JP2668093B2 - Control method of absorption chiller / heater - Google Patents

Control method of absorption chiller / heater

Info

Publication number
JP2668093B2
JP2668093B2 JP3071697A JP7169791A JP2668093B2 JP 2668093 B2 JP2668093 B2 JP 2668093B2 JP 3071697 A JP3071697 A JP 3071697A JP 7169791 A JP7169791 A JP 7169791A JP 2668093 B2 JP2668093 B2 JP 2668093B2
Authority
JP
Japan
Prior art keywords
solution
temperature
regenerator
refrigerant
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3071697A
Other languages
Japanese (ja)
Other versions
JPH04309758A (en
Inventor
正彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3071697A priority Critical patent/JP2668093B2/en
Publication of JPH04309758A publication Critical patent/JPH04309758A/en
Application granted granted Critical
Publication of JP2668093B2 publication Critical patent/JP2668093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、吸収冷温水機に係り、
特に、高温再生器に対して要求される入熱量に応じて溶
液循環量を適正に制御する吸収冷温水機の制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater,
In particular, melting depends on the heat input required for the high-temperature regenerator.
The present invention relates to a method for controlling an absorption chiller / heater for appropriately controlling a liquid circulation amount .

【従来の技術】従来のこの種の吸収冷温水機の制御方法
にあっては、溶液の循環量を高温再生器に対して要求さ
れる入熱量に応じて適量となるように制御するのに、高
温再生器の溶液温度、あるいは蒸発器の冷水出口温度に
基づいて溶液ポンプを駆動するインバータの周波数を変
化させることにより行ない、流量過多による溶液の冷媒
への混入、あるいは流量過少による溶液濃度の上昇等の
溶液サイクル上の問題が発生しないように配慮されてい
た。
2. Description of the Related Art In a conventional method of controlling an absorption chiller / heater of this type, a circulation amount of a solution is adjusted to an appropriate amount according to a heat input amount required for a high-temperature regenerator. The control is performed by changing the frequency of the inverter that drives the solution pump based on the solution temperature of the high temperature regenerator or the cold water outlet temperature of the evaporator. Care was taken not to cause problems in the solution cycle such as an increase in the solution concentration due to the above.

【発明が解決しようとする課題】一方、上述した従来の
吸収冷温水機の制御方法においては、冷却水の温度変化
及び負荷変動に起因して冷媒が凍結し、あるいは晶析す
るのを防止するために溶液の濃度調整が行なわれてい
た。したがって図2に示すように同一の高温再生器の溶
液温度(高温再生器温度)であっても溶液濃度により飽
和圧力が異なるために、高温再生器温度のみをパラメー
タにして溶液循環量を制御すると、溶液濃度が設定値以
外の場合に流量過多に起因して分離器内での溶液の冷媒
中への混入あるいは流量過少に起因して分離器での冷媒
蒸気抜け等を生じ、溶液循環量を適切に制御できないと
いう問題があった。本発明は、このような事情に鑑みて
なされたものであり、分離器内での溶液の冷媒中への混
入及び冷媒蒸気抜けがなく溶液循環量を最適に制御する
ことができる吸収冷温水機の制御方法を提供することを
目的とする。
On the other hand, in the above-described conventional method for controlling an absorption chiller / heater, the refrigerant is prevented from freezing or crystallizing due to a change in the temperature of the cooling water and a change in load. Therefore, the concentration of the solution was adjusted. Therefore, as shown in FIG. 2, even when the solution temperature of the same high temperature regenerator (high temperature regenerator temperature) is different, the saturation pressure varies depending on the solution concentration, so that the solution circulation amount is controlled using only the high temperature regenerator temperature as a parameter. If the solution concentration is other than the set value, mixing of the solution into the refrigerant in the separator due to excessive flow or refrigerant vapor bleeding in the separator due to insufficient flow causes a solution circulation amount. There was a problem that it could not be controlled properly. The present invention has been made in view of such circumstances, and an absorption chiller / heater that can optimally control a solution circulation amount without mixing a solution into a refrigerant in a separator and evacuating a refrigerant vapor. It aims at providing the control method of.

【課題を解決するための手段】本発明は、溶液に冷媒を
吸収させた稀溶液を加熱する高温再生器と、高温再生器
からの冷媒蒸気と中間濃溶液とを分離する分離器と、中
間濃溶液を降温した後、分離器からの冷媒蒸気で加熱す
る低温再生器と、低温再生器からの冷媒を凝縮する凝縮
器と、凝縮器からの液体冷媒を蒸発させる蒸発器と、蒸
発器で蒸発した冷媒を低温再生器からの濃溶液に吸収さ
せる吸収器と、吸収器における稀溶液を高温再生器側に
送出する溶液ポンプと、温再生器に対する入熱量及び
溶液ポンプの溶液循環量を制御する制御手段とを有し、
制御手段は、蒸発器の冷水出口温度を入力し冷水出口温
度に基づいて入熱量を制御し、高温再生器温度に対する
インバータ周波数の関係を吸収器出口温度をパラメータ
にして予め記憶するとともにそれぞれの設定値を記憶
し、高温再生器温度及び吸収器出口温度を入力し、吸収
器出口温度と吸収器出口温度設定値との間に温度差があ
り溶液濃度が異なる際はインバータ周波数設定値に対す
る偏差を求め、偏差によりインバータ周波数を補正し溶
液濃度に応じて溶液ポンプを制御することを特徴とす
る。
The present invention is directed to a high temperature regenerator for heating a dilute solution in which a refrigerant is absorbed in a solution, a separator for separating refrigerant vapor from the high temperature regenerator and an intermediate concentrated solution, and an intermediate After lowering the temperature of the concentrated solution, a low-temperature regenerator that heats with the refrigerant vapor from the separator, a condenser that condenses the refrigerant from the low-temperature regenerator, an evaporator that evaporates the liquid refrigerant from the condenser, and an evaporator and absorber for absorbing the evaporated refrigerant in the concentrated solution from the low-temperature regenerator, a solution pump for delivering the diluted solution in the absorber to the high temperature regenerator side, a solution circulation amount of heat input and the solution pump for Atsushi Ko regenerators Control means for controlling,
The control means inputs the cold water outlet temperature of the evaporator and outputs the cold water outlet temperature.
Control the amount of heat input based on the temperature
Inverter frequency relationship is used as a parameter of absorber outlet temperature
And memorize each set value in advance.
Enter the high temperature regenerator temperature and absorber outlet temperature
Temperature difference between the outlet temperature of the absorber and the set value of the outlet temperature of the absorber
If the solution concentration differs,
The inverter frequency with the deviation.
The solution pump is controlled according to the solution concentration .

【作用】上記構成の吸収冷温水機の制御方法において
は、吸収器出口の溶液温度(吸収器出口温度)、蒸発
の冷水出口温度、高温再生器の溶液温度(高温再生器温
度)が各種センサにより検出される。これらの温度デー
タは制御手段を構成する制御回路に入力され、制御回路
により蒸発器の冷水出口温度に基づいて高温再生器の入
熱量が演算され、高温再生器を加熱するバーナに供給さ
れるガス流量が制御される。また制御回路では吸収器出
口温度と、吸収器出口温度設定値との間に温度差があり
溶液濃度が異なる際は、その温度差に応じてインバータ
周波数設定値に対する偏差を求め、偏差によりインバー
タ周波数を補正して溶液濃度に応じて溶液ポンプ用のイ
ンバータ周波数制御信号が制御回路から出力されて溶液
循環量が補正される。したがって、分離器内での溶液の
冷媒中への混入及び冷媒蒸気抜けを防止でき、吸収冷温
水機内の溶液循環量を最適に制御することができ、高温
熱交換器等の伝熱管の腐食が防止されるとともに、負荷
に応じて運転効率が向上される
In the method for controlling the absorption chiller-heater having the above-mentioned structure, the solution temperature at the outlet of the absorber (absorber outlet temperature), the cold water outlet temperature of the evaporator , and the solution temperature of the high temperature regenerator (high temperature regenerator temperature) are various. It is detected by a sensor. These temperature data are input to the control circuit that constitutes the control means, the control circuit calculates the heat input amount of the high temperature regenerator based on the cold water outlet temperature of the evaporator, and the gas supplied to the burner that heats the high temperature regenerator. The flow rate is controlled. In the control circuit, there is a temperature difference between the absorber outlet temperature and the absorber outlet temperature set value.
If the solution concentration is different, the inverter
Calculate the deviation from the frequency setting value and use the deviation to
The solution inverter frequency control signal for the solution pump is outputted from the control circuit in accordance with the solution concentration by correcting the data frequency
The circulation amount is corrected . Thus, incorporation into solutions refrigerant in the separator and prevents loss refrigerant vapor, it is possible to optimally control the solution circulation amount of the absorption cold and hot water machine, hot
Corrosion of heat transfer tubes such as heat exchangers is prevented, and load
The operating efficiency is improved accordingly .

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1には本発明に係る吸収冷温水機の制御方法
一実施例の構成が示されている。同図において、本発明
に係る吸収冷温水機は、高温再生器1と、分離器2と、
低温再生器5と、凝縮器7と、蒸発器11と、吸収器1
3と、溶液ポンプ14と、冷暖切替バルブ15と、温度
センサ21,22,23と、インバータ24と、制御回
路25とを有しており、これらが循環系を形成してい
る。なお、16は流量制御弁、17はオリフィスであ
り、冷媒回路20の出口部に設けられている。また18
はバーナである。高温再生器1は、導入される稀溶液を
加熱する。分離器2は高温再生器1で加熱されて沸騰し
た高温の水蒸気と中間濃溶液とを分離する。低温再生器
5は、分離器2で分離され、高温熱交換器3で稀溶液と
の熱交換によって降温された後、導入された中間濃溶液
を、分離器2から冷媒回路20に取り込まれた高温蒸気
によって加熱して濃縮すると同時に冷媒蒸気を発生させ
る。凝縮器7は、低温再生器5から中間濃溶液を加熱す
ることによって生じた冷媒蒸気と中間濃溶液に熱を奪わ
れて凝縮した液体冷媒とを取り込み、これを冷却水コイ
ル6内を流れる冷却水によって冷却して凝縮させる。蒸
発器11は、凝縮器7で凝縮された冷媒が下部の受液部
8に留められた後、分散管9を介して冷水伝熱コイル1
0上に散布させて蒸発させる。吸収器13は、低温再生
器5から流入する濃溶液を低温熱交器によって降温させ
た後、導入して冷却水コイル6上に散布することによ
り、蒸発器11で蒸発した冷媒蒸気を吸収し、稀溶液と
する。溶液ポンプ14は、吸収器13ににおける稀溶液
を低温熱交換器12、高温熱交換器3を介して高温再生
器へ送出する。冷暖切替バルブ15は、暖房と冷房との
切替を行なう。温度センサ21,22,23は、それぞ
れ蒸発器11の冷水出口温度、高温再生器温度、吸収器
出口温度を検出する。インバータ24は、溶液ポンプ1
4に供給する電力量を調整する。制御回路25は、温度
センサ21,22,23の検出出力を取り込み、これら
の検出出力に基づいて高温再生器1に対する入熱量及び
溶液ポンプの溶液循環量を制御する。上記構成からなる
吸収冷温水機の制御方法の動作について以下に説明す
る。なお、吸収冷温水機の通常の動作については本発明
とは直接、関係がないのでその説明は省略する。図2は
溶液温度t(又は高温再生器温度th)に対する飽和圧
力Pの関係を溶液濃度Dをパラメータにして示し、図3
は高温再生器温度thに対するインバータ周波数fとの
関係を示している。図2に示すように高温再生器1内の
溶液温度tiが同一であっても濃度D(D1<D0<D
2)によって飽和圧力が異なるために従来装置のように
高温再生器温度のみをパラメータにして溶液循環量を制
御すると、溶液濃度が設定値(D0)から外れる場合に
は流量過多による分離器内での溶液の冷媒中への混入あ
るいは流量過少による分離器内での冷媒蒸気抜け等の不
適を招く可能性があった。本発明の実施例では高温再生
器1へのガス等の入熱量は蒸発器11の冷水出口温度に
より制御し、溶液ポンプ14の溶液循環量は高温再生器
温度及び吸収器出口温度に基づいてインバータ24の周
波数を補正することにより負荷量に適合する溶液循環量
を得るようにする。さて吸収冷温水機の溶液濃度調整は
吸収器13における飽和圧力を一定にし、冷媒の凍結及
び溶液の晶析を防止する目的で行なわれることから吸収
器13出口の溶液濃度は吸収器13の出口温度の設定値
をt0とすると、図2に示すデューリング線図によりD
=D0と求められる。次に図3を参照して予め設定され
た高温再生器温度thに対するインバータ周波数fを求
める(f=F(th))。fはthの関数であり、吸収
器13出口の溶液温度taがt0と異なる場合は予め設
定されたインバータ周波数f0に対する偏差Δfを求
め、このインバータ周波数f(f=f0+Δf)を算出
する。これにより設定溶液濃度に適合する溶液循環量が
得られる。 次に図4を参照して制御回路の動作を説明
する。まず各温度センサ21,22,23より蒸発器
11の冷水出口温度tc,高温再生器温度th,吸収器
出口温度taが検出され、制御回路25に取り込まれる
(ステツプ30)。次いで吸収器出口温度taがta=
t0であるか否かが判定され、ta=t0である場合に
はインバータ周波数fが演算される(ステップ31,3
2)。ここで求められたインバータ周波数はf=f0と
なり、インバータ24には制御回路25よりインバータ
周波数fをf=f0とするための制御信号が出力され
る。この結果、溶液ポンプ14は所定の回転数で回転駆
動され、吸収器13側から高温再生器1側への溶液循環
量は目標値である所定値に制御される。またステップ3
1でta≠t0であると判定された場合には、吸収器1
3の出口温度taの設定温度t0との偏差Δtが演算さ
れる(ステップ34)。更にこの偏差Δtを加味してイ
ンバータ周波数fが演算され、制御回路25よりインバ
ータ周波数fをf=f0+Δfとするための制御信号が
出力される(ステップ35,36)。ステップ34〜3
6において、例えば溶液濃度Dが設定値D0より低い状
態、例えばD=D1(図2)で運転されている場合、す
なわち吸収器13出口の溶液温度taが設定値t0より
低い温度t2である場合(図3)には高温再生器温度t
iに対する飽和圧力Pは設定値P0より高いP1になる
ために設定周波数f0でインバータ24を動作させ、溶
液ポンプ14を運転すると、冷媒蒸気の抜けが発生しや
すくなる。これは高温再生器1に流入する溶液流量に対
して飽和圧力が高いことによる。この場合にステップ3
5では吸収器出口温度taの設定温度t0との偏差Δt
に基づいてインバータ周波数fが演算され、インバータ
周波数fは偏差Δtに応じた補正値Δfが加算され、f
=f2(f2=f0+Δf)となる。この結果、冷媒蒸
気の抜けを防止することができる。逆に溶液濃度Dが設
定値D0より高い状態、例えばD=D2(図2)で運転
されている場合、高温再生器温度tiに対する飽和圧力
Pは設定値P0より低いP2になるために設定周波数f
0でインバータ24を動作させ、溶液ポンプ14を運転
すると、溶液が流入しやすくなり、分離器2内で溶液が
冷媒に混入する可能性が高くなる。しかし本実施例では
ステップ35でインバータ周波数fは偏差Δtに応じた
補正値Δfが減算され、f=f1(f1=f0−Δf)
となる。この結果、上記と同様に溶液への冷媒混入を防
止することができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an embodiment of a method for controlling an absorption chiller / heater according to the present invention. In the figure, an absorption chiller / heater according to the present invention comprises a high-temperature regenerator 1, a separator 2,
Low-temperature regenerator 5, condenser 7, evaporator 11, absorber 1
3, a solution pump 14, a cooling / heating switching valve 15, temperature sensors 21, 22, 23, an inverter 24, and a control circuit 25, which form a circulation system. In addition, 16 is a flow control valve, 17 is an orifice, which is provided at the outlet of the refrigerant circuit 20. Also 18
Is a burner. The high temperature regenerator 1 heats the introduced dilute solution. The separator 2 separates the high temperature steam that is heated by the high temperature regenerator 1 and boiled from the intermediate concentrated solution. The low-temperature regenerator 5 is separated by the separator 2 and cooled by heat exchange with the dilute solution in the high-temperature heat exchanger 3, and then the introduced intermediate concentrated solution is taken into the refrigerant circuit 20 from the separator 2. It is heated and concentrated by high-temperature steam, and at the same time, refrigerant vapor is generated. The condenser 7 takes in the refrigerant vapor generated by heating the intermediate concentrated solution from the low-temperature regenerator 5 and the liquid refrigerant deprived of heat by the intermediate concentrated solution and condensed into the cooling water flowing through the cooling water coil 6. Cool with water and condense. After the refrigerant condensed in the condenser 7 is retained in the lower liquid receiving portion 8, the evaporator 11 transmits the cold water heat transfer coil 1 through the dispersion pipe 9.
Sprinkle over 0 to evaporate. The absorber 13 absorbs the refrigerant vapor evaporated by the evaporator 11 by lowering the temperature of the concentrated solution flowing from the low-temperature regenerator 5 by the low-temperature heat exchanger, introducing the concentrated solution and dispersing it on the cooling water coil 6. , A diluted solution. The solution pump 14 sends the diluted solution in the absorber 13 to the high temperature regenerator via the low temperature heat exchanger 12 and the high temperature heat exchanger 3. The cooling / heating switching valve 15 switches between heating and cooling. The temperature sensors 21, 22, 23 detect the cold water outlet temperature of the evaporator 11, the high temperature regenerator temperature, and the absorber outlet temperature, respectively. The inverter 24 is connected to the solution pump 1
Adjust the amount of power supplied to No.4. The control circuit 25 captures the detection outputs of the temperature sensors 21, 22, and 23 and controls the amount of heat input to the high-temperature regenerator 1 and the amount of solution circulation of the solution pump based on these detection outputs. The operation of the method for controlling the absorption chiller / heater having the above configuration will be described below. The normal operation of the absorption chiller-heater is not directly related to the present invention, and thus its description is omitted. FIG. 2 shows the relationship of the saturation pressure P with respect to the solution temperature t (or the high temperature regenerator temperature th) using the solution concentration D as a parameter.
Shows the relationship between the high-temperature regenerator temperature th and the inverter frequency f. As shown in FIG. 2, even if the solution temperature ti in the high temperature regenerator 1 is the same, the concentration D (D1 <D0 <D
Since the saturation pressure differs depending on 2), if the solution circulation amount is controlled by using only the high temperature regenerator temperature as a parameter as in the conventional apparatus, if the solution concentration deviates from the set value (D0), the flow rate becomes too high in the separator. There is a possibility that mixing of the solution into the refrigerant or an insufficient flow rate may cause inappropriateness such as refrigerant vapor escape in the separator. In the embodiment of the present invention, the heat input amount of gas or the like to the high temperature regenerator 1 is controlled by the cold water outlet temperature of the evaporator 11, and the solution circulation amount of the solution pump 14 is an inverter based on the high temperature regenerator temperature and the absorber outlet temperature. By correcting the frequency of 24, a solution circulation amount suitable for the load amount is obtained. The solution concentration of the absorption chiller / heater is adjusted to keep the saturation pressure in the absorber 13 constant and to prevent the refrigerant from freezing and the solution from crystallizing. Assuming that the set value of the temperature is t0, the During diagram shown in FIG.
= D0. Next, referring to FIG. 3, the inverter frequency f with respect to the preset high temperature regenerator temperature th is obtained (f = F (th)). f is a function of th, and when the solution temperature ta at the outlet of the absorber 13 is different from t0, a deviation Δf with respect to a preset inverter frequency f0 is obtained, and this inverter frequency f (f = f0 + Δf) is calculated. As a result, a solution circulation amount suitable for the set solution concentration is obtained. Next, the operation of the control circuit will be described with reference to FIG. First coolant outlet temperature tc more evaporator 11 to the respective temperature sensors 21, 22, 23, the high-temperature regenerator temperature th, the absorber outlet temperature ta is detected and received by the control circuit 25 (step 30). Next, the absorber outlet temperature ta is ta =
It is determined whether or not t0, and if ta = t0, the inverter frequency f is calculated (steps 31, 3).
2). The obtained inverter frequency becomes f = f0, and a control signal for setting the inverter frequency f to f = f0 is output from the control circuit 25 to the inverter 24. As a result, the solution pump 14 is driven to rotate at a predetermined number of revolutions, and the amount of solution circulation from the absorber 13 to the high temperature regenerator 1 is controlled to a target value, that is, a predetermined value. Step 3
1, if it is determined that ta ≠ t0, the absorber 1
A deviation Δt between the outlet temperature ta and the set temperature t0 of Step 3 is calculated (Step 34). Further, the inverter frequency f is calculated in consideration of the deviation Δt, and the control circuit 25 outputs a control signal for setting the inverter frequency f to f = f0 + Δf (steps 35 and 36). Steps 34-3
6, when the solution concentration D is lower than the set value D0, for example, when operating at D = D1 (FIG. 2), that is, when the solution temperature ta at the outlet of the absorber 13 is a temperature t2 lower than the set value t0. (Fig. 3) shows the high temperature regenerator temperature t
Since the saturation pressure P for i becomes P1 higher than the set value P0, when the inverter 24 is operated at the set frequency f0 and the solution pump 14 is operated, the escape of the refrigerant vapor is likely to occur. This is because the saturation pressure is higher than the flow rate of the solution flowing into the high-temperature regenerator 1. Step 3 in this case
5, the deviation Δt of the absorber outlet temperature ta from the set temperature t0.
The inverter frequency f is calculated based on the above, and the inverter frequency f is added with the correction value Δf according to the deviation Δt, and f
= F2 (f2 = f0 + Δf). As a result, escape of the refrigerant vapor can be prevented. Conversely, when the solution concentration D is higher than the set value D0, for example, when operating at D = D2 (FIG. 2), the saturation pressure P with respect to the high temperature regenerator temperature ti becomes P2 lower than the set value P0, and therefore the set frequency is set. f
When the inverter 24 is operated at 0 and the solution pump 14 is operated, the solution easily flows, and the possibility that the solution mixes with the refrigerant in the separator 2 increases. However, in this embodiment, the correction value Δf corresponding to the deviation Δt is subtracted from the inverter frequency f in step 35, and f = f1 (f1 = f0−Δf).
Becomes As a result, similarly to the above, it is possible to prevent the refrigerant from being mixed into the solution.

【発明の効果】本発明によれば、高温再生器に対する入
熱量を蒸発器の冷水出口温度に基づいて制御し、かつ吸
収器出口温度と吸収器出口温度設定値との温度差により
インバータ周波数を補正し、温度測定個所を簡略化した
簡易な制御手段で溶液濃度の変化に応じて溶液循環量を
連続して制御できるため、溶液循環量の制御精度が向上
するとともに、分離器内での溶液の冷媒中への混入及び
冷媒蒸気抜けを確実に防止でき、高温熱交換器等の伝熱
管の腐食が防止され、かつ負荷に応じて運転効率が向上
される効果がある
According to the present invention, the heat input to the high temperature regenerator is controlled based on the cold water outlet temperature of the evaporator, and the heat absorption is controlled.
The temperature difference between the collector outlet temperature and the absorber outlet temperature set value
Inverter frequency was corrected to simplify temperature measurement.
With simple control means, the amount of solution circulation can be adjusted according to changes in solution concentration.
Continuous control enables improved control of solution circulation volume
To together, omission mixed and refrigerant vapor of the solution into the refrigerant in the separator can be securely prevented, heat transfer, such as a high temperature heat exchanger
Prevents pipe corrosion and increases operating efficiency depending on load
Has the effect of being done .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る吸収冷温水機の一実施例の構成を
示す系統図である。
FIG. 1 is a system diagram showing a configuration of an embodiment of an absorption chiller / heater according to the present invention.

【図2】高温再生器温度と飽和圧力との関係を示す特性
図である。
FIG. 2 is a characteristic diagram showing a relationship between a high-temperature regenerator temperature and a saturation pressure.

【図3】高温再生器温度とインバータ周波数との関係を
示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a high-temperature regenerator temperature and an inverter frequency.

【図4】図1における制御回路の動作内容を示すフロー
チャートである。
FIG. 4 is a flowchart showing an operation content of a control circuit in FIG. 1;

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 5 低温再生器 7 凝縮器 11 蒸発器 13 吸収器 14 溶液ポンプ 24 インバータ 25 制御回路 1 High Temperature Regenerator 2 Separator 5 Low Temperature Regenerator 7 Condenser 11 Evaporator 13 Absorber 14 Solution Pump 24 Inverter 25 Control Circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶液に冷媒を吸収させた稀溶液を加熱す
る高温再生器と、該高温再生器からの冷媒蒸気と中間濃
溶液とを分離する分離器と、前記中間濃溶液を降温した
後、前記分離器からの冷媒蒸気で加熱する低温再生器
と、該低温再生器からの冷媒を凝縮する凝縮器と、該凝
縮器からの液体冷媒を蒸発させる蒸発器と、該蒸発器で
蒸発した冷媒を前記低温再生器からの濃溶液に吸収させ
る吸収器と、該吸収器における稀溶液を高温再生器側に
送出する溶液ポンプと、前記高温再生器に対する入熱量
及び前記溶液ポンプの溶液循環量を制御する制御手段と
を有し、該制御手段は、前記蒸発器の冷水出口温度を入
力し該冷水出口温度に基づいて前記入熱量を制御し、高
温再生器温度に対するインバータ周波数の関係を吸収器
出口温度をパラメータにして予め記憶するとともにそれ
ぞれの設定値を記憶し、前記高温再生器温度及び前記吸
収器出口温度を入力し、該吸収器出口温度と前記吸収器
出口温度設定値との間に温度差があり溶液濃度が異なる
際は前記インバータ周波数設定値に対する偏差を求め、
該偏差によりインバータ周波数を補正し前記溶液濃度に
応じて前記溶液ポンプを制御することを特徴とする吸収
冷温水機の制御方法
1. A high temperature regenerator for heating a dilute solution in which a refrigerant has been absorbed in a solution, a separator for separating a refrigerant vapor from the high temperature regenerator and an intermediate concentrated solution, and after cooling the intermediate concentrated solution. A low-temperature regenerator that heats with the refrigerant vapor from the separator, a condenser that condenses the refrigerant from the low-temperature regenerator, an evaporator that evaporates the liquid refrigerant from the condenser, and an evaporator that evaporates. and absorber for absorbing refrigerant into the concentrated solution from the low-temperature regenerator, a solution pump for delivering the diluted solution in the absorber to the high temperature regenerator side, a solution circulating heat input and the solution pump to said Atsushi Ko regenerator Control means for controlling the amount of chilled water at the outlet of the evaporator.
Control the heat input based on the chilled water outlet temperature.
The relationship between the inverter frequency and the temperature of the hot regenerator is absorbed.
The outlet temperature is stored as a parameter and stored in advance
Each set value is stored, and the high temperature regenerator temperature and the suction
Input the outlet temperature of the collector, the outlet temperature of the absorber and the absorber
Solution concentration differs due to temperature difference with outlet temperature setting
In this case, find the deviation from the inverter frequency set value,
The inverter frequency is corrected by the deviation to bring the solution concentration to the above.
A method for controlling an absorption chiller / heater, comprising controlling the solution pump in response to the request .
JP3071697A 1991-04-04 1991-04-04 Control method of absorption chiller / heater Expired - Lifetime JP2668093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3071697A JP2668093B2 (en) 1991-04-04 1991-04-04 Control method of absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071697A JP2668093B2 (en) 1991-04-04 1991-04-04 Control method of absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH04309758A JPH04309758A (en) 1992-11-02
JP2668093B2 true JP2668093B2 (en) 1997-10-27

Family

ID=13467997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071697A Expired - Lifetime JP2668093B2 (en) 1991-04-04 1991-04-04 Control method of absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP2668093B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664436B2 (en) * 1988-09-19 1997-10-15 三洋電機株式会社 Control method of absorption refrigerator

Also Published As

Publication number Publication date
JPH04309758A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
JP2003279186A (en) Absorption type refrigerator and method for controlling same
JP3966770B2 (en) Absorption cooling system
JP2985747B2 (en) Absorption refrigerator
JP2000018762A (en) Absorption refrigerating machine
JP2668093B2 (en) Control method of absorption chiller / heater
JP2002295917A (en) Control method for absorption freezer
JP3208472B2 (en) Absorption chiller / heater and control method thereof
JP4315855B2 (en) Absorption refrigerator
JPH08263147A (en) Unit for controlling temperature of multipoint operation and method therefor
JPH09318188A (en) Method of controlling absorption cold/hot water generator
JP2520974Y2 (en) Proportional control absorption chiller / heater
JP2744034B2 (en) Absorption refrigerator
WO2000022357A1 (en) Absorption refrigerating machine
JP4100462B2 (en) Heat utilization system
JP3306486B2 (en) Dilution control method for absorption chiller / heater
JP2994251B2 (en) Absorption cooling system
JP3240344B2 (en) Refrigerant temperature controller for gas absorption heat source equipment
JPH0989407A (en) Absorption refrigerator
JPH0868572A (en) Dual-effect absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JP2022044138A (en) Absorption type refrigeration system and absorption type refrigerator
JPH116664A (en) Air-cooled absorption type refrigerating device
JPH0749894B2 (en) Absorption refrigerator control method
KR0173495B1 (en) Absorptive type air conditioner
JP2002005538A (en) Absorptive freezer and cooling water flow rate control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14