JPH07104069B2 - Operation control method for absorption refrigerator - Google Patents

Operation control method for absorption refrigerator

Info

Publication number
JPH07104069B2
JPH07104069B2 JP26492487A JP26492487A JPH07104069B2 JP H07104069 B2 JPH07104069 B2 JP H07104069B2 JP 26492487 A JP26492487 A JP 26492487A JP 26492487 A JP26492487 A JP 26492487A JP H07104069 B2 JPH07104069 B2 JP H07104069B2
Authority
JP
Japan
Prior art keywords
solution
flow rate
temperature
cooling water
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26492487A
Other languages
Japanese (ja)
Other versions
JPH01107066A (en
Inventor
孝基 斎藤
英治 飛原
義一 永岡
教之 西山
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP26492487A priority Critical patent/JPH07104069B2/en
Publication of JPH01107066A publication Critical patent/JPH01107066A/en
Publication of JPH07104069B2 publication Critical patent/JPH07104069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷媒液(例えば水)を吸収液(例えばLiBr水
溶液)に吸収させた溶液を水蒸気或いはガスにより加熱
して冷媒蒸気(水蒸気)を発生させ、この冷媒蒸気を凝
縮器に送り、水又は空気と熱交換させて液化し、この液
化した冷媒と吸収液を混合して再び加熱して冷媒を蒸発
させるというサイクルを繰り返して冷房、冷凍などを行
なう所謂吸収式冷凍機の運転制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a refrigerant vapor (steam) by heating a solution obtained by absorbing a refrigerant liquid (eg, water) with an absorbing liquid (eg, LiBr aqueous solution) by steam or gas. Is generated, the refrigerant vapor is sent to the condenser, heat or water is liquefied by heat exchange with water or air, the liquefied refrigerant and the absorbing liquid are mixed and heated again to repeat the cycle of cooling and cooling, The present invention relates to an operation control method of a so-called absorption refrigerator that performs freezing and the like.

[従来の技術] 第3図は従来の二重効用型吸収式冷凍機のフローを示す
もので、符号の1は冷却水管、2は冷水管、3、4、5
は溶液配管、6、7は冷媒配管、8は揚液管、9、10は
オーバーフロー管、11は蒸気トラップ、12はダンパー、
13は溶液ポンプ、14は液面リレー、15は高温再生器、16
は分離器、17は低温再生器、18は凝縮器、19は吸収器、
20は蒸発器、21は高温熱交換器、22は低温熱交換器、23
はガスライン、24は空気ライン、25は温度検出器、26は
制御機構であって、この冷凍機における運転制御方法は
冷水管2の出口温度を温度検出器25で検出し、制御機構
26にて溶液ポンプ13をインバーター制御すると共にガス
の流量制御を行なっている。
[Prior Art] FIG. 3 shows a flow of a conventional double-effect absorption refrigerator, in which reference numeral 1 is a cooling water pipe, 2 is a cooling water pipe, 3, 4, and 5.
Is a solution pipe, 6 and 7 are refrigerant pipes, 8 is a lift pipe, 9 and 10 are overflow pipes, 11 is a vapor trap, 12 is a damper,
13 is a solution pump, 14 is a liquid level relay, 15 is a high temperature regenerator, 16
Is a separator, 17 is a low temperature regenerator, 18 is a condenser, 19 is an absorber,
20 is an evaporator, 21 is a high temperature heat exchanger, 22 is a low temperature heat exchanger, 23
Is a gas line, 24 is an air line, 25 is a temperature detector, and 26 is a control mechanism. In the operation control method of this refrigerator, the outlet temperature of the cold water pipe 2 is detected by the temperature detector 25, and the control mechanism is used.
At 26, the solution pump 13 is controlled by an inverter and the gas flow rate is controlled.

[従来技術の問題点] しかし、この従来例において、冷凍機の溶液バランスを
分離器16で考えた場合、溶液の入る量は溶液ポンプ13で
決定され、出る量は分離器16と低温再生器17の圧力差及
び配管4、高温熱交換器21の流動抵抗等で決定されるた
め、定格時分離器16の液面が一定に設計されていても、
定格時と条件が変わり、分離器16での圧力が変動する
と、溶液ポンプ13を制御しない限り分離器16でのバラン
スが崩れる。そこで、例えば、分離器16の圧力が低下
し、分離器16を出る溶液の量が減少した場合、溶液ポン
プ13に制御をかけ、全体の循環量を次式に従って減少さ
せれば良いが、制御をかけずにいると分離器16の液面は
上昇し、オーバーフロー管9や蒸気トラップ11からオー
バーフローすることになり、冷凍機の効率は低下する。
[Problems of the prior art] However, in this conventional example, when the solution balance of the refrigerator is considered by the separator 16, the amount of solution entering is determined by the solution pump 13, and the amount of solution exiting is separated by the separator 16 and the low temperature regenerator. Since it is determined by the pressure difference of 17 and the flow resistance of the pipe 4 and the high temperature heat exchanger 21, etc., even if the liquid level of the rated time separator 16 is designed to be constant,
When the conditions at the time of rating change and the pressure in the separator 16 fluctuates, the balance in the separator 16 is lost unless the solution pump 13 is controlled. Therefore, for example, when the pressure of the separator 16 is reduced and the amount of the solution leaving the separator 16 is reduced, the solution pump 13 may be controlled to reduce the total circulation amount according to the following equation. If it is not applied, the liquid level of the separator 16 rises and overflows from the overflow pipe 9 and the steam trap 11, and the efficiency of the refrigerator decreases.

ここで Geo:定格時の溶液循環量 Ge:任意の溶液循環量 ΔPo:定格時の分離器16と低温再生器17の圧力差 ΔP:任意の分離器16の低温再生器17の圧力差 圧力差ΔPは分離器16の圧力に大きく影響され、分離器
16の圧力は冷水、冷却水温度、流量、ガス入熱、冷凍能
力により変化する。そこで、前述の様な制御では充分な
最適制御ができず、液面リレー14で液面の制御を別に行
ない、溶液ポンプ13を発停しなければならない。しか
し、液面リレー14は故障しやすく、気密の上からもこの
運転制御は望ましいものではない。
Where Geo: solution circulation rate at rating Ge: arbitrary solution circulation rate ΔPo: pressure difference between separator 16 and low temperature regenerator 17 at rating ΔP: pressure difference between low temperature regenerator 17 of arbitrary separator 16 pressure difference ΔP is greatly affected by the pressure of the separator 16,
The pressure of 16 changes depending on cold water, cooling water temperature, flow rate, gas heat input, and refrigerating capacity. Therefore, the above-described control cannot provide sufficient optimum control, and the liquid level relay 14 must separately control the liquid level to start and stop the solution pump 13. However, the liquid level relay 14 is prone to failure, and this operation control is not desirable even in terms of airtightness.

このように、従来の溶液ポンプのインバーター制御にお
いては (1)冷水出口温度から溶液ポンプ13をインバーター制
御しても、外部条件の変動等により分離器16の圧力が変
化すると分離器16での溶液流量バランスがくずれ、液面
リレー14等により別の制御が必要となり、特に大きな負
荷変動時に追従性が悪い。
Thus, in the conventional inverter control of the solution pump, (1) even if the solution pump 13 is inverter-controlled from the cold water outlet temperature, if the pressure of the separator 16 changes due to changes in external conditions, the solution in the separator 16 The flow rate is out of balance and another control is required by the liquid level relay 14 etc., and the followability is poor especially when there is a large load change.

(2)前記(1)の欠点により効率の向上には限界があ
る。
(2) There is a limit to improvement in efficiency due to the drawback of (1).

という問題があった。There was a problem.

本発明は斯かる点に鑑みて提案されるもので、吸収式冷
凍機において、負荷変動に対する追従性の向上と効率の
向上を期待できる運転制御方法を提案するのが目的であ
る。
The present invention is proposed in view of these points, and it is an object of the present invention to propose an operation control method that can be expected to improve the followability to load fluctuations and the efficiency of an absorption refrigerator.

[問題点を解決するための手段] 上記目的を達成するために提案される本発明の運転制御
方法は次のとおりである。
[Means for Solving Problems] The operation control method of the present invention proposed to achieve the above object is as follows.

a. 冷却水系路であって吸収器内に至る入口及び凝縮器
の出口に温度検出手段を夫々取り付け、 b. 冷水系路であって蒸発器の入口と出口に温度検出手
段を夫々取り付け、 c. 前記夫々の温度検出手段で検出した温度の検出信号
を基に、あらかじめ求めた定格値との偏差を演算し、こ
の値を基に発生器への入熱及び吸収器から前記発生器に
戻る溶液流量を制御する吸収式冷凍機の運転制御方法。
a. Temperature detection means are installed at the inlet to the absorber and the outlet of the condenser, which are cooling water paths, b. Temperature detection means are installed at the inlet and outlet of the evaporator, which are cold water paths, c .Calculating the deviation from the rated value obtained in advance based on the detection signal of the temperature detected by each of the temperature detecting means, and based on this value, heat input to the generator and return from the absorber to the generator An operation control method for an absorption chiller that controls a solution flow rate.

なお、冷却水系路及び冷水系路内の流量に変化がある場
合には、この流量も夫々検出し、この流量信号を基にあ
らかじめ求めた定格値との偏差を演算して発生器への入
熱及び吸収器から発生器に戻る溶液流量を補正する。
If there is a change in the flow rate in the cooling water system channel or the cooling water system channel, this flow rate is also detected, and the deviation from the rated value calculated in advance based on this flow rate signal is calculated to enter the generator. Correct the heat and solution flow rate from the absorber back to the generator.

[実施例] 第1図は本発明の一実施例を示し、符号の1は冷却水管
(冷却水系路)、2は冷水管(冷水系路)、3、4、5
は溶液配管、6、7は冷媒配管、8は揚液管、9は溶液
ポンプ、10は冷媒ポンプ、11は高温再生器(発生器)、
12は分離器、13は低温再生器、14は凝縮器、15は吸収
器、16は蒸発器、17は高温熱交換器、18は低温熱交換
器、19は演算部、20は制御部、21は空気ライン、22はガ
スライン、22aはガス弁、23は冷水管2の入口に取り付
けられた温度検出器、24はこの出口に取り付けられた温
度検出器、25は冷却水管1の入口に取り付けられた温度
検出器、26はこの出口に取り付けられた温度検出器であ
る。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 is a cooling water pipe (cooling water passage), 2 is a cold water pipe (cooling water passage), 3, 4, 5
Is a solution pipe, 6 and 7 are refrigerant pipes, 8 is a lift pipe, 9 is a solution pump, 10 is a refrigerant pump, 11 is a high temperature regenerator (generator),
12 is a separator, 13 is a low temperature regenerator, 14 is a condenser, 15 is an absorber, 16 is an evaporator, 17 is a high temperature heat exchanger, 18 is a low temperature heat exchanger, 19 is a calculation unit, 20 is a control unit, 21 is an air line, 22 is a gas line, 22a is a gas valve, 23 is a temperature detector attached to the inlet of the cold water pipe 2, 24 is a temperature detector attached to this outlet, and 25 is an inlet of the cooling water pipe 1. An attached temperature detector, 26 is a temperature detector attached to this outlet.

上記実施例においては吸収器15内に至る冷却水管1の入
口と出口の温度が温度検出器25、26で常時検出されると
共に蒸発器16に至る冷水管2の入口と出口の温度が温度
検出器23、24で常時検出されている。なお、前記冷却水
管1及び冷水管2内の流量に変動のある装置において
は、夫々に流量計28、29が取り付けられている。
In the above embodiment, the temperatures of the inlet and the outlet of the cooling water pipe 1 reaching the absorber 15 are constantly detected by the temperature detectors 25 and 26, and the temperatures of the inlet and the outlet of the cold water pipe 2 reaching the evaporator 16 are temperature detected. It is constantly detected by instruments 23 and 24. In the device in which the flow rates in the cooling water pipe 1 and the cold water pipe 2 vary, flow meters 28 and 29 are attached respectively.

次に、上記実施例の冷凍機についてその運転と制御方法
を説明する。
Next, the operation and control method of the refrigerator of the above embodiment will be described.

第1図において、高温再生器11内の臭化リチウム希溶液
は熱せられて水蒸気を発生し、揚液管8を通って上部に
吹き出す。このとき11内の水蒸気を出した残りの臭化リ
チウム濃溶液は、同時に熱気泡ポンプの原理で管8を押
し上げ分離器12に至り、水蒸気と分離して下部にたま
る。12で分離した高圧側水蒸気はさらに上昇し、管6を
経て低温再生器13、凝縮器14に至り、冷却水管11で冷や
され、凝縮して下部に流れ、一旦U字管にたまる。一方
12で分離した濃溶液は、管4を通って高温熱交換器17に
入り、外部を流れる希溶液に熱を与えて管内を上昇し、
吸収器15内に装置された小孔から散布され、15内の水蒸
気を吸収し、希溶液となって下部にたまる。
In FIG. 1, the dilute lithium bromide solution in the high temperature regenerator 11 is heated to generate water vapor, which is blown out to the upper portion through the pumping pipe 8. At this time, the remaining concentrated lithium bromide solution that has generated steam in 11 simultaneously pushes up the pipe 8 by the principle of the hot bubble pump to reach the separator 12, separates it from steam and accumulates in the lower part. The high-pressure side steam separated at 12 further rises, reaches the low temperature regenerator 13 and the condenser 14 via the pipe 6, is cooled by the cooling water pipe 11, is condensed and flows to the lower part, and temporarily accumulates in the U-shaped pipe. on the other hand
The concentrated solution separated in 12 enters the high temperature heat exchanger 17 through the tube 4 and gives heat to the dilute solution flowing outside to rise in the tube,
It is sprayed from the small holes provided in the absorber 15, absorbs the water vapor in 15 and becomes a dilute solution and accumulates at the bottom.

このように15内の水蒸気が吸収されて低圧となるので、
これに連なっている蒸発器16内も水蒸気圧が減少し、U
字管にたまった水が16内に流入して蒸発し、気化熱を奪
う。吸収器15内は吸収熱による温度上昇のため吸収作用
が低下するので、冷却水管1を通じて冷却を行なう。吸
収器15の底部にたまった希溶液は溶液ポンプ9、管12、
熱交換器17、18を通り高温再生器11に流れ、再び以上の
循環を繰り返す。
In this way, the water vapor in 15 is absorbed and the pressure becomes low, so
The vapor pressure also decreases in the evaporator 16 connected to this, and U
The water accumulated in the character tube flows into 16 and evaporates, and the heat of vaporization is taken away. Since the absorbing action is lowered in the absorber 15 due to the temperature rise due to the absorbed heat, the cooling is performed through the cooling water pipe 1. The dilute solution accumulated at the bottom of the absorber 15 is the solution pump 9, the pipe 12,
It flows through the heat exchangers 17 and 18 to the high temperature regenerator 11, and the above circulation is repeated again.

このような状況において負荷変動が発生すると、冷却水
管1及び冷水管2の夫々の出入口の温度が変動するの
で、この温度信号を演算部19に入力し、この入力からあ
らかじめシュミレーション等により定めた定格値との偏
差を演算し、この演算値に基づいてガスライン22のガス
弁22a及び溶液ポンプ9の運転量を制御部20からの出力
信号により制御する。
When load fluctuations occur in such a situation, the temperatures at the respective inlets and outlets of the cooling water pipe 1 and the cooling water pipe 2 fluctuate. Therefore, this temperature signal is input to the calculation unit 19, and a rating previously determined by simulation or the like is input from this input. The deviation from the value is calculated, and the operating amounts of the gas valve 22a of the gas line 22 and the solution pump 9 are controlled by the output signal from the control unit 20 based on the calculated value.

次に、演算部19での演算の考え方を示す。Next, the concept of calculation in the calculation unit 19 will be shown.

ここで Qg :ガス入熱の定格値 Ge :溶液流量の定格値 C1〜C8:定数 次に、具体的な計算例を示す。(但し、冷水入口温度13
℃→11℃に変化した場合) Qg=80,000×{1+2.234×(−0.154)} =80,000×0.656 =52,500(kcal/h) Ge=900×{1+2.190×(−0.154)} =900×0.663 =600(l/h) つまり、冷水入口温度が13℃→11℃に変化した場合 ガス入熱 Qg80,000kcal/h→52,500kcal/h 溶液流量 Ge900l/h→600l/h ガス入熱と制御電圧、溶液流量と制御電圧の関係を1次
で近似する。
Where Q g * : Rated value of gas heat input G e * : Rated value of solution flow rate C 1 to C 8 : Constants Next, specific calculation examples will be shown. (However, cold water inlet temperature 13
(When changing from ℃ to 11 ℃) Q g = 80,000 × {1 + 2.234 × (-0.154)} = 80,000 × 0.656 = 52,500 (kcal / h) G e = 900 × {1 + 2.190 × (-0.154)} = 900 × 0.663 = 600 (l / h) That is, when the cold water inlet temperature changes from 13 ℃ to 11 ℃ Gas heat input Q g 80,000kcal / h → 52,500kcal / h Solution flow rate G e 900l / h → 600l / h Gas heat input and control voltage, solution The relationship between the flow rate and the control voltage is first-order approximated.

VQ=A・Qg+B VG=C・Qg+D A,B,C,Dは定数、VQ、VGは制御電圧である。V Q = A · Q g + B V G = C · Q g + D A, B, C, D are constants, and V Q and V G are control voltages.

[本発明の効果] 本発明は以上のように、冷却水の出入りの温度及び冷水
の出入りの温度とを検出し、あらかじめ定めた定格値と
の偏差を求め、この偏差値を解消する方向に入熱と溶液
量を制御するようにしたので、負荷変動に対する追従性
が大変よく改善された。
[Effects of the Present Invention] As described above, the present invention detects the temperature at which cooling water enters and exits and the temperature at which cold water enters and exits, obtains a deviation from a preset rated value, and tends to eliminate this deviation. Since the heat input and the amount of solution were controlled, the followability to load fluctuation was improved very well.

第2図(1)は従来例による制御例で、(2)は本発明
例による制御例である。
FIG. 2A shows a control example according to the conventional example, and FIG. 2B shows a control example according to the present invention.

又、上記のように追従性が改善されたことにより、特に
負荷変動の多い冷凍機においてその効率アップが図れる
効果がある。
Further, since the followability is improved as described above, there is an effect that the efficiency can be improved especially in the refrigerator in which the load variation is large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る吸収式冷凍機の実施例図、第2図
は従来例と本発明例の制御例説明図、第3図は従来の吸
収式冷凍機の説明図である。 1……冷却水管、2……冷水管 3、4、5……溶液配管、6、7……冷媒配管 8……揚液管、9……溶液ポンプ 10……冷媒ポンプ、11……高温再生器(発生器) 12……分離器、13……低温再生器 14……凝縮器、15……吸収器 16……蒸発器、17……高温熱交換器 18……低温熱交換器、19……演算部 20……制御部、21……空気ライン 22……ガスライン 23、24、25、26……温度検出器(温度検出手段) 28、29……流量計(流量検出手段)
FIG. 1 is an embodiment diagram of an absorption chiller according to the present invention, FIG. 2 is an explanatory view of a control example of a conventional example and the present invention example, and FIG. 3 is an explanatory diagram of a conventional absorption chiller. 1 ... Cooling water pipe, 2 ... Cold water pipe 3, 4, 5 ... Solution pipe, 6, 7 ... Refrigerant pipe 8 ... Pumping pipe, 9 ... Solution pump 10 ... Refrigerant pump, 11 ... High temperature Regenerator (generator) 12 …… Separator, 13 …… Low temperature regenerator 14 …… Condenser, 15 …… Absorber 16 …… Evaporator, 17 …… High temperature heat exchanger 18 …… Low temperature heat exchanger, 19 ... Calculation unit 20 ... Control unit, 21 ... Air line 22 ... Gas line 23,24,25,26 ... Temperature detector (temperature detection means) 28,29 ... Flowmeter (flow rate detection means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】a. 冷却水系路であって吸収器内に至る入
口及び凝縮器の出口に温度検出手段を夫々取り付け、 b. 冷水系路であって蒸発器の入口と出口に温度検出手
段を夫々取り付け、 c. 前記夫々の温度検出手段で検出した温度の検出信号
を基に、あらかじめ求めた定格値との偏差を演算し、こ
の値を基に発生器への入熱及び吸収器から前記発生器に
戻る溶液流量を制御する吸収式冷凍機の運転制御方法。
Claims: 1. A temperature detecting means is attached to the inlet of the cooling water passage leading to the inside of the absorber and an outlet of the condenser, and b. Temperature detecting means is attached to the inlet and outlet of the evaporator in the cold water passage. C. Calculate the deviation from the rated value obtained in advance based on the temperature detection signal detected by each of the temperature detection means, and based on this value, input heat to the generator and from the absorber An operation control method for an absorption chiller, which controls a flow rate of a solution returned to the generator.
【請求項2】冷却水系路及び冷水系路に夫々流量検出手
段を取り付け、温度と共にこの流量信号を基にあらかじ
め求めた定格値との偏差を演算して発生器への入熱及び
吸収器から発生器に戻る溶液流量を制御する特許請求の
範囲第1項記載の吸収式冷凍機の運転制御方法。
2. A flow rate detecting means is attached to each of the cooling water system passage and the cold water system passage, and a deviation from a rated value obtained in advance based on this flow rate signal is calculated together with the temperature to calculate heat input to the generator and from the absorber. The operation control method for an absorption chiller according to claim 1, wherein the flow rate of the solution returned to the generator is controlled.
JP26492487A 1987-10-20 1987-10-20 Operation control method for absorption refrigerator Expired - Lifetime JPH07104069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26492487A JPH07104069B2 (en) 1987-10-20 1987-10-20 Operation control method for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26492487A JPH07104069B2 (en) 1987-10-20 1987-10-20 Operation control method for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH01107066A JPH01107066A (en) 1989-04-24
JPH07104069B2 true JPH07104069B2 (en) 1995-11-13

Family

ID=17410086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26492487A Expired - Lifetime JPH07104069B2 (en) 1987-10-20 1987-10-20 Operation control method for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH07104069B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744036B2 (en) * 1988-12-20 1998-04-28 三洋電機株式会社 Absorption refrigerator
JP2725883B2 (en) * 1990-11-01 1998-03-11 三洋電機株式会社 Control device for absorption refrigerator

Also Published As

Publication number Publication date
JPH01107066A (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US2901894A (en) Refrigerant control means
US2223752A (en) Refrigeration
JPH07104069B2 (en) Operation control method for absorption refrigerator
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
US2557573A (en) Air conditioning
US2112537A (en) Refrigeration
JP5449862B2 (en) Absorption refrigeration system
US2672737A (en) Absorption refrigeration
US2178603A (en) Absorption refrigerating apparatus
JPH08271083A (en) Absorption type cold and hot water supply apparatus, and its control method
US1924770A (en) Absorption refrigerating system
JPH09318188A (en) Method of controlling absorption cold/hot water generator
US2761656A (en) Air conditioning
JP2708809B2 (en) Control method of absorption refrigerator
US2693090A (en) Absorption refrigeration system
CN212457500U (en) Absorption type refrigerating unit
US2257986A (en) Refrigeration
US2561369A (en) Absorption refrigeration system
JP2708900B2 (en) Absorption refrigerator
JPH05280824A (en) Temperature and capacity control device for absorption refrigeration system
JP3084650B2 (en) Absorption chiller / heater and its control method
US2785543A (en) Absorption refrigeration system
JP3306486B2 (en) Dilution control method for absorption chiller / heater
USRE22664E (en) ullstrand
JP2664436B2 (en) Control method of absorption refrigerator