in an appropriate range so that the evaporator 7 is not frozen.
 また、制御部は、第3制御弁9における比例弁35および比例弁36の一方の全開状態を維持したまま他方の開度を調整する。本実施形態では、室外熱交換器5よりも蒸発器7の温度が低い場合には比例弁36を全開状態にして比例弁35の開度を制御する。一方、蒸発器7よりも室外熱交換器5の温度が低い場合には比例弁35を全開状態にして比例弁36の開度を制御する。 Further, the control unit adjusts the other opening while maintaining one of the proportional valve 35 and the proportional valve 36 in the third control valve 9 in a fully opened state. In the present embodiment, when the temperature of the evaporator 7 is lower than that of the outdoor heat exchanger 5, the proportional valve 36 is fully opened to control the opening degree of the proportional valve 35. On the other hand, when the temperature of the outdoor heat exchanger 5 is lower than that of the evaporator 7, the proportional valve 35 is fully opened to control the opening degree of the proportional valve 36.
 例えば、前者のように室外熱交換器5よりも蒸発器7の温度が低く、室外熱交換器5の出口側に過熱度(スーパーヒート)が発生している場合、比例弁35の開度を絞ることによりその過熱度が設定値(ゼロまたは小さな適正値)に近づくように制御する。このとき、室外熱交換器5における外部からの熱吸収量は、その比例弁35の絞り量により調整される。すなわち、比例弁36を全開状態に維持しつつ比例弁35の開度を絞ることで、室外熱交換器5の蒸発圧力Poと蒸発器7の出口の圧力Peとの差圧ΔP=Po-Peが適正となり、循環する冷媒を室外熱交換器5と蒸発器7とで蒸発させる比率を調整することができる。すなわち、差圧ΔPが大きくなると、室外熱交換器5における蒸発量が相対的に小さくなる(蒸発器7における蒸発量が相対的に大きくなる)。逆に、差圧ΔPが小さくなると、室外熱交換器5における蒸発量が相対的に大きくなる(蒸発器7における蒸発量が相対的に小さくなる)。制御部は、室外熱交換器5の出口側に過熱度に応じて比例弁35の開度を制御して差圧ΔPを適正に調整することで、特定暖房運転時における除湿機能を確保する。なお、室外熱交換器5の出口側の過熱度の有無およびその大きさは、室外熱交換器5の入口側の温度と出口側の温度を検出することで特定することができる。 For example, when the temperature of the evaporator 7 is lower than the outdoor heat exchanger 5 and the degree of superheat (superheat) is generated on the outlet side of the outdoor heat exchanger 5 as in the former case, the opening degree of the proportional valve 35 is increased. The degree of superheat is controlled so as to approach the set value (zero or a small appropriate value) by narrowing down. At this time, the amount of heat absorbed from the outside in the outdoor heat exchanger 5 is adjusted by the throttle amount of the proportional valve 35. That is, the pressure difference ΔP = Po−Pe between the evaporation pressure Po of the outdoor heat exchanger 5 and the pressure Pe at the outlet of the evaporator 7 is reduced by reducing the opening of the proportional valve 35 while keeping the proportional valve 36 fully open. Therefore, the ratio of evaporating the circulating refrigerant between the outdoor heat exchanger 5 and the evaporator 7 can be adjusted. That is, when the differential pressure ΔP increases, the evaporation amount in the outdoor heat exchanger 5 becomes relatively small (the evaporation amount in the evaporator 7 becomes relatively large). On the contrary, when the differential pressure ΔP decreases, the evaporation amount in the outdoor heat exchanger 5 becomes relatively large (the evaporation amount in the evaporator 7 becomes relatively small). A control part ensures the dehumidification function at the time of specific heating operation by controlling the opening degree of the proportional valve 35 to the exit side of the outdoor heat exchanger 5 according to the degree of superheat and appropriately adjusting the differential pressure ΔP. In addition, the presence or absence and the magnitude | size of the superheat degree at the exit side of the outdoor heat exchanger 5 can be specified by detecting the temperature of the inlet side of the outdoor heat exchanger 5 and the temperature of the outlet side.
 逆に、後者のように蒸発器7よりも室外熱交換器5の温度が低く、蒸発器7の出口側に過熱度が発生している場合、比例弁36の開度を絞ることによりその過熱度が設定過熱度(ゼロまたは小さな適正値)に近づくように制御する。すなわち、比例弁35を全開状態に維持しつつ比例弁36の開度を絞ることで、蒸発器7の出口の圧力Peと室外熱交換器5の蒸発圧力Poとの差圧ΔP=Pe-Poが適正となり、特定暖房運転時における除湿機能を確保することができる。なお、蒸発器7の出口側の過熱度の有無およびその大きさは、蒸発器7の入口側の温度と出口側の温度を検出することで特定することができる。 On the contrary, when the temperature of the outdoor heat exchanger 5 is lower than the evaporator 7 and the degree of superheat is generated on the outlet side of the evaporator 7 as in the latter, the overheating is reduced by reducing the opening degree of the proportional valve 36. The temperature is controlled so as to approach the set superheat degree (zero or a small appropriate value). That is, the pressure difference ΔP = Pe−Po between the outlet pressure Pe of the evaporator 7 and the evaporation pressure Po of the outdoor heat exchanger 5 is reduced by reducing the opening of the proportional valve 36 while keeping the proportional valve 35 fully open. Becomes appropriate, and the dehumidifying function during the specific heating operation can be secured. The presence or absence of the superheat degree on the outlet side of the evaporator 7 and the magnitude thereof can be specified by detecting the temperature on the inlet side and the temperature on the outlet side of the evaporator 7.
 図2(D)に示すように、通常暖房運転時においては、第1制御弁4の比例弁34が閉弁状態とされ、比例弁37が開弁状態とされる。また、第2制御弁6において比例弁31および比例弁33が閉弁状態とされ、比例弁32が開弁状態とされる。さらに、第3制御弁9において比例弁35が開弁状態とされ、比例弁36が閉弁状態とされる。それにより、第1冷媒循環通路および第3冷媒循環通路が遮断され、第2冷媒循環通路が開放される。このため、室内凝縮器3から導出された冷媒は、室外熱交換器5に導かれる。このとき、蒸発器7には冷媒が供給されないため、蒸発器7は実質的に機能しなくなり、室外熱交換器5のみが蒸発器として機能するようになる。制御部は、室内凝縮器3の出口側の温度に基づき、その出口側の過冷却度が適正となるよう比例弁32の開度を制御する。 2D, during the normal heating operation, the proportional valve 34 of the first control valve 4 is closed and the proportional valve 37 is opened. Further, in the second control valve 6, the proportional valve 31 and the proportional valve 33 are closed, and the proportional valve 32 is opened. Further, in the third control valve 9, the proportional valve 35 is opened, and the proportional valve 36 is closed. Thereby, the first refrigerant circulation passage and the third refrigerant circulation passage are blocked, and the second refrigerant circulation passage is opened. For this reason, the refrigerant derived from the indoor condenser 3 is guided to the outdoor heat exchanger 5. At this time, since no refrigerant is supplied to the evaporator 7, the evaporator 7 substantially does not function, and only the outdoor heat exchanger 5 functions as an evaporator. The control unit controls the opening degree of the proportional valve 32 based on the temperature on the outlet side of the indoor condenser 3 so that the degree of supercooling on the outlet side becomes appropriate.
 図2(E)に示すように、特殊暖房運転時においては、第1制御弁4の比例弁34が閉弁状態とされ、比例弁37が開弁状態とされる。また、第2制御弁6において比例弁31および比例弁32が閉弁状態とされ、比例弁33が開弁状態とされる。さらに、第3制御弁9において比例弁35が閉弁状態とされ、比例弁36が開弁状態とされる。それにより、第1冷媒循環通路および第2冷媒循環通路が遮断され、第3冷媒循環通路が開放される。このため、室内凝縮器3から導出された冷媒は、蒸発器7に導かれる。つまり、冷媒が室外熱交換器5を迂回するため室外熱交換器5が実質的に機能しなくなる。蒸発器7に導入された冷媒は、その蒸発器7を通過する過程で蒸発し、車室内の空気を除湿する。このような特殊冷暖房運転は、外部からの吸熱が困難な場合、例えば車両が極寒状況におかれた場合などに有効に機能する。 As shown in FIG. 2 (E), during the special heating operation, the proportional valve 34 of the first control valve 4 is closed and the proportional valve 37 is opened. In the second control valve 6, the proportional valve 31 and the proportional valve 32 are closed, and the proportional valve 33 is opened. Further, in the third control valve 9, the proportional valve 35 is closed, and the proportional valve 36 is opened. Thereby, the first refrigerant circulation passage and the second refrigerant circulation passage are blocked, and the third refrigerant circulation passage is opened. For this reason, the refrigerant led out from the indoor condenser 3 is led to the evaporator 7. That is, since the refrigerant bypasses the outdoor heat exchanger 5, the outdoor heat exchanger 5 does not substantially function. The refrigerant introduced into the evaporator 7 evaporates in the process of passing through the evaporator 7 and dehumidifies the air in the passenger compartment. Such special air conditioning operation functions effectively when it is difficult to absorb heat from the outside, for example, when the vehicle is placed in an extremely cold state.
 次に、本実施形態の制御弁の具体的構成について説明する。 
 図3~図5は、第1制御弁4の構成および動作を表す断面図である。図3に示すように、第1制御弁4は、ステッピングモータ駆動式の電動弁として構成され、弁本体101とモータユニット102とを組み付けて構成されている。弁本体101は、有底筒状のボディ104に大口径の比例弁34と大口径の比例弁37とを同軸状に収容して構成されている。第1制御弁4は、一方の比例弁の全開状態を維持しつつ他方の比例弁の開度が設定開度に調整される複合弁として構成されている。
Next, a specific configuration of the control valve of the present embodiment will be described.
3 to 5 are cross-sectional views showing the configuration and operation of the first control valve 4. As shown in FIG. 3, the first control valve 4 is configured as an electric valve driven by a stepping motor, and is configured by assembling a valve body 101 and a motor unit 102. The valve body 101 is configured such that a large-diameter proportional valve 34 and a large-diameter proportional valve 37 are accommodated coaxially in a bottomed cylindrical body 104. The 1st control valve 4 is comprised as a compound valve by which the opening degree of the other proportional valve is adjusted to a setting opening degree, maintaining the fully open state of one proportional valve.
 ボディ104の一方の側部には導入ポート110が設けられ、他方の側部には上下に第1導出ポート112、第2導出ポート114が設けられている。導入ポート110は圧縮機2の吐出室に連通し、第1導出ポート112は第1通路21に連通し、第2導出ポート114は第2通路22に連通する。すなわち、ボディ104には、導入ポート110と第1導出ポート112とをつなぐ第1内部通路と、導入ポート110と第2導出ポート114とをつなぐ第2内部通路が形成される。 An introduction port 110 is provided on one side of the body 104, and a first derivation port 112 and a second derivation port 114 are provided on the other side. The introduction port 110 communicates with the discharge chamber of the compressor 2, the first outlet port 112 communicates with the first passage 21, and the second outlet port 114 communicates with the second passage 22. That is, the body 104 is formed with a first internal passage that connects the introduction port 110 and the first outlet port 112, and a second internal passage that connects the introduction port 110 and the second outlet port 114.
 ボディ104の上半部には、円筒状の区画部材116が配設されている。区画部材116は、シール部材を介してボディ104に同心状に組み付けられている。区画部材116の下端部は弁孔120を形成している。また、弁孔120の下端開口端縁により弁座122が形成されている。区画部材116における第1導出ポート112との対向面には、内外を連通する連通孔が設けられている。 A cylindrical partition member 116 is disposed in the upper half of the body 104. The partition member 116 is assembled concentrically to the body 104 via a seal member. A lower end portion of the partition member 116 forms a valve hole 120. A valve seat 122 is formed by the lower end opening edge of the valve hole 120. A communication hole that communicates the inside and the outside is provided on the surface of the partition member 116 that faces the first outlet port 112.
 ボディ104の上端部には、段付円筒状の区画部材124が配設されている。区画部材124は、弁本体101の内部とモータユニット102の内部とを区画する。区画部材124の上端部中央には、円ボス状の軸受部126が設けられている。軸受部126の内周面には雌ねじ部が設けられ、外周面は滑り軸受として機能する。区画部材124の内方にはガイド孔128が形成され、その下端部にシール部材としてのOリング130が嵌着されている。 A stepped cylindrical partition member 124 is disposed at the upper end of the body 104. The partition member 124 partitions the interior of the valve body 101 and the interior of the motor unit 102. A circular boss-shaped bearing 126 is provided at the center of the upper end of the partition member 124. A female thread portion is provided on the inner peripheral surface of the bearing portion 126, and the outer peripheral surface functions as a sliding bearing. A guide hole 128 is formed inward of the partition member 124, and an O-ring 130 as a seal member is fitted to the lower end portion thereof.
 ボディ104の内方には、弁駆動体132、弁作動体134、伝達部材136が同軸状に配設されている。弁駆動体132は段付円筒状をなし、その軸線方向中央の縮径部が弁孔120を貫通するように配設されている。弁駆動体132の下端部には共用弁体138が設けられ、上端部にはガイド部140が設けられている。すなわち、共用弁体138は弁孔120の上流側にて導入ポート110に連通する圧力室に配置されている。一方、ガイド部140は、弁孔120の下流側にて第1導出ポート112に連通する圧力室に配置され、区画部材124に摺動可能に支持されている。 Inside the body 104, a valve driving body 132, a valve operating body 134, and a transmission member 136 are arranged coaxially. The valve drive body 132 has a stepped cylindrical shape, and is arranged so that a reduced diameter portion at the center in the axial direction passes through the valve hole 120. A common valve body 138 is provided at the lower end portion of the valve driver 132, and a guide portion 140 is provided at the upper end portion. That is, the common valve body 138 is disposed in the pressure chamber communicating with the introduction port 110 on the upstream side of the valve hole 120. On the other hand, the guide portion 140 is disposed in a pressure chamber communicating with the first outlet port 112 on the downstream side of the valve hole 120 and is slidably supported by the partition member 124.
 共用弁体138は段付円柱状をなし、その上端部に第1弁部材141が嵌着され、下端部に第2弁部材142が嵌着されている。第1弁部材141および第2弁部材142は、ともに環状の弾性体(本実施形態ではゴム)からなる。導入ポート110と第2導出ポート114とをつなぐ通路には弁孔144が設けられ、その上端開口端縁に弁座146が形成されている。第1弁部材141は、弁座122に接離して比例弁34の開度を調整する。一方、第2弁部材142は、弁座146に接離して比例弁37の開度を調整する。 The shared valve body 138 has a stepped columnar shape, and the first valve member 141 is fitted to the upper end portion thereof, and the second valve member 142 is fitted to the lower end portion thereof. Both the first valve member 141 and the second valve member 142 are made of an annular elastic body (rubber in this embodiment). A valve hole 144 is provided in a passage connecting the introduction port 110 and the second outlet port 114, and a valve seat 146 is formed at an upper end opening edge thereof. The first valve member 141 contacts and separates from the valve seat 122 to adjust the opening degree of the proportional valve 34. On the other hand, the second valve member 142 adjusts the opening degree of the proportional valve 37 by moving toward and away from the valve seat 146.
 共用弁体138の下端部には弁孔144に摺動しつつ支持される複数の脚部(同図にはその1つのみ表示)が延設されている。すなわち、弁駆動体132は、その下端部の複数の脚部が弁孔144に沿って摺動し、上端部のガイド部140がガイド孔128に沿って摺動することにより、軸線方向に安定に動作することができる。ガイド部140と区画部材124との間には背圧室148が形成される。また、共用弁体138を軸線方向に貫通する連通路150が形成されている。このため、背圧室148には常に、第2導出ポート114から導出される下流側圧力Pout2が満たされる。 A plurality of legs (only one of them is shown in the figure) are extended at the lower end of the shared valve body 138 and supported while sliding in the valve hole 144. That is, the valve driver 132 is stabilized in the axial direction by sliding a plurality of legs at the lower end along the valve hole 144 and sliding the guide 140 at the upper end along the guide hole 128. Can work. A back pressure chamber 148 is formed between the guide part 140 and the partition member 124. In addition, a communication passage 150 that penetrates the common valve body 138 in the axial direction is formed. For this reason, the back pressure chamber 148 is always filled with the downstream pressure Pout2 derived from the second outlet port 114.
 本実施形態においては、弁孔120の有効径Aと、弁孔144の有効径B(正確にはOリング130の内径)と、ガイド孔128の有効径Cとが等しく設定されている。このため、共用弁体138に作用する冷媒圧力の影響はキャンセルされる。特にOリング130を設けたことにより、ガイド部140の摺動部のシール性が確保されるとともに、その摺動部にゴミなどが挟み込まれることが防止されている。 In this embodiment, the effective diameter A of the valve hole 120, the effective diameter B of the valve hole 144 (more precisely, the inner diameter of the O-ring 130), and the effective diameter C of the guide hole 128 are set equal. For this reason, the influence of the refrigerant pressure acting on the shared valve body 138 is cancelled. In particular, by providing the O-ring 130, the sealing performance of the sliding portion of the guide portion 140 is ensured, and dust or the like is prevented from being caught in the sliding portion.
 弁駆動体132のガイド部140の内方には、ばね受け152と伝達部材136が同軸状に挿通されている。ばね受け152は円板状をなし、その中央部を伝達部材136が貫通している。ガイド部140の上端開口部とばね受け152との間には、スプリング154(「付勢部材」として機能する)が介装されている。一方、弁駆動体132の縮径部の内方には、円板状のばね受け156が挿通されている。共用弁体138とばね受け156との間には、スプリング158(「付勢部材」として機能する)が介装されている。 The spring receiver 152 and the transmission member 136 are coaxially inserted inside the guide portion 140 of the valve driver 132. The spring receiver 152 has a disk shape, and a transmission member 136 passes through the center of the spring receiver 152. A spring 154 (functioning as an “urging member”) is interposed between the upper end opening of the guide portion 140 and the spring receiver 152. On the other hand, a disc-shaped spring receiver 156 is inserted inside the reduced diameter portion of the valve drive body 132. A spring 158 (functioning as an “urging member”) is interposed between the shared valve body 138 and the spring receiver 156.
 そして、弁作動体134と弁駆動体132とが伝達部材136を介して作動連結可能に構成されている。すなわち、伝達部材136の上端部は弁作動体134の底部を貫通し、その先端部が外方に加締められて連結されている。伝達部材136の側部には半径方向外向きに突出した係止部160が設けられ、その係止部160がばね受け152に係止されることで、弁作動体134と弁駆動体132とが上方に一体動作可能となるように構成されている。また、伝達部材136の下端がばね受け156に係止されることで、弁作動体134と弁駆動体132とが下方に一体動作可能となるように構成されている。弁駆動体132と弁作動体134とは、比例弁34と比例弁37がともに開弁状態であるときはスプリング154,158の付勢力により突っ張った状態で一体変位するが(図4参照)、いずれか一方が閉弁状態になれば軸線方向に相対変位可能となる(図3,図5参照)。 The valve operating body 134 and the valve driving body 132 are configured to be operatively connectable via the transmission member 136. That is, the upper end portion of the transmission member 136 passes through the bottom portion of the valve operating body 134, and the tip end portion thereof is caulked outward and connected. A locking portion 160 protruding outward in the radial direction is provided on a side portion of the transmission member 136, and the locking portion 160 is locked to the spring receiver 152, so that the valve operating body 134, the valve driving body 132, Are configured so as to be integrally operable upward. Further, the lower end of the transmission member 136 is locked to the spring receiver 156 so that the valve operating body 134 and the valve driving body 132 can be integrally operated downward. When the proportional valve 34 and the proportional valve 37 are both open, the valve driver 132 and the valve actuating body 134 are integrally displaced while being stretched by the urging force of the springs 154 and 158 (see FIG. 4). If either one is closed, relative displacement in the axial direction is possible (see FIGS. 3 and 5).
 なお、スプリング154,158は、いずれもその荷重が弁駆動体132とOリング130との間の摺動抵抗(弁駆動体132の摺動力)よりも大きくなるように設定されている。それにより、弁作動体134と弁駆動体132とが一体動作しているときにスプリング154,158が縮むことなく、比例弁34および比例弁37の弁開度を正確に制御できるようになっている。 The springs 154 and 158 are set so that the load is larger than the sliding resistance between the valve driver 132 and the O-ring 130 (sliding force of the valve driver 132). As a result, the valve openings of the proportional valve 34 and the proportional valve 37 can be accurately controlled without contraction of the springs 154 and 158 when the valve operating body 134 and the valve driving body 132 are operating integrally. Yes.
 弁作動体134は、段付円筒状をなし、その外周部に雄ねじ部が形成されている。雄ねじ部は、軸受部126の雌ねじ部に螺合する。弁作動体134の上端部には半径方向外向きに延出する複数(本実施形態では4つ)の脚部153が設けられており、モータユニット102のロータに嵌合している。弁作動体134は、モータユニット102の回転駆動力を受けて回転し、その回転力を並進力に変換する。すなわち、弁作動体134が回転すると、ねじ機構(「作動変換機構」として機能する)によって弁作動体134が軸線方向に変位し、共用弁体138を軸線方向(比例弁34、比例弁37の開閉方向)に駆動する。 The valve operating body 134 has a stepped cylindrical shape, and a male thread portion is formed on the outer peripheral portion thereof. The male screw portion is screwed into the female screw portion of the bearing portion 126. A plurality (four in this embodiment) of leg portions 153 extending outward in the radial direction are provided at the upper end portion of the valve operating body 134 and are fitted to the rotor of the motor unit 102. The valve actuator 134 receives the rotational driving force of the motor unit 102 and rotates, and converts the rotational force into a translational force. That is, when the valve operating body 134 rotates, the valve operating body 134 is displaced in the axial direction by a screw mechanism (functioning as an “operation converting mechanism”), and the common valve body 138 is moved in the axial direction (the proportional valve 34 and the proportional valve 37 Drive in the opening and closing direction).
 一方、モータユニット102は、ロータ172とステータ173とを含むステッピングモータとして構成されている。モータユニット102は、有底円筒状のスリーブ170の内方にロータ172を回転自在に支持するようにして構成されている。スリーブ170の外周には、励磁コイル171を収容したステータ173が設けられている。スリーブ170は、その下端開口部がボディ104に組み付けられており、ボディ104とともに第1制御弁4のボディを構成する。 On the other hand, the motor unit 102 is configured as a stepping motor including a rotor 172 and a stator 173. The motor unit 102 is configured to rotatably support a rotor 172 inside a bottomed cylindrical sleeve 170. A stator 173 that accommodates the exciting coil 171 is provided on the outer periphery of the sleeve 170. The lower end opening of the sleeve 170 is assembled to the body 104 and constitutes the body of the first control valve 4 together with the body 104.
 ロータ172は、円筒状に形成された回転軸174と、その回転軸174の外周に配設されたマグネット176を備える。本実施形態では、マグネット176は24極に磁化されている。回転軸174の内方にはモータユニット102のほぼ全長にわたる内部空間が形成されている。回転軸174の内周面の特定箇所には、軸線に平行に延びるガイド部178が設けられている。ガイド部178は、後述する回転ストッパと係合するための突部を形成するものであり、軸線に平行に延びる一つの突条により構成されている。 The rotor 172 includes a rotating shaft 174 formed in a cylindrical shape and a magnet 176 disposed on the outer periphery of the rotating shaft 174. In this embodiment, the magnet 176 is magnetized to 24 poles. An internal space that extends over substantially the entire length of the motor unit 102 is formed inside the rotating shaft 174. A guide portion 178 extending parallel to the axis is provided at a specific location on the inner peripheral surface of the rotation shaft 174. The guide part 178 forms a protrusion for engaging with a rotation stopper, which will be described later, and is constituted by a single protrusion that extends parallel to the axis.
 回転軸174の下端部はやや縮径され、その内周面に軸線に平行に延びる4つのガイド部180が設けられている。ガイド部180は、軸線に平行に延びる一対の突条により構成され、回転軸174の内周面に90度おきに設けられている。この4つのガイド部180には、上述した弁作動体134の4つの脚部153が嵌合し、ロータ172と弁作動体134とが一体に回転できるようになっている。ただし、弁作動体134は、ロータ172に対する回転方向の相対変位は規制されるものの、そのガイド部180にそった軸線方向の変位は許容される。すなわち、弁作動体134は、ロータ172とともに回転しつつ共用弁体138の開閉方向に駆動される。 The lower end portion of the rotating shaft 174 is slightly reduced in diameter, and four guide portions 180 extending in parallel to the axis are provided on the inner peripheral surface thereof. The guide portion 180 is constituted by a pair of protrusions extending in parallel to the axis, and is provided on the inner peripheral surface of the rotating shaft 174 every 90 degrees. The four guide portions 180 are fitted with the four leg portions 153 of the valve operating body 134 described above so that the rotor 172 and the valve operating body 134 can rotate together. However, the valve actuating member 134 is allowed to be displaced in the axial direction along the guide portion 180 although the relative displacement in the rotational direction with respect to the rotor 172 is restricted. That is, the valve operating body 134 is driven in the opening / closing direction of the common valve body 138 while rotating together with the rotor 172.
 ロータ172の内方には、その軸線に沿って長尺状のシャフト182が配設されている。シャフト182は、その上端部がスリーブ170の底部中央に圧入されることにより片持ち状に固定され、ガイド部178に平行に内部空間に延在している。シャフト182は、弁作動体134と同一軸線上に配置されている。シャフト182には、そのほぼ全長にわたって延在する螺旋状のガイド部184が設けられている。ガイド部184は、コイル状の部材からなり、シャフト182の外面に嵌着されている。ガイド部184の上端部は折り返されて係止部186となっている。 A long shaft 182 is disposed inside the rotor 172 along the axis thereof. The upper end of the shaft 182 is fixed in a cantilever manner by being press-fitted into the center of the bottom of the sleeve 170, and extends into the internal space in parallel with the guide portion 178. The shaft 182 is disposed on the same axis as the valve operating body 134. The shaft 182 is provided with a spiral guide portion 184 that extends over substantially the entire length thereof. The guide part 184 is made of a coil-shaped member and is fitted on the outer surface of the shaft 182. An upper end portion of the guide portion 184 is folded back to form a locking portion 186.
 ガイド部184には、螺旋状の回転ストッパ188が回転可能に係合している。回転ストッパ188は、ガイド部184に係合する螺旋状の係合部190と、回転軸174に支持される動力伝達部192とを有する。係合部190は一巻きコイルの形状をなし、その下端部に半径方向外向きに延出する動力伝達部192が連設されている。動力伝達部192の先端部がガイド部178に係合している。すなわち、動力伝達部192は、ガイド部178の一つの突条に当接して係止される。このため、回転ストッパ188は、回転軸174により回転方向の相対変位は規制されるが、ガイド部178に摺動しつつその軸線方向の変位が許容される。 A helical rotation stopper 188 is rotatably engaged with the guide portion 184. The rotation stopper 188 includes a helical engagement portion 190 that engages with the guide portion 184 and a power transmission portion 192 that is supported by the rotation shaft 174. The engaging portion 190 has a shape of a one-turn coil, and a power transmission portion 192 that extends outward in the radial direction is continuously provided at a lower end portion of the engaging portion 190. The distal end portion of the power transmission unit 192 is engaged with the guide unit 178. That is, the power transmission part 192 is brought into contact with and locked on one protrusion of the guide part 178. For this reason, the rotation stopper 188 is restricted in relative rotation in the rotation direction by the rotation shaft 174, but is allowed to move in the axial direction while sliding on the guide portion 178.
 すなわち、回転ストッパ188は、ロータ172と一体に回転し、その係合部190がガイド部184にそってガイドされることで、軸線方向に駆動される。ただし、回転ストッパ188の軸線方向の駆動範囲はガイド部178の両端に形成された係止部により規制される。同図には、回転ストッパ188が下死点にて係止された状態が示されている。回転ストッパ188が上方へ変位して係止部186に係止されると、その位置が上死点となる。 That is, the rotation stopper 188 rotates integrally with the rotor 172 and is driven in the axial direction by the engagement portion 190 being guided along the guide portion 184. However, the driving range of the rotation stopper 188 in the axial direction is restricted by the engaging portions formed at both ends of the guide portion 178. This figure shows a state in which the rotation stopper 188 is locked at the bottom dead center. When the rotation stopper 188 is displaced upward and locked to the locking portion 186, the position becomes the top dead center.
 ロータ172は、その上端部がシャフト182に回転自在に支持され、下端部が軸受部126に回転自在に支持されている。具体的には、回転軸174の上端開口部を封止するように有底円筒状の端部部材194が設けられ、その端部部材194の中央に設けられた円筒軸196の部分がシャフト182に支持されている。すなわち、軸受部126が一端側の軸受部となり、シャフト182における円筒軸196との摺動部が他端側の軸受部となっている。 The rotor 172 has an upper end portion rotatably supported by the shaft 182 and a lower end portion rotatably supported by the bearing portion 126. Specifically, a bottomed cylindrical end member 194 is provided so as to seal the upper end opening of the rotating shaft 174, and a portion of the cylindrical shaft 196 provided in the center of the end member 194 is a shaft 182. It is supported by. That is, the bearing portion 126 is a bearing portion on one end side, and the sliding portion of the shaft 182 with the cylindrical shaft 196 is a bearing portion on the other end side.
 以上のように構成された第1制御弁4は、モータユニット102の駆動制御によってその弁開度を調整可能なステッピングモータ作動式の制御弁として機能する。以下、その動作について詳細に説明する。 
 第1制御弁4の流量制御において、車両用冷暖房装置の図示しない制御部は、設定開度に応じたステッピングモータの駆動ステップ数を演算し、励磁コイル171に駆動電流(駆動パルス)を供給する。それによりロータ172が回転し、一方で弁作動体134が回転駆動されて比例弁34および比例弁37の開度が設定開度に調整され、他方で回転ストッパ188がガイド部184にそって駆動されることにより、各弁体の動作範囲が規制される。
The first control valve 4 configured as described above functions as a stepping motor-operated control valve whose valve opening can be adjusted by drive control of the motor unit 102. Hereinafter, the operation will be described in detail.
In the flow control of the first control valve 4, a control unit (not shown) of the vehicle air conditioner calculates the number of driving steps of the stepping motor according to the set opening and supplies a driving current (driving pulse) to the exciting coil 171. . As a result, the rotor 172 rotates, and on the one hand, the valve operating body 134 is driven to rotate, and the opening degree of the proportional valve 34 and the proportional valve 37 is adjusted to the set opening degree, and on the other hand, the rotation stopper 188 is driven along the guide portion 184. By doing so, the operating range of each valve element is regulated.
 図3は、比例弁34が全開状態となり、比例弁37が閉弁状態となる場合を示している。第1制御弁4は、例えば特殊冷房運転時においてこのような状態をとる。したがって、特殊冷房運転時においては、圧縮機2から吐出された高温のガス冷媒が室内凝縮器3へ漏洩することが防止される。 FIG. 3 shows a case where the proportional valve 34 is fully opened and the proportional valve 37 is closed. The first control valve 4 takes such a state during, for example, a special cooling operation. Therefore, during the special cooling operation, the high-temperature gas refrigerant discharged from the compressor 2 is prevented from leaking to the indoor condenser 3.
 図4は、比例弁34および比例弁37がともに開弁状態となる場合を示している。第1制御弁4は、例えば通常冷房運転時において状況に応じてこのような状態をとり得る。すなわち、図3の状態からロータ172が一方向に回転駆動(正転)されることにより弁駆動体132が比例弁37の開弁方向に変位し、図4に示すように比例弁34と比例弁37がともに開弁した状態となる。すなわち、ロータ172とともに回転する弁作動体134がねじ機構によって上昇し、伝達部材136がその係止部160にてばね受け152に係止された状態で、弁作動体134が弁駆動体132を吊り上げるようにして変位させる。なお、図4は比例弁34および比例弁37がともに全開となった状態を示している。比例弁37の弁開度は、共用弁体138が図3に示す位置と図4に示す位置との間の範囲で駆動されることで調整される。そのように比例弁37の弁開度が調整される状態においては、比例弁34の全開状態が維持される。なお、ここでいう「全開状態」とは、弁開度が大きくなって冷媒の流量が飽和状態となることを意味する。 FIG. 4 shows a case where both the proportional valve 34 and the proportional valve 37 are opened. The first control valve 4 can take such a state according to the situation, for example, during normal cooling operation. That is, when the rotor 172 is driven to rotate in one direction (forward rotation) from the state of FIG. 3, the valve driver 132 is displaced in the valve opening direction of the proportional valve 37, and is proportional to the proportional valve 34 as shown in FIG. Both valves 37 are opened. That is, the valve operating body 134 that rotates together with the rotor 172 is raised by the screw mechanism, and the valve operating body 134 moves the valve driving body 132 in a state where the transmission member 136 is locked to the spring receiver 152 by the locking portion 160. Displace it by lifting. FIG. 4 shows a state where both the proportional valve 34 and the proportional valve 37 are fully opened. The valve opening degree of the proportional valve 37 is adjusted by driving the common valve body 138 in a range between the position shown in FIG. 3 and the position shown in FIG. In such a state where the valve opening degree of the proportional valve 37 is adjusted, the fully open state of the proportional valve 34 is maintained. Here, the “fully opened state” means that the valve opening becomes large and the refrigerant flow rate is saturated.
 図5は、比例弁34が閉弁状態となり、比例弁37が全開状態となる場合を示している。第1制御弁4は、例えば暖房運転時においてこのような状態をとる。図4の状態からロータ172がさらに同方向に回転駆動されることにより弁駆動体132が比例弁34の閉弁方向に変位し、図5の状態となる。したがって、暖房運転時においては、圧縮機2から吐出された高温のガス冷媒が室外熱交換器5へ漏洩することが防止される。なお、図5の状態からロータ172を逆方向に回転駆動することにより、比例弁34を開弁させることができることは言うまでもない。比例弁34の弁開度は、共用弁体138が図5に示す位置と図4に示す位置との間の範囲で駆動されることで調整される。 FIG. 5 shows a case where the proportional valve 34 is closed and the proportional valve 37 is fully opened. The 1st control valve 4 takes such a state, for example at the time of heating operation. When the rotor 172 is further rotationally driven in the same direction from the state of FIG. 4, the valve driver 132 is displaced in the valve closing direction of the proportional valve 34, resulting in the state of FIG. 5. Therefore, the high-temperature gas refrigerant discharged from the compressor 2 is prevented from leaking to the outdoor heat exchanger 5 during the heating operation. Needless to say, the proportional valve 34 can be opened by rotationally driving the rotor 172 in the reverse direction from the state shown in FIG. The valve opening degree of the proportional valve 34 is adjusted by driving the common valve body 138 in a range between the position shown in FIG. 5 and the position shown in FIG.
 なお、図5には、比例弁34が閉弁した後にロータ172が所定量回転した状態が示されている。すなわち、比例弁34の閉弁と同時にロータ172が停止しなくとも、図示のように伝達部材136がばね受け156から離間することで弁座122に過度な面圧がかかるのを防止する遊び機構が設けられている。同様に、図3には比例弁37が閉弁した後にロータ172が所定量回転した状態が示されている。すなわち、比例弁37の閉弁と同時にロータ172が停止しなくとも、図示のように伝達部材136がばね受け152から離間することで弁座146に過度な面圧がかかるのを防止する遊び機構が設けられている。 FIG. 5 shows a state in which the rotor 172 has rotated a predetermined amount after the proportional valve 34 is closed. That is, even if the rotor 172 does not stop simultaneously with the valve closing of the proportional valve 34, the idler mechanism prevents the valve seat 122 from being applied with excessive surface pressure by separating the transmission member 136 from the spring receiver 156 as shown in the figure. Is provided. Similarly, FIG. 3 shows a state in which the rotor 172 has rotated a predetermined amount after the proportional valve 37 is closed. That is, even if the rotor 172 does not stop at the same time as the proportional valve 37 is closed, the idler mechanism prevents the valve seat 146 from being excessively pressurized by separating the transmission member 136 from the spring receiver 152 as shown. Is provided.
 このように、比例弁34と比例弁37は共用のモータユニット102により駆動され、一方の開度の制御状態において他方は全開状態に維持される。それにより、複合弁でありながら、その一方の比例弁の開度を正確に制御することが可能となっている。 Thus, the proportional valve 34 and the proportional valve 37 are driven by the common motor unit 102, and the other is maintained in the fully opened state in the control state of one opening. Thereby, although it is a compound valve, the opening degree of one proportional valve can be accurately controlled.
 図6は、第2制御弁6の構成を表す断面図である。図7は、第2制御弁6の弁本体の部分を示す拡大断面図である。なお、各図において図3に示した第1制御弁4と実質的に同様の構成部分には同一の符号を付している。 
 図6に示すように、第2制御弁6は、ステッピングモータ駆動式の電動弁として構成され、弁本体201と2つのモータユニット102,202とを組み付けて構成されている。弁本体201は、有底筒状のボディ204に小口径の比例弁31と小口径の比例弁32とを同軸状に収容するとともに、その軸線に対して小口径の比例弁33を直角方向に組み付けるようにして構成されている。比例弁31と比例弁32は共用のモータユニット102により駆動され、比例弁33はもう一つのモータユニット202により駆動される。なお、モータユニット202は、モータユニット102と同様の構成を有する。2つのモータユニット102,202は、互いの軸線が直交するようにボディ204に組み付けられている。第2制御弁6は、比例弁31および比例弁32の一方の閉弁状態を維持しつつ他方の開度が設定開度に調整される複合弁として構成され、また、その複合弁と比例弁33とを共用のボディ204に組み込んだ集合弁として構成されている。
FIG. 6 is a cross-sectional view illustrating the configuration of the second control valve 6. FIG. 7 is an enlarged cross-sectional view showing a portion of the valve body of the second control valve 6. In addition, in each figure, the same code | symbol is attached | subjected to the component substantially the same as the 1st control valve 4 shown in FIG.
As shown in FIG. 6, the second control valve 6 is configured as an electric valve driven by a stepping motor, and is configured by assembling a valve body 201 and two motor units 102 and 202. The valve main body 201 accommodates the small-diameter proportional valve 31 and the small-diameter proportional valve 32 coaxially in a bottomed cylindrical body 204, and the small-diameter proportional valve 33 in a direction perpendicular to the axis thereof. It is configured to be assembled. The proportional valve 31 and the proportional valve 32 are driven by a common motor unit 102, and the proportional valve 33 is driven by another motor unit 202. The motor unit 202 has a configuration similar to that of the motor unit 102. The two motor units 102 and 202 are assembled to the body 204 so that their axes are orthogonal to each other. The second control valve 6 is configured as a composite valve in which one of the proportional valve 31 and the proportional valve 32 is maintained in a closed state, and the other opening is adjusted to a set opening, and the composite valve and the proportional valve 33 is configured as a collective valve in which a common body 204 is incorporated.
 ボディ204の一方の側部には導入ポート210、導入出ポート212および導出ポート214が設けられている。導入ポート210は第4通路24を介して室内凝縮器3に連通し、導入出ポート212は第3通路23を介して室外熱交換器5に連通し、導出ポート214は第3通路23を介して蒸発器7に連通する。すなわち、ボディ204には、導入ポート210と導入出ポート212とをつなぐ第1内部通路と、導入ポート210と導出ポート214とをつなぐ第2内部通路と、導入出ポート212と導出ポート214とをつなぐ第3内部通路が形成される。第1分岐通路25および第2分岐通路26は、ボディ204の内部に形成されている。 On one side of the body 204, an introduction port 210, an introduction / exit port 212, and an outlet port 214 are provided. The introduction port 210 communicates with the indoor condenser 3 through the fourth passage 24, the introduction / exit port 212 communicates with the outdoor heat exchanger 5 through the third passage 23, and the outlet port 214 passes through the third passage 23. To the evaporator 7. That is, the body 204 includes a first internal passage connecting the introduction port 210 and the introduction / extraction port 212, a second internal passage connecting the introduction port 210 and the extraction port 214, and the introduction / extraction port 212 and the extraction port 214. A connecting third internal passage is formed. The first branch passage 25 and the second branch passage 26 are formed inside the body 204.
 図7に示すように、ボディ204の中間部には、段付円筒状の区画部材220が上下に延在するように組み付けられている。そして、区画部材220の上端開口部に上方から弁体218が挿通され、下端開口部に下方から弁体224が挿通されている。また、区画部材220の側面には、上方から導入ポート210に連通する連通孔226、導入出ポート212に連通する連通孔228、導出ポート214に連通する連通孔230が設けられている。区画部材220の下端部はボディ204との間に室229を形成している。区画部材220の外周面における連通孔226と連通孔228との間、連通孔228と連通孔230との間、連通孔230と室229との間には、それぞれシール用のOリングが嵌着されている。 As shown in FIG. 7, a stepped cylindrical partition member 220 is assembled to the middle portion of the body 204 so as to extend vertically. A valve body 218 is inserted from above into the upper end opening of the partition member 220, and a valve body 224 is inserted from below into the lower end opening. Further, on the side surface of the partition member 220, a communication hole 226 that communicates with the introduction port 210 from above, a communication hole 228 that communicates with the introduction / exit port 212, and a communication hole 230 that communicates with the outlet port 214 are provided. A chamber 229 is formed between the lower end portion of the partition member 220 and the body 204. An O-ring for sealing is fitted between the communication hole 226 and the communication hole 228, between the communication hole 228 and the communication hole 230, and between the communication hole 230 and the chamber 229 on the outer peripheral surface of the partition member 220. Has been.
 区画部材220における連通孔226と連通孔228とをつなぐ通路には弁孔232が形成され、その上端開口端縁により弁座234が形成されている。弁孔232は、区画部材220の上端開口部よりも内径がやや小さく構成されている。弁体218が上方から弁座234に接離することにより比例弁32の開度が調整される。また、区画部材220における連通孔228と連通孔230とをつなぐ通路には弁孔236が形成され、その下端開口端縁により弁座238が形成されている。弁孔236は、区画部材220の下端開口部よりも内径がやや小さく構成されている。弁体224が下方から弁座238に接離することにより比例弁31の開度が調整される。また、区画部材220には、その軸線からずれた位置にその軸線に平行な複数の貫通孔240が設けられている。貫通孔240の一端は導入ポート210に連通し、他端は室229に連通している。そして、その複数の貫通孔240を貫通するように長尺状の伝達ロッド242がそれぞれ配設されている。なお、本実施形態では区画部材220の軸線の周りに3つの貫通孔240と3つの伝達ロッド242が設けられるが(同図には1つのみ表示)、変形例においては貫通孔240と伝達ロッド242を2つずつ設けてもよい。 A valve hole 232 is formed in a passage connecting the communication hole 226 and the communication hole 228 in the partition member 220, and a valve seat 234 is formed by an upper end opening edge thereof. The valve hole 232 is configured to have a slightly smaller inner diameter than the upper end opening of the partition member 220. The opening degree of the proportional valve 32 is adjusted when the valve body 218 contacts and separates from the valve seat 234 from above. Further, a valve hole 236 is formed in a passage connecting the communication hole 228 and the communication hole 230 in the partition member 220, and a valve seat 238 is formed by the lower end opening edge thereof. The valve hole 236 has a slightly smaller inner diameter than the lower end opening of the partition member 220. The opening degree of the proportional valve 31 is adjusted when the valve body 224 contacts and separates from the valve seat 238 from below. In addition, the partition member 220 is provided with a plurality of through holes 240 parallel to the axis at positions shifted from the axis. One end of the through hole 240 communicates with the introduction port 210, and the other end communicates with the chamber 229. And the elongate transmission rod 242 is each arrange | positioned so that the some through-hole 240 may be penetrated. In the present embodiment, three through holes 240 and three transmission rods 242 are provided around the axis of the partition member 220 (only one is shown in the figure), but in the modified example, the through holes 240 and the transmission rods are provided. Two 242 may be provided.
 ボディ204の内方には、小径の弁体218、小径の弁体224、および弁作動体134が同軸状に配設されている。弁体218と弁体224は、軸線に沿って対向配置されている。弁体218は段付円柱状をなし、その下半部が区画部材220の上端開口部に摺動可能に挿通され、その先端部が弁座234に対向配置されている。弁体218は、いわゆるニードル弁体として構成され、その尖った先端部が弁孔232に挿抜される。そして、弁体218が弁座234に接離することにより比例弁32の開度が調整される。弁体218の上半部はやや縮径されて弁作動体134の底部を貫通し、その先端部が外方に加締められて係止部235となっている。弁作動体134の上端部と係止部235との間には、弁体218を閉弁方向(係止部235を弁作動体134の底部に押しつける方向)に付勢するスプリング244(「付勢部材」として機能する)が介装されている。 Inside the body 204, a small-diameter valve body 218, a small-diameter valve body 224, and a valve operating body 134 are arranged coaxially. The valve body 218 and the valve body 224 are disposed to face each other along the axis. The valve body 218 has a stepped columnar shape, a lower half portion of the valve body 218 is slidably inserted into the upper end opening of the partition member 220, and a distal end portion thereof is disposed to face the valve seat 234. The valve body 218 is configured as a so-called needle valve body, and a sharp tip portion thereof is inserted into and extracted from the valve hole 232. Then, the opening degree of the proportional valve 32 is adjusted by the valve body 218 coming into contact with and separating from the valve seat 234. The upper half of the valve body 218 is slightly reduced in diameter and penetrates the bottom of the valve operating body 134, and its distal end is caulked outward to form a locking portion 235. Between the upper end portion of the valve operating body 134 and the locking portion 235, a spring 244 ("Appendix") biases the valve body 218 in the valve closing direction (direction in which the locking portion 235 is pressed against the bottom of the valve operating body 134). Functioning as a “force member”).
 ボディ104の上端部には、円板状の区画部材124が配設されている。区画部材124は、弁本体101の内部とモータユニット102の内部とを区画する。区画部材124の中央部には軸受部126が設けられている。区画部材124と区画部材220との間には、円板状の伝達部材246が配設されている。伝達部材246の中央には貫通孔が設けられ、弁体218の上半部がこれを貫通している。伝達部材246の下面は伝達ロッド242の上端面に当接している。一方、伝達部材246と区画部材124との間には、伝達部材246を下方に付勢するスプリング248が介装されている。このような構成により、伝達部材246に作用する付勢力は伝達ロッド242を介して下方に伝達される。 A disc-shaped partition member 124 is disposed at the upper end of the body 104. The partition member 124 partitions the interior of the valve body 101 and the interior of the motor unit 102. A bearing 126 is provided at the center of the partition member 124. A disk-shaped transmission member 246 is disposed between the partition member 124 and the partition member 220. A through hole is provided in the center of the transmission member 246, and the upper half of the valve body 218 passes through the through hole. The lower surface of the transmission member 246 is in contact with the upper end surface of the transmission rod 242. On the other hand, a spring 248 that biases the transmission member 246 downward is interposed between the transmission member 246 and the partition member 124. With such a configuration, the urging force acting on the transmission member 246 is transmitted downward through the transmission rod 242.
 弁体224は段付円柱状をなし、区画部材220の下端開口部に摺動可能に挿通され、その上端部が弁座238に対向配置されている。弁体224の外周面にはシール部材としてのOリング251が嵌着されている。弁体224は、いわゆるニードル弁体として構成され、その尖った先端部が弁孔236に挿抜される。そして、弁体224が弁座238に接離することにより比例弁31の開度が調整される。弁体224の下端部には半径方向外向きに延出するフランジ部249が設けられ、室229に配置されている。フランジ部249の上面は伝達ロッド242の下端面に当接している。一方、フランジ部249の下面とボディ204の底部との間には、弁体224を閉弁方向に付勢するスプリング250(「付勢部材」として機能する)が介装されている。このような構成により、伝達ロッド242による伝達力が弁体224に伝達されるようになる。 The valve body 224 has a stepped columnar shape, is slidably inserted into the lower end opening of the partition member 220, and the upper end thereof is disposed to face the valve seat 238. An O-ring 251 as a seal member is fitted on the outer peripheral surface of the valve body 224. The valve body 224 is configured as a so-called needle valve body, and a sharp tip portion thereof is inserted into and extracted from the valve hole 236. Then, the opening degree of the proportional valve 31 is adjusted when the valve body 224 contacts and separates from the valve seat 238. A flange portion 249 extending outward in the radial direction is provided at the lower end portion of the valve body 224 and is disposed in the chamber 229. The upper surface of the flange portion 249 is in contact with the lower end surface of the transmission rod 242. On the other hand, a spring 250 (functioning as an “urging member”) for biasing the valve body 224 in the valve closing direction is interposed between the lower surface of the flange portion 249 and the bottom portion of the body 204. With such a configuration, the transmission force by the transmission rod 242 is transmitted to the valve body 224.
 一方、ボディ204の下半部には、側方から比例弁33が組み込まれている。比例弁33は、比例弁32と近似した構造を有する。すなわち、ボディ204の下半部には、段付円筒状の区画部材260が左右に延在するように組み付けられている。区画部材260は、区画部材220の上半部と区画部材124とを一体化したような構造を有する。区画部材260には、弁体262および弁作動体134が同軸状に挿通されている。また、区画部材260には、導入ポート210に連通する連通孔264、導出ポート214に連通する連通孔266が設けられている。 On the other hand, a proportional valve 33 is incorporated in the lower half of the body 204 from the side. The proportional valve 33 has a structure approximate to that of the proportional valve 32. That is, a stepped cylindrical partition member 260 is assembled to the lower half of the body 204 so as to extend to the left and right. The partition member 260 has a structure in which the upper half of the partition member 220 and the partition member 124 are integrated. A valve body 262 and a valve operating body 134 are coaxially inserted into the partition member 260. Further, the partition member 260 is provided with a communication hole 264 communicating with the introduction port 210 and a communication hole 266 communicating with the outlet port 214.
 区画部材260における連通孔264と連通孔266とをつなぐ通路には弁孔268が形成され、その開口端縁により弁座270が形成されている。弁孔268が弁座270に接離することにより比例弁33の開度が調整される。弁体262は段付円柱状をなし、その一端側が区画部材260に摺動可能に挿通され、その先端部が弁座270に対向配置されている。弁体262は、いわゆるニードル弁体として構成され、その尖った先端部が弁孔268に挿抜される。そして、弁体262が弁座270に着脱することにより比例弁33が開閉される。弁体262の他端側はやや縮径されて弁作動体134の底部を貫通し、その先端部が外方に加締められて係止部235となっている。弁作動体134の上端部と係止部235との間には、弁体262を閉弁方向に付勢するスプリング244が介装されている。 A valve hole 268 is formed in a passage connecting the communication hole 264 and the communication hole 266 in the partition member 260, and a valve seat 270 is formed by an opening edge thereof. The opening degree of the proportional valve 33 is adjusted when the valve hole 268 contacts and separates from the valve seat 270. The valve body 262 has a stepped columnar shape, and one end side of the valve body 262 is slidably inserted into the partition member 260, and a tip end portion thereof is disposed to face the valve seat 270. The valve body 262 is configured as a so-called needle valve body, and a sharp tip portion is inserted into and removed from the valve hole 268. Then, when the valve body 262 is attached to and detached from the valve seat 270, the proportional valve 33 is opened and closed. The other end side of the valve body 262 is slightly reduced in diameter and penetrates the bottom portion of the valve operating body 134, and its distal end portion is caulked outward to form a locking portion 235. A spring 244 that biases the valve body 262 in the valve closing direction is interposed between the upper end portion of the valve operating body 134 and the locking portion 235.
 以上のように構成された第2制御弁6は、モータユニット102,202の駆動制御によってその弁開度を調整可能なステッピングモータ作動式の制御弁として機能する。すなわち、例えば通常暖房運転時など比例弁31を閉弁状態、比例弁32を開弁状態、比例弁33を閉弁状態とする場合、図6および図7に示す状態とされる。このとき、弁作動体134が伝達部材246から離間しているため、モータユニット102の駆動力が弁体224に伝わることはない。一方、スプリング244の付勢力により係止部235が弁作動体134の底部に押しつけられており、弁体218が弁作動体134に対して下死点に位置するため、モータユニット102の駆動力がそのまま弁体218に作用する。その結果、弁体218は、ロータ172の回転量に応じて変位し、比例弁32が設定開度に制御される。すなわち、弁体218が全開状態と全閉位置との間の範囲で駆動されることにより比例弁32の開度が調整される。 The second control valve 6 configured as described above functions as a stepping motor actuated control valve whose valve opening can be adjusted by drive control of the motor units 102 and 202. That is, for example, when the proportional valve 31 is closed, the proportional valve 32 is opened, and the proportional valve 33 is closed, for example, during normal heating operation, the states shown in FIGS. At this time, since the valve operating body 134 is separated from the transmission member 246, the driving force of the motor unit 102 is not transmitted to the valve body 224. On the other hand, the engaging portion 235 is pressed against the bottom of the valve operating body 134 by the urging force of the spring 244, and the valve body 218 is located at the bottom dead center with respect to the valve operating body 134. Acts on the valve body 218 as it is. As a result, the valve body 218 is displaced according to the rotation amount of the rotor 172, and the proportional valve 32 is controlled to the set opening degree. That is, the opening degree of the proportional valve 32 is adjusted by driving the valve body 218 in a range between the fully open state and the fully closed position.
 一方、特定暖房運転時など比例弁31を閉弁状態とし、比例弁32および比例弁33を開弁状態とする場合、図6の状態からモータユニット202のロータ172を一方向に回転駆動(正転)する。それにより、弁体262が弁座270から離間し、比例弁33が開弁状態となる。弁体262は、ロータ172の回転量に応じて変位し、比例弁33が設定開度に制御される。すなわち、弁体262が全開状態と全閉位置との間の範囲で駆動されることにより比例弁33の開度が調整される。 On the other hand, when the proportional valve 31 is closed and the proportional valve 32 and the proportional valve 33 are opened, such as during specific heating operation, the rotor 172 of the motor unit 202 is driven to rotate in one direction from the state shown in FIG. ). As a result, the valve body 262 is separated from the valve seat 270, and the proportional valve 33 is opened. The valve body 262 is displaced according to the rotation amount of the rotor 172, and the proportional valve 33 is controlled to the set opening degree. That is, the opening degree of the proportional valve 33 is adjusted by driving the valve body 262 in a range between the fully open state and the fully closed position.
 特殊暖房運転時など比例弁31および比例弁32をともに閉弁状態とし、比例弁33を開弁状態とする場合、図6の状態からモータユニット102のロータ172を一方向に回転駆動(正転)する。それにより、ロータ172とともに回転する弁作動体134がねじ機構によって下降し、弁体218が弁座234に着座し、比例弁32が閉弁状態となる。このとき、弁作動体134が伝達部材246に当接するまでにロータ172の回転を停止させることで、比例弁31についても閉弁状態を維持することができる。なお、弁体218が弁座234に着座すると、弁体218がその反力によりスプリング244を押し縮めることで弁作動体134に対して相対変位可能となるため、弁体218が弁座234に対して過度に押しつけられることはない。また、図6の状態からモータユニット202のロータ172を一方向に回転駆動(正転)する。それにより、弁体262が弁座270から離間し、比例弁33が開弁状態となる。弁体262は、ロータ172の回転量に応じて変位し、比例弁33が設定開度に制御される。すなわち、弁体262が全開状態と全閉位置との間の範囲で駆動されることにより比例弁33の開度が調整される。 When both the proportional valve 31 and the proportional valve 32 are closed and the proportional valve 33 is opened, such as during special heating operation, the rotor 172 of the motor unit 102 is driven to rotate in one direction from the state shown in FIG. ) Thereby, the valve operating body 134 that rotates together with the rotor 172 is lowered by the screw mechanism, the valve body 218 is seated on the valve seat 234, and the proportional valve 32 is closed. At this time, by stopping the rotation of the rotor 172 until the valve operating body 134 contacts the transmission member 246, the proportional valve 31 can also be kept closed. When the valve body 218 is seated on the valve seat 234, the valve body 218 can be relatively displaced with respect to the valve operating body 134 by pressing and contracting the spring 244 by the reaction force. It is not over-pressed against. Further, the rotor 172 of the motor unit 202 is rotationally driven (normally rotated) in one direction from the state shown in FIG. As a result, the valve body 262 is separated from the valve seat 270, and the proportional valve 33 is opened. The valve body 262 is displaced according to the rotation amount of the rotor 172, and the proportional valve 33 is controlled to the set opening degree. That is, the opening degree of the proportional valve 33 is adjusted by driving the valve body 262 in a range between the fully open state and the fully closed position.
 通常冷房運転時など比例弁31を開弁状態とし、比例弁32を閉弁状態とし、比例弁33を開弁状態とする場合、モータユニット102のロータ172をさらに同方向に回転駆動する。それにより、モータユニット102による駆動力が弁作動体134、伝達部材246および伝達ロッド242を介して弁体224に伝達され、弁体224が押し下げられ、比例弁31が開弁状態となる。すなわち、弁体224が全閉状態と全開位置との間の範囲で駆動されることにより比例弁31の開度が調整される。 When the proportional valve 31 is opened, the proportional valve 32 is closed, and the proportional valve 33 is opened, such as during normal cooling operation, the rotor 172 of the motor unit 102 is further rotated in the same direction. Thereby, the driving force by the motor unit 102 is transmitted to the valve body 224 via the valve operating body 134, the transmission member 246, and the transmission rod 242, the valve body 224 is pushed down, and the proportional valve 31 is opened. That is, the opening degree of the proportional valve 31 is adjusted by driving the valve body 224 in a range between the fully closed state and the fully opened position.
 特殊冷房運転時など比例弁31を開弁状態とし、比例弁32および比例弁33を閉弁状態とする場合、モータユニット202のロータ172を他方向に回転駆動(逆転)する。それにより、比例弁33については図6の閉弁状態に戻す。 When the proportional valve 31 is opened and the proportional valve 32 and the proportional valve 33 are closed such as during special cooling operation, the rotor 172 of the motor unit 202 is rotationally driven (reversely rotated) in the other direction. Thereby, the proportional valve 33 is returned to the closed state of FIG.
 このように、比例弁31と比例弁32は、共用のモータユニット102により駆動され、一方の開度の制御状態において他方は閉弁状態に維持される。それにより、複合弁でありながら、その一方の比例弁の開度を正確に制御することが可能となっている。一方、比例弁33については個別のモータユニット202により駆動するため、比例弁31および比例弁32とは独立して弁開度が制御可能となっている。 Thus, the proportional valve 31 and the proportional valve 32 are driven by the shared motor unit 102, and the other is maintained in the closed state in the control state of one opening. Thereby, although it is a compound valve, the opening degree of one proportional valve can be accurately controlled. On the other hand, since the proportional valve 33 is driven by an individual motor unit 202, the valve opening degree can be controlled independently of the proportional valve 31 and the proportional valve 32.
 図8~図10は、第3制御弁9の構成および動作を表す断面図である。なお、各図において図3に示した第1制御弁4と実質的に同様の構成部分には同一の符号を付している。 図8に示すように、第3制御弁9は、ステッピングモータ駆動式の電動弁として構成され、弁本体301とモータユニット102とを組み付けて構成されている。弁本体301は、有底筒状のボディ304に大口径の比例弁35と大口径の比例弁36とを同軸状に収容して構成され、一方の弁の全開状態を維持しつつ他方の弁の開度を設定開度に調整する比例弁として構成されている。 8 to 10 are cross-sectional views showing the configuration and operation of the third control valve 9. In addition, in each figure, the same code | symbol is attached | subjected to the component substantially the same as the 1st control valve 4 shown in FIG. As shown in FIG. 8, the third control valve 9 is configured as an electric valve driven by a stepping motor, and is configured by assembling a valve body 301 and a motor unit 102. The valve main body 301 is configured by coaxially housing a large-diameter proportional valve 35 and a large-diameter proportional valve 36 in a bottomed cylindrical body 304, while maintaining the fully open state of one valve. It is comprised as a proportional valve which adjusts the opening degree of to a set opening degree.
 ボディ304の一方の側部には第1導入ポート310および第2導入ポート312が設けられ、他方の側部には導出ポート314が設けられている。第1導入ポート310は第5通路27に連通し、第2導入ポート312はバイパス通路28に連通し、導出ポート314は下流側通路に連通する。その下流側通路はアキュムレータ8の入口につながっている。すなわち、ボディ304には、第1導入ポート310と導出ポート314とをつなぐ第1内部通路と、第2導入ポート312と導出ポート314とをつなぐ第2内部通路が形成される。 A first introduction port 310 and a second introduction port 312 are provided on one side of the body 304, and a lead-out port 314 is provided on the other side. The first introduction port 310 communicates with the fifth passage 27, the second introduction port 312 communicates with the bypass passage 28, and the outlet port 314 communicates with the downstream passage. The downstream passage is connected to the inlet of the accumulator 8. That is, the body 304 is formed with a first internal passage that connects the first introduction port 310 and the outlet port 314 and a second internal passage that connects the second introduction port 312 and the outlet port 314.
 ボディ304は、その上端開口部から底部に向けてその上部、中央部、下部の内径が段階的に小さくなる穴形状を有し、その上部に第2導入ポート312が設けられ、中央部に導出ポート314が設けられ、下部に第1導入ポート310が設けられている。そして、下部の上端開口部に弁孔320が設けられ、その上端開口縁により弁座325が形成されている。 The body 304 has a hole shape in which the inner diameters of the upper part, the central part, and the lower part gradually decrease from the upper end opening part toward the bottom part. A port 314 is provided, and a first introduction port 310 is provided at the bottom. A valve hole 320 is provided in the lower upper opening, and a valve seat 325 is formed by the upper opening edge.
 ボディ304の上部には、円筒状の区画部材330が内挿されている。区画部材330は、ボディ304に同心状に組み付けられており、その第2導入ポート312との対向面には内外を連通する連通孔が形成されている。また、区画部材330の下端面とボディ304との間に挟まれるようにシール部材としてのOリング322が設けられている。 A cylindrical partition member 330 is inserted in the upper part of the body 304. The partition member 330 is assembled concentrically with the body 304, and a communication hole that communicates the inside and the outside is formed on the surface facing the second introduction port 312. An O-ring 322 as a seal member is provided so as to be sandwiched between the lower end surface of the partition member 330 and the body 304.
 ボディ304の上端部には、円板状の区画部材323が配設されている。区画部材323は、弁本体301の内部とモータユニット102の内部とを区画する。区画部材323の中央部には軸受部126が設けられている。区画部材323の下面には、リング状の弁座部材336が嵌着されるとともに、ガイド部材338が固定されている。ガイド部材338は、複数の脚部(本実施形態では3本)がボディ304に同心状に立設されるようにして構成されている。ガイド部材338の底部が弁座部材336に部分的にオーバラップすることにより、弁座部材336の脱落が防止されている。 A disc-shaped partition member 323 is disposed at the upper end of the body 304. The partition member 323 partitions the inside of the valve main body 301 and the inside of the motor unit 102. A bearing 126 is provided at the center of the partition member 323. On the lower surface of the partition member 323, a ring-shaped valve seat member 336 is fitted and a guide member 338 is fixed. The guide member 338 is configured such that a plurality of leg portions (three in this embodiment) are concentrically provided on the body 304. Since the bottom portion of the guide member 338 partially overlaps the valve seat member 336, the valve seat member 336 is prevented from falling off.
 ボディ304の内方には、弁駆動体340、弁作動体134および伝達ロッド345が同軸状に(同一軸線上に)配設されている。区画部材323の軸受部126の内周面には雌ねじ部が設けられている。弁作動体134の下端部には、伝達ロッド345が連結されている。弁駆動体340は段付円筒状をなし、大径の弁体部342と大径のガイド部344とが小径の縮径部346を介して一体に設けられている。 Inside the body 304, a valve driving body 340, a valve operating body 134, and a transmission rod 345 are disposed coaxially (on the same axis). A female thread portion is provided on the inner peripheral surface of the bearing portion 126 of the partition member 323. A transmission rod 345 is connected to the lower end portion of the valve operating body 134. The valve driver 340 has a stepped cylindrical shape, and a large-diameter valve body portion 342 and a large-diameter guide portion 344 are integrally provided via a small-diameter reduced-diameter portion 346.
 弁体部342は、その上端開口部に設けられた第1弁体350と、下端部に設けられた第2弁体352とを一体に含む。第1弁体350が弁座部材336に接離することにより比例弁35の開度が調整される。また、第2弁体352が弁座325に接離することにより比例弁36の開度が調整される。弁体部342の側部には、その内部と導出ポート314とを連通させる連通孔が設けられている。弁体部342の外周部のシールは、Oリング322により実現されている。Oリング322は、弁体部342を摺動可能に支持するガイド部を構成する。ガイド部344は円板状をなし、その外周面がボディ304の下部内周面に摺動可能に支持されている。すなわち、ボディ304の下部は、ガイド部344を摺動可能に支持するガイド孔347を形成する。縮径部346は、弁孔320を貫通するように配設されている。 The valve body portion 342 integrally includes a first valve body 350 provided at the upper end opening and a second valve body 352 provided at the lower end. The opening degree of the proportional valve 35 is adjusted by the first valve body 350 coming into contact with and separating from the valve seat member 336. Further, the opening degree of the proportional valve 36 is adjusted by the second valve body 352 coming into contact with and separating from the valve seat 325. A communication hole is provided in the side portion of the valve body portion 342 to communicate the inside with the outlet port 314. Sealing of the outer peripheral portion of the valve body portion 342 is realized by an O-ring 322. The O-ring 322 constitutes a guide part that supports the valve body part 342 in a slidable manner. The guide portion 344 has a disc shape, and an outer peripheral surface thereof is slidably supported on a lower inner peripheral surface of the body 304. That is, a lower portion of the body 304 forms a guide hole 347 that supports the guide portion 344 so as to be slidable. The reduced diameter portion 346 is disposed so as to penetrate the valve hole 320.
 伝達ロッド345は段付円柱状をなし、弁駆動体340を軸線方向に貫通している。伝達ロッド345の上端部は小径化されて弁作動体134の底部を貫通し、その先端部が外方に加締められて係止部355となっている。弁作動体134の底部と係止部355との間には、伝達ロッド345を上方に付勢するスプリング348(「付勢部材」として機能する)が介装されている。このため、通常の状態においては図示のように、弁作動体134と伝達ロッド345とが互いを係止して一体化した状態となる。 The transmission rod 345 has a stepped columnar shape and penetrates the valve driver 340 in the axial direction. The upper end portion of the transmission rod 345 is reduced in diameter and penetrates the bottom portion of the valve operating body 134, and the distal end portion thereof is caulked outward to form a locking portion 355. A spring 348 (functioning as an “urging member”) that biases the transmission rod 345 upward is interposed between the bottom of the valve operating body 134 and the locking portion 355. For this reason, in a normal state, as shown in the figure, the valve operating body 134 and the transmission rod 345 are in an integrated state by locking each other.
 伝達ロッド345の下半部は小径化されて弁駆動体340の縮径部346を貫通し、その先端部が半径方向外向きに加締められて係止部となっている。伝達ロッド345の下半部の基端と第2弁体352との間には、弁駆動体340を下方に付勢するスプリング349(「付勢部材」として機能する)が介装されている。このため、通常の状態においては図示のように、伝達ロッド345と弁駆動体340とが互いを係止して一体化した状態となる。 The lower half of the transmission rod 345 is reduced in diameter and penetrates the reduced diameter portion 346 of the valve driver 340, and its tip is crimped outward in the radial direction to form a locking portion. Between the base end of the lower half part of the transmission rod 345 and the second valve body 352, a spring 349 (functioning as an “urging member”) that biases the valve driving body 340 downward is interposed. . For this reason, in a normal state, as shown in the figure, the transmission rod 345 and the valve drive body 340 are integrated with each other locked together.
 なお、スプリング348,349は、いずれもその荷重が弁駆動体340とOリング322との間の摺動抵抗(弁駆動体340の摺動力)よりも大きくなるように設定されている。それにより、弁作動体134と弁駆動体340とが一体動作しているときにスプリング348,349が縮むことなく、比例弁35および比例弁36の弁開度を正確に制御できるようになっている。 The springs 348 and 349 are set such that the load is larger than the sliding resistance between the valve driver 340 and the O-ring 322 (sliding force of the valve driver 340). Thereby, when the valve operating body 134 and the valve driving body 340 are operating integrally, the valve openings of the proportional valve 35 and the proportional valve 36 can be accurately controlled without contracting the springs 348 and 349. Yes.
 ここで、本実施形態においては、第1弁体350の弁部の有効径Aと弁駆動体340の摺動部の有効径Bとが等しく設定され、また、弁孔320の有効径Cとガイド孔347の有効径Dとが等しく設定されているため、弁駆動体340に作用する冷媒圧力の影響が実質的にキャンセルされる。このため、冷媒圧力の変化によりモータユニット102に過度な負荷がかかることがなく、弁開度の制御を安定に行うことができる。 Here, in the present embodiment, the effective diameter A of the valve portion of the first valve body 350 and the effective diameter B of the sliding portion of the valve driver 340 are set equal, and the effective diameter C of the valve hole 320 is Since the effective diameter D of the guide hole 347 is set equal, the influence of the refrigerant pressure acting on the valve driver 340 is substantially canceled. Therefore, an excessive load is not applied to the motor unit 102 due to a change in the refrigerant pressure, and the valve opening degree can be controlled stably.
 以上のように構成された第3制御弁9は、モータユニット102の駆動制御によってその弁開度を調整可能なステッピングモータ作動式の制御弁として機能する。すなわち、車両用冷暖房装置の運転状態に応じて比例弁35を閉弁状態とし、比例弁36を全開状態とする場合、図8に示す状態とされる。第3制御弁9は、例えば特殊冷房運転時、通常冷房運転時、特殊暖房運転時などにおいてこのような状態をとる。 The third control valve 9 configured as described above functions as a stepping motor actuated control valve whose valve opening can be adjusted by drive control of the motor unit 102. That is, when the proportional valve 35 is closed and the proportional valve 36 is fully opened according to the operating state of the vehicle air conditioner, the state shown in FIG. 8 is obtained. The third control valve 9 takes such a state during, for example, a special cooling operation, a normal cooling operation, a special heating operation, and the like.
 一方、比例弁35または比例弁36の開度を調整する場合、図8の状態からロータ172を一方向に回転駆動(正転)する。それにより、図9に示すように、ロータ172とともに回転する弁作動体134がねじ機構によって下降し、弁駆動体340(つまり第1弁体350および第2弁体352)を押し下げるようにして変位させ、比例弁35が開弁状態となる。なお、図9には比例弁35および比例弁36の双方が全開となる中立状態が示されているが、いずれか一方の開度を小さくしてその開度を制御することにより、その小さくした側の弁を流れる冷媒の流量を調整することができる。このとき、開度が大きくなる側の弁は、その開度が大きくなっても冷媒の流量は飽和状態となり、図9に示す状態と実質的に変わらない全開状態を維持する。すなわち、第1弁体350が図8に示す全閉状態と図9に示す全開位置との間の範囲で駆動されることにより比例弁35の開度が調整される。 On the other hand, when adjusting the opening degree of the proportional valve 35 or the proportional valve 36, the rotor 172 is driven to rotate in one direction (forward rotation) from the state shown in FIG. Accordingly, as shown in FIG. 9, the valve operating body 134 that rotates together with the rotor 172 is lowered by the screw mechanism and displaced so as to push down the valve driving body 340 (that is, the first valve body 350 and the second valve body 352). Thus, the proportional valve 35 is opened. FIG. 9 shows a neutral state in which both the proportional valve 35 and the proportional valve 36 are fully opened. However, by reducing the opening degree of one of them and controlling the opening degree, it is made smaller. The flow rate of the refrigerant flowing through the side valve can be adjusted. At this time, the flow rate of the refrigerant in the valve on the side where the opening is increased is saturated even if the opening is increased, and the valve is maintained in a fully opened state which is not substantially different from the state shown in FIG. That is, the opening degree of the proportional valve 35 is adjusted by driving the first valve body 350 in a range between the fully closed state shown in FIG. 8 and the fully opened position shown in FIG.
 また、比例弁36の開度を調整する場合、図9の状態からロータ172をさらに同方向に回転駆動する。それにより、図10に示すように、弁駆動体340がさらに押し下げられ、第2弁体352が弁座325に近接する方向に動作し、比例弁36の開度が調整される。このとき、第1弁体350が図9の状態からさらに開弁方向に駆動されるが、比例弁35は、その開度が大きくなっても冷媒の流量は飽和状態となり、図9に示す状態と実質的に変わらない全開状態を維持する。比例弁36を閉弁させる場合には、図10の状態からロータ172をさらに同方向に回転駆動させればよい。すなわち、第2弁体352が全閉状態と図9に示す全開位置との間の範囲で駆動されることにより比例弁36の開度が調整される。 Further, when adjusting the opening degree of the proportional valve 36, the rotor 172 is further rotated in the same direction from the state shown in FIG. Accordingly, as shown in FIG. 10, the valve driver 340 is further pushed down, the second valve body 352 operates in a direction closer to the valve seat 325, and the opening degree of the proportional valve 36 is adjusted. At this time, the first valve body 350 is further driven in the valve opening direction from the state shown in FIG. 9, but the proportional valve 35 is in a saturated state even when the opening degree is increased, and the state shown in FIG. The fully open state is maintained substantially unchanged. When the proportional valve 36 is closed, the rotor 172 may be further rotated in the same direction from the state shown in FIG. That is, the opening degree of the proportional valve 36 is adjusted by driving the second valve body 352 in a range between the fully closed state and the fully opened position shown in FIG.
 なお、本実施形態では、比例弁36の閉弁と同時にロータ172が停止しなくとも、スプリング349が押し縮められて伝達ロッド345が弁駆動体340に対して相対変位することで、弁座325に過度な面圧がかかるのを防止する遊び機構が設けられている。同様に、比例弁35の閉弁と同時にロータ172が停止しなくとも、スプリング348が押し縮められて弁作動体134が伝達ロッド345に対して相対変位することで、弁座336に過度な面圧がかかるのを防止する遊び機構が設けられている。 In the present embodiment, even if the rotor 172 does not stop simultaneously with the closing of the proportional valve 36, the spring 349 is compressed and the transmission rod 345 is displaced relative to the valve driver 340, so that the valve seat 325 is displaced. A play mechanism is provided to prevent excessive surface pressure from being applied. Similarly, even if the rotor 172 does not stop simultaneously with the closing of the proportional valve 35, the spring 348 is compressed and the valve actuator 134 is displaced relative to the transmission rod 345, so that the valve seat 336 has an excessive surface. A play mechanism is provided to prevent pressure from being applied.
 なお、本実施形態では図示のように、比例弁35については弁座部材336やOリング322を配置して閉弁時のシール性を厳密に確保するのに対し、比例弁36についてはそのような構成としていない。これは、図2(D)に示したように、比例弁36を閉弁させるのは通常暖房運転時のみであるところ、その場合には図示のように蒸発器7が休止状態にあり、また、比例弁31および比例弁33が閉弁状態であるため、比例弁36には実質的に冷媒が流れ込んでこないためである。また、この運転は室外熱交換器5が低温状態で低圧となるときに行われるため、室外熱交換器5側からの逆流の心配も少ないためである。なお、このようにOリング322を比例弁35側のみに設け、比例弁36側には設けないようにすることで、弁駆動体340に作用するシール部材からの摺動抵抗を抑えることができ、モータユニット102に過度な負荷をかけずに済むといったメリットもある。 In this embodiment, as shown in the figure, the proportional valve 35 is provided with a valve seat member 336 and an O-ring 322 to ensure the sealing performance when the valve is closed. It is not a simple configuration. This is because, as shown in FIG. 2D, the proportional valve 36 is normally closed only during heating operation. In this case, the evaporator 7 is in a dormant state as shown in FIG. This is because the proportional valve 31 and the proportional valve 33 are in the closed state, so that the refrigerant does not substantially flow into the proportional valve 36. In addition, this operation is performed when the outdoor heat exchanger 5 is at a low pressure in a low temperature state, and therefore there is little fear of backflow from the outdoor heat exchanger 5 side. By providing the O-ring 322 only on the proportional valve 35 side and not on the proportional valve 36 side in this way, sliding resistance from the seal member acting on the valve driver 340 can be suppressed. There is also an advantage that it is not necessary to apply an excessive load to the motor unit 102.
 このように、比例弁35と比例弁36は、共用のモータユニット102により駆動され、一方の開度の制御状態において他方の全開状態が維持される。それにより、複合弁でありながら、その一方の比例弁の開度を正確に制御することが可能となっている。 Thus, the proportional valve 35 and the proportional valve 36 are driven by the common motor unit 102, and the other fully opened state is maintained in the control state of one opening. Thereby, although it is a compound valve, the opening degree of one proportional valve can be accurately controlled.
 以上、本発明の好適な実施形態について説明したが、本発明はその特定の実施形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the specific embodiments, and various modifications can be made within the scope of the technical idea of the present invention. Nor.
 上記実施形態では、第1制御弁4、第2制御弁6および第3制御弁9を、それぞれ複数の比例弁に対して共用のボディと共用のモータユニットを備える複合弁として構成する例を示した。変形例においては、比例弁31~37のそれぞれを個別のボディとモータユニットとを備える制御弁として独立に構成してもよい。また、上記実施形態ではアクチュエータとしてステッピングモータを採用する例を示したが、少なくともいずれかの複合弁のアクチュエータをソレノイド等により構成してもよい。比例弁31~37のそれぞれを独立に構成する場合には、その少なくともいずれかの比例弁のアクチュエータをソレノイド等により構成してもよい。 In the said embodiment, the example which comprises the 1st control valve 4, the 2nd control valve 6, and the 3rd control valve 9 as a compound valve provided with a common body and a common motor unit with respect to each of several proportional valves is shown. It was. In a modified example, each of the proportional valves 31 to 37 may be independently configured as a control valve including an individual body and a motor unit. Moreover, although the example which employ | adopts a stepping motor as an actuator was shown in the said embodiment, you may comprise the actuator of at least any one composite valve by a solenoid etc. When each of the proportional valves 31 to 37 is configured independently, the actuator of at least one of the proportional valves may be configured by a solenoid or the like.
 上記実施形態では、図6に示したように、第2制御弁6として、比例弁31および比例弁32に対して比例弁33を直角方向に組み付ける構成例を示した。変形例においては、比例弁31および比例弁32に対して比例弁33を平行に組み付けるようにしてもよい。それにより、モータユニット102とモータユニット202とをその軸線が互いに平行となるように共用のボディに組み付けてもよい。すなわち、第2制御弁6としての集合弁の構成を車両への設置スペースに応じて変化させてもよい。 In the above embodiment, as shown in FIG. 6, the configuration example in which the proportional valve 33 is assembled in the direction perpendicular to the proportional valve 31 and the proportional valve 32 is shown as the second control valve 6. In the modification, the proportional valve 33 may be assembled in parallel with the proportional valve 31 and the proportional valve 32. Accordingly, the motor unit 102 and the motor unit 202 may be assembled to a common body so that the axes thereof are parallel to each other. That is, you may change the structure of the collective valve as the 2nd control valve 6 according to the installation space in a vehicle.
 上記実施形態では、車両用冷暖房装置100として、室内凝縮器3と室外熱交換器5とが凝縮器として並列に動作可能に構成され、また、蒸発器7と室外熱交換器5とが蒸発器として並列に動作可能に構成されるものを例示した。変形例においては、これとは異なるシステム構成としてもよい。図11は、変形例に係る車両用冷暖房装置のシステム構成を表す図である。同図において、図1に示した実施形態と同様の構成部分については同一の符号を付している。 In the said embodiment, as the vehicle air conditioner 100, the indoor condenser 3 and the outdoor heat exchanger 5 are comprised so that it can operate | move in parallel as a condenser, and the evaporator 7 and the outdoor heat exchanger 5 are evaporators. As shown in FIG. In a modification, it is good also as a system configuration different from this. FIG. 11 is a diagram illustrating a system configuration of a vehicle air conditioning apparatus according to a modification. In the figure, the same components as those in the embodiment shown in FIG.
 すなわち、図11に示すように、室内凝縮器3と室外熱交換器5とが凝縮器として直列に動作可能に構成され、また、蒸発器7と室外熱交換器5とが蒸発器として並列に動作可能に構成される車両用冷暖房装置200としてもよい。車両用冷暖房装置200では、冷房運転時(除湿時)に冷媒が循環する第1冷媒循環通路、暖房運転時に冷媒が循環する第2冷媒循環通路、暖房運転中の除湿時に冷媒が循環する第3冷媒循環通路が形成される。 That is, as shown in FIG. 11, the indoor condenser 3 and the outdoor heat exchanger 5 are configured to operate in series as a condenser, and the evaporator 7 and the outdoor heat exchanger 5 are arranged in parallel as an evaporator. It is good also as the vehicle air conditioning apparatus 200 comprised so that operation | movement is possible. In the vehicle air conditioner 200, the first refrigerant circulation passage through which the refrigerant circulates during the cooling operation (dehumidification), the second refrigerant circulation passage through which the refrigerant circulates during the heating operation, and the third refrigerant circulates during the dehumidification during the heating operation. A refrigerant circulation passage is formed.
 第1冷媒循環通路は、圧縮機2→室内凝縮器3→室外熱交換器5→蒸発器7→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。第2冷媒循環通路は、圧縮機2→室内凝縮器3→室外熱交換器5→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。第3冷媒循環通路は、圧縮機2→室内凝縮器3→蒸発器7→アキュムレータ8→圧縮機2のように冷媒が循環する通路である。室外熱交換器5を流れる冷媒の流れは、第1冷媒循環通路と第2冷媒循環通路とで逆方向となっている。 The first refrigerant circulation passage is a passage through which the refrigerant circulates, such as compressor 2 → indoor condenser 3 → outdoor heat exchanger 5 → evaporator 7 → accumulator 8 → compressor 2. The second refrigerant circulation passage is a passage through which the refrigerant circulates as follows: compressor 2 → indoor condenser 3 → outdoor heat exchanger 5 → accumulator 8 → compressor 2. The third refrigerant circulation passage is a passage through which the refrigerant circulates like the compressor 2 → the indoor condenser 3 → the evaporator 7 → the accumulator 8 → the compressor 2. The flow of the refrigerant flowing through the outdoor heat exchanger 5 is in the opposite direction between the first refrigerant circulation passage and the second refrigerant circulation passage.
 具体的には、圧縮機2の吐出室は第1通路221を介して室内凝縮器3の入口に接続され、室内凝縮器3の出口は第2通路222を介して室外熱交換器5の一方の出入口に接続されている。室外熱交換器5の他方の出入口は第3通路23を介して蒸発器7の入口に接続され、蒸発器7の出口は第5通路27を介してアキュムレータ8の入口に接続されている。これら第1通路221、第2通路222、第3通路23および第5通路27により第1冷媒循環通路が形成される。 Specifically, the discharge chamber of the compressor 2 is connected to the inlet of the indoor condenser 3 via the first passage 221, and the outlet of the indoor condenser 3 is connected to one of the outdoor heat exchangers 5 via the second passage 222. Connected to the entrance. The other inlet / outlet of the outdoor heat exchanger 5 is connected to the inlet of the evaporator 7 through the third passage 23, and the outlet of the evaporator 7 is connected to the inlet of the accumulator 8 through the fifth passage 27. The first passage 221, the second passage 222, the third passage 23, and the fifth passage 27 form a first refrigerant circulation passage.
 第2通路222には、室内凝縮器3の側から第1分岐点、第2分岐点、第3分岐点が設けられている。すなわち、第2通路222は、第1分岐点にてバイパス通路225に分岐し、第2分岐点にてバイパス通路223に分岐し、第3分岐点にてバイパス通路28に分岐している。そして、バイパス通路225が第3通路23に接続されることにより、室内凝縮器3から導出された冷媒の少なくとも一部を室外熱交換器5を迂回させて蒸発器7へ供給可能な第3冷媒循環通路が形成される。また、バイパス通路223が室外熱交換器5の他方の出入口に接続され、バイパス通路28がアキュムレータ8の入口に接続されることにより、第2冷媒循環通路が形成される。 In the second passage 222, a first branch point, a second branch point, and a third branch point are provided from the indoor condenser 3 side. That is, the second passage 222 branches to the bypass passage 225 at the first branch point, branches to the bypass passage 223 at the second branch point, and branches to the bypass passage 28 at the third branch point. Then, by connecting the bypass passage 225 to the third passage 23, the third refrigerant that can supply at least a part of the refrigerant derived from the indoor condenser 3 to the evaporator 7 by bypassing the outdoor heat exchanger 5. A circulation passage is formed. Further, the bypass passage 223 is connected to the other entrance / exit of the outdoor heat exchanger 5, and the bypass passage 28 is connected to the entrance of the accumulator 8, thereby forming a second refrigerant circulation passage.
 室内凝縮器3の出口と室外熱交換器5の一方の出入口との間には第1制御弁404が設けられている。また、室外熱交換器5の他方の出入口と蒸発器7の入口との間には第2制御弁406が設けられている。さらに、室外熱交換器5の一方の出入口と蒸発器7の出口との間には第3制御弁9が設けられている。第1制御弁404は、比例弁32および比例弁34に対して共用のボディと共用のモータユニットを備える複合弁として構成される。第2制御弁406は、比例弁31および比例弁33に対して共用のボディと共用のモータユニットを備える複合弁として構成される。第3制御弁9は、上記実施形態と同様である。なお、別の変形例においては、本変形例の比例弁31~36のそれぞれを個別のボディとモータユニットを備える制御弁として独立に構成してもよい。 A first control valve 404 is provided between the outlet of the indoor condenser 3 and one inlet / outlet of the outdoor heat exchanger 5. A second control valve 406 is provided between the other inlet / outlet of the outdoor heat exchanger 5 and the inlet of the evaporator 7. Further, a third control valve 9 is provided between one inlet / outlet of the outdoor heat exchanger 5 and the outlet of the evaporator 7. The first control valve 404 is configured as a composite valve including a common body and a common motor unit for the proportional valve 32 and the proportional valve 34. The second control valve 406 is configured as a composite valve including a common body and a common motor unit for the proportional valve 31 and the proportional valve 33. The third control valve 9 is the same as in the above embodiment. In another modified example, each of the proportional valves 31 to 36 of this modified example may be configured independently as a control valve including an individual body and a motor unit.
 上記実施形態では、本発明の車両用冷暖房装置を電気自動車に適用した例を示したが、内燃機関を搭載した自動車や、内燃機関と電動機を同載したハイブリッド式の自動車に提供することが可能であることは言うまでもない。上記実施形態では、圧縮機2として電動圧縮機を採用した例を示したが、エンジンの回転を利用して容量可変を行う可変容量圧縮機を採用することもできる。 In the above embodiment, an example in which the vehicle air conditioning apparatus of the present invention is applied to an electric vehicle has been shown. However, the present invention can be provided to a vehicle equipped with an internal combustion engine or a hybrid vehicle equipped with an internal combustion engine and an electric motor. Needless to say. In the above-described embodiment, an example in which an electric compressor is employed as the compressor 2 has been described. However, a variable capacity compressor that performs variable capacity by utilizing the rotation of the engine can also be employed.
 上記実施形態においては、補助凝縮器として室内凝縮器を設ける例を示した。変形例においては、補助凝縮器を室外熱交換器とは別に設けられる熱交換器として構成してもよい。その熱交換器は、例えば車室外に配置され、冷却水(ブラインなどでもよい)を利用して熱交換を行うものでもよい。具体的には、例えば図1における第1制御弁4と第2制御弁6との間に熱交換器を設ける一方、車室内に放熱器を配置し、これら熱交換器と放熱器とを冷却水の循環回路にて接続してもよい。あるいは、図11におけるバイパス通路225への分岐点と圧縮機2との間に熱交換器を設ける一方、車室内に放熱器を配置し、これら熱交換器と放熱器とを冷却水の循環回路にて接続してもよい。その循環回路には冷却水を汲み上げるポンプを設けてもよい。このようにすれば、圧縮機2から第1制御弁4へ向かう高温の冷媒と、循環回路を循環する冷却水との間で熱交換を行うことができる。このような構成においても、圧縮機2から吐出された冷媒を熱交換器により凝縮させて循環させることが可能となる。 In the above embodiment, an example in which an indoor condenser is provided as an auxiliary condenser has been described. In a modification, the auxiliary condenser may be configured as a heat exchanger provided separately from the outdoor heat exchanger. The heat exchanger may be disposed outside the passenger compartment, for example, and may perform heat exchange using cooling water (such as brine). Specifically, for example, a heat exchanger is provided between the first control valve 4 and the second control valve 6 in FIG. 1, while a radiator is disposed in the passenger compartment, and the heat exchanger and the radiator are cooled. It may be connected by a water circulation circuit. Alternatively, a heat exchanger is provided between the branch point to the bypass passage 225 in FIG. 11 and the compressor 2, while a radiator is disposed in the passenger compartment, and the heat exchanger and the radiator are connected to a cooling water circulation circuit. You may connect with. A pump for pumping cooling water may be provided in the circulation circuit. If it does in this way, heat exchange can be performed between the high-temperature refrigerant | coolant which goes to the 1st control valve 4 from the compressor 2, and the cooling water which circulates through a circulation circuit. Even in such a configuration, the refrigerant discharged from the compressor 2 can be condensed and circulated by the heat exchanger.
 2 圧縮機、 3 室内凝縮器、 4 第1制御弁、 5 室外熱交換器、 6 第2制御弁、 7 蒸発器、 8 アキュムレータ、 9 第3制御弁、 31,32,33,34,35,36,37 比例弁、 100 車両用冷暖房装置、 101 弁本体、 102 モータユニット、 104 ボディ、 110 導入ポート、 112 第1導出ポート、 114 第2導出ポート、 120 弁孔、 122 弁座、 132 弁駆動体、 134 弁作動体、 136 伝達部材、 138 共用弁体、 140 ガイド部、 144 弁孔、 146 弁座、 148 背圧室、 172 ロータ、 173 ステータ、 200 車両用冷暖房装置、 201 弁本体、 202 モータユニット、 204 ボディ、 210 導入ポート、 212 導入出ポート、 214 導出ポート、 218,224 弁体、 232 弁孔、 234 弁座、 236 弁孔、 238 弁座、 242 伝達ロッド、 244 スプリング、 246 伝達部材、 262 弁体、 268 弁孔、 270 弁座、 301 弁本体、 304 ボディ、 310 第1導入ポート、 312 第2導入ポート、 314 導出ポート、 320 弁孔、 325 弁座、 340 弁駆動体、 342 弁体部、 344 ガイド部、 345 伝達ロッド、 350 第1弁体、 352 第2弁体、 404 第1制御弁、 406 第2制御弁。 2 compressor, 3 indoor condenser, 4 first control valve, 5 outdoor heat exchanger, 6 second control valve, 7 evaporator, 8 accumulator, 9 third control valve, 31, 32, 33, 34, 35, 36, 37 proportional valve, 100 vehicle air conditioning unit, 101 valve body, 102 motor unit, 104 body, 110 introduction port, 112 first derivation port, 114 second derivation port, 120 valve hole, 122 valve seat, 132 valve drive Body, 134 valve actuating body, 136 transmission member, 138 shared valve body, 140 guide section, 144 valve hole, 146 valve seat, 148 back pressure chamber, 172 rotor, 173 stator, 200 vehicle air conditioner, 201 valve body, 202 Motor unit, 204 body 210 inlet port, 212 inlet port, 214 outlet port, 218,224 valve body, 232 valve hole, 234 valve seat, 236 valve hole, 238 valve seat, 242 transmission rod, 244 spring, 246 transmission member, 262 valve body, 268 valve hole, 270 valve seat, 301 valve body, 304 body, 310 first introduction port, 312 second introduction port, 314 deriving port, 320 valve hole, 325 valve seat, 340 valve driver, 342 valve body part, 344 Guide part, 345 transmission rod, 350 first valve body, 352 second valve body, 404 first control valve, 406 second control valve.

Claims (8)

  1.  冷媒を圧縮して吐出する圧縮機と、
     車室外に配置され、冷房運転時に冷媒を放熱させる室外凝縮器として機能する一方、暖房運転時には冷媒を蒸発させる室外蒸発器として機能する室外熱交換器と、
     車室内に配置されて冷媒を蒸発させる室内蒸発器と、
     前記室外熱交換器とは別に冷媒を放熱させる補助凝縮器と、
     いずれかの凝縮器といずれかの蒸発器とを配し、その凝縮器と蒸発器の組合せが異なる複数の冷媒循環通路と、
     各冷媒循環通路における凝縮器と蒸発器との間に一つずつ配設され、その凝縮器から導入された冷媒を膨張させてその蒸発器に導出可能な複数の膨張装置と、
     を備えることを特徴とする車両用冷暖房装置。
    A compressor that compresses and discharges the refrigerant;
    An outdoor heat exchanger that is arranged outside the passenger compartment and functions as an outdoor condenser that dissipates the refrigerant during cooling operation, while functioning as an outdoor evaporator that evaporates the refrigerant during heating operation;
    An indoor evaporator disposed in the passenger compartment to evaporate the refrigerant;
    An auxiliary condenser for radiating the refrigerant separately from the outdoor heat exchanger;
    A plurality of refrigerant circulation passages in which any condenser and any evaporator are arranged, and the combination of the condenser and the evaporator is different.
    A plurality of expansion devices that are arranged one by one between the condenser and the evaporator in each refrigerant circulation passage, can expand the refrigerant introduced from the condenser, and can be led out to the evaporator;
    A vehicle air-conditioning / heating device comprising:
  2.  前記圧縮機から吐出された冷媒が前記室外凝縮器および前記室内蒸発器を順次経由して前記圧縮機に戻るように循環可能な第1冷媒循環通路と、
     前記圧縮機から吐出された冷媒が前記補助凝縮器および前記室外蒸発器を順次経由して前記圧縮機に戻るように循環可能な第2冷媒循環通路と、
     前記圧縮機から吐出された冷媒が前記補助凝縮器および前記室内蒸発器を順次経由して前記圧縮機に戻るように循環可能な第3冷媒循環通路と、
     前記第1冷媒循環通路に前記膨張装置として設けられ、その弁開度が電気的に設定可能な第1比例弁と、
     前記第2冷媒循環通路に前記膨張装置として設けられ、その弁開度が電気的に設定可能な第2比例弁と、
     前記第3冷媒循環通路に前記膨張装置として設けられ、その弁開度が電気的に設定可能な第3比例弁と、
     を備えることを特徴とする請求項1に記載の車両用冷暖房装置。
    A first refrigerant circulation passage capable of circulating so that the refrigerant discharged from the compressor returns to the compressor via the outdoor condenser and the indoor evaporator in sequence,
    A second refrigerant circulation passage capable of circulating so that the refrigerant discharged from the compressor returns to the compressor via the auxiliary condenser and the outdoor evaporator in order,
    A third refrigerant circulation passage capable of circulating so that the refrigerant discharged from the compressor returns to the compressor via the auxiliary condenser and the indoor evaporator in order,
    A first proportional valve provided as the expansion device in the first refrigerant circulation passage, the valve opening of which can be set electrically;
    A second proportional valve provided as the expansion device in the second refrigerant circulation passage, the valve opening of which can be set electrically;
    A third proportional valve provided as the expansion device in the third refrigerant circulation passage, the valve opening of which can be set electrically;
    The vehicle air conditioning apparatus according to claim 1, comprising:
  3.  前記第1冷媒循環通路における前記圧縮機と前記室外凝縮器との間に設けられ、その弁開度が電気的に設定可能な第4比例弁と、
     前記第2冷媒循環通路における前記室外蒸発器と前記圧縮機との間に設けられ、その弁開度が電気的に設定可能な第5比例弁と、
     前記第3冷媒循環通路における前記室内蒸発器と前記圧縮機との間に設けられ、その弁開度が電気的に設定可能な第6比例弁と、
     をさらに備え、
     前記第1比例弁、前記第2比例弁、前記第3比例弁、前記第4比例弁、前記第5比例弁および前記第6比例弁が、いずれもステッピングモータにより駆動される制御弁であることを特徴とする請求項2に記載の車両用冷暖房装置。
    A fourth proportional valve provided between the compressor and the outdoor condenser in the first refrigerant circulation passage, the valve opening of which can be electrically set;
    A fifth proportional valve provided between the outdoor evaporator and the compressor in the second refrigerant circulation passage, the valve opening of which can be electrically set;
    A sixth proportional valve provided between the indoor evaporator and the compressor in the third refrigerant circulation passage, the valve opening of which can be electrically set;
    Further comprising
    The first proportional valve, the second proportional valve, the third proportional valve, the fourth proportional valve, the fifth proportional valve, and the sixth proportional valve are all control valves driven by a stepping motor. The vehicle air conditioning apparatus according to claim 2.
  4.  前記第2冷媒循環通路において前記圧縮機と前記補助凝縮器とをつなぐ通路が、前記第3冷媒循環通路と共用の共用通路として構成されていることを特徴とする請求項3に記載の車両用冷暖房装置。 4. The vehicle according to claim 3, wherein a passage connecting the compressor and the auxiliary condenser in the second refrigerant circulation passage is configured as a common passage shared with the third refrigerant circulation passage. 5. Air conditioning unit.
  5.  前記共用通路に設けられ、その弁開度が電気的に設定可能であり、ステッピングモータにより駆動される第7比例弁をさらに備えることを特徴とする請求項4に記載の車両用冷暖房装置。 The vehicle air conditioner according to claim 4, further comprising a seventh proportional valve provided in the common passage, the valve opening of which can be set electrically, and driven by a stepping motor.
  6.  前記第4比例弁と前記第7比例弁とを収容する共用のボディと、前記第4比例弁と前記第7比例弁の開度を電気的に調整するための共用のステッピングモータと、前記ステッピングモータによる前記第4比例弁および前記第7比例弁の一方の開度の制御状態において他方を全開状態に維持可能な作動切替機構と、を有する複合弁を備えることを特徴とする請求項5に記載の車両用冷暖房装置。 A shared body for housing the fourth proportional valve and the seventh proportional valve; a shared stepping motor for electrically adjusting the opening of the fourth proportional valve and the seventh proportional valve; and the stepping 6. A composite valve having an operation switching mechanism capable of maintaining the other of the fourth proportional valve and the seventh proportional valve in a controlled state of one opening degree by a motor and maintaining the other in a fully opened state. The vehicle air conditioning apparatus as described.
  7.  前記第5比例弁と前記第6比例弁とを収容する共用のボディと、前記第5比例弁と前記第6比例弁の開度を電気的に調整するための共用のステッピングモータと、前記ステッピングモータによる前記第5比例弁および前記第6比例弁の一方の開度の制御状態において他方を全開状態に維持可能な作動切替機構と、を有する複合弁を備えることを特徴とする請求項3~6のいずれかに記載の車両用冷暖房装置。 A shared body that houses the fifth proportional valve and the sixth proportional valve; a shared stepping motor for electrically adjusting the opening of the fifth proportional valve and the sixth proportional valve; and the stepping 6. A composite valve comprising: an operation switching mechanism capable of maintaining the other of the fifth proportional valve and the sixth proportional valve controlled by a motor in a fully open state in a controlled state of one of the opening degrees. The vehicle air conditioning apparatus according to claim 6.
  8.  前記第1比例弁と前記第2比例弁とを収容する共用のボディと、前記第1比例弁と前記第2比例弁の開度を電気的に調整するための共用のステッピングモータと、前記ステッピングモータによる前記第1比例弁および前記第2比例弁の一方の開度の制御状態において他方を閉弁状態に維持可能な作動切替機構と、を有する複合弁を備えることを特徴とする請求項2~7のいずれかに記載の車両用冷暖房装置。 A shared body for housing the first proportional valve and the second proportional valve; a shared stepping motor for electrically adjusting the opening of the first proportional valve and the second proportional valve; and the stepping 3. A composite valve having an operation switching mechanism capable of maintaining the other valve closed in a state in which one of the first proportional valve and the second proportional valve is controlled by a motor. 8. The vehicle air conditioning apparatus according to any one of 1 to 7.
PCT/JP2012/001412 2011-03-04 2012-03-01 Vehicle heating/air-conditioning device WO2012120843A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011048001A JP5786156B2 (en) 2011-03-04 2011-03-04 Air conditioning system for vehicles
JP2011-048001 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012120843A1 true WO2012120843A1 (en) 2012-09-13

Family

ID=46797816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001412 WO2012120843A1 (en) 2011-03-04 2012-03-01 Vehicle heating/air-conditioning device

Country Status (2)

Country Link
JP (1) JP5786156B2 (en)
WO (1) WO2012120843A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796308A1 (en) * 2013-04-24 2014-10-29 TGK CO., Ltd. Automotive air conditioner and expansion valve
EP3511182A1 (en) * 2018-01-12 2019-07-17 Valeo Systemes Thermiques Air-conditioning system with five-channel valves, module and corresponding method
WO2021069206A1 (en) * 2019-10-07 2021-04-15 Audi Ag Refrigeration system with a heat pumping and reheating function
EP3800076A4 (en) * 2019-06-17 2021-10-20 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
US20220212517A1 (en) * 2021-02-05 2022-07-07 Huawei Digital Power Technologies Co., Ltd. Thermal management system, method for controlling thermal management system, and electric vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149996B2 (en) 2018-03-23 2021-10-19 Carrier Corporation Pressure reducing variable expansion disc
TWI826199B (en) * 2022-12-21 2023-12-11 技鋼科技股份有限公司 Cooling system and operating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116076U (en) * 1989-03-06 1990-09-17
JPH03282078A (en) * 1990-03-28 1991-12-12 Ckd Corp Motor-operated control valve
JPH08156580A (en) * 1994-12-06 1996-06-18 Matsushita Electric Ind Co Ltd Heat pump type heating, cooling and dehumidifying control device for electric vehicle
JP2001153492A (en) * 1999-11-30 2001-06-08 Saginomiya Seisakusho Inc Motor operated selector valve, refrigerating cycle equipment, and refrogerating cycle equipment for freezer-refrigerator
JP2011012939A (en) * 2009-07-06 2011-01-20 Denso Corp Method of controlling air conditioner for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116076U (en) * 1989-03-06 1990-09-17
JPH03282078A (en) * 1990-03-28 1991-12-12 Ckd Corp Motor-operated control valve
JPH08156580A (en) * 1994-12-06 1996-06-18 Matsushita Electric Ind Co Ltd Heat pump type heating, cooling and dehumidifying control device for electric vehicle
JP2001153492A (en) * 1999-11-30 2001-06-08 Saginomiya Seisakusho Inc Motor operated selector valve, refrigerating cycle equipment, and refrogerating cycle equipment for freezer-refrigerator
JP2011012939A (en) * 2009-07-06 2011-01-20 Denso Corp Method of controlling air conditioner for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796308A1 (en) * 2013-04-24 2014-10-29 TGK CO., Ltd. Automotive air conditioner and expansion valve
US9551518B2 (en) 2013-04-24 2017-01-24 Tgk Co., Ltd. Automotive air conditioner and expansion valve
EP3511182A1 (en) * 2018-01-12 2019-07-17 Valeo Systemes Thermiques Air-conditioning system with five-channel valves, module and corresponding method
FR3076766A1 (en) * 2018-01-12 2019-07-19 Valeo Systemes Thermiques AIR CONDITIONING SYSTEM WITH FIVE-WAY VALVES, MODULE AND CORRESPONDING METHOD
EP3800076A4 (en) * 2019-06-17 2021-10-20 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
US11760162B2 (en) 2019-06-17 2023-09-19 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
WO2021069206A1 (en) * 2019-10-07 2021-04-15 Audi Ag Refrigeration system with a heat pumping and reheating function
CN114556034A (en) * 2019-10-07 2022-05-27 奥迪股份公司 Refrigeration device with heat pump and reheating functions
CN114556034B (en) * 2019-10-07 2024-01-09 奥迪股份公司 Refrigerating equipment with heat pump and reheating function
US20220212517A1 (en) * 2021-02-05 2022-07-07 Huawei Digital Power Technologies Co., Ltd. Thermal management system, method for controlling thermal management system, and electric vehicle

Also Published As

Publication number Publication date
JP2012183905A (en) 2012-09-27
JP5786156B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5740596B2 (en) Control valve
JP5560403B2 (en) Stepping motor driven control valve
JP5786156B2 (en) Air conditioning system for vehicles
JP5719990B2 (en) Air conditioning system for vehicles
JP5771800B2 (en) Control valve
JP5760204B2 (en) Control valve
JP5816874B2 (en) Control valve
WO2012108140A1 (en) Control valve
JP5866600B2 (en) Vehicle air conditioner, composite valve and control valve
WO2012090362A1 (en) Vehicle heating, ventilation and air conditioning system
JP2011255689A (en) Air conditioner for vehicle and control valve
JP5760203B2 (en) Air conditioning system for vehicles
JP5786157B2 (en) Control valve
JP5629856B2 (en) Control valve
JP2012225366A (en) Control valve
JP5786212B2 (en) Air conditioning system for vehicles
JP5699263B2 (en) Control valve used in vehicle air conditioner
JP2012091578A (en) Air conditioning device for vehicle and stacked valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754677

Country of ref document: EP

Kind code of ref document: A1