JP3306486B2 - Dilution control method for absorption chiller / heater - Google Patents

Dilution control method for absorption chiller / heater

Info

Publication number
JP3306486B2
JP3306486B2 JP03206896A JP3206896A JP3306486B2 JP 3306486 B2 JP3306486 B2 JP 3306486B2 JP 03206896 A JP03206896 A JP 03206896A JP 3206896 A JP3206896 A JP 3206896A JP 3306486 B2 JP3306486 B2 JP 3306486B2
Authority
JP
Japan
Prior art keywords
temperature
solution
dilution
cooling water
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03206896A
Other languages
Japanese (ja)
Other versions
JPH09229511A (en
Inventor
正彦 大島
正治 野牧
征弘 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP03206896A priority Critical patent/JP3306486B2/en
Publication of JPH09229511A publication Critical patent/JPH09229511A/en
Application granted granted Critical
Publication of JP3306486B2 publication Critical patent/JP3306486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希溶液の希釈に係
り、特に冷房運転停止時、希溶液の晶析を防止するのに
好適な吸収冷温水機の希釈制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to dilution of a dilute solution, and more particularly to a dilution control method for an absorption chiller / heater suitable for preventing crystallization of a dilute solution when cooling operation is stopped.

【0002】[0002]

【従来の技術】従来の吸収冷温水機の例を図6を参照し
ながら説明する。希溶液を加熱する加熱源12を備えた
高温再生器10と、高温再生器10の上方に配置され高
温再生器10に上昇管14で接続された分離器16と、
分離器16の気相部分に一端を接続された冷媒蒸気コイ
ル23を内装した低温再生器22と、低温再生器22に
二次冷媒蒸気管28で連通され冷媒蒸気コイル24の他
端が接続されるとともに冷却水コイル50を内装した凝
縮器26と、凝縮器26に流量調整弁31を介装した液
冷媒管30で接続され蒸発コイル32を内装した蒸発器
34と、蒸発器34に蒸発冷媒蒸気通路で連通され冷却
水コイル46を内装した吸収器44と、吸収器44の底
部に希溶液吸入管52で吸入側を接続された溶液循環ポ
ンプ54と、溶液循環ポンプ54の吐出側に接続させた
低温溶液熱交換器42と、低温溶液熱交換器42を経て
高温再生器10の希溶液入り口に接続させた高温溶液熱
交換器36と、分離器16の液相部と高温溶液熱交換器
36の加熱流体入り口を接続する中間濃溶液管20と、
高温溶液熱交換器36の加熱流体出側と低温再生器22
とを接続する中間濃溶液管38と、低温再生器22の底
部と低温溶液熱交換器42の加熱流体入り側を接続する
濃溶液管40と、低温溶液熱交換器42の加熱流体出側
と吸収器44の上部を接続する濃溶液管41と、冷却水
コイル46の出側と冷却水コイル50の入り側を接続す
る冷却水管48とより構成されている。冷却水コイル5
0の出側は、図示されないクーリングタワーに接続さ
れ、冷却水コイル46の入り側は、図示されない冷却水
ポンプを介してクーリングタワーに接続されている。
2. Description of the Related Art An example of a conventional absorption chiller / heater will be described with reference to FIG. A high-temperature regenerator 10 having a heating source 12 for heating the dilute solution, a separator 16 disposed above the high-temperature regenerator 10 and connected to the high-temperature regenerator 10 by a rising pipe 14;
A low-temperature regenerator 22 having a refrigerant vapor coil 23 connected at one end to the gas phase portion of the separator 16 is connected to the low-temperature regenerator 22 through a secondary refrigerant vapor pipe 28, and the other end of the refrigerant vapor coil 24 is connected thereto. A condenser 26 having a cooling water coil 50 therein, an evaporator 34 connected to the condenser 26 by a liquid refrigerant pipe 30 having a flow control valve 31 interposed therein, and having an evaporator coil 32 therein, An absorber 44 having a cooling water coil 46 therein in communication with a steam passage, a solution circulation pump 54 having a suction side connected to a bottom of the absorber 44 by a dilute solution suction pipe 52, and a discharge side of the solution circulation pump 54. The high-temperature solution heat exchanger 42, the high-temperature solution heat exchanger 36 connected to the dilute solution inlet of the high-temperature regenerator 10 via the low-temperature solution heat exchanger 42, and the high-temperature solution heat exchange with the liquid phase of the separator 16 Heating fluid in vessel 36 An intermediate concentrated solution pipe 20 for connecting the mouth,
The heating fluid outlet side of the high-temperature solution heat exchanger 36 and the low-temperature regenerator 22
, A concentrated solution pipe 40 connecting the bottom of the low-temperature regenerator 22 and the heating fluid inlet side of the low-temperature solution heat exchanger 42, and a heating fluid outlet side of the low-temperature solution heat exchanger 42. It comprises a concentrated solution pipe 41 connecting the upper part of the absorber 44 and a cooling water pipe 48 connecting the outlet of the cooling water coil 46 and the inlet of the cooling water coil 50. Cooling water coil 5
The outlet side of 0 is connected to a cooling tower (not shown), and the inlet side of the cooling water coil 46 is connected to the cooling tower via a cooling water pump (not shown).

【0003】前記構成の吸収冷温水機の通常冷房運転時
の動作を説明する。高温再生器10内の希溶液は加熱源
12に加熱されて気液2相流状態で上昇管14内を上昇
し、分離器16に流入する。分離器16に流入した気液
2相流状態の希溶液は冷媒蒸気と中間濃溶液とに分離さ
れ、冷媒蒸気は低温再生器22に内装された冷媒蒸気コ
イル23を経て凝縮器26に流入し、中間濃溶液は中間
濃溶液管20を経て高温溶液熱交換器36の加熱流体側
に流入する。高温溶液熱交換器36に流入した中間濃溶
液は、希溶液を加熱しつつ高温溶液熱交換器36を通過
し、中間濃溶液管38を経て低温再生器22に流入し、
冷媒蒸気コイル23上に散布される。冷媒蒸気コイル2
3内を流れる冷媒蒸気は、周囲の中間濃溶液を加熱して
冷媒を蒸発させて二次冷媒蒸気を生成し、自身は冷却さ
れて凝縮し気液2相となって凝縮器26に流入する。低
温再生器22で生成された二次冷媒蒸気も、二次冷媒蒸
気管28を経て凝縮器26に流入し、冷媒蒸気コイル2
3を経て流入した冷媒とともに、冷却水コイル50内を
流れる冷却水に冷却されて凝縮し、液冷媒となる。
[0003] The operation of the absorption chiller / heater of the above configuration during normal cooling operation will be described. The dilute solution in the high-temperature regenerator 10 is heated by the heating source 12, rises in the riser 14 in a gas-liquid two-phase flow state, and flows into the separator 16. The dilute solution in a gas-liquid two-phase flow state flowing into the separator 16 is separated into a refrigerant vapor and an intermediate concentrated solution, and the refrigerant vapor flows into the condenser 26 via the refrigerant vapor coil 23 provided in the low-temperature regenerator 22. The intermediate concentrated solution flows into the heated fluid side of the high temperature solution heat exchanger 36 via the intermediate concentrated solution pipe 20. The intermediate concentrated solution flowing into the high temperature solution heat exchanger 36 passes through the high temperature solution heat exchanger 36 while heating the dilute solution, flows into the low temperature regenerator 22 through the intermediate concentrated solution pipe 38,
It is sprayed on the refrigerant vapor coil 23. Refrigerant vapor coil 2
The refrigerant vapor flowing inside 3 heats the surrounding intermediate concentrated solution to evaporate the refrigerant to generate a secondary refrigerant vapor, which is itself cooled and condensed to form a gas-liquid two-phase flow into the condenser 26. . The secondary refrigerant vapor generated by the low-temperature regenerator 22 also flows into the condenser 26 through the secondary refrigerant vapor pipe 28, and the refrigerant vapor coil 2
The cooling water flowing through the cooling water coil 50 is condensed with the cooling water flowing through the cooling water coil 50 together with the refrigerant flowing through the cooling water 3 to become a liquid refrigerant.

【0004】凝縮器26で生成された液冷媒は、液冷媒
管30を経て蒸発器34に流入し、蒸発器に内装された
蒸発コイル32上に散布され、蒸発コイル32内を流れ
る熱媒体の熱を奪って蒸発し、再び冷媒蒸気となり、蒸
発冷媒蒸気通路を経て吸収器44に流入する。熱を奪わ
れて冷却された熱媒体は、冷房負荷に導かれ、冷房を行
ったのち再び蒸発コイル32に還流する。低温再生器2
2で二次冷媒蒸気として冷媒を蒸発させた中間濃溶液
は、濃溶液となり、濃溶液管40を経て低温溶液熱交換
器42の加熱流体入り側に流入する。低温溶液熱交換器
42に流入した濃溶液は、希溶液を加熱しつつ低温溶液
熱交換器42を通過し、濃溶液管41を経て吸収器44
に流入する。吸収器44に流入した濃溶液は、冷却水コ
イル46上に散布され、蒸発器34から流入する冷媒蒸
気を吸収して希溶液となる。濃溶液が冷媒蒸気を吸収す
るときに発生する吸収熱は、冷却水コイル46内を流れ
る冷却水に伝熱され、クーリングタワーへ運ばれる。
The liquid refrigerant generated in the condenser 26 flows into the evaporator 34 via the liquid refrigerant pipe 30 and is sprayed on the evaporator coil 32 provided in the evaporator. The refrigerant evaporates by removing heat, becomes refrigerant vapor again, and flows into the absorber 44 via the vaporized refrigerant vapor passage. The heat medium that has been deprived of heat and cooled is guided to a cooling load, performs cooling, and then returns to the evaporating coil 32 again. Low temperature regenerator 2
The intermediate concentrated solution obtained by evaporating the refrigerant as the secondary refrigerant vapor in Step 2 becomes a concentrated solution, and flows into the heated fluid inlet side of the low-temperature solution heat exchanger 42 via the concentrated solution pipe 40. The concentrated solution that has flowed into the low-temperature solution heat exchanger 42 passes through the low-temperature solution heat exchanger 42 while heating the dilute solution, and passes through the concentrated solution pipe 41 to the absorber 44.
Flows into. The concentrated solution that has flowed into the absorber 44 is sprayed on the cooling water coil 46 and absorbs refrigerant vapor flowing from the evaporator 34 to become a dilute solution. The heat of absorption generated when the concentrated solution absorbs the refrigerant vapor is transferred to the cooling water flowing in the cooling water coil 46 and is carried to the cooling tower.

【0005】吸収器44で生成された希溶液は、希溶液
吸入管52を経て溶液循環ポンプ54に吸入され、加圧
されて低温溶液熱交換器42の被加熱流体側に流入す
る。低温溶液熱交換器42に流入した希溶液は加熱流体
側を流れる濃溶液に加熱されつつ低温溶液熱交換器42
を通過し、高温溶液熱交換器36の被加熱流体側に流入
する。高温溶液熱交換器36に流入した希溶液は、加熱
流体側を流れる中間濃溶液に加熱されつつ高温溶液熱交
換器36を通過し、高温再生器10に流入する。高温再
生器10に流入した希溶液は、再び前記のサイクルを繰
り返す。
The dilute solution generated by the absorber 44 is sucked into a solution circulation pump 54 via a dilute solution suction pipe 52, pressurized, and flows into the low temperature solution heat exchanger 42 on the side of the fluid to be heated. The dilute solution flowing into the low-temperature solution heat exchanger 42 is heated by the concentrated solution flowing on the heating fluid side while the low-temperature solution heat exchanger 42
And flows into the heated fluid side of the high temperature solution heat exchanger 36. The dilute solution flowing into the high-temperature solution heat exchanger 36 passes through the high-temperature solution heat exchanger 36 while being heated by the intermediate concentrated solution flowing on the heating fluid side, and flows into the high-temperature regenerator 10. The dilute solution flowing into the high-temperature regenerator 10 repeats the above cycle again.

【0006】冷却水コイル46で吸収熱を取り出し、冷
却水コイル50で凝縮熱を取り出した冷却水は、クーリ
ングタワーに流入し、運んできた吸収熱及び凝縮熱を大
気中に放出する。通常運転時は以上述べたサイクルが繰
り返される。
The cooling water from which the heat of absorption is taken out by the cooling water coil 46 and the heat of condensation taken out by the cooling water coil 50 flows into the cooling tower, and releases the carried heat of absorption and heat of condensation to the atmosphere. During normal operation, the above-described cycle is repeated.

【0007】次に、冷房負荷が低下して冷房運転が停止
される場合について説明する。吸収冷温水機の冷房運転
停止時は、溶液循環ポンプ54が間歇的に運転され、溶
液濃度が高い高温再生器10、低温再生器22、高温溶
液熱交換器36及び低温溶液熱交換器42内の希溶液を
希釈している(特開平1−123960号公報参照)。
図7に示すように、希釈運転は予め決められた運転時間
t、例えば約30分間、間歇運転して一定の希釈制御を
行っているが、運転中の冷却水温度、あるいは高温再生
器における入熱量により、運転中の溶液濃度が異なり、
また運転停止時の外気温度によっても晶析する溶液濃度
が異なる。したがって必要な希釈運転時間に変える必要
を生じるが、予め決められた制御での希釈運転では、溶
液濃度の低下不十分による晶析の発生、又は必要以上に
希釈運転を行い、溶液循環ポンプのキャビテーション又
は消費電力の増加等が発生し易くなっている。
Next, the case where the cooling load is reduced and the cooling operation is stopped will be described. When the cooling operation of the absorption chiller / heater is stopped, the solution circulation pump 54 is operated intermittently, and the high-temperature regenerator 10, the low-temperature regenerator 22, the high-temperature solution heat exchanger 36, and the low-temperature solution heat exchanger 42 having a high solution concentration are used. (See JP-A-1-123960).
As shown in FIG. 7, in the dilution operation, constant dilution control is performed by performing an intermittent operation for a predetermined operation time t, for example, about 30 minutes. Depending on the amount of heat, the solution concentration during operation varies,
The concentration of the solution to be crystallized also varies depending on the outside air temperature when the operation is stopped. Therefore, it is necessary to change to the required dilution operation time.However, in the dilution operation with predetermined control, crystallization occurs due to insufficient decrease in the solution concentration, or the dilution operation is performed more than necessary, and the cavitation of the solution circulation pump is performed. Alternatively, power consumption is likely to increase.

【0008】[0008]

【発明が解決しようとする課題】従来の吸収冷温水機の
希釈制御方法にあっては、予め決められた運転時間で一
定の希釈制御を行っているが、運転中の冷却水温度、あ
るいは高温再生器における入熱量により、運転中の溶液
濃度が異なり、また運転停止時の外気温度によっても晶
析する溶液濃度が異なる。したがって必要な希釈運転時
間に変えないと溶液濃度の低下不十分による晶析の発
生、必要以上の希釈運転による溶液循環ポンプのキャビ
テーション又は消費電力の増加等が発生し易くなるとい
う問題があった。
In the conventional dilution control method of the absorption chiller / heater, a constant dilution control is performed for a predetermined operation time. The concentration of the solution during operation varies depending on the amount of heat input to the regenerator, and the concentration of the solution to be crystallized also varies depending on the outside air temperature when the operation is stopped. Therefore, if the required dilution operation time is not changed, there is a problem that crystallization occurs due to insufficient decrease of the solution concentration, cavitation of the solution circulation pump or an increase in power consumption due to an excessive dilution operation is liable to occur.

【0009】本発明の目的は、冷房運転停止時に希溶液
の稀釈のため、溶液循環ポンプの稀釈運転時間を適正に
補正することのできる吸収冷温水機の希釈制御方法を提
供することにある。
An object of the present invention is to provide a dilution control method for an absorption chiller / heater which can appropriately correct a dilution operation time of a solution circulation pump for diluting a dilute solution when cooling operation is stopped.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る吸収冷温水機の希釈制御方法は、高温
再生器、低温再生器、高温溶液熱交換器、低温溶液熱交
換器、凝縮器、蒸発器、吸収器及び溶液循環ポンプを接
続し、冷房運転停止時に、溶液循環ポンプを所定の希釈
時間で間欠運転し、溶液循環ポンプによりそれぞれの溶
液熱交換器を経て高温再生器へ送給した希溶液を希釈す
る吸収冷温水機の希釈制御方法において、少なくとも温
度及び希釈時間の設定値を予め記憶し、冷房運転停止直
前に少なくとも温度の計測値を入力し、希釈時間を、そ
れぞれの計測値に応じて補正する構成とする。
In order to achieve the above object, a method for controlling dilution of an absorption chiller / heater according to the present invention comprises a high-temperature regenerator, a low-temperature regenerator, a high-temperature solution heat exchanger, and a low-temperature solution heat exchanger. The condenser, the evaporator, the absorber and the solution circulation pump are connected, and when the cooling operation is stopped, the solution circulation pump is operated intermittently for a predetermined dilution time, and the solution circulation pump passes through each solution heat exchanger and the high temperature regenerator. In the dilution control method of the absorption chiller-heater that dilutes the diluted solution fed to, at least the preset values of the temperature and the dilution time are stored in advance, and at least the measured value of the temperature is input immediately before the cooling operation is stopped, and the dilution time is It is configured to correct according to each measurement value.

【0011】そして計測値は、高温再生器の入熱量と、
吸収器の冷却水温度と、外気温度とよりなり、希釈時間
は、入熱量及び冷却水温度の計測値と設定値との比によ
り補正されるとともに、外気温度の計測値が設定値以下
の際にその偏差により補正される構成でもよい。
[0011] The measured values are the heat input of the high-temperature regenerator and
It consists of the cooling water temperature of the absorber and the outside air temperature, and the dilution time is corrected by the ratio of the measured value of the heat input and the cooling water temperature to the set value, and when the measured value of the outside air temperature is less than the set value. Alternatively, a configuration may be used in which correction is made based on the deviation.

【0012】また計測値は、高温再生器の圧力及び温度
と、吸収器の冷却水温度とよりなり、高温再生器の圧力
及び温度により高温再生器出口の溶液濃度を算出し、希
釈時間は、その算出した溶液濃度と設定値との比により
補正されるとともに、冷却水温度が20℃以下の際に補
正値が加算される構成でもよい。
The measured value is composed of the pressure and temperature of the high-temperature regenerator and the cooling water temperature of the absorber. The solution concentration at the outlet of the high-temperature regenerator is calculated based on the pressure and temperature of the high-temperature regenerator. The correction value may be added based on the ratio between the calculated solution concentration and the set value, and the correction value may be added when the cooling water temperature is 20 ° C. or less.

【0013】さらに吸収冷温水機においては、前記いず
れか一つの吸収冷温水機の希釈制御方法を用いる構成と
する。
Further, in the absorption chiller / heater, the dilution control method of any one of the absorption chiller / heater is used.

【0014】[0014]

【発明の実施の形態】本発明の一実施例を図1及び図2
を参照しながら説明する。図1及び図2に示すように、
希溶液を高温再生器10で加熱源12により加熱して冷
媒蒸気と中間濃溶液とに分離し、高温溶液熱交換器36
を経て低温再生器22に送給された中間濃溶液を冷媒蒸
気により再加熱して濃溶液に生成し、低温溶液熱交換器
42を経て濃溶液を吸収器44へ送供し、冷媒蒸気を凝
縮器26で液冷媒に凝縮して液冷媒を蒸発器34で蒸発
し、その蒸発した冷媒を吸収器44で濃溶液に吸収させ
て希溶液を生成し、希溶液を溶液循環ポンプ54により
それぞれの溶液熱交換器42,36を経て高温再生器1
0へ送給し、冷房運転停止時に、溶液循環ポンプ54を
希釈時間tにより間歇運転し、希溶液の希釈を制御する
吸収冷温水機の希釈制御方法であって、少なくとも温度
及び希釈時間tの設定値を制御器1に予め記憶し、冷房
運転停止直前に少なくとも温度の計測値を制御器1に入
力し、希釈時間tを、それぞれの計測値に応じて補正
し、補正した希釈時間taで溶液循環ポンプ54を間歇
運転する構成とする。
1 and 2 show an embodiment of the present invention.
This will be described with reference to FIG. As shown in FIGS. 1 and 2,
The dilute solution is heated by the heating source 12 in the high-temperature regenerator 10 and separated into refrigerant vapor and an intermediate concentrated solution.
The intermediate concentrated solution sent to the low temperature regenerator 22 through the above is reheated by the refrigerant vapor to generate a concentrated solution, and the concentrated solution is supplied to the absorber 44 via the low temperature solution heat exchanger 42 to condense the refrigerant vapor. The refrigerant is condensed into a liquid refrigerant in the evaporator 26, the liquid refrigerant is evaporated in the evaporator 34, and the evaporated refrigerant is absorbed into a concentrated solution by the absorber 44 to generate a dilute solution. High temperature regenerator 1 via solution heat exchangers 42 and 36
0, and when the cooling operation is stopped, the solution circulation pump 54 is intermittently operated according to the dilution time t to control the dilution of the dilute solution. The set value is stored in the controller 1 in advance, and at least a measured value of the temperature is input to the controller 1 immediately before the cooling operation is stopped, and the dilution time t is corrected according to each measured value. The solution circulation pump 54 is configured to operate intermittently.

【0015】そして計測値は、高温再生器10の加熱源
12の入熱量Iと、温度センサー2により計測された吸
収器44の入口の冷却水温度Tcと、温度センサー3に
より計測された外気温度Toとよりなり、希釈時間t
は、入熱量及び冷却水温度の計測値I,Tcと、予め制
御器1に記憶されている入熱量及び冷却水温度の設定値
Is,Tcsとの比により制御器1で希釈時間toに補
正されるとともに、希釈時間toは、外気温度の計測値
Toが設定値Tos以下の際にその偏差により希釈時間
taに補正されるものとする。
The measured values are the heat input I of the heating source 12 of the high-temperature regenerator 10, the cooling water temperature Tc at the inlet of the absorber 44 measured by the temperature sensor 2, and the outside air temperature measured by the temperature sensor 3. To and dilution time t
Is corrected by the controller 1 to the dilution time to by the ratio of the measured values I and Tc of the heat input amount and the cooling water temperature to the set values Is and Tcs of the heat input amount and the cooling water temperature stored in the controller 1 in advance. At the same time, the dilution time to is corrected to the dilution time ta by the deviation when the measured value To of the outside air temperature is equal to or less than the set value Tos.

【0016】すなわち冷房運転停止する(手順101)
と、停止直前の高温再生器16の入熱量I、冷却水温度
Tc,外気温度Toの測定値が制御器1に入力され(手
順102)、(1)式により制御器1の図示しない演算
器で希釈時間toが算出され(手順103)、 to=t×(I/Is)×(Tc/Tcs)……(1) ここで外気温度の計測値Toと設定値Tosとを比較し
To<Tos(手順104)がNOの際はta=toと
され(手順105)、To<Tos(手順104)がY
ESの際は希釈時間taが(2)式で算出される(手順
106)。 ta=to×(Tos−To)……………………(2) 溶液循環ポンプは希釈時間taで間歇運転を開始し、こ
の開始時点が図3に示すA点である。
That is, the cooling operation is stopped (procedure 101).
And the measured values of the heat input amount I, the cooling water temperature Tc, and the outside air temperature To of the high temperature regenerator 16 immediately before the stop are input to the controller 1 (procedure 102). The dilution time to is calculated by (step 103), and to = t × (I / Is) × (Tc / Tcs) (1) Here, the measured value To of the outside air temperature is compared with the set value Tos, and To < When Tos (procedure 104) is NO, ta = to is set (procedure 105), and To <Tos (procedure 104) is Y.
In the case of ES, the dilution time ta is calculated by equation (2) (step 106). ta = to × (Tos−To) (2) The solution circulation pump starts the intermittent operation at the dilution time ta, and the start point is point A shown in FIG.

【0017】次に本実施例の動作を説明する。まず、冷
房運転停止信号が出力されると、冷房停止直前の各温度
Tc,To及び入熱量Iを希釈プログラムに入力する。
ここで入熱量Iが設定値Isよりも少ない場合、及び冷
却水温度Tcが設定値Tcsよりも低い場合、その偏差
により溶液循環ポンプの間歇運転時間taを短くする。
逆に入熱量Iが設定値Isよりも多い場合、及び冷却水
温度Tcが設定値Tcsよりも高い場合、その偏差によ
り溶液循環ポンプの間歇運転時間taを長くする。さら
に外気温度の偏差による補正を加える。
Next, the operation of this embodiment will be described. First, when the cooling operation stop signal is output, the temperatures Tc and To and the heat input I immediately before the cooling stop are input to the dilution program.
Here, when the heat input amount I is smaller than the set value Is and when the cooling water temperature Tc is lower than the set value Tcs, the intermittent operation time ta of the solution circulation pump is shortened by the deviation.
Conversely, when the heat input amount I is larger than the set value Is and when the cooling water temperature Tc is higher than the set value Tcs, the intermittent operation time ta of the solution circulation pump is extended due to the deviation. Further, a correction based on the deviation of the outside air temperature is added.

【0018】以下、具体例を説明する。入熱量の設定値
は定格の50%、冷却水温度の設定値は27℃とする。
ここで、冷房停止時の測定値は入熱量が30%、冷却水
温度が24℃の場合、溶液濃度は入熱量が少ないため、
濃縮が少なく、希釈運転時間は短くてよいと判断する。
また冷却水温度が低いことで系全体の希釈作用が行われ
ているため、溶液の濃度は低下しており、希釈運転時間
は短くてよいと判断する。従って各測定値と各設定値と
の偏差から溶液循環ポンプの運転時間を算出すると、設
定値の約60%程度(30/50×24/27)の希釈
時間での運転を行うことになる。さらに冷房停止時の外
気温度Toを捉え、設定値(ここでは20℃)よりも低
い場合は、前記の運転時間に、補正時間(補正値)を加
算し、停止時の晶析を確実に防止する制御とする。また
停止時の入熱量が70%、冷却水温度が30℃の場合、
溶液濃度は入熱量が多いため、濃縮が進んで設定濃度よ
り高濃度となっているため、希釈運転時間を長く必要と
判断する。また冷却水温度が設定値より高いことより、
系全体の溶液濃度も高濃度側にシフトしているため、希
釈運転時間も長く必要であると判断する。従って希釈運
転時間は設定時間の約150%と長く必要となる。外気
温度補正は前記と同様である。なお具体的な溶液循環ポ
ンプの希釈運転時間の設定値及と、入熱量、冷却水温度
及び外気温度の設定値とは各機種により最適値を決定す
る必要がある。
Hereinafter, a specific example will be described. The set value of the heat input is 50% of the rating, and the set value of the cooling water temperature is 27 ° C.
Here, the measured value at the time of cooling stop is 30% heat input, and when the cooling water temperature is 24 ° C, the solution concentration is small because the heat input is small.
It is determined that the concentration is small and the dilution operation time can be short.
In addition, since the dilution effect of the entire system is performed due to the low cooling water temperature, the concentration of the solution is reduced, and it is determined that the dilution operation time may be short. Therefore, when the operation time of the solution circulation pump is calculated from the deviation between each measured value and each set value, the operation is performed with a dilution time of about 60% (30/50 × 24/27) of the set value. Further, the outside air temperature To when the cooling is stopped is detected, and when the temperature is lower than the set value (here, 20 ° C.), the correction time (correction value) is added to the above-mentioned operation time to reliably prevent crystallization at the stop. Control. When the heat input during shutdown is 70% and the cooling water temperature is 30 ° C,
Since the solution concentration has a large amount of heat input, the concentration is advanced and the concentration is higher than the set concentration, so that it is determined that the dilution operation time is required to be long. Also, since the cooling water temperature is higher than the set value,
Since the solution concentration of the entire system has also shifted to the higher concentration side, it is determined that a longer dilution operation time is required. Therefore, the dilution operation time needs to be as long as about 150% of the set time. The outside air temperature correction is the same as described above. In addition, it is necessary to determine the optimal values for the set value of the dilution operation time of the solution circulation pump and the set values of the heat input amount, the cooling water temperature, and the outside air temperature depending on each model.

【0019】本実施例によれば、冷房運転停止時の溶液
濃度の希釈時間を、冷房停止時の運転状態及び外気温度
により最適な運転時間として、低外気温度時の晶析の防
止を図るとともに、低冷却水温度時又は低入熱時の希釈
時間を短縮することにより、溶液循環ポンプの消費電力
の低減と、希溶液の送り過ぎによるキャビテーション発
生の防止とが可能となる。
According to this embodiment, the dilution time of the solution concentration when the cooling operation is stopped is set to an optimum operation time according to the operation state when the cooling operation is stopped and the outside air temperature, and the crystallization at the low outside air temperature is prevented. By reducing the dilution time at low cooling water temperature or low heat input, it is possible to reduce power consumption of the solution circulation pump and prevent cavitation due to excessive feeding of the dilute solution.

【0020】本発明の他の実施例を図4及び図5を参照
しながら説明する。図1に示す実施例と異なるところ
は、計測値は、高温再生器10の圧力Pと、高温再生器
10の温度Tと、吸収器46の冷却水温度Tcとよりな
り、高温再生器10の圧力Pと温度Tとにより高温再生
器10出口の溶液濃度Nを算出し、希釈時間tは、その
算出された溶液濃度Nとその設定値Noとの比により希
釈時間t1に補正されるとともに、希釈時間t1は、吸収
器46の冷却水温度Tcが20℃以下の際に補正値が加
算され希釈時間tbに補正される構成とする。
Another embodiment of the present invention will be described with reference to FIGS. The difference from the embodiment shown in FIG. 1 is that the measured value is composed of the pressure P of the high-temperature regenerator 10, the temperature T of the high-temperature regenerator 10, and the cooling water temperature Tc of the absorber 46. The solution concentration N at the outlet of the high-temperature regenerator 10 is calculated from the pressure P and the temperature T, and the dilution time t is corrected to the dilution time t 1 by the ratio between the calculated solution concentration N and the set value No. When the cooling water temperature Tc of the absorber 46 is equal to or lower than 20 ° C., a correction value is added to the dilution time t 1 and corrected to the dilution time tb.

【0021】すなわち冷房運転停止する(手順201)
と、冷房停止直前の高温再生器10の圧力P、温度T及
び外気温度の代用として冷却水温度Tcの測定値が制御
器1に入力され(手順202)、高温再生器10出口の
溶液濃度Nの近似式である(3)式により制御器1の図
示しない演算器で溶液濃度Nが算出され(手順20
3)、 N=f×(P,T)……………………(3)希釈時間t 1 が(4)式に示す溶液濃度Nとその設定値
Noとの比により算出され(手順204)、 t1=t×N/No……………………(4)¥ ここで外気温度補正として冷却水温度Tcが設定値の2
0℃以下と比較され(手順205)、20℃以下ではな
くNOであれば、希釈時間tb=t1とされ(手順20
6)、20℃以下であってYESであれば、希釈時間t
bは(5)式により補正値が加算される(手順20
7)。 tb=t1+補正値………………………(5) 溶液循環ポンプは希釈時間tbで間歇運転を開始し、こ
の開始時点が図3に示すA点である。
That is, the cooling operation is stopped (procedure 201).
And the measured value of the cooling water temperature Tc as a substitute for the pressure P, the temperature T and the outside air temperature of the high-temperature regenerator 10 immediately before the stop of the cooling operation, is input to the controller 1 (procedure 202), and the solution concentration N at the outlet of the high-temperature regenerator 10 The solution concentration N is calculated by an arithmetic unit (not shown) of the controller 1 by Expression (3) which is an approximate expression (Step 20).
3), N = f × (P, T) (3) The dilution time t 1 is calculated by the ratio between the solution concentration N and its set value No shown in the equation (4) (procedure) 204), t 1 = t × N / No (4) ¥ Here, the cooling water temperature Tc is set to 2 as the outside air temperature correction.
It is compared with 0 ° C. or less (step 205), and if it is not 20 ° C. or less and NO, the dilution time tb = t 1 is set (step 20).
6) If the temperature is 20 ° C. or less and YES, the dilution time t
For b, the correction value is added by equation (5) (procedure 20).
7). tb = t 1 + correction value... (5) The solution circulation pump starts intermittent operation at the dilution time tb, and this start point is point A shown in FIG.

【0022】次に本実施例の動作を説明する。まず、冷
房運転停止信号が出力されると、冷房停止直前の高温再
生器の圧力P及び温度Tを濃度算出のプログラムに入力
する。ここで圧力P及び温度Tから求められる濃度近似
式(3)式により現状の濃度Nを求め、かつ設定濃度N
oとの偏差N/Noより希釈時間t1を算出する。さら
に外気温度を冷却水温度が設定温度より低い場合は、希
釈時間t1に補正値を加算し、最終希釈時間tbとす
る。具体的に数値で説明すると、仮に冷却水コイルが汚
れ、高温再生器圧力が設定圧力650mmHgよりも5
0mmHg圧力が上昇し、また温度が設定温度150℃
よりも約5℃上昇した状態で冷房運転停止した場合、圧
力及び温度より高温再生器出口の溶液濃度は近似式より
求め約58%となる。これは設定濃度57%に対し約1
%の濃度上昇になっており、通常の希釈運転よりも時間
を長くする必要がある。ここで、設定されたプログラム
により、設定濃度との濃度偏差より希釈運転時間t1
決定される。さらに設定冷却水温度を20℃とし、停止
時の冷却水入口温度が20℃以下であった場合、設定外
気温度よりも低い状態で停止すると考えられるため、外
気温度補正として、冷却水温度低下に比例した補正値を
加算し、希釈時間(t1+補正値)を求める。なお具体
的な溶液循環ポンプの運転時間の設定値と、高温再生器
の圧力、温度及び冷却水温度の設定値とは、機種によっ
て最適値を決定する必要がある。
Next, the operation of this embodiment will be described. First, when the cooling operation stop signal is output, the pressure P and the temperature T of the high temperature regenerator immediately before the stop of the cooling are input to the concentration calculation program. Here, the current concentration N is obtained by the concentration approximate expression (3) obtained from the pressure P and the temperature T, and the set concentration N is obtained.
The dilution time t 1 is calculated from the deviation N / No from o. Further, when the outside air temperature is lower than the set temperature, the correction value is added to the dilution time t 1 to obtain the final dilution time tb. Specifically, if the cooling water coil is contaminated and the high-temperature regenerator pressure is higher than the set pressure of 650 mmHg by a numerical value.
0mmHg pressure rises and temperature is set to 150 ℃
When the cooling operation is stopped in a state where the temperature rises by about 5 ° C., the solution concentration at the outlet of the regenerator, which is higher than the pressure and the temperature, is obtained by an approximate expression and becomes about 58%. This is about 1 for 57% of the set concentration.
%, And the time needs to be longer than in a normal dilution operation. Here, the dilution operation time t 1 is determined from the concentration deviation from the set concentration by the set program. Further, if the set cooling water temperature is set to 20 ° C. and the cooling water inlet temperature at the time of stop is 20 ° C. or less, it is considered that the cooling water stops at a temperature lower than the set outside air temperature. The dilution time (t 1 + correction value) is obtained by adding the proportional correction value. In addition, it is necessary to determine optimal values for the set value of the operation time of the solution circulation pump and the set values of the pressure, temperature and cooling water temperature of the high-temperature regenerator depending on the model.

【0023】本実施例によれば、現状の圧力センサー及
び温度センサーで対応が可能であり、新たに付け加える
センサーは不要のため、コストアップがなく対応が可能
となる。また溶液濃度を圧力と温度とにより正確に測定
でき、さらに冷却水温度による補正を加えたため、外気
温度低下による晶析防止への対応も向上する。また高価
な濃度計を使用することなく濃度計測が可能となる。そ
して冷却水の汚れ等による高温再生器の圧力及び温度の
上昇状態での運転停止時、及び冬期冷房による外気温度
低下時の溶液の晶析防止が可能となり、信頼性の高い吸
収冷温水機が提供できる。
According to the present embodiment, it is possible to cope with the existing pressure sensor and temperature sensor, and it is possible to cope without increasing the cost because a newly added sensor is unnecessary. Further, the solution concentration can be accurately measured by the pressure and the temperature, and the correction by the cooling water temperature is added, so that the response to the crystallization prevention due to the decrease in the outside air temperature is improved. In addition, density measurement can be performed without using an expensive densitometer. It is possible to prevent crystallization of the solution when the operation of the high temperature regenerator is stopped at elevated pressure and temperature due to contamination of the cooling water, and when the outside air temperature decreases due to winter cooling. Can be provided.

【0024】[0024]

【発明の効果】本発明によれば、冷房運転停止時の希溶
液の希釈時間を、冷房停止時の運転状態及び外気温度に
より最適な運転時間に補正するため、低外気温度時の晶
析が防止されるとともに、低冷却水温度時又は低入熱時
の希釈時間の短縮により、溶液循環ポンプの消費電力の
低減と、希溶液の送り過ぎによるキャビテーション発生
の防止が可能となる。また冷却水の汚れ等による高温再
生器の圧力及び温度の上昇状態での運転停止時、及び冬
期冷房による外気温度低下時の溶液の晶析防止が可能と
なる効果がある。
According to the present invention, since the dilution time of the dilute solution at the time of stopping the cooling operation is corrected to the optimum operation time according to the operation state at the time of stopping the cooling and the outside air temperature, the crystallization at the time of the low outside air temperature is performed. In addition, by reducing the dilution time at low cooling water temperature or low heat input, it is possible to reduce power consumption of the solution circulation pump and prevent cavitation due to excessive feeding of the dilute solution. Further, there is an effect that crystallization of the solution can be prevented when the operation of the high-temperature regenerator is stopped in a state in which the pressure and the temperature are increased due to contamination of the cooling water or the like, and when the outside air temperature is decreased due to the cooling in winter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】図1に示す実施例のフローチャートである。FIG. 2 is a flowchart of the embodiment shown in FIG.

【図3】本実施例の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of the present embodiment.

【図4】本発明の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the present invention.

【図5】図4に示す実施例のフローチャートである。FIG. 5 is a flowchart of the embodiment shown in FIG.

【図6】従来の技術を示す図である。FIG. 6 is a diagram showing a conventional technique.

【図7】従来の技術の動作を説明する図である。FIG. 7 is a diagram illustrating the operation of the conventional technique.

【符号の説明】[Explanation of symbols]

1 制御器 2 温度センサ
ー 3 温度センサー 4 圧力センサ
ー 5 温度センサー 10 高温再生
器 11 温度検出器 12 加熱源 14 上昇管 16 分離器 18 冷媒蒸気管 20 中間濃溶
液管 22 低温再生器 23 冷媒蒸気
コイル 24 凝縮冷媒蒸気管 26 凝縮器 28 二次冷媒蒸気管 30 液冷媒管 31 流量調整弁 32 蒸発コイ
ル 34 蒸発器 36 高温溶液
熱交換器 38 中間濃溶液管 40 濃溶液管 41 濃溶液管 42 低温溶液
熱交換器 44 吸収器 46 冷却水コ
イル 48 冷却水管 50 冷却水コ
イル 52 希溶液吸入管 54 溶液循環
ポンプ
DESCRIPTION OF SYMBOLS 1 Controller 2 Temperature sensor 3 Temperature sensor 4 Pressure sensor 5 Temperature sensor 10 High temperature regenerator 11 Temperature detector 12 Heat source 14 Rise pipe 16 Separator 18 Refrigerant vapor pipe 20 Intermediate concentrated solution pipe 22 Low temperature regenerator 23 Refrigerant vapor coil 24 Condensed refrigerant vapor tube 26 Condenser 28 Secondary refrigerant vapor tube 30 Liquid refrigerant tube 31 Flow control valve 32 Evaporation coil 34 Evaporator 36 High temperature solution heat exchanger 38 Intermediate concentrated solution tube 40 Concentrated solution tube 41 Concentrated solution tube 42 Low temperature solution heat Exchanger 44 Absorber 46 Cooling water coil 48 Cooling water pipe 50 Cooling water coil 52 Dilute solution suction pipe 54 Solution circulation pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−101765(JP,A) 特開 平7−190537(JP,A) 特開 平1−123960(JP,A) 特開 昭57−202465(JP,A) 特開 平2−213659(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-101765 (JP, A) JP-A-7-190537 (JP, A) JP-A-1-123960 (JP, A) JP-A 57-107 202465 (JP, A) JP-A-2-213659 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温再生器、低温再生器、高温溶液熱交
換器、低温溶液熱交換器、凝縮器、蒸発器、吸収器及び
溶液循環ポンプを接続し、冷房運転停止時に、前記溶液
循環ポンプを所定の希釈時間で間欠運転し、該溶液循環
ポンプによりそれぞれの溶液熱交換器を経て前記高温再
生器へ送給した希溶液を希釈する吸収冷温水機の希釈制
御方法において、少なくとも温度及び希釈時間の設定値
を予め記憶し、冷房運転停止直前に少なくとも外気温度
を含む温度の計測値を入力し、前記希釈時間を、それぞ
れの計測値に応じて補正することと、前記計測値は、高
温再生器の入熱量と、吸収器の冷却水温度と、外気温度
とよりなり、希釈時間は、前記入熱量及び前記冷却水温
度の計測値と設定値との比により補正されるとともに、
前記外気温度の計測値が設定値以下の際にその偏差によ
り補正されることを特徴とする吸収冷温水機の希釈制御
方法。
1. A high-temperature regenerator, a low-temperature regenerator, a high-temperature solution heat exchanger, a low-temperature solution heat exchanger, a condenser, an evaporator, an absorber and a solution circulation pump are connected. Is operated intermittently for a predetermined dilution time, and the solution circulation pump dilutes the dilute solution fed to the high-temperature regenerator through the respective solution heat exchangers. prestores time settings, enter the measurement values of temperatures including at least the outside air temperature just before the cooling operation stops, the dilution time, and be corrected in accordance with the respective measured values, the measured value is high
Heat regenerator heat input, absorber cooling water temperature, and outside air temperature
And the dilution time is determined by the heat input and the cooling water temperature.
While being corrected by the ratio of the measured value of the degree and the set value,
When the measured value of the outside air temperature is equal to or less than the set value,
Ri corrected dilution control method of the absorption chiller, characterized in that the.
【請求項2】高温再生器、低温再生器、高温溶液熱交換
器、低温溶液熱交換器、凝縮器、蒸発器、吸収器及び溶
液循環ポンプを接続し、冷房運転停止時に、前記溶液循
環ポンプを所定の希釈時間で間欠運転し、該溶液循環ポ
ンプによりそれぞれの溶液熱交換器を経て前記高温再生
器へ送給した希溶液を希釈する吸収冷温水機の希釈制御
方法において、少なくとも温度及び希釈時間の設定値を
予め記憶し、冷房運転停止直前に少なくとも温度の計測
値を入力し、前記希釈時間を、それぞれの計測値に応じ
て補正することと、前記計測値は、高温再生器の圧力及
び温度と、吸収器の冷却水温度とよりなり、前記高温再
生器の圧力及び温度により該高温再生器出口の溶液濃度
を算出し、希釈時間は、その算出した溶液濃度と設定値
との比により補正されるとともに、前記冷却水温度が2
0℃以下の際に補正値が加算されることを特徴とする吸
収冷温水機の希釈制御方法。
2. A high-temperature regenerator, a low-temperature regenerator, a high-temperature solution heat exchanger, a low-temperature solution heat exchanger, a condenser, an evaporator, an absorber, and a solution circulation pump are connected. Is operated intermittently for a predetermined dilution time, and the solution circulation pump dilutes the dilute solution fed to the high-temperature regenerator through the respective solution heat exchangers. The set value of the time is stored in advance, at least the measured value of the temperature is input immediately before the cooling operation is stopped, and the dilution time is corrected according to each measured value, and the measured value is the pressure of the high-temperature regenerator. And the temperature, and the cooling water temperature of the absorber. The solution concentration at the outlet of the high-temperature regenerator is calculated based on the pressure and temperature of the high-temperature regenerator, and the dilution time is the ratio of the calculated solution concentration to the set value. Corrected by Together are, the cooling water temperature is 2
A dilution control method for an absorption chiller / heater, wherein a correction value is added when the temperature is 0 ° C. or lower.
【請求項3】請求項1又は2に記載の吸収冷温水機の希
釈制御方法を用いることを特徴とする吸収冷温水機。
3. An absorption chiller / heater using the dilution control method for an absorption chiller / heater according to claim 1 or 2 .
JP03206896A 1996-02-20 1996-02-20 Dilution control method for absorption chiller / heater Expired - Lifetime JP3306486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03206896A JP3306486B2 (en) 1996-02-20 1996-02-20 Dilution control method for absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03206896A JP3306486B2 (en) 1996-02-20 1996-02-20 Dilution control method for absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH09229511A JPH09229511A (en) 1997-09-05
JP3306486B2 true JP3306486B2 (en) 2002-07-24

Family

ID=12348569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03206896A Expired - Lifetime JP3306486B2 (en) 1996-02-20 1996-02-20 Dilution control method for absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3306486B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202465A (en) * 1981-06-08 1982-12-11 Mitsubishi Heavy Ind Ltd Controller for operation of absorption refrigerator
JPH0612205B2 (en) * 1984-10-24 1994-02-16 三洋電機株式会社 Absorption refrigerator dilution operation device
JPH0827095B2 (en) * 1987-11-10 1996-03-21 三洋電機株式会社 Absorption refrigerator dilution operation device
JP2765913B2 (en) * 1989-02-14 1998-06-18 三洋電機株式会社 Absorption refrigerator
JP3186392B2 (en) * 1993-12-27 2001-07-11 ダイキン工業株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPH09229511A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP3753356B2 (en) Triple effect absorption refrigerator
JP3306486B2 (en) Dilution control method for absorption chiller / heater
JP2005003312A (en) Triple effect absorption refrigerating plant
JP4315855B2 (en) Absorption refrigerator
JP3084650B2 (en) Absorption chiller / heater and its control method
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2003329329A (en) Triple effect absorption type refrigerating machine
JP2708809B2 (en) Control method of absorption refrigerator
JP3534682B2 (en) Absorption refrigerator and cooling water flow control method
JPH07190537A (en) Absorption type refrigerating machine
JP2668093B2 (en) Control method of absorption chiller / heater
JP2664436B2 (en) Control method of absorption refrigerator
JP2520974Y2 (en) Proportional control absorption chiller / heater
KR200142462Y1 (en) Absorption type cooler
JP4971929B2 (en) Absorption liquid circulation control method for absorption refrigerator
JPH05280824A (en) Temperature and capacity control device for absorption refrigeration system
JP3203552B2 (en) Absorption chiller controller
JP3108800B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JPH0868572A (en) Dual-effect absorption refrigerator
JPH06257879A (en) Controlling method for absorption water cooler-heater
JP2022044138A (en) Absorption type refrigeration system and absorption type refrigerator
JPH08261591A (en) Vapor boiling absorption hot or chilled water generator and controlling method therefor
JPH07104069B2 (en) Operation control method for absorption refrigerator
JP3398832B2 (en) Control method of absorption chiller / heater
JP2901430B2 (en) Control method of absorption heat pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140517

Year of fee payment: 12

EXPY Cancellation because of completion of term