JPH0989405A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPH0989405A
JPH0989405A JP7249029A JP24902995A JPH0989405A JP H0989405 A JPH0989405 A JP H0989405A JP 7249029 A JP7249029 A JP 7249029A JP 24902995 A JP24902995 A JP 24902995A JP H0989405 A JPH0989405 A JP H0989405A
Authority
JP
Japan
Prior art keywords
temperature
rectifier
refrigerant
condenser
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7249029A
Other languages
Japanese (ja)
Other versions
JP3003554B2 (en
Inventor
Takahito Ishii
隆仁 石井
Takashi Sawada
敬 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7249029A priority Critical patent/JP3003554B2/en
Publication of JPH0989405A publication Critical patent/JPH0989405A/en
Application granted granted Critical
Publication of JP3003554B2 publication Critical patent/JP3003554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a domestic absorption type heat pump which has a small size, effective starting of the operation and high coefficient of performance of the cycle. SOLUTION: At the time of starting to operate the absorption type heat pump comprising a rectifier 1 having a heater 20 and a temperature detector 19 for detecting the temperature in the rectifier 1, the heater 20 is heated by a controller 21 when the emperature in the rectifier 1 is lower than a predetermined temperature, the operation is started when the temperature in the rectifier 1 reaches the predetermined temperature to be effectively started.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作動媒体としてアンモ
ニア、水等を用いる家庭用の吸収式ヒートポンプに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a domestic absorption heat pump using ammonia, water or the like as a working medium.

【0002】[0002]

【従来の技術】従来この種の吸収式ヒートポンプは、家
庭用のものはなく業務用であり、図9に示したように、
発生器と精溜器とが一体に構成された発生・精溜器50
と、1次側に冷媒流路51と2次側に冷却水流路52を
備えた凝縮器53と、凝縮器冷媒流路51出口に設けら
れた冷媒タンク54と、過冷却器55と、膨張弁56
と、1次側に冷媒流路57と2次側に冷水流路58を備
えた蒸発器59と、溶液熱交換器60と、減圧弁61
と、1次側に冷媒流路62と2次側に冷却水流路63を
備えた吸収器64と、吸収器冷媒流路62出口に設けら
れた濃溶液タンク65と、溶液ポンプ66と、前記各要
素部品を接続する冷媒配管67と、凝縮器及び吸収器の
2次側冷却水流路を連結してなる冷却水回路68と、蒸
発器の2次側冷水回路を含む冷水回路69とから構成さ
れていた。発生・精溜器50内には、多量のアンモニア
水濃溶液が満たされており、こうした構成は満液式と呼
ばれている。発生・精溜器50は、大口径の筒状塔に、
金属管をコイル状に巻いた構造(一般に、蛇管式熱交換
器と呼ばれる)の分縮器70とその回りに配置された充
填材71とからなる分縮部Dと、充填材が充填された精
溜段部Eと、アンモニア水濃溶液(アンモニア濃度が高
い水溶液。以下、濃溶液と呼ぶ)流入管とアンモニア水
希溶液(アンモニア濃度が低い水溶液。以下、希溶液と
呼ぶ)取り出し管とを備えるとともに多量の濃溶液が保
持された発生部Fと、発生部Fを加熱するガスバーナー
等の加熱源72とから構成されていた。
2. Description of the Related Art Conventionally, this type of absorption heat pump is not for home use but for business use. As shown in FIG.
Generator / rectifier 50 in which a generator and a rectifier are integrally configured
And a condenser 53 having a coolant passage 51 on the primary side and a cooling water passage 52 on the secondary side, a coolant tank 54 provided at the outlet of the condenser coolant passage 51, a supercooler 55, and expansion. Valve 56
An evaporator 59 having a refrigerant flow path 57 on the primary side and a cold water flow path 58 on the secondary side, a solution heat exchanger 60, and a pressure reducing valve 61.
An absorber 64 having a coolant channel 62 on the primary side and a cooling water channel 63 on the secondary side; a concentrated solution tank 65 provided at the outlet of the absorber coolant channel 62; a solution pump 66; It is composed of a refrigerant pipe 67 that connects each component, a cooling water circuit 68 that connects the secondary cooling water flow paths of the condenser and the absorber, and a cold water circuit 69 that includes the secondary cooling water circuit of the evaporator. It had been. The generator / rectifier 50 is filled with a large amount of concentrated ammonia water solution, and such a configuration is called a full liquid type. The generator / rectifier 50 is installed in a large-diameter cylindrical tower.
The packing material is filled with a packing material D, which is composed of a partial condenser 70 having a structure in which a metal tube is wound in a coil shape (generally called a flexible tube heat exchanger) and a filler material 71 arranged around the former. A rectification stage E, an ammonia water concentrated solution (an aqueous solution having a high ammonia concentration; hereinafter referred to as a concentrated solution) inflow pipe, and a dilute ammonia water solution (an aqueous solution having a low ammonia concentration; hereinafter referred to as a dilute solution) withdrawal pipe are provided. In addition, it is composed of a generating part F that holds a large amount of concentrated solution, and a heating source 72 such as a gas burner that heats the generating part F.

【0003】以下に、その動作に付いて説明する。溶液
ポンプ66によりアンモニア水濃溶液は、発生・精溜器
50の分縮器Dに送られそこで分縮熱により加熱される
(分縮熱回収)。次に、溶液熱交換器60で精溜器の希
溶液取り出し管より戻ってくる高温の希溶液と熱交換し
昇温する。続いて、濃溶液は、濃溶液流入管より発生・
精溜器50に導入され、加熱源72により発生部Fにあ
る濃溶液は加熱され蒸気を発生する。発生した蒸気は、
圧力・温度に見合う平衡蒸気であり、アンモニアととも
に水蒸気を含んでいる。発生した平衡蒸気は、精溜段部
E、分縮部Dと上昇してゆくが、分縮器70で生じた凝
縮液と精溜段で接触し冷却される。その時、蒸気中の水
蒸気の方が液化し易く、ほとんどの水蒸気と小量のアン
モニア蒸気は凝縮して滴下する。一方、ほとんどのアン
モニア蒸気はそのまま上昇して行く。こうした分縮器7
0の冷却によるアンモニア蒸気の濃縮過程が精溜段部E
の中で繰り返し行われる結果、塔頂部の精溜ガス取り出
し管からは100%に近い高純度のアンモニア蒸気を取
り出す事ができる。一方、高温・低濃度の平衡液体(希
溶液)は、発生・精溜器50の希溶液取り出し管より溶
液熱交換器60に至り、そこで濃溶液と熱交換すること
により冷却される。その後、減圧弁61を経て吸収器6
4に入る。また、低温・高濃度のアンモニア蒸気は、精
溜器の精溜ガス取り出し管より凝縮器53、過冷却器5
5、膨張弁56、蒸発器59、過冷却器55を経て吸収
器64に入る。蒸発器59で冷水を作り出す事ができ
る。吸収器64内では、吸収熱が奪われることにより、
希溶液にアンモニアガスが吸収され濃溶液が再生され
る。
The operation will be described below. The concentrated ammonia water solution is sent to the dephlegmator D of the generator / rectifier 50 by the solution pump 66 and is heated there by the dephlegmated heat (decomposition heat recovery). Next, the solution heat exchanger 60 exchanges heat with the high temperature dilute solution returned from the dilute solution take-out pipe of the rectifier to raise the temperature. Then, the concentrated solution is generated from the concentrated solution inflow pipe.
The concentrated solution introduced into the rectifier 50 and heated by the heating source 72 is heated by the heating source 72 to generate steam. The generated steam is
It is an equilibrium vapor that matches the pressure and temperature and contains water vapor along with ammonia. The generated equilibrium vapor rises to the rectification stage section E and the decondensation section D, but comes into contact with the condensate generated in the dephlegmator 70 in the rectification stage and is cooled. At that time, the steam in the steam is more easily liquefied, and most of the steam and a small amount of ammonia steam are condensed and dropped. On the other hand, most of the ammonia vapor rises as it is. Such a divider 7
The concentration process of ammonia vapor by cooling 0
As a result of being repeatedly carried out in the column, high-purity ammonia vapor close to 100% can be taken out from the rectification gas taking-out pipe at the top of the column. On the other hand, the high temperature / low concentration equilibrium liquid (dilute solution) reaches the solution heat exchanger 60 from the dilute solution take-out pipe of the generator / rectifier 50, where it is cooled by exchanging heat with the concentrated solution. Then, after passing through the pressure reducing valve 61, the absorber 6
Enter 4. Further, the low temperature and high concentration ammonia vapor is discharged from the rectifying gas extraction pipe of the rectifying device to the condenser 53 and the supercooler 5.
5, the expansion valve 56, the evaporator 59, the supercooler 55, and the absorber 64. Cold water can be produced by the evaporator 59. In the absorber 64, absorption heat is taken away,
Ammonia gas is absorbed in the dilute solution and the concentrated solution is regenerated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
吸収式ヒートポンプでは、業務用でサイズが大きく、か
つ発生・精溜器を満液式としているので、運転立ち上げ
時多量のアンモニア水を所定の温度(蒸気発生温度)ま
で加熱する必要があり、そのため運転立ち上げが遅いと
いう課題を有していた。また、アンモニア水の充填量が
多く、漏洩時には、大きな被害を及ぼす恐れがあった。
However, since the conventional absorption heat pump has a large size for commercial use and the generator / rectifier is a full liquid type, a large amount of ammonia water can be stored in a predetermined amount when the operation is started. Since it is necessary to heat to the temperature (steam generation temperature), there is a problem that the start-up of operation is slow. In addition, the amount of ammonia water filled was large, and there was a risk of serious damage when leaking.

【0005】さらに、発生・精溜器50内で生じた希溶
液は、流入する濃溶液と混合するため、発生・精溜器5
0の希溶液取り出し管より流出する希溶液(吸収液とな
る)の濃度は高くなる。また、溶液熱交換器60に流入
する濃溶液の温度は、精溜器で回収する分縮熱により高
くなるため、精溜器より流出する希溶液(吸収器内でア
ンモニアガスを吸収するための吸収液となる)の温度を
濃溶液の温度以下にすることができない。その結果、溶
液ポンプ66の循環量を多くするとともに、希溶液の温
度を下げる必要があり、吸収熱はもとより多量の熱を系
外に廃棄しなければならず、吸収式システムの成績係数
が低いという課題を有していた。
Furthermore, since the dilute solution produced in the generator / rectifier 50 is mixed with the concentrated solution flowing in, the generator / rectifier 5
The concentration of the dilute solution (which becomes the absorbing liquid) flowing out from the dilute solution take-out pipe of 0 becomes high. Further, the temperature of the concentrated solution flowing into the solution heat exchanger 60 becomes higher due to the partial condensation heat recovered in the rectifier, so that the diluted solution flowing out from the rectifier (for absorbing the ammonia gas in the absorber, The temperature of the absorbing solution) cannot be lower than the temperature of the concentrated solution. As a result, the circulation rate of the solution pump 66 must be increased and the temperature of the dilute solution must be lowered, and a large amount of heat as well as absorption heat must be discarded out of the system, and the coefficient of performance of the absorption system is low. Had a problem.

【0006】また、2次側冷却水回路の放熱状態、これ
は主として外気条件により影響されるが、この外気条件
によりサイクル動作が不安定となったり、成績係数が低
下するといった課題を有していた。
Further, the heat radiation state of the secondary side cooling water circuit, which is mainly influenced by the outside air condition, has a problem that the cycle operation becomes unstable and the coefficient of performance is lowered due to this outside air condition. It was

【0007】本発明は、上記課題を解決するもので、小
型で、運転立ち上げが速く、少ない冷媒充填量でサイク
ル動作が可能で、かつサイクル成績係数を高めることが
できる家庭用の吸収式ヒートポンプを提供することを第
1の目的とする。
The present invention solves the above problems and is a compact absorption heat pump for home use which is small in size, has a quick start-up, can be cycled with a small amount of refrigerant, and can improve the cycle coefficient of performance. The first purpose is to provide.

【0008】また、外気条件に依らず、高効率でかつ安
定したサイクル動作を行うことができる家庭用の吸収式
ヒートポンプを提供することを第2の目的とする。
A second object of the present invention is to provide a domestic absorption heat pump capable of performing highly efficient and stable cycle operation irrespective of outside air conditions.

【0009】[0009]

【課題を解決するための手段】本発明の吸収式ヒートポ
ンプは、上記目的を達成するために、分縮部と、精溜段
部と、気液分離部とを有し、精溜器内の温度を検知する
塔内温度検知器と、少なくとも気液分離部に加熱器を備
えた精溜器と、凝縮器と、凝縮器出口に設けられた冷媒
タンクと、過冷却器と、膨張弁と、蒸発器と、溶液熱交
換器と、減圧弁と、吸収器と、吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、各要素部品
を連結する配管と、制御器とを備え、運転開始時、制御
器により、塔内温度検知器が検出する精溜器内の温度が
所定の温度よりも低い場合に、加熱器による加熱を行
い、精溜器内が所定の温度に達した時に運転を開始する
ように構成してある。
In order to achieve the above-mentioned object, an absorption heat pump of the present invention has a partial condensing section, a rectifying step section, and a gas-liquid separating section. A temperature detector in the tower for detecting the temperature, a rectifier equipped with a heater at least in the gas-liquid separation section, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, and an expansion valve. , An evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, a pipe connecting each component, and a controller When the temperature inside the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature by the controller at the start of the operation, heating is performed by the heater and the inside of the rectifier is set to the predetermined value. It is configured to start operation when the temperature is reached.

【0010】また、分縮部と、精溜段部と、気液分離部
とを有し、精溜器内の温度を検知する塔内温度検知器を
備えた精溜器と、精溜器分縮部への濃溶液流入量を調節
する分岐量調節弁と、凝縮器と、凝縮器出口に設けられ
た冷媒タンクと、過冷却器と、膨張弁と、蒸発器と、溶
液熱交換器と、減圧弁と、吸収器と、前記吸収器出口に
設けられた濃溶液タンクと、溶液ポンプと、再生器と、
各要素部品を連結する配管と、制御器とを備え、制御器
により、塔内温度検知器が検出する精溜器内の温度が所
定の温度よりも低い場合に、分岐量調節弁を閉じて運転
を開始し、精溜器内が所定の温度に達した時に分岐量調
節弁を所定の開度に開くように構成してある。
Further, a rectifier having a dephlegmating section, a rectifying stage section, a gas-liquid separating section, and a column temperature detector for detecting the temperature in the rectifier, and the rectifier. A branch amount control valve that controls the amount of concentrated solution flowing into the condensing unit, a condenser, a refrigerant tank provided at the condenser outlet, a subcooler, an expansion valve, an evaporator, and a solution heat exchanger. A pressure reducing valve, an absorber, a concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator,
A pipe for connecting each component and a controller are provided, and when the temperature in the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature by the controller, the branch amount control valve is closed. When the operation is started and the inside of the rectifier reaches a predetermined temperature, the branch amount control valve is opened to a predetermined opening.

【0011】また、分縮部と、精溜段部と、気液分離部
とを有し、精溜器内の温度を検知する塔内温度検知器
と、少なくとも気液分離部に加熱器を備えた精溜器と、
精溜器分縮部への濃溶液流入量を調節する分岐量調節弁
と、凝縮器と、凝縮器出口に設けられた冷媒タンクと、
過冷却器と、膨張弁と、蒸発器と、溶液熱交換器と、減
圧弁と、吸収器と、吸収器出口に設けられた濃溶液タン
クと、溶液ポンプと、再生器と、各要素部品を連結する
配管と、制御器とを備え、制御器により、塔内温度検知
器が検出する精溜器内の温度が所定の温度よりも低い場
合に、分岐量調節弁を閉じるとともに加熱器による加熱
を行って運転を開始し、前記精溜器内が所定の温度に達
した時に分岐量調節弁を所定の開度に開くように構成し
てある。
[0011] Further, a tower temperature detector for detecting the temperature in the rectifier, which has a partial condensing section, a rectification stage section, and a gas-liquid separation section, and a heater for at least the gas-liquid separation section. Equipped rectifier,
A branch amount control valve for controlling the inflow amount of the concentrated solution to the rectifier dephlegmating section, a condenser, and a refrigerant tank provided at the condenser outlet,
Supercooler, expansion valve, evaporator, solution heat exchanger, pressure reducing valve, absorber, concentrated solution tank provided at absorber outlet, solution pump, regenerator, and each component And a controller for connecting the pipe, and when the temperature in the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature by the controller, the branch amount control valve is closed and the heater is used. The operation is started by performing heating, and when the inside of the rectifier reaches a predetermined temperature, the branch amount control valve is opened to a predetermined opening.

【0012】また、精溜器と、精溜器内の温度を検知す
る塔内温度検知器と、1次側に冷媒流路と2次側に冷却
水流路を有する凝縮器と、凝縮器冷媒流路出口に設けら
れた冷媒タンクと、過冷却器と、膨張弁と、1次側に冷
媒流路と2次側に冷水流路を有する蒸発器と、溶液熱交
換器と、減圧弁と、1次側に冷媒流路と2次側に冷却水
流路を有する吸収器と、吸収器冷媒流路出口に設けられ
た濃溶液タンクと、溶液ポンプと、再生器と、各要素部
品を連結する1次側冷媒配管と2次側水配管と、制御器
とを備え、制御器により、塔内温度検知器が検出する精
溜器内の温度が所定の温度よりも低い場合に、少なくと
も凝縮器の2次側冷却水の循環を停止して運転を開始
し、精溜器内が所定の温度に達した時に凝縮器2次側冷
却水を所定量循環させるように構成してある。
Further, a rectifier, a temperature detector in the tower for detecting the temperature in the rectifier, a condenser having a refrigerant passage on the primary side and a cooling water passage on the secondary side, and a condenser refrigerant A refrigerant tank provided at the flow path outlet, a supercooler, an expansion valve, an evaporator having a refrigerant flow path on the primary side and a cold water flow path on the secondary side, a solution heat exchanger, and a pressure reducing valve. An absorber having a coolant channel on the primary side and a cooling water channel on the secondary side, a concentrated solution tank provided at the outlet of the absorber coolant channel, a solution pump, a regenerator, and each component are connected At least when the temperature inside the rectifier detected by the temperature detector inside the tower is lower than a predetermined temperature by the controller. The circulation of the cooling water on the secondary side of the condenser is stopped and the operation is started. When the temperature inside the rectifier reaches a predetermined temperature, a predetermined amount of the cooling water on the secondary side of the condenser is circulated. It is configured to so that.

【0013】また、精溜器と、1次側に冷媒流路と2次
側に冷却水流路を有する凝縮器と、凝縮器冷媒流路出口
に設けられた凝縮温度検知器を備えた冷媒タンクと、過
冷却器と、膨張弁と、1次側に冷媒流路と2次側に冷水
流路を有する蒸発器と、溶液熱交換器と、減圧弁と、1
次側に冷媒流路と2次側に冷却水流路を有する吸収器
と、吸収器冷媒流路出口に設けられた濃溶液タンクと、
溶液ポンプと、再生器と、各要素部品を連結する1次側
冷媒配管と2次側水配管と、制御器とを備え、制御器に
より、凝縮温度検知器が検出する凝縮温度が、所定の温
度よりも低い場合に凝縮器の2次側冷却水の循環量を減
少させ、所定の温度よりも高い場合に凝縮器の2次側冷
却水の循環量を増加させて、凝縮温度を常に所定の温度
になるように2次側冷却水量を調節するように構成して
ある。
Further, a refrigerant tank provided with a rectifier, a condenser having a refrigerant passage on the primary side and a cooling water passage on the secondary side, and a condensation temperature detector provided at the outlet of the condenser refrigerant passage. , A supercooler, an expansion valve, an evaporator having a refrigerant channel on the primary side and a cold water channel on the secondary side, a solution heat exchanger, a pressure reducing valve, 1
An absorber having a refrigerant channel on the secondary side and a cooling water channel on the secondary side; a concentrated solution tank provided at the absorber refrigerant channel outlet;
It is provided with a solution pump, a regenerator, a primary-side refrigerant pipe connecting the respective component parts, a secondary-side water pipe, and a controller, and the controller allows the condensation temperature detected by the condensation temperature detector to be a predetermined value. When the temperature is lower than the temperature, the circulation amount of the secondary side cooling water of the condenser is decreased, and when the temperature is higher than a predetermined temperature, the circulation amount of the secondary side cooling water of the condenser is increased to keep the condensing temperature at a predetermined level. The secondary side cooling water amount is adjusted so as to reach the above temperature.

【0014】また、精溜器と、1次側に精溜器からの精
溜ガスが流入する冷媒流路と2次側に冷却水流路を有す
る凝縮器と、凝縮器冷媒流路出口に設けられた凝縮温度
検知器を備えた冷媒タンクと、凝縮器の冷媒流路入り口
と出口を連結し、かつバイパス量調節弁を備えたバイパ
ス回路と、過冷却器と、膨張弁と、1次側に冷媒流路と
2次側に冷水流路を有する蒸発器と、溶液熱交換器と、
減圧弁と、1次側に冷媒流路と2次側に冷却水流路を有
する吸収器と、吸収器冷媒流路出口に設けられた濃溶液
タンクと、溶液ポンプと、再生器と、各要素部品を連結
する冷媒配管とからなる冷媒回路と、凝縮器及び吸収器
の2次側冷却水流路を含む冷却水回路と、蒸発器の2次
側冷水流路を含む冷水回路と、制御器とを備え、凝縮温
度検知器が検出する凝縮温度が、所定の温度よりも低い
場合にバイパス量調節弁の開度を開き、所定の温度より
も高い場合にバイパス量調節弁の開度を閉じて、凝縮温
度を常に所定の温度になるように制御器により前記バイ
パス調節弁の開度を調節するように構成してある。
Further, a rectifier, a refrigerant channel into which rectified gas from the rectifier flows into the primary side, a condenser having a cooling water channel in the secondary side, and a condenser refrigerant channel outlet are provided. Refrigerant tank equipped with the condensed temperature detector, a bypass circuit connecting the refrigerant flow path inlet and outlet of the condenser and having a bypass amount control valve, a supercooler, an expansion valve, and a primary side An evaporator having a refrigerant channel and a cold water channel on the secondary side, a solution heat exchanger,
A pressure reducing valve, an absorber having a refrigerant passage on the primary side and a cooling water passage on the secondary side, a concentrated solution tank provided at the outlet of the absorber refrigerant passage, a solution pump, a regenerator, and each element A refrigerant circuit including a refrigerant pipe connecting components, a cooling water circuit including a secondary cooling water flow path of a condenser and an absorber, a cold water circuit including a secondary cooling water flow path of an evaporator, and a controller. The bypass amount control valve is opened when the condensation temperature detected by the condensation temperature detector is lower than a predetermined temperature, and the bypass amount control valve is closed when the condensation temperature is higher than the predetermined temperature. The controller adjusts the opening degree of the bypass control valve so that the condensing temperature always becomes a predetermined temperature.

【0015】また、精溜器と、凝縮器と、前記凝縮器出
口に設けられた冷媒タンクと、過冷却器と、膨張弁と、
蒸発器と、溶液熱交換器と、減圧弁と、吸収器と、吸収
器出口に設けられた濃溶液タンクと、溶液ポンプと、溶
液ポンプの吸入及び吐出側に設けられた吸入温度検知器
及び吐出温度検知器と、再生器と、各要素部品を連結す
る冷媒配管と、制御器とを備え、吐出温度検知器と吸入
温度検知器の温度差が所定の温度差よりも大きい場合は
溶液ポンプの回転数を減少させて、常に所定の温度差以
内となるように前記制御器により溶液ポンプの回転数を
制御するように構成してある。
Further, a rectifier, a condenser, a refrigerant tank provided at the outlet of the condenser, a subcooler, an expansion valve,
An evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a suction temperature detector provided at the suction and discharge sides of the solution pump, and A discharge temperature detector, a regenerator, a refrigerant pipe connecting each component, and a controller, and a solution pump if the temperature difference between the discharge temperature detector and the suction temperature detector is larger than a predetermined temperature difference. The rotational speed of the solution pump is controlled so that the rotational speed of the solution pump is decreased so that the temperature difference is always within a predetermined temperature difference.

【0016】また、精溜器と、1次側に精溜器からの精
溜ガスが流入する冷媒流路と2次側に冷却水流路を有す
る凝縮器と、凝縮器冷媒流路出口に設けられた凝縮温度
検知器を備えた冷媒タンクと、凝縮器の冷媒流路入り口
と出口を連結し、かつバイパス量調節弁を備えたバイパ
ス回路と、過冷却器と、膨張弁と、1次側に冷媒流路と
2次側に冷水流路を有する蒸発器と、溶液熱交換器と、
減圧弁と、1次側に冷媒流路と2次側に冷却水流路を有
する吸収器と、吸収器冷媒流路出口に設けられた濃溶液
タンクと、溶液ポンプと、溶液ポンプの吸入及び吐出側
に設けられた吸入温度検知器及び吐出温度検知器と、再
生器と、各要素部品を連結する冷媒配管とからなる冷媒
回路と、凝縮器及び吸収器の2次側冷却水流路に並列に
流す構成としてなる冷却水回路と、蒸発器の2次側冷水
流路を含む冷水回路と、制御器とを備え、制御器によ
り、吸入温度検知器が検出する温度と、吸入温度検知器
と吐出温度検知器とが検出する温度差より、冷却水回路
の流量及び溶液ポンプ回転数を調節すると共に、凝縮温
度検知器が検出する凝縮温度より、バイパス量調節弁の
開度を調節するように構成してある。
Further, a rectifier, a refrigerant passage into which rectification gas from the rectifier flows into the primary side, a condenser having a cooling water passage into the secondary side, and a condenser refrigerant passage outlet are provided. Refrigerant tank equipped with the condensed temperature detector, a bypass circuit connecting the refrigerant flow path inlet and outlet of the condenser and having a bypass amount control valve, a supercooler, an expansion valve, and a primary side An evaporator having a refrigerant channel and a cold water channel on the secondary side, a solution heat exchanger,
A pressure reducing valve, an absorber having a refrigerant passage on the primary side and a cooling water passage on the secondary side, a concentrated solution tank provided at the outlet of the absorber refrigerant passage, a solution pump, and suction and discharge of the solution pump. Side inlet side temperature detector and outlet temperature temperature detector, a regenerator, a refrigerant circuit consisting of a refrigerant pipe connecting each component, and a secondary side cooling water flow path of a condenser and an absorber in parallel. A cooling water circuit configured to flow, a cooling water circuit including a secondary side cold water flow path of the evaporator, and a controller are provided, and the controller detects the temperature detected by the intake temperature detector, the intake temperature detector, and the discharge. It is configured to adjust the flow rate of the cooling water circuit and the solution pump rotation speed based on the temperature difference detected by the temperature detector, and adjust the opening of the bypass amount control valve based on the condensation temperature detected by the condensation temperature detector. I am doing it.

【0017】また、精溜器は、精溜塔と、精溜塔の上方
より、精溜ガス取り出し管と、下方端に溶液ポンプ吐出
濃溶液の一部を分岐量調節弁により調節して塔内に流出
させる開口部を有する分縮熱交換器と前記分縮熱交換器
の周囲に充填された充填材とならなる分縮部と、空隙
と、充填材が充填された精溜段部と、高温濃溶液流入管
と希溶液取り出し管とを備えた空間より構成された気液
分離部とから構成してある。
The rectifier is a rectification tower, a rectification gas take-out pipe from above the rectification tower, and a part of the concentrated solution discharged from the solution pump at the lower end of the rectification tower, and a part of the concentrated solution is adjusted by a branch amount control valve. A partial condensation heat exchanger having an opening to be discharged into the inside, a partial shrinkage portion which is a filling material filled around the partial condensation heat exchanger, a void, and a rectification step portion filled with the filling material. , And a gas-liquid separation section composed of a space provided with a high temperature concentrated solution inflow tube and a dilute solution withdrawal tube.

【0018】[0018]

【作用】本発明は、上記した構成によって、運転開始
時、加熱器による加熱により精溜器の気液分離部を温度
検知器の所定の温度まで加熱して、精溜器内が所定の温
度に達したときには、精溜器内をその温度に応じた飽和
圧力(高圧)とする。
According to the present invention, with the above-described structure, when the operation is started, the gas-liquid separation part of the rectifier is heated to the predetermined temperature of the temperature detector by the heating by the heater so that the inside of the rectifier has the predetermined temperature. When the temperature reaches, the inside of the rectifier is brought to a saturated pressure (high pressure) according to the temperature.

【0019】また、ポンプ吐出濃溶液の一部を精溜器内
に流出させる精溜器を用いて、分岐量調節弁を閉じて低
温の濃溶液を精溜器内に流出させないで運転を開始する
ので、精溜器内の温度を素早く高めるとともに、その温
度に応じた飽和圧力とする。
Further, by using a rectifier for discharging a part of the concentrated solution discharged from the pump into the rectifier, the branch amount control valve is closed to start the operation without flowing the low temperature concentrated solution into the rectifier. Therefore, the temperature in the rectifier is quickly raised and the saturation pressure is adjusted according to the temperature.

【0020】また、前述したような加熱器と分岐量調節
弁を併用することにより、より確実に精溜器内の温度を
高めて、その温度に応じた飽和圧力とする。
Further, by using the heater and the branch amount control valve together as described above, the temperature in the rectifier can be more surely raised to a saturation pressure corresponding to the temperature.

【0021】また、2次側冷却水の循環を停止して運転
を開始しても、同様の作用を有する。
Further, even if the operation is started after the circulation of the secondary side cooling water is stopped, the same effect is obtained.

【0022】また、サイクル動作の高圧は凝縮温度で決
定されるが、凝縮温度が所定の温度となるように、2次
側冷却水循環量を制御することとしているので、外気条
件に依らず、高圧を一定に保つ。
The high pressure of the cycle operation is determined by the condensing temperature. Since the secondary side cooling water circulation amount is controlled so that the condensing temperature becomes a predetermined temperature, the high pressure does not depend on the outside air condition. Keep constant.

【0023】また、凝縮器にバイパス回路を設けて、凝
縮温度が所定の温度となるように、凝縮器バイパス量を
制御することにより、高圧を一定に保つ。
Further, by providing a bypass circuit in the condenser and controlling the condenser bypass amount so that the condensation temperature becomes a predetermined temperature, the high pressure is kept constant.

【0024】また、溶液ポンプはそれ自体が若干発熱
し、圧縮効果を有するので、溶液ポンプの吸入・吐出に
温度検知器を設けて、その温度差より溶液ポンプの動作
を判定する。そして、キャビテーションのないポンプ運
転を実現する。
Further, since the solution pump itself generates a little heat and has a compression effect, a temperature detector is provided at the suction / discharge of the solution pump, and the operation of the solution pump is judged from the temperature difference. And, the pump operation without cavitation is realized.

【0025】また、凝縮温度が一定となるように制御す
るとともに、溶液ポンプの吸入・吐出温度より溶液ポン
プ運転を制御することにより、高圧を一定に保つと共
に、キャビテーションのない溶液ポンプ運転をする。
By controlling the condensing temperature to be constant and controlling the solution pump operation based on the suction / discharge temperature of the solution pump, the high pressure is kept constant and the solution pump operation without cavitation is performed.

【0026】さらに、分縮熱交換器の下方端開口部より
濃溶液の一部を精溜塔内に流出させることにより、充填
層部では分縮熱交換器を経て流下する濃溶液と、高温濃
溶液流入管を通って塔内に流入し上昇してくる高温濃溶
液の平衡蒸気とを熱交換させて、発生器より流入する高
温濃溶液の平衡蒸気の熱で分縮熱交換器を経て流下する
濃溶液を加熱して、分縮部下付近で高温濃溶液よりも低
い温度でかつアンモニア濃度の高い平衡蒸気を所定量発
生させる。そして、高温でアンモニア濃度の低い平衡蒸
気は、その熱エネルギーを分縮部を経て塔内に流出する
濃溶液から低温でアンモニア濃度の高い蒸気を発生する
ために用いる(熱回収)とともに、自らも低温でアンモ
ニア濃度の高い蒸気となる。その結果、再生器の入力熱
量を低減させることができ、サイクルの成績係数を高め
るという作用を有する。
Further, a part of the concentrated solution is made to flow out into the rectification column from the lower end opening of the partial condensation heat exchanger, so that the concentrated solution flowing down through the partial condensation heat exchanger and the high temperature in the packed bed portion. Heat is exchanged with the equilibrium vapor of the high temperature concentrated solution flowing into the tower through the concentrated solution inflow pipe and rising, and the heat of the equilibrium vapor of the high temperature concentrated solution flowing from the generator is passed through the partial condensation heat exchanger. The flowing concentrated solution is heated to generate a predetermined amount of equilibrium vapor having a higher ammonia concentration at a temperature lower than that of the high temperature concentrated solution in the vicinity of the partial condensing part. The equilibrium vapor with high ammonia concentration at high temperature is used to generate the vapor with high ammonia concentration at low temperature from the concentrated solution flowing its thermal energy into the tower through the dephlegmator (heat recovery), and also by itself. It becomes a vapor with a high ammonia concentration at low temperatures. As a result, the amount of heat input to the regenerator can be reduced and the coefficient of performance of the cycle can be increased.

【0027】[0027]

【実施例】以下、本発明の吸収式ヒートポンプの一実施
例を図1を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the absorption heat pump of the present invention will be described below with reference to FIG.

【0028】図1において、1は精溜器、2は積層式熱
交換器として凝縮器3と吸収器4とを一体構成としてな
る凝縮・吸収器、5は積層式熱交換器として過冷却器6
と蒸発器7とを一体構成としてなる過冷却・蒸発器、8
は溶液熱交換器、9は溶液ポンプ、10は再生器、11
は冷媒タンク、12は濃溶液タンク、13は膨張弁、1
4は減圧弁、15は分岐量調節弁、16は各要素部品を
連結する冷媒配管、17は冷却水回路、18は冷水回
路、19は精溜器1内の温度を検出する塔内温度検知
器、20は例えば電気ヒーターなどの加熱器、21は塔
内温度検知器19の温度信号を元に加熱器20の通電を
制御する制御器である。精溜器1は、上方より精溜ガス
取り出し管1a、溶液ポンプ吐出濃溶液の一部が分岐量
調節弁15により調節されて流入し、塔内に流出する蛇
管式熱交換器1bとその周囲に充填された充填材1cと
からなる分縮部Aと、充填材1cが充填された精溜段部
Bと、高温濃溶液導入管1dと希溶液取り出し管1eと
を備えた空間を有する気液分離部Cである。なお、分縮
部A及び精溜段部Bの充填材1cの保持の目的で実際に
は上下にデミスターを配置している。精溜器1と再生器
10とを分離した構成は貫流式と呼ばれ、再生器10、
精溜器1ともに必要最小限のサイズで設計できるととも
に、希溶液の濃度を確保することが出来る。。そして、
熱交換器を積層式とした構成では、アンモニア水の充填
量を最小限にすることができる。
In FIG. 1, 1 is a rectifier, 2 is a condenser / absorber in which a condenser 3 and an absorber 4 are integrated as a laminated heat exchanger, and 5 is a supercooler as a laminated heat exchanger. 6
A supercooling / evaporator 8 in which the evaporator and the evaporator 7 are integrally configured,
Is a solution heat exchanger, 9 is a solution pump, 10 is a regenerator, 11
Is a refrigerant tank, 12 is a concentrated solution tank, 13 is an expansion valve, 1
Reference numeral 4 is a pressure reducing valve, 15 is a branch amount control valve, 16 is a refrigerant pipe connecting each component, 17 is a cooling water circuit, 18 is a cold water circuit, and 19 is a tower temperature detection for detecting the temperature in the rectifier 1. Reference numeral 20 is a heater such as an electric heater, and 21 is a controller for controlling the energization of the heater 20 based on the temperature signal from the in-column temperature detector 19. In the rectifier 1, a rectifying gas take-out pipe 1a and a part of the concentrated solution discharged from the solution pump are adjusted by a branching amount adjusting valve 15 to flow in from the upper side, and a spiral tube heat exchanger 1b and its surroundings flow out into the tower. A gas having a space provided with a decondensation part A composed of a filling material 1c filled in, a rectifying step part B filled with the filling material 1c, a high temperature concentrated solution introducing pipe 1d and a dilute solution extracting pipe 1e. It is the liquid separation section C. Note that demisters are actually arranged above and below for the purpose of holding the filling material 1c in the partial contraction section A and the rectification step section B. The configuration in which the rectifier 1 and the regenerator 10 are separated is called a once-through type, and the regenerator 10,
Both the rectifier 1 and the rectifier 1 can be designed to have a necessary minimum size, and the concentration of the dilute solution can be secured. . And
In the case where the heat exchanger is of a laminated type, the filling amount of ammonia water can be minimized.

【0029】次に、サイクル動作に付いて説明する。溶
液ポンプ9により、濃溶液の一部は精溜器分縮部Aに送
られ、残りは溶液熱交換器8に送られる。溶液熱交換器
8に送られた濃溶液は精溜器1下部より流出する希溶液
と熱交換し加熱され昇温する。続いて、再生器10に送
られ所定の2相域の温度まで加熱され、精溜器1内に高
温濃溶液導入管1dを通して流入する。一方、分縮部A
に送られた濃溶液は、分縮熱により加熱され蒸気発生温
度まで昇温する。そして、蒸気発生温度で精溜器1内に
導入される。こうした濃溶液の一部を精溜器1内に導入
する方法(以下、分岐方式と呼ぶ)は、基本方式に比べ
て成績係数COPを高くすることができる。
Next, the cycle operation will be described. By the solution pump 9, a part of the concentrated solution is sent to the rectifier decondensing section A, and the rest is sent to the solution heat exchanger 8. The concentrated solution sent to the solution heat exchanger 8 exchanges heat with the dilute solution flowing out from the lower portion of the rectifier 1 to be heated and heated. Then, it is sent to the regenerator 10 and heated to a predetermined temperature in the two-phase region, and then flows into the rectifier 1 through the high temperature concentrated solution introducing pipe 1d. On the other hand, the division part A
The concentrated solution sent to is heated by partial condensation heat and is heated to the steam generation temperature. Then, it is introduced into the rectifier 1 at the steam generation temperature. The method of introducing a part of the concentrated solution into the rectifier 1 (hereinafter referred to as a branch method) can increase the coefficient of performance COP as compared with the basic method.

【0030】その理由は、精溜段部Bにおいて、再生器
10を経て流入する高温濃溶液の蒸気が有する熱の一部
で、分縮部Aより蒸気発生温度で精溜器1内に流入する
濃溶液の一部を加熱して低温のガスを発生させるととも
に、高温蒸気自体は低温の蒸気となる。こうして、所定
量の低温の蒸気を発生させることができる。こうして、
蒸気発生過程における発生器の負担を低減することがで
き、その結果COPを高くすることができる。なお、精
溜段部Bの設計は、分岐して流入する濃溶液の温度(蒸
気発生温度)を還流液温度とすることにより行われる。
精溜器1の塔頂より流出した精溜ガスは、凝縮器3、冷
媒タンク11、過冷却器6、膨張弁13、蒸発器7、過
冷却器6を経て吸収器4に至る。一方、精溜器1下部よ
り流出した希溶液は溶液熱交換器8、減圧弁14を経て
吸収器4に至る。吸収器4では希溶液に精溜ガス(アン
モニア)が吸収されて濃溶液が再生される。
The reason is that a part of the heat of the vapor of the high temperature concentrated solution flowing through the regenerator 10 in the rectification stage B is introduced into the rectifier 1 at the vapor generation temperature from the partial condensing unit A. A part of the concentrated solution is heated to generate a low temperature gas, and the high temperature steam itself becomes a low temperature steam. In this way, a predetermined amount of low temperature steam can be generated. Thus
The load on the generator during the steam generation process can be reduced, and as a result, the COP can be increased. The rectification stage B is designed by setting the temperature of the concentrated solution that branches and flows in (vapor generation temperature) to the reflux liquid temperature.
The rectified gas flowing out from the top of the rectifier 1 reaches the absorber 4 via the condenser 3, the refrigerant tank 11, the subcooler 6, the expansion valve 13, the evaporator 7, and the subcooler 6. On the other hand, the dilute solution flowing out from the lower part of the rectifier 1 reaches the absorber 4 via the solution heat exchanger 8 and the pressure reducing valve 14. In the absorber 4, the dilute solution absorbs the rectified gas (ammonia) to regenerate the concentrated solution.

【0031】上述した構成では、満液式と異なり、濃溶
液の主たる貯液は、濃溶液タンク12で行われる。濃溶
液タンク12容量は、家庭用機器を想定するとできるだ
け少なく設計される。我々は鋭意検討の結果、貫流方式
でスムーズな運転立ち上げを行うためには、運転を開始
して濃溶液タンク12内の濃溶液が無くならない内に精
溜器1内がある設定圧力以上になることが必要である事
を見いだした。精溜器1内が高圧となり、吸収器内圧力
(低圧)とある差圧以上になると希溶液を吸収器4に送
る推進力が生じ、濃溶液が濃溶液タンク12に補充され
る。
In the above-mentioned structure, unlike the full-filled type, the concentrated solution is mainly stored in the concentrated solution tank 12. The volume of the concentrated solution tank 12 is designed to be as small as possible assuming home appliances. As a result of diligent studies, we have found that in order to smoothly start up the operation by the once-through method, the operation is started and the concentrated solution in the concentrated solution tank 12 is not exhausted, and the rectifier 1 has a pressure higher than a set pressure. I found that it was necessary to become. When the pressure inside the rectifier 1 becomes high and the pressure inside the absorber (low pressure) exceeds a certain differential pressure, a propulsive force for sending the dilute solution to the absorber 4 is generated, and the concentrated solution is replenished in the concentrated solution tank 12.

【0032】しかしながら、長時間運転停止時、系内に
充填されているアンモニア水は、濃溶液タンク12以外
に、精溜器1内にも分布するとともに、系全体の温度は
低くなっている。その状態から、運転を開始すると、精
溜器1の温度が低く、かつこれ自体が熱容量を持つた
め、再生器10より温度の高い濃溶液が流入しても、な
かなか精溜器1内の圧力を持ち上げるには至らず、その
うち濃溶液タンク12内の濃溶液がなくなってしまい、
溶液ポンプ9による送液が出来ず、再生器10が空焼き
となり、溶液ポンプ9及び再生器10に損傷を与えると
共に、運転立ち上げが出来ないことが時折観察された。
この現象は、充填量を増して行くことで回避できるが、
余り充填量を増すと過負荷運転時に高圧が異常に上昇し
たり、能力低下を起こす。そのために、適正充填量で安
定した運転立ち上げができる手段を検討し、本発明に至
った。
However, when the operation is stopped for a long time, the ammonia water filled in the system is distributed not only in the concentrated solution tank 12 but also in the rectifier 1, and the temperature of the entire system is low. When the operation is started from that state, since the temperature of the rectifier 1 is low and has a heat capacity itself, even if a concentrated solution having a temperature higher than that of the regenerator 10 flows in, the pressure in the rectifier 1 is quite low. Was not lifted up, and eventually the concentrated solution in the concentrated solution tank 12 ran out,
It was occasionally observed that the solution pump 9 could not be fed, the regenerator 10 was burnt out, which caused damage to the solution pump 9 and the regenerator 10, and the operation could not be started up.
This phenomenon can be avoided by increasing the filling amount,
If the filling amount is increased too much, the high pressure will rise abnormally during overload operation and the capacity will deteriorate. Therefore, the inventors have studied the means capable of stable operation startup with an appropriate filling amount, and have reached the present invention.

【0033】第1の実施例においては、精溜器1の気液
分離部Cの回りに、加熱器20を設けて、塔内温度検知
器19が検出する精溜器1内の温度が低い場合には、制
御器21により加熱器20に通電し、所定の温度(約5
0℃)まで加熱する。そして、所定の温度に精溜器1内
の温度が達したときに運転を開始する。これにより、精
溜器1内の圧力(高圧)は直ちに上昇し、確実にサイク
ル動作に入ることができる。
In the first embodiment, a heater 20 is provided around the gas-liquid separation section C of the rectifier 1 so that the temperature inside the rectifier 1 detected by the tower temperature detector 19 is low. In this case, the controller 21 energizes the heater 20 to bring it to a predetermined temperature (about 5
(0 ° C.). Then, the operation is started when the temperature in the rectifier 1 reaches a predetermined temperature. As a result, the pressure (high pressure) in the rectifier 1 immediately rises, and the cycle operation can be surely started.

【0034】次に、第2の実施例について、図2を用い
て説明する。第2の実施例において、第1の実施例と相
違する点は、精溜器1内の温度が所定の温度以下の場合
に、制御器22により分岐量調節弁23を閉じて運転を
開始し、所定の温度に達した時に所定の開度にするよう
にした点である。分岐量調節弁23を閉じることによ
り、再生器10より流入する高温濃溶液(2相)を冷却
することがないので、精溜器1内の温度を高めることで
きる。よって、この場合も、第1の実施例と同様の効果
がある。
Next, a second embodiment will be described with reference to FIG. The second embodiment differs from the first embodiment in that when the temperature in the rectifier 1 is equal to or lower than a predetermined temperature, the controller 22 closes the branch amount control valve 23 to start the operation. The point is that the opening is set to a predetermined value when the temperature reaches a predetermined temperature. Since the high temperature concentrated solution (two-phase) flowing from the regenerator 10 is not cooled by closing the branch amount control valve 23, the temperature in the rectifier 1 can be increased. Therefore, also in this case, the same effect as the first embodiment is obtained.

【0035】次に、第3に実施例について、図3を用い
て説明する。第3の実施例は、第1と第2の実施例を併
用したもので、塔内温度が所定の温度以下の場合に、制
御器24により、分岐量調節弁23を閉じるとともに、
加熱器20の通電を行いながら運転を開始し、塔内の温
度が所定の温度に達した時に分岐量調節弁23を所定の
開度にする。これにより、より確実に精溜器1内の圧力
を高め、サイクル動作に入ることが出来る。また、塔内
温度検知器19を分縮部Aの下に近接して設けた構成に
することにより、塔内流出濃溶液温度を検出できるの
で、塔内流出濃溶液温度を適正に制御することにより精
溜効率を高くすることが出来る。
Next, a third embodiment will be described with reference to FIG. The third embodiment is a combination of the first and second embodiments, and when the temperature inside the tower is a predetermined temperature or less, the controller 24 closes the branch amount control valve 23,
The operation is started while the heater 20 is energized, and when the temperature inside the tower reaches a predetermined temperature, the branch amount control valve 23 is set to a predetermined opening. As a result, the pressure in the rectifier 1 can be increased more reliably and the cycle operation can be started. Further, since the tower inflow concentrated solution temperature can be detected by arranging the tower temperature detector 19 so as to be provided under the partial condensing unit A, the tower inflow concentrated solution temperature can be properly controlled. Therefore, the efficiency of rectification can be increased.

【0036】次に、第4の実施例について、図4を用い
て説明する。運転立ち上げ時、塔内温度が所定の温度以
下の場合に、凝縮・吸収器2の2次側冷却水流量を調節
する冷却水調節弁26を制御器25により閉じて運転を
開始し、塔内温度が所定の温度に達した時に冷却水調節
弁26を所定の開度に開くようにしている。冷却水を凝
縮器3と吸収器4に並列に流す構成とした場合には、凝
縮温度を冷却水温度近傍と見ることができる。凝縮温度
が所定の温度、例えば、30℃に達するまでは、冷却水
の循環を停止しているので、運転を開始すると系の高圧
を容易に持ち上げることができて、通常運転に入ること
ができる。なお、実施例においては、冷却水流量の調節
に冷却水調節弁26を用いたが、冷却水循環ポンプの回
転数を制御しても良いことは言うまでもない。
Next, a fourth embodiment will be described with reference to FIG. When the temperature inside the tower is below a predetermined temperature at the time of starting operation, the controller 25 closes the cooling water control valve 26 for controlling the secondary side cooling water flow rate of the condenser / absorber 2 to start the operation. The cooling water control valve 26 is opened to a predetermined opening when the internal temperature reaches a predetermined temperature. When the cooling water is made to flow in parallel to the condenser 3 and the absorber 4, the condensation temperature can be regarded as near the cooling water temperature. Since the circulation of the cooling water is stopped until the condensation temperature reaches a predetermined temperature, for example, 30 ° C, the high pressure of the system can be easily raised when the operation is started, and the normal operation can be started. . Although the cooling water control valve 26 is used for adjusting the cooling water flow rate in the embodiment, it goes without saying that the rotation speed of the cooling water circulation pump may be controlled.

【0037】次に、第5の実施例について、図5を用い
て説明する。第5の実施例が第4に実施例と相違する点
は、凝縮温度検知器27を設けて、凝縮温度を常に一定
温度となるように制御器28により冷却水調節弁26を
制御して、運転立ち上げと、サイクル動作を行う点にあ
る。凝縮温度が所定の温度より低い場合は、冷却水調節
弁26を絞り、高い場合は冷却水調節弁26を開くよう
に制御する。こうして、室外条件に依らず、常に一定の
高圧下での安定動作を実現することができる。凝縮温度
が系の高圧を決定するが、凝縮温度を低くできることは
能力出しの点では好ましいが、あまりこれが低いと高圧
が低下し、低圧との圧力差(精溜器より希溶液を押し出
す推進力)が縮まり、何れ希溶液が精溜器1内に溢れ、
ついには精溜器1上部より噴出し、能力低下を起こす。
本発明により、高圧を確実に保証できて、安定動作とす
ることができる。なお、この場合も第4の実施例同様、
冷却水流量の調節に冷却水調節弁26を用いずに、冷却
水循環ポンプの回転数を制御しても良いことは言うまで
もない。
Next, a fifth embodiment will be described with reference to FIG. The fifth embodiment is different from the fourth embodiment in that a condensing temperature detector 27 is provided and the controller 28 controls the cooling water control valve 26 so that the condensing temperature is always constant. The point is to start operation and perform cycle operation. When the condensing temperature is lower than the predetermined temperature, the cooling water control valve 26 is throttled, and when it is higher, the cooling water control valve 26 is opened. In this way, it is possible to always realize stable operation under a constant high pressure regardless of outdoor conditions. The condensing temperature determines the high pressure of the system, but it is preferable to be able to lower the condensing temperature from the viewpoint of performance, but if it is too low, the high pressure will decrease and the pressure difference from the low pressure (propulsion force that pushes the dilute solution from the rectifier) ) Shrinks and the dilute solution eventually overflows into the rectifier 1,
Eventually, it spouts from the upper part of the rectifier 1 and the capacity is lowered.
According to the present invention, a high voltage can be reliably guaranteed and stable operation can be performed. In this case also, as in the fourth embodiment,
Needless to say, the rotation speed of the cooling water circulation pump may be controlled without using the cooling water control valve 26 for adjusting the cooling water flow rate.

【0038】次に、第6の実施例について、図6を用い
て説明する。精溜器出口(凝縮器入り口)から凝縮器3
出口に至るバイパス量調節弁29を含むバイパス回路3
0を設けて、凝縮器冷媒出口に設けた凝縮温度検知器2
7の温度(凝縮温度)が一定となるように制御器31に
よりバイパス量調節弁29の開度を制御するものであ
る。凝縮温度が低い場合はバイパス量調節弁29を開
き、凝縮温度が高い場合はバイパス量調節弁29を閉じ
るように制御する。ここでは、省略しているが、塔内温
度検知器19を併用して、塔内温度検知器19により精
溜器1内の液面を監視してそれに応じてバイパス量調節
弁29を制御しても良い。
Next, a sixth embodiment will be described with reference to FIG. From the rectifier outlet (condenser inlet) to the condenser 3
Bypass circuit 3 including bypass amount control valve 29 reaching the outlet
0, and the condensation temperature detector 2 provided at the condenser refrigerant outlet
The controller 31 controls the opening degree of the bypass amount control valve 29 so that the temperature of 7 (condensation temperature) becomes constant. When the condensation temperature is low, the bypass amount control valve 29 is opened, and when the condensation temperature is high, the bypass amount control valve 29 is closed. Although not shown here, the tower temperature detector 19 is used together, the tower temperature detector 19 monitors the liquid level in the rectifier 1, and the bypass amount control valve 29 is controlled accordingly. May be.

【0039】次に、第7の実施例について、図7を用い
て説明する。溶液ポンプ9の吸入・吐出側にそれぞれ吸
入温度検知器32、吐出温度検知器33を設けてその温
度差により制御器34により、溶液ポンプ9の回転数を
制御する。溶液ポンプ9自体が発熱(モータ部)してい
ることと、溶液ポンプ9により圧縮効果があることによ
り、濃溶液は溶液ポンプ9を通過することにより、その
温度が上昇する。適正な温度差は経験的に2deg以内
であり、4deg以上となる場合には、しばらく経過し
た後、溶液ポンプ9がキャビテーション(ガス咬み)を
おこす。温度差が広がる現象は、冷却水条件が変化し
て、高低圧差が縮まった場合に生じることを確認してい
る。よって、こうした現象が生じた場合は、溶液ポンプ
9の回転数を落とすようにする。これにより、溶液ポン
プ9の信頼性を著しく高めることが出来る。
Next, a seventh embodiment will be described with reference to FIG. A suction temperature detector 32 and a discharge temperature detector 33 are provided on the suction and discharge sides of the solution pump 9, respectively, and the controller 34 controls the rotation speed of the solution pump 9 based on the temperature difference. Since the solution pump 9 itself generates heat (motor portion) and the solution pump 9 has a compression effect, the temperature of the concentrated solution rises as it passes through the solution pump 9. The appropriate temperature difference is empirically within 2 deg, and when it is 4 deg or more, the solution pump 9 causes cavitation (gas bite) after a while. It has been confirmed that the phenomenon in which the temperature difference widens occurs when the cooling water conditions change and the high / low pressure difference narrows. Therefore, when such a phenomenon occurs, the rotation speed of the solution pump 9 is reduced. Thereby, the reliability of the solution pump 9 can be significantly improved.

【0040】次に、第8の実施例について、図8を用い
て説明する。第5、第6、第7の実施例とを併用したも
ので、溶液ポンプ9吸入側に設けられた吸入温度検知器
32の検出する吸入温度より、冷却水条件を推定し、低
い場合は冷却水量調節弁26を絞り所定の温度に吸入温
度を設定する。これは、吸入側温度を下げすぎると再生
器で蒸気を発生するための熱量を多量に必要とし、成績
係数を下げるためである。そして、その状態で、凝縮温
度を凝縮温度検知器27により見てこれが低ければ、制
御器35により凝縮器3のバイパス回路30のバイパス
量調節弁29の開度を開き、高ければバイパス調節弁2
9の開度を閉じて凝縮温度を一定に制御して、高圧を一
定とする事が出来る。さらに、吐出温度検知器33と吸
入温度検知器32が検知する温度の温度差が所定の温度
差以内となるように溶液ポンプ9の回転数を制御する。
こうして、実用的な安定したサイクル動作を実現でき
る。
Next, an eighth embodiment will be described with reference to FIG. This is a combination of the fifth, sixth, and seventh embodiments. The cooling water condition is estimated from the suction temperature detected by the suction temperature detector 32 provided on the suction side of the solution pump 9, and if the cooling water condition is low, cooling is performed. The water temperature control valve 26 is throttled to set the suction temperature to a predetermined temperature. This is because if the temperature on the suction side is lowered too much, a large amount of heat is required to generate steam in the regenerator, and the coefficient of performance is lowered. In this state, when the condensation temperature is detected by the condensation temperature detector 27, if the condensation temperature is low, the controller 35 opens the opening of the bypass amount control valve 29 of the bypass circuit 30 of the condenser 3, and if it is high, the bypass control valve 2
The high pressure can be made constant by closing the opening of 9 to control the condensation temperature to be constant. Further, the rotation speed of the solution pump 9 is controlled so that the temperature difference between the temperatures detected by the discharge temperature detector 33 and the suction temperature detector 32 is within a predetermined temperature difference.
In this way, a practical stable cycle operation can be realized.

【0041】なお、以上述べた実施例を組み合わせても
良いことは言うまでもない。特に記載しなかったが、通
常の運転制御は、膨張弁後の蒸発温度を一定とするよう
に膨張弁の開度を制御することにより行うが、これと上
記実施例とを組み合わせても良いことは言うまでもな
い。また、精溜器塔内温度を検出する塔内温度検知器を
分縮部の下に設けたが、これに限定するものではない。
熱交換器を積層式としたがこれに限定するものでないこ
とは言うまでもない。さらに、加熱器を冷媒を排出時に
用いることもできる。
It goes without saying that the above-mentioned embodiments may be combined. Although not particularly described, normal operation control is performed by controlling the opening of the expansion valve so that the evaporation temperature after the expansion valve is constant, but this may be combined with the above embodiment. Needless to say. Further, the in-column temperature detector for detecting the temperature in the rectifier column is provided below the condensing unit, but the present invention is not limited to this.
Although the heat exchanger is of the laminated type, it goes without saying that the heat exchanger is not limited to this. Further, the heater can be used when discharging the refrigerant.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば次
のような効果がある。
As described above, the present invention has the following effects.

【0043】(1)加熱器により精溜器内を所定の温度
に高めて運転を開始するので、運転立ち上げを確実に行
うことができる。
(1) Since the inside of the rectifier is heated to a predetermined temperature by the heater to start the operation, the operation can be surely started up.

【0044】(2)分岐量調節弁を閉じて運転を開始す
るので、素早く精溜器内を高圧として、運転立ち上げを
確実に行うことができる。
(2) Since the branch amount control valve is closed to start the operation, the inside of the rectifier can be quickly set to a high pressure and the operation can be surely started up.

【0045】(3)加熱器と、分岐量調節弁を制御する
ことにより、より確実に運転立ち上げを行うことができ
る。
(3) By controlling the heater and the branch amount control valve, the operation can be started up more reliably.

【0046】(4)塔内温度が所定の温度に上昇するま
では2次側冷却水を停止して運転を開始するので確実に
運転立ち上げを行うことができる。
(4) Since the secondary side cooling water is stopped and the operation is started until the temperature in the tower rises to a predetermined temperature, the operation can be surely started up.

【0047】(5)2次側冷却水量調節して、凝縮温度
を一定に制御するので、安定した且つ成績係数の高い吸
収式ヒートポンプを提供できる。
(5) Since the condensing temperature is controlled to be constant by adjusting the amount of secondary side cooling water, a stable absorption heat pump having a high coefficient of performance can be provided.

【0048】(6)凝縮器にバイパス回路を設けて外気
条件に依らず凝縮温度を一定に制御するので、安定した
ヒートポンプ運転を行うことができる。
(6) Since the condenser is provided with a bypass circuit and the condensing temperature is controlled to be constant irrespective of outside air conditions, stable heat pump operation can be performed.

【0049】(7)溶液ポンプの動作をつねに保証でき
るので、溶液ポンプの信頼性を高めることができる。
(7) Since the operation of the solution pump can always be guaranteed, the reliability of the solution pump can be improved.

【0050】(8)凝縮温度と溶液ポンプ動作を制御し
て、実用的な成績係数が高く、信頼性の高い吸収式ヒー
トポンプを提供できる。
(8) By controlling the condensation temperature and the solution pump operation, it is possible to provide a highly reliable absorption heat pump having a high coefficient of performance.

【0051】(9)貫流方式とするとともに、濃溶液を
精溜器内に流入させる構成とした精溜器を用いているの
で、小型でサイクル成績係数の高い吸収式ヒートポンプ
を提供できる。
(9) Since the rectifier is of the flow-through type and has the structure in which the concentrated solution is caused to flow into the rectifier, a small-sized absorption heat pump having a high cycle performance coefficient can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収式ヒートポンプの第1の実施例を
示す構成断面図
FIG. 1 is a structural cross-sectional view showing a first embodiment of an absorption heat pump of the present invention.

【図2】本発明の吸収式ヒートポンプの第2の実施例を
示す構成断面図
FIG. 2 is a structural cross-sectional view showing a second embodiment of an absorption heat pump of the present invention.

【図3】本発明の吸収式ヒートポンプの第3の実施例を
示す構成断面図
FIG. 3 is a structural cross-sectional view showing a third embodiment of an absorption heat pump of the present invention.

【図4】本発明の吸収式ヒートポンプの第4の実施例を
示す構成断面図
FIG. 4 is a structural sectional view showing a fourth embodiment of an absorption heat pump of the present invention.

【図5】本発明の吸収式ヒートポンプの第5の実施例を
示す構成断面図
FIG. 5 is a structural sectional view showing a fifth embodiment of an absorption heat pump of the present invention.

【図6】本発明の吸収式ヒートポンプの第6の実施例を
示す構成断面図
FIG. 6 is a structural sectional view showing a sixth embodiment of an absorption heat pump of the present invention.

【図7】本発明の吸収式ヒートポンプの第7の実施例を
示す構成断面図
FIG. 7 is a structural sectional view showing a seventh embodiment of an absorption heat pump of the present invention.

【図8】本発明の吸収式ヒートポンプの第8の実施例を
示す構成断面図
FIG. 8 is a sectional view showing the configuration of an absorption heat pump according to an eighth embodiment of the present invention.

【図9】従来の吸収式ヒートポンプの構成断面図FIG. 9 is a sectional view showing the structure of a conventional absorption heat pump.

【符号の説明】[Explanation of symbols]

1 精溜器 2 凝縮・吸収器 5 過冷却・蒸発器 8 溶液熱交換器 9 溶液ポンプ 10 再生器 15・23 分岐量調節弁 19 塔内温度検知器 20 加熱器 21・22・24・25・28・31・34・35 制
御器 26 冷却水温度検知器 27 凝縮温度検知器 29 バイパス量調節弁 30 バイパス回路 32 溶液ポンプ吸入側温度検知器 33 溶液ポンプ吐出側温度検知器 A 分縮部 B 精溜段部 C 気液分離部
1 rectifier 2 condenser / absorber 5 supercooler / evaporator 8 solution heat exchanger 9 solution pump 10 regenerator 15/23 branch amount control valve 19 tower temperature detector 20 heater 21/22/24/25 / 28 ・ 31 ・ 34 ・ 35 Controller 26 Cooling water temperature detector 27 Condensation temperature detector 29 Bypass amount control valve 30 Bypass circuit 32 Solution pump suction side temperature detector 33 Solution pump discharge side temperature detector A Decomposition section B Reservoir section C Gas-liquid separation section

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】分縮部と、精溜段部と、気液分離部とを有
し、精溜器内の温度を検知する塔内温度検知器と、少な
くとも前記気液分離部に加熱器を備えた精溜器と、凝縮
器と、前記凝縮器出口に設けられた冷媒タンクと、過冷
却器と、膨張弁と、蒸発器と、溶液熱交換器と、減圧弁
と、吸収器と、前記吸収器出口に設けられた濃溶液タン
クと、溶液ポンプと、再生器と、前記各要素部品を連結
する配管と、制御器とを備え、運転開始時、前記制御器
により、前記塔内温度検知器が検出する前記精溜器内の
温度が所定の温度よりも低い場合に、前記加熱器による
加熱を行い、前記精溜器内が所定の温度に達した時に運
転を開始することを特徴とする吸収式ヒートポンプ。
1. A tower temperature detector for detecting a temperature in a rectifier, comprising: a partial condensing unit, a rectifying stage unit, and a gas-liquid separating unit; and a heater for at least the gas-liquid separating unit. And a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, and an absorber. , A concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator, a pipe connecting the respective component parts, and a controller, and at the start of operation, the controller causes the inside of the tower When the temperature in the rectifier detected by the temperature detector is lower than a predetermined temperature, heating by the heater is performed, and operation is started when the inside of the rectifier reaches a predetermined temperature. A characteristic absorption heat pump.
【請求項2】分縮部と、精溜段部と、気液分離部とを有
する清溜器と、前記精溜器内の温度を検知する塔内温度
検知器と、前記精溜器分縮部への濃溶液流入量を調節す
る分岐量調節弁と、凝縮器と、前記凝縮器出口に設けら
れた冷媒タンクと、過冷却器と、膨張弁と、蒸発器と、
溶液熱交換器と、減圧弁と、吸収器と、前記吸収器出口
に設けられた濃溶液タンクと、溶液ポンプと、再生器
と、前記各要素部品を連結する配管と、制御器とを備
え、前記制御器により、前記塔内温度検知器が検出する
前記精溜器内の温度が所定の温度よりも低い場合に、前
記分岐量調節弁を閉じて運転を開始し、前記精溜器内が
所定の温度に達した時に前記分岐量調節弁を所定の開度
に開くことを特徴とする吸収式ヒートポンプ。
2. A rectifying device having a dephlegmating part, a rectifying step part, and a gas-liquid separating part, an in-column temperature detector for detecting the temperature in the rectifying device, and the rectifying device part. A branch amount control valve for controlling the inflow amount of the concentrated solution to the constriction section, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, an expansion valve, and an evaporator,
A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, a pipe connecting the respective component parts, and a controller. When the temperature in the rectifier detected by the tower temperature detector is lower than a predetermined temperature by the controller, the branch amount control valve is closed to start the operation, and the rectifier An absorption heat pump, wherein the branch amount control valve is opened to a predetermined opening when the temperature reaches a predetermined temperature.
【請求項3】分縮部と、精溜段部と、気液分離部と、少
なくとも前記気液分離部に加熱器を備えた精溜器と、前
記精溜器内の温度を検知する塔内温度検知器と、前記精
溜器分縮部への濃溶液流入量を調節する分岐量調節弁
と、凝縮器と、前記凝縮器出口に設けられた冷媒タンク
と、過冷却器と、膨張弁と、蒸発器と、溶液熱交換器
と、減圧弁と、吸収器と、前記吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、前記各要素
部品を連結する配管と、制御器とを備え、前記制御器に
より、前記塔内温度検知器が検出する前記精溜器内の温
度が所定の温度よりも低い場合に、前記分岐量調節弁を
閉じるとともに前記加熱器による加熱を行って運転を開
始し、前記精溜器内が所定の温度に達した時に前記分岐
量調節弁を所定の開度に開くことを特徴とする吸収式ヒ
ートポンプ。
3. A fractionation unit, a rectification stage unit, a gas-liquid separation unit, a rectifier equipped with a heater in at least the gas-liquid separation unit, and a tower for detecting the temperature in the rectification unit. An internal temperature detector, a branch amount control valve for adjusting the inflow amount of the concentrated solution into the rectifier partial condensation unit, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, and an expansion. A valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, and piping for connecting the above-mentioned respective component parts. And a controller, and when the temperature in the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature by the controller, the branch amount control valve is closed and the heater is When the temperature inside the rectifier reaches a predetermined temperature, the branch amount control valve is opened by a predetermined opening degree. Absorption heat pump, characterized in that opening.
【請求項4】精溜器と、前記精溜器内の温度を検知する
塔内温度検知器と、1次側に冷媒流路と2次側に冷却水
流路を有する凝縮器と、前記凝縮器冷媒流路出口に設け
られた冷媒タンクと、過冷却器と、膨張弁と、1次側に
冷媒流路と2次側に冷水流路を有する蒸発器と、溶液熱
交換器と、減圧弁と、1次側に冷媒流路と2次側に冷却
水流路を有する吸収器と、前記吸収器冷媒流路出口に設
けられた濃溶液タンクと、溶液ポンプと、再生器と、前
記各要素部品を連結する1次側冷媒配管と2次側水配管
と、制御器とを備え、前記制御器により、前記塔内温度
検知器が検出する前記精溜器内の温度が所定の温度より
も低い場合に、少なくとも前記凝縮器の2次側冷却水の
循環を停止して運転を開始し、前記精溜器内が所定の温
度に達した時に前記凝縮器2次側冷却水を所定量循環さ
せることを特徴とする吸収式ヒートポンプ。
4. A rectifier, a temperature detector in the tower for detecting the temperature in the rectifier, a condenser having a refrigerant channel on the primary side and a cooling water channel on the secondary side, and the condenser. Tank provided at the outlet of the refrigerant flow path, supercooler, expansion valve, evaporator having refrigerant flow path on the primary side and cold water flow path on the secondary side, solution heat exchanger, and decompression A valve, an absorber having a refrigerant passage on the primary side and a cooling water passage on the secondary side, a concentrated solution tank provided at the outlet of the absorber refrigerant passage, a solution pump, a regenerator, and each of the above A primary side refrigerant pipe and a secondary side water pipe for connecting the component parts are provided, and a controller, and the temperature in the rectifier detected by the tower temperature detector is higher than a predetermined temperature by the controller. When the temperature is low, at least the secondary side cooling water of the condenser is stopped and the operation is started, and when the inside of the rectifier reaches a predetermined temperature, Absorption heat pump to the condenser secondary cooling water, characterized in that by a predetermined amount circulated.
【請求項5】精溜器と、1次側に冷媒流路と2次側に冷
却水流路を有する凝縮器と、前記凝縮器冷媒流路出口に
設けられた凝縮温度検知器を備えた冷媒タンクと、過冷
却器と、膨張弁と、1次側に冷媒流路と2次側に冷水流
路を有する蒸発器と、溶液熱交換器と、減圧弁と、1次
側に冷媒流路と2次側に冷却水流路を有する吸収器と、
前記吸収器冷媒流路出口に設けられた濃溶液タンクと、
溶液ポンプと、再生器と、前記各要素部品を連結する1
次側冷媒配管と2次側水配管と、制御器とを備え、前記
制御器により、前記凝縮温度検知器が検出する凝縮温度
が、所定の温度よりも低い場合に前記凝縮器の2次側冷
却水の循環量を減少させ、所定の温度よりも高い場合に
前記凝縮器の2次側冷却水の循環量を増加させて、凝縮
温度を常に所定の温度になるように2次側冷却水量を調
節してなる吸収式ヒートポンプ。
5. A refrigerant comprising a rectifier, a condenser having a refrigerant passage on the primary side and a cooling water passage on the secondary side, and a condensation temperature detector provided at the outlet of the condenser refrigerant passage. Tank, supercooler, expansion valve, evaporator having refrigerant flow passage on primary side and cold water flow passage on secondary side, solution heat exchanger, pressure reducing valve, refrigerant flow passage on primary side And an absorber having a cooling water flow path on the secondary side,
A concentrated solution tank provided at the absorber refrigerant flow path outlet,
Connect the solution pump, regenerator, and each of the above element parts 1
A secondary refrigerant pipe, a secondary water pipe, and a controller are provided, and when the condensation temperature detected by the condensation temperature detector by the controller is lower than a predetermined temperature, the secondary side of the condenser. The circulation amount of the cooling water is decreased, and when the temperature is higher than a predetermined temperature, the circulation amount of the secondary cooling water of the condenser is increased so that the condensation temperature is always the predetermined temperature. Absorption heat pump that is adjusted.
【請求項6】精溜器と、1次側に前記精溜器からの精溜
ガスが流入する冷媒流路と2次側に冷却水流路を有する
凝縮器と、前記凝縮器冷媒流路出口に設けられた凝縮温
度検知器を備えた冷媒タンクと、前記凝縮器の冷媒流路
入り口と出口を連結し、かつバイパス量調節弁を備えた
バイパス回路と、過冷却器と、膨張弁と、1次側に冷媒
流路と2次側に冷水流路を有する蒸発器と、溶液熱交換
器と、減圧弁と、1次側に冷媒流路と2次側に冷却水流
路を有する吸収器と、前記吸収器冷媒流路出口に設けら
れた濃溶液タンクと、溶液ポンプと、再生器と、前記各
要素部品を連結する冷媒配管とからなる冷媒回路と、前
記凝縮器及び吸収器の2次側冷却水流路を含む冷却水回
路と、前記蒸発器の2次側冷水流路を含む冷水回路と、
制御器とを備え、前記凝縮温度検知器が検出する凝縮温
度が、所定の温度よりも低い場合に前記バイパス量調節
弁の開度を開き、所定の温度よりも高い場合に前記バイ
パス量調節弁の開度を閉じて、凝縮温度を常に所定の温
度になるように前記制御器により前記バイパス調節弁の
開度を調節してなる吸収式ヒートポンプ。
6. A rectifier, a condenser having a refrigerant flow path into which a rectification gas from the rectifier flows into a primary side, and a cooling water flow path in a secondary side, and a condenser refrigerant flow path outlet. A refrigerant tank provided with a condensation temperature detector provided in, a refrigerant flow path inlet and outlet of the condenser, and a bypass circuit having a bypass amount control valve, a supercooler, an expansion valve, An evaporator having a refrigerant channel on the primary side and a cold water channel on the secondary side, a solution heat exchanger, a pressure reducing valve, an absorber having a refrigerant channel on the primary side and a cooling water channel on the secondary side. A refrigerant circuit comprising a concentrated solution tank provided at the outlet of the absorber refrigerant flow path, a solution pump, a regenerator, and a refrigerant pipe connecting the respective component parts, and the condenser and the absorber. A cooling water circuit including a secondary cooling water passage, and a cooling water circuit including a secondary cooling water passage of the evaporator,
A controller, and opens the bypass amount control valve when the condensation temperature detected by the condensation temperature detector is lower than a predetermined temperature, and the bypass amount control valve when the condensation temperature is higher than a predetermined temperature. An absorption heat pump in which the opening of the bypass control valve is adjusted by the controller so that the condensation temperature is always a predetermined temperature.
【請求項7】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、過冷却器と、膨張弁と、蒸発器
と、溶液熱交換器と、減圧弁と、吸収器と、前記吸収器
出口に設けられた濃溶液タンクと、溶液ポンプと、前記
溶液ポンプの吸入及び吐出側に設けられた吸入温度検知
器及び吐出温度検知器と、再生器と、前記各要素部品を
連結する冷媒配管と、制御器とを備え、前記吐出温度検
知器と前記吸入温度検知器の温度差が所定の温度差より
も大きい場合は前記溶液ポンプの回転数を減少させて、
常に所定の温度差以内となるように前記制御器により前
記溶液ポンプの回転数を制御してなる吸収式ヒートポン
プ。
7. A rectifier, a condenser, a refrigerant tank provided at the outlet of the condenser, a subcooler, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, and an absorber. Vessel, a concentrated solution tank provided at the absorber outlet, a solution pump, an intake temperature detector and an outlet temperature detector provided on the suction and discharge sides of the solution pump, a regenerator, and each of the above elements. A refrigerant pipe connecting the components and a controller are provided, and when the temperature difference between the discharge temperature detector and the suction temperature detector is larger than a predetermined temperature difference, the rotation speed of the solution pump is reduced,
An absorption heat pump in which the rotation speed of the solution pump is controlled by the controller so that the temperature difference is always within a predetermined temperature difference.
【請求項8】精溜器と、1次側に前記精溜器からの精溜
ガスが流入する冷媒流路と2次側に冷却水流路を有する
凝縮器と、前記凝縮器冷媒流路出口に設けられた凝縮温
度検知器を備えた冷媒タンクと、前記凝縮器の冷媒流路
入り口と出口を連結し、かつバイパス量調節弁を備えた
バイパス回路と、過冷却器と、膨張弁と、1次側に冷媒
流路と2次側に冷水流路を有する蒸発器と、溶液熱交換
器と、減圧弁と、1次側に冷媒流路と2次側に冷却水流
路を有する吸収器と、前記吸収器冷媒流路出口に設けら
れた濃溶液タンクと、溶液ポンプと、前記溶液ポンプの
吸入及び吐出側に設けられた吸入温度検知器及び吐出温
度検知器と、再生器と、前記各要素部品を連結する冷媒
配管とからなる冷媒回路と、前記凝縮器及び前記吸収器
の2次側冷却水流路に並列に流す構成としてなる冷却水
回路と、前記蒸発器の2次側冷水流路を含む冷水回路
と、制御器とを備え、前記制御器により、前記吸入温度
検知器が検出する温度と、前記吸入温度検知器と前記吐
出温度検知器とが検出する温度差より、前記冷却水回路
の流量及び前記溶液ポンプ回転数を調節すると共に、前
記凝縮温度検知器が検出する凝縮器温度より前記バイパ
ス量調節弁の開度を調節してなる吸収式ヒートポンプ。
8. A rectifier, a condenser having a refrigerant flow path into which a rectification gas from the rectifier flows into a primary side, and a cooling water flow path in a secondary side, and a condenser refrigerant flow path outlet. A refrigerant tank provided with a condensation temperature detector provided in, a refrigerant flow path inlet and outlet of the condenser, and a bypass circuit having a bypass amount control valve, a supercooler, an expansion valve, An evaporator having a refrigerant channel on the primary side and a cold water channel on the secondary side, a solution heat exchanger, a pressure reducing valve, an absorber having a refrigerant channel on the primary side and a cooling water channel on the secondary side. A concentrated solution tank provided at the absorber refrigerant flow path outlet, a solution pump, a suction temperature detector and a discharge temperature detector provided at the suction and discharge sides of the solution pump, a regenerator, and Refrigerant circuit including a refrigerant pipe connecting each component, and a secondary side cooling water flow of the condenser and the absorber A cooling water circuit configured to flow in parallel with each other, a cooling water circuit including a secondary side cooling water flow path of the evaporator, and a controller, and a temperature detected by the suction temperature detector by the controller, The flow rate of the cooling water circuit and the solution pump rotation speed are adjusted based on the temperature difference detected by the suction temperature detector and the discharge temperature detector, and the bypass is applied based on the condenser temperature detected by the condensation temperature detector. An absorption heat pump that adjusts the opening of the quantity control valve.
【請求項9】精溜器は、精溜塔と、前記精溜塔の上方よ
り、精溜ガス取り出し管と、下方端に溶液ポンプ吐出濃
溶液の一部を分岐量調節弁により調節して塔内に流出さ
せる開口部を有する分縮熱交換器と前記分縮熱交換器の
周囲に充填された充填材とならなる分縮部と、空隙と、
充填材が充填された精溜段部と、高温濃溶液流入管と希
溶液取り出し管とを備えた空間より構成された気液分離
部とから構成されてなる請求項1から8のいずれか1項
記載の吸収式ヒートポンプ。
9. The rectifier comprises a rectification column, a rectification gas extraction pipe from above the rectification column, and a portion of a concentrated solution discharged from a solution pump at a lower end of the rectification column controlled by a branch amount control valve. A partial condensation heat exchanger having an opening for flowing out into the tower and a partial condensation part which is a packing material filled around the partial condensation heat exchanger, and a void,
9. A rectifying step section filled with a packing material, and a gas-liquid separating section composed of a space provided with a high temperature concentrated solution inflow tube and a dilute solution withdrawing tube. The absorption heat pump according to the item.
JP7249029A 1995-09-27 1995-09-27 Absorption heat pump Expired - Fee Related JP3003554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7249029A JP3003554B2 (en) 1995-09-27 1995-09-27 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7249029A JP3003554B2 (en) 1995-09-27 1995-09-27 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPH0989405A true JPH0989405A (en) 1997-04-04
JP3003554B2 JP3003554B2 (en) 2000-01-31

Family

ID=17186952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7249029A Expired - Fee Related JP3003554B2 (en) 1995-09-27 1995-09-27 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP3003554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179976A (en) * 1998-12-14 2000-06-30 Sanyo Electric Co Ltd Control for absorption type refrigerating machine
JP2019522162A (en) * 2016-05-11 2019-08-08 ストーン・マウンテン・テクノロジーズ,インコーポレーテッド Sorption heat pump and control method
CN114526564A (en) * 2021-12-31 2022-05-24 湖南中创化工股份有限公司 Method and device for recycling latent heat of acetic acid removal tower of isopropyl acetate device based on heat pump system
CN115013998A (en) * 2022-06-27 2022-09-06 张丽红 Ammonia absorption heat pump and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179976A (en) * 1998-12-14 2000-06-30 Sanyo Electric Co Ltd Control for absorption type refrigerating machine
JP2019522162A (en) * 2016-05-11 2019-08-08 ストーン・マウンテン・テクノロジーズ,インコーポレーテッド Sorption heat pump and control method
CN114526564A (en) * 2021-12-31 2022-05-24 湖南中创化工股份有限公司 Method and device for recycling latent heat of acetic acid removal tower of isopropyl acetate device based on heat pump system
CN114526564B (en) * 2021-12-31 2023-09-29 湖南中创化工股份有限公司 Method and device for recycling latent heat of acetic acid removal tower of isopropyl acetate device based on heat pump system
CN115013998A (en) * 2022-06-27 2022-09-06 张丽红 Ammonia absorption heat pump and control method thereof
CN115013998B (en) * 2022-06-27 2023-05-12 张丽红 Ammonia water absorption heat pump and control method thereof

Also Published As

Publication number Publication date
JP3003554B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
US9631845B2 (en) Heat pump system using waste heat and heat engine-driven vapor compression heat pump system
US4665711A (en) Heat pump systems
RU2224189C2 (en) Cooling absorption plant
JPH0989405A (en) Absorption type heat pump
US3279204A (en) Control system for sequentially discontinuing passage of heating and cooling media in absorption refrigeration systems
JP4356999B2 (en) Absorption heat pump
JPH11118283A (en) Controller for ammonia absorption freezer
JP3147736B2 (en) Absorption heat pump
JP3383898B2 (en) Absorption type cold heat generator
JP2639969B2 (en) Absorption refrigerator
JP3451538B2 (en) Absorption type cold heat generator
KR101871788B1 (en) Method of operating refrigerating device
JPH09287850A (en) Absorption type cold/hot heat generating device
JP2005326088A (en) Absorption refrigerating machine
JP3161321B2 (en) Absorption heat pump
JP3663008B2 (en) Absorption chiller / heater
JPH03211359A (en) Heat-pump hot water supplier
JPH0113963Y2 (en)
JP3407182B2 (en) Absorption type cold heat generator
JP3306486B2 (en) Dilution control method for absorption chiller / heater
JP2005164161A (en) Absorption refrigerator and solution level control method for its regenerator
JPS5880438A (en) Heat pump type hot water supplier
JPH09287849A (en) Absorption type cold/hot heat generating device
JPH09287857A (en) Absorption type cold heat generating device
JPH11257788A (en) Absorption type cold heat generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees