JP2008298379A - Reheat type air conditioner - Google Patents

Reheat type air conditioner Download PDF

Info

Publication number
JP2008298379A
JP2008298379A JP2007145939A JP2007145939A JP2008298379A JP 2008298379 A JP2008298379 A JP 2008298379A JP 2007145939 A JP2007145939 A JP 2007145939A JP 2007145939 A JP2007145939 A JP 2007145939A JP 2008298379 A JP2008298379 A JP 2008298379A
Authority
JP
Japan
Prior art keywords
heat exchanger
reheat
flow rate
refrigerant
bypass pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007145939A
Other languages
Japanese (ja)
Inventor
Ichiro Sakuraba
一郎 櫻場
Aya Yokoe
彩 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2007145939A priority Critical patent/JP2008298379A/en
Publication of JP2008298379A publication Critical patent/JP2008298379A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately adjust blow-out temperature and humidity while maintaining a stable circulation cycle. <P>SOLUTION: A first bypass pipe 10 for bypassing an outdoor heat exchanger 4 is connected to a circulation circuit of a reheat type air conditioner. A first bypass valve 11 capable of adjusting a flow rate of a refrigerant inside the first bypass pipe 10 is provided in the first bypass pipe 10. By changing a flow rate of a refrigerant flowing to the outdoor heat exchanger 4 side by the first bypass valve 11, reheat amount with respect to indoor air can be adjusted by a reheat heat exchanger 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートポンプ方式を採用した再熱式空気調和装置に関する。   The present invention relates to a reheat type air conditioner employing a heat pump system.

再熱式空気調和装置としては、圧縮機と、室外熱交換器と、再熱熱交換器と、減圧器と、室内熱交換器とを配管で接続して冷媒を封入した循環回路を形成し、室内熱交換器で冷媒との熱交換で冷却した室内空気を再熱熱交換器で再加熱して室内に吹き出す除湿運転を行うことで、吹き出し温度を高めにして室内の快適性を維持しようとする構成がよく知られている。しかし、この場合、気温等の外界条件によって再加熱量が安定せず、吹き出し温度及び湿度の調整が十分に行えないという問題があった。
そこで、特許文献1に開示される空気調和装置では、室内機の圧縮機の吐出側と、室外絞り弁と再熱熱交換器との間に、調整弁を備えて除湿運転時に圧縮機の吐出冷媒を再熱熱交換器に導くバイパス通路を接続している。すなわち、除湿運転時には、バイパス通路の調整弁を全開状態に制御して、室外絞り弁の冷媒減圧度を室内の温度に基づいて制御することで、室内空気の制御範囲を拡大して再熱熱交換器から室内に吹き出す空気温度を冷房気味や暖房気味に設定可能としたものである。
As a reheat type air conditioner, a compressor, an outdoor heat exchanger, a reheat heat exchanger, a decompressor, and an indoor heat exchanger are connected by piping to form a circulation circuit in which a refrigerant is enclosed. Let's maintain indoor comfort by increasing the blowing temperature by performing dehumidifying operation that reheats the indoor air cooled by heat exchange with refrigerant in the indoor heat exchanger and blows it out to the room The configuration is well known. However, in this case, there is a problem that the amount of reheating is not stable due to external conditions such as air temperature, and the adjustment of the blowing temperature and humidity cannot be performed sufficiently.
Therefore, in the air conditioner disclosed in Patent Document 1, an adjustment valve is provided between the discharge side of the compressor of the indoor unit and the outdoor throttle valve and the reheat heat exchanger, and the compressor discharges during the dehumidifying operation. A bypass passage that guides the refrigerant to the reheat heat exchanger is connected. That is, during the dehumidifying operation, the control valve of the bypass passage is controlled to be fully opened, and the refrigerant pressure reduction degree of the outdoor throttle valve is controlled based on the indoor temperature, thereby expanding the control range of the indoor air and reheating heat. The air temperature blown into the room from the exchanger can be set to a cooling or heating atmosphere.

特開2003−28537号公報JP 2003-28537 A

特許文献1の再熱式空気調和装置においては、冷媒減圧度の可変な熱源側絞り機構である室外絞り弁と、冷媒流量を調節する流量調整機構である調整弁との2つの弁を用いて再熱熱交換器入口の混合状態を作り出している。しかし、外気条件によって圧縮機の吐出圧力が変化すると、凝縮温度も変化するため、再熱熱交換器へバイパスさせる冷媒流量及び室外熱交換器を通過後の冷媒流量を同じ比率で混合しようとすると、上記2つの弁の開度比をその都度変化させる必要がある。よって、再熱熱交換器の入口温度という1つの目標値に対して2つのパラメータ(室外絞り弁と調整弁との開度)があることになり、安定した状態を作るのは困難で、また、高度な制御技術を要することでコスト高にもなっていた。   In the reheat-type air conditioner of Patent Document 1, two valves are used: an outdoor throttle valve that is a heat source side throttle mechanism with a variable refrigerant pressure reduction degree, and an adjustment valve that is a flow rate adjustment mechanism that adjusts the refrigerant flow rate. It creates a mixed state at the reheat heat exchanger inlet. However, if the discharge pressure of the compressor changes depending on the outside air conditions, the condensation temperature also changes, so if you try to mix the refrigerant flow rate bypassed to the reheat heat exchanger and the refrigerant flow rate after passing through the outdoor heat exchanger at the same ratio It is necessary to change the opening ratio of the two valves each time. Therefore, there are two parameters (opening of the outdoor throttle valve and the regulating valve) for one target value of the inlet temperature of the reheat heat exchanger, and it is difficult to create a stable state. The cost was high due to the need for advanced control technology.

そこで、本発明は、簡単且つ確実に吹き出し温湿度の制御を可能とする再熱式空気調和装置を提供することを目的としたものである。   Therefore, an object of the present invention is to provide a reheat type air conditioner that can control the temperature and humidity of a blowout easily and reliably.

上記目的を達成するために、請求項1に記載の発明は、循環回路に、室外熱交換器をバイパスするバイパス管を接続し、そのバイパス管に、当該バイパス管内の冷媒の流量を調整可能な流量調整手段を設けて、流量調整手段によって室外熱交換器側へ流れる冷媒の流量を変更することで、再熱熱交換器による室内空気への再加熱量を調整可能としたことを特徴とするものである。
請求項2に記載の発明は、請求項1の目的に加えて、再熱熱交換器による過剰な再加熱を抑えるために、循環回路に、再熱熱交換器をバイパスする第2バイパス管を接続し、その第2バイパス管に、第2バイパス管内の冷媒の流量を調整可能な第2流量調整手段を設けて、第2流量調整手段によって再熱熱交換器側へ流れる冷媒の流量を変更可能としたことを特徴とするものである。
In order to achieve the above object, according to the first aspect of the present invention, a bypass pipe that bypasses the outdoor heat exchanger is connected to the circulation circuit, and the flow rate of the refrigerant in the bypass pipe can be adjusted to the bypass pipe. A flow rate adjusting means is provided, and the flow rate of the refrigerant flowing to the outdoor heat exchanger side is changed by the flow rate adjusting means, so that the amount of reheating of the indoor air by the reheat heat exchanger can be adjusted. Is.
In addition to the object of claim 1, the invention described in claim 2 is provided with a second bypass pipe that bypasses the reheat heat exchanger in the circulation circuit in order to suppress excessive reheating by the reheat heat exchanger. Connected to the second bypass pipe is provided with a second flow rate adjusting means capable of adjusting the flow rate of the refrigerant in the second bypass pipe, and the flow rate of the refrigerant flowing toward the reheat heat exchanger is changed by the second flow rate adjusting means. It is characterized by being possible.

請求項1に記載の発明によれば、室外熱交換器をバイパスするバイパス管及び流量調整手段の採用により、装置が簡単となってコストがかからない。また、簡単且つ確実に吹き出し温湿度の制御が可能となる。
請求項2に記載の発明によれば、請求項1の効果に加えて、再熱熱交換器をバイパスする第2バイパス管及び第2流量調整手段の採用により、再熱熱交換器による過剰な再加熱を抑えて吹き出し温湿度のより好適な調整が可能となる。特に、1つの目標値に対して、第2流量調整手段では過冷却分までしか加熱量が増やせないが、さらに流量制御手段によって加熱量を増やすため、制御値も1つとなり、安定した吹き出し温湿度の制御が可能となる。
According to the first aspect of the present invention, the use of the bypass pipe bypassing the outdoor heat exchanger and the flow rate adjusting means simplifies the apparatus and does not cost. In addition, the temperature and humidity of the blowout air can be controlled easily and reliably.
According to the second aspect of the present invention, in addition to the effect of the first aspect, the adoption of the second bypass pipe that bypasses the reheat heat exchanger and the second flow rate adjusting means can cause an excessive amount due to the reheat heat exchanger. It is possible to more suitably adjust the blowing temperature and humidity while suppressing reheating. In particular, with respect to one target value, the second flow rate adjustment means can increase the heating amount only up to the amount of supercooling, but the heating amount is further increased by the flow rate control means. Humidity can be controlled.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の再熱式空気調和装置の一例を示す回路図で、図において、1は室外機、2は室内機で、再熱式空気調和装置は、室外機1に圧縮機3と室外熱交換器4とを、室内機2に室内熱交換器5と再熱熱交換器6とを夫々配置して、これらを配管7で接続し、封入された冷媒が循環する循環回路を形成したものである。
室外機1において、圧縮機3の吸込側には、アキュムレータ8が設けられ、圧縮機3と室外熱交換器4との間には、四方弁9が設けられて、冷媒の流れを室外熱交換器4側と室内機2側とに切替可能としている。
また、室外機1内の配管7には、室外熱交換器4をバイパスする第1バイパス管10が接続され、ここに設けた流量調整手段としての第1バイパス弁11によって第1バイパス管10を流れる冷媒の流量が調整可能となっている。12は、室外熱交換器4に設けた室外機ファン、13は、一方向弁によって暖房時に冷媒を減圧する暖房用膨張弁、14は暖房時に冷媒を貯留する暖房用レシーバである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing an example of a reheat type air conditioner according to the present invention. In the figure, 1 is an outdoor unit, 2 is an indoor unit, and the reheat type air conditioner is connected to the outdoor unit 1 with a compressor 3. And an outdoor heat exchanger 4, an indoor heat exchanger 5 and a reheat heat exchanger 6 are arranged in the indoor unit 2, these are connected by a pipe 7, and a circulation circuit in which the enclosed refrigerant circulates is provided. Formed.
In the outdoor unit 1, an accumulator 8 is provided on the suction side of the compressor 3, and a four-way valve 9 is provided between the compressor 3 and the outdoor heat exchanger 4, and the refrigerant flow is exchanged with the outdoor heat. It is possible to switch between the unit 4 side and the indoor unit 2 side.
Moreover, the 1st bypass pipe 10 which bypasses the outdoor heat exchanger 4 is connected to the piping 7 in the outdoor unit 1, and the 1st bypass pipe 10 is connected by the 1st bypass valve 11 as a flow volume adjustment means provided here. The flow rate of the flowing refrigerant can be adjusted. 12 is an outdoor unit fan provided in the outdoor heat exchanger 4, 13 is a heating expansion valve that depressurizes the refrigerant during heating by a one-way valve, and 14 is a heating receiver that stores the refrigerant during heating.

一方、室内機2において、室内熱交換器5と再熱熱交換器6との間には、一方向弁によって冷房時に冷媒を減圧する減圧器としての冷房用膨張弁15が設けられ、配管7には、再熱熱交換器6をバイパスする第2バイパス管16が設けられて、この第2バイパス管16に、第2流量調整手段としての第2パイパス管16を流れる冷媒の流量を調整可能な第2バイパス弁17が設けられている。
18は室内機ファンで、室内機ファン18の駆動により、室内熱交換器5及び再熱熱交換器6を通過させた室内空気を室内に吹き出し可能としている。19は、冷房用膨張弁15側の配管に接続され、冷房時に冷媒を貯留する冷房用レシーバ、20は、室外機1と室内機2との間の配管に設けられて冷媒の状態を目視するためのサイトグラスである。
On the other hand, in the indoor unit 2, a cooling expansion valve 15 is provided between the indoor heat exchanger 5 and the reheat heat exchanger 6 as a decompressor that decompresses the refrigerant during cooling by a one-way valve. Is provided with a second bypass pipe 16 that bypasses the reheat heat exchanger 6, and the flow rate of the refrigerant flowing through the second bypass pipe 16 as the second flow rate adjusting means can be adjusted in the second bypass pipe 16. A second bypass valve 17 is provided.
Reference numeral 18 denotes an indoor unit fan, and the indoor unit fan 18 can be driven to blow out indoor air that has passed through the indoor heat exchanger 5 and the reheat heat exchanger 6 into the room. 19 is a cooling receiver that is connected to a pipe on the cooling expansion valve 15 side and stores the refrigerant during cooling, and 20 is provided in a pipe between the outdoor unit 1 and the indoor unit 2 to visually check the state of the refrigerant. For sight glass.

以上の如く構成された再熱式空気調和装置において、冷房(除湿)・暖房各運転時には、図示しないコントローラによって四方弁9の切替制御が行われると共に、第1、第2バイパス弁11,17の開閉及び開度制御等が行われる。
まず、冷房(除湿)運転時には、図1の実線に示すように、四方弁9は圧縮機3の吐出側を室外熱交換器4側に、吸込側を室内機2側に夫々切り替える。すると、圧縮機3から吐出される高温高圧の冷媒は、凝縮器となる室外熱交換器4を通過する際に外気との熱交換で放熱して凝縮し、室内機2の再熱熱交換器6を通過して冷房用膨張弁15で減圧されて温度低下した後、室内熱交換器5でガス化して再び四方弁9を介して圧縮機3へ送られ、この循環が繰り返される。よって、室内の空気が室内熱交換器5を通過する際に低温の冷媒との熱交換で冷却されて吹き出すことになるが、再熱熱交換器6を通過する際の冷媒との熱交換で再加熱されるため。吹き出し温度の低下を抑制することができる。
In the reheat type air conditioner configured as described above, the switching control of the four-way valve 9 is performed by a controller (not shown) during each of the cooling (dehumidification) and heating operations, and the first and second bypass valves 11 and 17 are controlled. Opening and closing and opening control are performed.
First, during cooling (dehumidification) operation, the four-way valve 9 switches the discharge side of the compressor 3 to the outdoor heat exchanger 4 side and the suction side to the indoor unit 2 side, as shown by the solid line in FIG. Then, when the high-temperature and high-pressure refrigerant discharged from the compressor 3 passes through the outdoor heat exchanger 4 serving as a condenser, it dissipates heat and condenses by heat exchange with the outside air, and the reheat heat exchanger of the indoor unit 2 After passing through 6 and depressurizing by the cooling expansion valve 15 to lower the temperature, it is gasified by the indoor heat exchanger 5 and sent again to the compressor 3 via the four-way valve 9, and this circulation is repeated. Therefore, when indoor air passes through the indoor heat exchanger 5, it is cooled and blown out by heat exchange with the low-temperature refrigerant, but by heat exchange with the refrigerant when passing through the reheat heat exchanger 6. Because it is reheated. A drop in the blowing temperature can be suppressed.

但し、再熱熱交換器6で熱交換しても吹き出し温度が低い場合は、第1バイパス弁11を開弁させる。すると、室外熱交換器4側への冷媒の流量が減少して熱交換率が低くなると共に、室外熱交換器4を通過して液化した冷媒は、第1バイパス管10側を流れる気体状態の冷媒と混合されて再熱熱交換器6へ送られる。よって、再熱熱交換器6で熱交換する際には、吹き出し温度を高くすることができる。
逆に、再熱熱交換器6との熱交換によって吹き出し温度が高くなり過ぎる場合は、第2バイパス弁17を開弁させる。すると、再熱熱交換器6への冷媒の流量が減少して熱交換率が低くなるため、吹き出し温度を低くすることができる。
すなわち、吹き出し温度を図示しない温度センサによって検出してコントローラがこれを監視し、吹き出し温度が所定温度を下回るか、或いは上回るかすると、第1、第2バイパス弁11,17を所定の開度で開弁させて、再熱熱交換器6による再加熱量を適正に維持可能としたものである。
However, if the blowing temperature is low even after heat exchange with the reheat heat exchanger 6, the first bypass valve 11 is opened. Then, the flow rate of the refrigerant to the outdoor heat exchanger 4 side is reduced and the heat exchange rate is lowered, and the refrigerant liquefied after passing through the outdoor heat exchanger 4 is in a gas state flowing through the first bypass pipe 10 side. It is mixed with the refrigerant and sent to the reheat heat exchanger 6. Therefore, when heat is exchanged by the reheat heat exchanger 6, the blowing temperature can be increased.
On the contrary, when the blowing temperature becomes too high due to heat exchange with the reheat heat exchanger 6, the second bypass valve 17 is opened. Then, since the flow rate of the refrigerant to the reheat heat exchanger 6 is reduced and the heat exchange rate is lowered, the blowing temperature can be lowered.
That is, the controller detects the blowing temperature with a temperature sensor (not shown) and monitors the temperature. If the blowing temperature falls below or exceeds a predetermined temperature, the first and second bypass valves 11 and 17 are opened at a predetermined opening degree. By opening the valve, the amount of reheating by the reheat heat exchanger 6 can be appropriately maintained.

一方、暖房運転時には、図1に点線で示すように、四方弁9は圧縮機3の吐出側を室内機2側に、吸込側を室外熱交換器4側に夫々切り替える。第1、第2バイパス弁11,17は常に閉弁状態となる。
よって、圧縮機3から吐出される高温高圧の冷媒は、凝縮器となる室内熱交換器5及び再熱熱交換器6を通過して室内空気との熱交換で放熱した後、暖房用レシーバ14を通過して暖房用膨張弁13で減圧され、蒸発器となる室外熱交換器4を通過することで、外気との熱交換で液ガス状態からガス状態となって再び圧縮機3に送られる。この循環が繰り返される。よって、室内空気は、室内熱交換器5及び再熱熱交換器6で暖められて室内に吹き出すことになる。
On the other hand, during heating operation, as shown by a dotted line in FIG. 1, the four-way valve 9 switches the discharge side of the compressor 3 to the indoor unit 2 side and the suction side to the outdoor heat exchanger 4 side. The first and second bypass valves 11 and 17 are always closed.
Therefore, after the high-temperature and high-pressure refrigerant discharged from the compressor 3 passes through the indoor heat exchanger 5 and the reheat heat exchanger 6 serving as a condenser and dissipates heat by heat exchange with room air, the heating receiver 14 And is decompressed by the heating expansion valve 13 and passes through the outdoor heat exchanger 4 serving as an evaporator, so that it is changed from a liquid gas state to a gas state by heat exchange with the outside air and sent to the compressor 3 again. . This circulation is repeated. Accordingly, the indoor air is warmed by the indoor heat exchanger 5 and the reheat heat exchanger 6 and blown out into the room.

このように、上記形態の再熱式空気調和装置によれば、循環回路に、室外熱交換器4をバイパスする第1バイパス管10を接続し、その第1バイパス管10に、第1バイパス管10内の冷媒の流量を調整可能な第1バイパス弁11を設けて、第1バイパス弁11によって室外熱交換器4側へ流れる冷媒の流量を変更することで、再熱熱交換器6による室内空気への再加熱量を調整可能としたことで、簡単且つ確実に吹き出し温湿度の制御が可能となる。また、装置も簡単となるためコストがかからない。
特にここでは、循環回路に、再熱熱交換器6をバイパスする第2バイパス管16を接続し、その第2バイパス管16に、第2バイパス管16内の冷媒の流量を調整可能な第2バイパス弁17を設けて、第2バイパス弁17によって再熱熱交換器6側へ流れる冷媒の流量を変更可能としたことで、再熱熱交換器6による過剰な再加熱を抑えて吹き出し温湿度のより好適な調整が可能となる。特に、1つの目標値に対して、第2バイパス弁17では過冷却分までしか加熱量が増やせないが、さらに第1バイパス弁11によって加熱量を増やすため、制御値も1つとなり、安定した吹き出し温湿度の制御が可能となる。
Thus, according to the reheat type air conditioning apparatus of the said form, the 1st bypass pipe 10 which bypasses the outdoor heat exchanger 4 is connected to a circulation circuit, The 1st bypass pipe is connected to the 1st bypass pipe 10 The first bypass valve 11 capable of adjusting the flow rate of the refrigerant in the interior 10 is provided, and the flow rate of the refrigerant flowing to the outdoor heat exchanger 4 side is changed by the first bypass valve 11 so that the room by the reheat heat exchanger 6 can be changed. By making it possible to adjust the amount of reheating to air, it is possible to control the temperature and humidity of the blowout easily and reliably. Moreover, since the apparatus is simplified, no cost is incurred.
In particular, here, a second bypass pipe 16 that bypasses the reheat heat exchanger 6 is connected to the circulation circuit, and the second bypass pipe 16 can adjust the flow rate of the refrigerant in the second bypass pipe 16. By providing a bypass valve 17 and allowing the flow rate of the refrigerant flowing to the reheat heat exchanger 6 side to be changed by the second bypass valve 17, excessive reheating by the reheat heat exchanger 6 is suppressed, and the blowing temperature and humidity It is possible to make a more suitable adjustment. In particular, with respect to one target value, the second bypass valve 17 can only increase the amount of heating up to the amount of supercooling, but since the amount of heating is further increased by the first bypass valve 11, the control value becomes one and is stable. The blowout temperature and humidity can be controlled.

ここでは第1バイパス管のみの使用による吹き出し温度の変化を検証した。
乾球温度35.0℃、湿球温度24.0℃の外気条件と、乾球温度27.0℃、湿球温度17.8℃の室内条件で、第2バイパス弁を閉弁した状態で、第1バイパス弁の開度を、0%から10%、25%、50%、75%と段階的に変化させて再加熱能力の変化を確認した。図2は、その場合の第1バイパス弁の開度と吹き出し温度との関係を示すグラフで、実線aが再熱熱交換器を経た吹き出し温度(乾球温度)、点線bが室内熱交換器を経た吹き出し温度(乾球温度)を夫々示す。
ここで明らかなように、aでは第1バイパス弁の開度0〜25%の範囲で吹き出し温度が上昇しており、第1バイパス弁によって室外熱交換器側へ流れる冷媒の流量を変更することで、再熱熱交換器による再加熱量が調整できることが確認できた。なお、吹き出し温度が25%以降で略一定となっているのは、ここでは開度25%で第1バイパス管の冷媒流量が最大となるためである。
Here, the change in the blowing temperature due to the use of only the first bypass pipe was verified.
With the second bypass valve closed under the outdoor air conditions of dry bulb temperature 35.0 ° C and wet bulb temperature 24.0 ° C, and indoor conditions of dry bulb temperature 27.0 ° C and wet bulb temperature 17.8 ° C The opening degree of the first bypass valve was changed stepwise from 0% to 10%, 25%, 50%, and 75% to confirm the change in reheating capacity. FIG. 2 is a graph showing the relationship between the opening degree of the first bypass valve and the blowing temperature in that case, where the solid line a is the blowing temperature (dry bulb temperature) through the reheat heat exchanger, and the dotted line b is the indoor heat exchanger. The blowing temperature (dry bulb temperature) after passing through is shown respectively.
As is clear from the above, in a, the blowing temperature rises in the range of 0 to 25% of the opening degree of the first bypass valve, and the flow rate of the refrigerant flowing to the outdoor heat exchanger side is changed by the first bypass valve. Thus, it was confirmed that the reheating amount by the reheat heat exchanger can be adjusted. The reason that the blowing temperature is substantially constant after 25% is that the refrigerant flow rate of the first bypass pipe is maximized at the opening degree of 25%.

[参考例]
次に、参考例として、第2バイパス管のみの使用による吹き出し温度の変化を検証した。
実施例1と同じ外気条件及び室内条件で、第1バイパス弁を閉弁した状態で、第2バイパス弁の開度を、0%から10%、25%、50%、75%と段階的に変化させて再加熱能力の変化を確認した。図3は、その場合の第2バイパス弁の開度と吹き出し温度との関係を示すグラフで、実線aが再熱熱交換器を経た吹き出し温度(乾球温度)、点線bが室内熱交換器を経た吹き出し温度(乾球温度)を夫々示す。ここでは、第2バイパス弁の開度を大きくすると、再熱熱交換器への冷媒流量が減少するため、再熱熱交換器での熱交換率が小さくなり、配管温度が低くなって再加熱量が抑えられることがわかる。
[Reference example]
Next, as a reference example, the change in the blowing temperature due to the use of only the second bypass pipe was verified.
Under the same outside air conditions and indoor conditions as in the first embodiment, with the first bypass valve closed, the opening degree of the second bypass valve is stepwise from 0% to 10%, 25%, 50%, and 75%. The change in reheating ability was confirmed by changing. FIG. 3 is a graph showing the relationship between the opening degree of the second bypass valve and the blowing temperature in that case, where the solid line a is the blowing temperature (dry bulb temperature) passing through the reheat heat exchanger, and the dotted line b is the indoor heat exchanger. The blowing temperature (dry bulb temperature) after passing through is shown respectively. Here, if the opening degree of the second bypass valve is increased, the refrigerant flow rate to the reheat heat exchanger decreases, so the heat exchange rate in the reheat heat exchanger decreases, the pipe temperature decreases, and the reheat is performed. It can be seen that the amount is reduced.

次に、第1、第2バイパス管の併用による吹き出し温度の変化を検証した。
実施例1,2と同じ外気条件及び室内条件で、第1バイパス弁の開度を25%とした状態で、第2バイパス弁の開度を0%から50%に変化させる一方、第1バイパス弁の開度を50%とした状態で、第2バイパス弁の開度を0%から50%に変化させた。図4は、その場合の第1、第2バイパス弁の開度と吹き出し温度との関係を示すグラフで、(A)が第1バイパス弁の開度25%の場合、(B)が開度50%の場合となり、夫々実線aが再熱熱交換器を経た吹き出し温度(乾球温度)、点線bが室内熱交換器を経た吹き出し温度(乾球温度)を示している。ここでは、第2バイパス弁の開度を上げることで、吹き出し温度が低下((A)では20.83℃から11.92℃まで、(B)では21.05℃から12.05℃まで夫々低下)して過剰な再加熱が抑制されていることがわかる。
Next, the change in the blowing temperature due to the combined use of the first and second bypass pipes was verified.
While the opening degree of the second bypass valve is changed from 0% to 50% with the opening degree of the first bypass valve being 25% under the same outside air conditions and indoor conditions as in Examples 1 and 2, the first bypass With the valve opening being 50%, the opening of the second bypass valve was changed from 0% to 50%. FIG. 4 is a graph showing the relationship between the opening degree of the first and second bypass valves and the blowing temperature in that case. When (A) is 25% of the opening degree of the first bypass valve, (B) is the opening degree. In each case, the solid line a indicates the blowing temperature (dry bulb temperature) passing through the reheat heat exchanger, and the dotted line b indicates the blowing temperature (dry bulb temperature) passing through the indoor heat exchanger. Here, the blowing temperature decreases by increasing the opening of the second bypass valve (from 20.83 ° C. to 11.92 ° C. in (A) and from 21.05 ° C. to 12.05 ° C. in (B), respectively. It can be seen that excessive reheating is suppressed.

なお、上記形態では、第1バイパス管及び第1バイパス弁と、第2バイパス管及び第2バイパス弁とを併用した例で説明しているが、第2バイパス管及び第2バイパス弁をなくして、第1バイパス管及び第1バイパス弁のみで再熱熱交換器での再加熱量の調整を図ることも可能である。
また、流量制御手段は、上記形態ではコントローラで電気的に開閉制御されるバイパス弁(電磁弁)を用いているが、手動で開度を調整するタイプも含む。
さらに、ここでは暖房運転も行う再熱式空気調和装置で説明しているが、冷房(除湿)運転のみであっても差し支えない。この場合、四方弁や暖房用膨張弁等は省略可能である。勿論レシーバやサイトグラスも省略することができる。
In addition, although the said form demonstrated in the example which used the 1st bypass pipe and the 1st bypass valve, the 2nd bypass pipe, and the 2nd bypass valve together, the 2nd bypass pipe and the 2nd bypass valve were lost. It is also possible to adjust the reheating amount in the reheat heat exchanger with only the first bypass pipe and the first bypass valve.
The flow rate control means uses a bypass valve (electromagnetic valve) that is electrically opened and closed by the controller in the above embodiment, but includes a type that manually adjusts the opening degree.
Furthermore, although the reheat-type air conditioner that performs the heating operation is described here, the cooling (dehumidification) operation alone may be used. In this case, a four-way valve, a heating expansion valve, and the like can be omitted. Of course, the receiver and the sight glass can be omitted.

再熱式空気調和装置の回路図である。It is a circuit diagram of a reheat type air harmony device. 第1バイパス弁の開度と吹き出し温度との関係を示すグラフである。It is a graph which shows the relationship between the opening degree of a 1st bypass valve, and blowing temperature. 第2バイパス弁の開度と吹き出し温度との関係を示すグラフである。It is a graph which shows the relationship between the opening degree of a 2nd bypass valve, and blowing temperature. 第1、第2バイパス弁の開度と吹き出し温度との関係を示すグラフである。It is a graph which shows the relationship between the opening degree of a 1st, 2nd bypass valve, and blowing temperature.

符号の説明Explanation of symbols

1・・室外機、2・・室内機、3・・圧縮機、4・・室外熱交換器、5・・室内熱交換器、6・・再熱熱交換器、7・・配管、9・・四方弁、10・・第1バイパス管、11・・第1バイパス弁、12・・室外機ファン、13・・暖房用膨張弁、15・・冷房用膨張弁、16・・第2バイパス管、17・・第2バイパス弁、18・・室内機ファン。   1 .... Outdoor unit 2 .... Indoor unit 3 .... Compressor 4 .... Outdoor heat exchanger 5, ... Indoor heat exchanger 6, ... Reheat heat exchanger, 7 .... Piping, 9 .... · Four-way valve, 10 · · 1st bypass pipe, 11 · · 1st bypass valve, 12 · · Outdoor fan, 13 · · Expansion valve for heating, 15 · · Expansion valve for cooling, 16 · · 2nd bypass tube 17, second bypass valve, 18 ... indoor unit fan.

Claims (2)

圧縮機と、室外熱交換器と、再熱熱交換器と、減圧器と、室内熱交換器とを配管で接続して冷媒を封入した循環回路を形成し、前記室内熱交換器で冷媒と熱交換させた室内空気を前記再熱熱交換器で再加熱して室内に吹き出す除湿運転を少なくとも行う再熱式空気調和装置であって、
前記循環回路に、前記室外熱交換器をバイパスするバイパス管を接続し、そのバイパス管に、当該バイパス管内の冷媒の流量を調整可能な流量調整手段を設けて、前記流量調整手段によって前記室外熱交換器側へ流れる冷媒の流量を変更することで、前記再熱熱交換器による室内空気への再加熱量を調整可能としたことを特徴とする再熱式空気調和装置。
A compressor, an outdoor heat exchanger, a reheat heat exchanger, a decompressor, and an indoor heat exchanger are connected by piping to form a circulation circuit that encloses the refrigerant, and the indoor heat exchanger A reheat-type air conditioner that performs at least a dehumidifying operation in which heat-exchanged room air is reheated by the reheat heat exchanger and blown into the room,
A bypass pipe that bypasses the outdoor heat exchanger is connected to the circulation circuit, and a flow rate adjusting means capable of adjusting a flow rate of the refrigerant in the bypass pipe is provided in the bypass pipe, and the outdoor heat is adjusted by the flow rate adjusting means. A reheat type air conditioner characterized in that the amount of reheat to the indoor air by the reheat heat exchanger can be adjusted by changing the flow rate of the refrigerant flowing to the exchanger side.
循環回路に、再熱熱交換器をバイパスする第2バイパス管を接続し、その第2バイパス管に、当該第2バイパス管内の冷媒の流量を調整可能な第2流量調整手段を設けて、前記第2流量調整手段によって前記再熱熱交換器側へ流れる冷媒の流量を変更可能としたことを特徴とする請求項1に記載の再熱式空気調和装置。   A second bypass pipe that bypasses the reheat heat exchanger is connected to the circulation circuit, and the second bypass pipe is provided with second flow rate adjusting means capable of adjusting the flow rate of the refrigerant in the second bypass pipe, The reheat type air conditioner according to claim 1, wherein the flow rate of the refrigerant flowing to the reheat heat exchanger side can be changed by the second flow rate adjusting means.
JP2007145939A 2007-05-31 2007-05-31 Reheat type air conditioner Pending JP2008298379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145939A JP2008298379A (en) 2007-05-31 2007-05-31 Reheat type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145939A JP2008298379A (en) 2007-05-31 2007-05-31 Reheat type air conditioner

Publications (1)

Publication Number Publication Date
JP2008298379A true JP2008298379A (en) 2008-12-11

Family

ID=40172054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145939A Pending JP2008298379A (en) 2007-05-31 2007-05-31 Reheat type air conditioner

Country Status (1)

Country Link
JP (1) JP2008298379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203685A (en) * 2009-03-03 2010-09-16 Mitsubishi Electric Corp Air conditioning device and method for controlling the same
JP2013242119A (en) * 2012-05-23 2013-12-05 Parker Engineering Kk Air conditioner
CN105402937A (en) * 2015-12-22 2016-03-16 广东志高暖通设备股份有限公司 Air-conditioning system
WO2020148826A1 (en) * 2019-01-16 2020-07-23 三菱電機株式会社 Air conditioner
CN114815927A (en) * 2022-05-24 2022-07-29 国网江苏省电力有限公司泰州供电分公司 Large power supply temperature control system of power distribution station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240486A (en) * 1992-02-26 1993-09-17 Mitsubishi Electric Corp Air-conditioning machine
JPH07294059A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JPH07294060A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240486A (en) * 1992-02-26 1993-09-17 Mitsubishi Electric Corp Air-conditioning machine
JPH07294059A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JPH07294060A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203685A (en) * 2009-03-03 2010-09-16 Mitsubishi Electric Corp Air conditioning device and method for controlling the same
JP2013242119A (en) * 2012-05-23 2013-12-05 Parker Engineering Kk Air conditioner
CN105402937A (en) * 2015-12-22 2016-03-16 广东志高暖通设备股份有限公司 Air-conditioning system
WO2020148826A1 (en) * 2019-01-16 2020-07-23 三菱電機株式会社 Air conditioner
CN113272598A (en) * 2019-01-16 2021-08-17 三菱电机株式会社 Air conditioner
JPWO2020148826A1 (en) * 2019-01-16 2021-09-09 三菱電機株式会社 Air conditioner
CN113272598B (en) * 2019-01-16 2022-08-19 三菱电机株式会社 Air conditioner
CN114815927A (en) * 2022-05-24 2022-07-29 国网江苏省电力有限公司泰州供电分公司 Large power supply temperature control system of power distribution station
CN114815927B (en) * 2022-05-24 2024-01-09 国网江苏省电力有限公司泰州供电分公司 Large-scale power supply temperature control system of power distribution station

Similar Documents

Publication Publication Date Title
JP5182358B2 (en) Refrigeration equipment
JP5213817B2 (en) Air conditioner
US8020395B2 (en) Air conditioning apparatus
JP4849095B2 (en) Air conditioner
AU2016279490B2 (en) Air conditioner
WO2017138059A1 (en) Air conditioning device
US11022354B2 (en) Air conditioner
JP2006300370A (en) Air conditioner
JP4553761B2 (en) Air conditioner
US10976090B2 (en) Air conditioner
WO2019053876A1 (en) Air conditioning device
JP2005076933A (en) Refrigeration cycle system
WO2012085965A1 (en) Air conditioner
JP2008298379A (en) Reheat type air conditioner
WO2015060384A1 (en) Refrigeration device
JP5817660B2 (en) Refrigeration cycle equipment
WO2007102345A1 (en) Refrigeration device
JP2006300373A (en) Air conditioner
CN110709648B (en) Air conditioner
JP6375796B2 (en) Refrigeration cycle equipment
JP2006194525A (en) Multi-chamber type air conditioner
JP2016020784A (en) Air conditioning device
JP2002243307A (en) Air conditioning apparatus
JP3835478B1 (en) Air conditioner
JP6369237B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410