JPH0236868B2 - KYUSHUREITOKISEIGYOSOCHI - Google Patents

KYUSHUREITOKISEIGYOSOCHI

Info

Publication number
JPH0236868B2
JPH0236868B2 JP4390382A JP4390382A JPH0236868B2 JP H0236868 B2 JPH0236868 B2 JP H0236868B2 JP 4390382 A JP4390382 A JP 4390382A JP 4390382 A JP4390382 A JP 4390382A JP H0236868 B2 JPH0236868 B2 JP H0236868B2
Authority
JP
Japan
Prior art keywords
solution
regenerator
amount
temperature
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4390382A
Other languages
Japanese (ja)
Other versions
JPS58160779A (en
Inventor
Yukiie Yoshida
Tetsuo Harue
Ryoichi Murata
Toshikatsu Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4390382A priority Critical patent/JPH0236868B2/en
Publication of JPS58160779A publication Critical patent/JPS58160779A/en
Publication of JPH0236868B2 publication Critical patent/JPH0236868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は吸収冷凍機制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator control device.

従来の吸収冷凍機制御装置の一例を第1図に基
いて説明する。なお第1図に示すものは二重効用
吸収冷凍機で冷媒に水、吸収剤(溶液)にリチウ
ムブロマイド水溶液を使用したものである。
An example of a conventional absorption refrigerator control device will be explained based on FIG. 1. The one shown in FIG. 1 is a double-effect absorption refrigerator that uses water as the refrigerant and an aqueous lithium bromide solution as the absorbent (solution).

図において、1は高圧再生器、2は低圧再生
器、3は凝縮器、4は蒸発器、5は吸収器、6は
低温熱交換器、7は高温熱交換器、8乃至13は
溶液配管、14は再生器ポンプ、15は吸収器ポ
ンプ、16はエゼクター、17乃至19は冷媒配
管、20は冷媒ポンプ、21は加熱源配管、22
は冷却水配管、23は冷水配管、24は冷却水ポ
ンプであり、図示のように配管接続され、高圧再
生器1で蒸発した冷媒は、低圧再生器2を経て凝
縮器3に入り、冷却水配管22内の水と熱交換し
て凝縮液化した後、蒸発器4に入り冷水配管23
内の水と熱交換して蒸発しこの際に奪う熱によつ
て冷水配管23内の水を冷却する。
In the figure, 1 is a high-pressure regenerator, 2 is a low-pressure regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low-temperature heat exchanger, 7 is a high-temperature heat exchanger, 8 to 13 are solution piping , 14 is a regenerator pump, 15 is an absorber pump, 16 is an ejector, 17 to 19 are refrigerant pipes, 20 is a refrigerant pump, 21 is a heat source pipe, 22
23 is a cooling water pipe, 23 is a chilled water pipe, and 24 is a cooling water pump. The pipes are connected as shown in the figure. The refrigerant evaporated in the high pressure regenerator 1 passes through the low pressure regenerator 2 and enters the condenser 3, and the cooling water is supplied to the condenser 3. After exchanging heat with the water in the pipe 22 to condense and liquefy, it enters the evaporator 4 and flows into the cold water pipe 23
The water in the cold water pipe 23 is cooled by the heat exchanged with the water inside and evaporated, and the heat removed at this time cools the water inside the cold water pipe 23.

一方、蒸発器4で蒸発した冷媒は、吸収器5で
溶液により吸収され、冷媒を吸収して濃度の薄く
なつた溶液はポンプ14により低温熱交換器6、
高温熱交換器7を経て高圧再生器1に入り、ここ
で加熱源配管21を経て供給される加熱源によつ
て加熱され、冷媒を蒸発分離して中濃度の溶液と
なり高温熱交換器7を経て低圧再生器2に入り冷
媒蒸気により加熱されてさらに冷媒を蒸発分離し
て濃度が高くなる。低圧再生器で高濃度となつた
溶液は低温熱交換器6を経てエゼクター16で吸
収器ポンプ15からの溶液と混合して吸収器5内
に散布されるようになつており、冷凍サイクルを
行う。
On the other hand, the refrigerant evaporated in the evaporator 4 is absorbed by a solution in the absorber 5, and the solution, which has become diluted by absorbing the refrigerant, is transferred to a low-temperature heat exchanger 6,
The refrigerant enters the high-pressure regenerator 1 through the high-temperature heat exchanger 7, where it is heated by the heat source supplied through the heat source piping 21, evaporates and separates the refrigerant, and becomes a medium-concentration solution. The refrigerant then enters the low-pressure regenerator 2, where it is heated by refrigerant vapor, and the refrigerant is further evaporated and separated, increasing its concentration. The solution that has become highly concentrated in the low-pressure regenerator passes through the low-temperature heat exchanger 6, mixes with the solution from the absorber pump 15 in the ejector 16, and is distributed into the absorber 5, thereby performing a refrigeration cycle. .

上記のような二重効用吸収冷凍機においては従
来、冷水出口温度検出機25で冷水出口温度を検
出し、これと温度設定器26に設定された冷水出
口温度目標値とを比較器27で比較し、流量調節
器28を介して流量調節弁29を制御して加熱源
の流量を調節すると共に高圧再生器1の溶液レベ
ルを液位検出器30で検出し、これと液位設定器
31に設定された液位目標値とを比較器32で比
較し、循環量調節器33を介して循環量調節弁3
4を制御して溶液の循環量を制御することにより
負荷に対応した容量制御を行なつている。
Conventionally, in the above-mentioned dual-effect absorption refrigerator, a chilled water outlet temperature detector 25 detects the chilled water outlet temperature, and a comparator 27 compares this with a chilled water outlet temperature target value set in a temperature setting device 26. Then, the flow rate adjustment valve 29 is controlled via the flow rate regulator 28 to adjust the flow rate of the heating source, and the solution level in the high-pressure regenerator 1 is detected by the liquid level detector 30. The comparator 32 compares the liquid level with the set liquid level target value, and the circulating amount control valve 3
4 to control the circulation amount of the solution, the capacity is controlled in accordance with the load.

しかし、上記した従来のフイードバツク制御装
置は、冷水出口温度と高圧再生器の溶液レベルし
か制御していないため、負荷に対して例えば加熱
源量が多すぎて冷凍機能力が過大であると、溶液
の濃度が高くなりすぎて吸収剤が結晶析出し、ポ
ンプを破損したり、配管がつまつたりして運転不
能におちいる恐れがあつた。
However, the conventional feedback control device described above only controls the chilled water outlet temperature and the solution level in the high-pressure regenerator. There was a risk that the concentration of the absorbent would become too high and the absorbent would crystallize, damaging the pump or clogging the piping, making it inoperable.

本発明は上記した点に鑑み提案されたものでそ
の目的とするところは、結晶析出を確実に防止し
て安定した運転を行なわせることができる吸収冷
凍機制御装置を提供することにある。
The present invention has been proposed in view of the above-mentioned points, and an object thereof is to provide an absorption refrigerating machine control device that can reliably prevent crystal precipitation and perform stable operation.

本発明の吸収冷凍機制御装置は、冷水出口温度
を検出して再生器への加熱源量を制御する制御系
と、再生器内溶液レベルを検出して吸収器から再
生器への溶液循環量を制御する制御系を設けると
共に、凝縮冷媒温度又は再生器内圧力と、再生器
出口の濃溶液温度と、溶液熱交換器出口の濃溶液
温度とを検出し、これらから溶液の結晶濃度余裕
度を算出し同余裕度が所定値以下になつたとき同
余裕度を関数として加熱源量の適正値を求め、前
記加熱源量制御系を設けたことを特徴とするもの
である。
The absorption chiller control device of the present invention includes a control system that detects the cold water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the solution level in the regenerator and controls the amount of solution circulated from the absorber to the regenerator. In addition, a control system is provided to control the temperature of the condensed refrigerant or the pressure inside the regenerator, the temperature of the concentrated solution at the outlet of the regenerator, and the temperature of the concentrated solution at the outlet of the solution heat exchanger, and from these, the crystal concentration margin of the solution is determined. The present invention is characterized in that the heating source amount control system is provided, which calculates the amount of heat source and determines an appropriate value of the amount of heat source as a function of the margin when the margin becomes equal to or less than a predetermined value.

また、本発明の吸収冷凍機制御装置は、冷水出
口温度を検出して再生器への加熱源量を制御する
制御系と、再生器内溶液レベルを検出して吸収器
から再生器への溶液循環量を制御する制御系を設
けると共に、凝縮冷媒温度又は再生器内圧力と、
再生器出口の濃溶液温度と、溶液熱交換器出口の
濃溶液温度とを検出し、これらから溶液の結晶濃
度余裕度を算出し、同余裕度が所定値以下になつ
たとき同余裕度を関数として溶液循環量の適正値
を求め、前記溶液循環量制御系において溶液循環
量を増やすよう制御する制御系を設けたことを特
徴とするものである。上記のように溶液の結晶濃
度余裕度を算出し、これが所定値以下になつたと
き、結晶析出を起さないようにこれの関数として
加熱源量の適正値を求めて加熱源量を減らすこと
により結晶析出を防止することができる。また、
同様に結晶濃度余裕度の関数として溶液循環量の
適正値を求めて溶液循環量を増すことによつても
結晶析出を防止することができる。従つて負荷に
対して適確な容量制御ができると同時に、結晶析
出を確実に防止し、しかも溶液濃度を高くして運
転できるため、効率の向上を計ることができる。
The absorption chiller control device of the present invention also includes a control system that detects the chilled water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the level of solution in the regenerator and controls the flow of solution from the absorber to the regenerator. A control system is provided to control the amount of circulation, and the temperature of the condensed refrigerant or the pressure inside the regenerator is
Detect the concentrated solution temperature at the outlet of the regenerator and the concentrated solution temperature at the outlet of the solution heat exchanger, calculate the crystal concentration margin of the solution from these, and when the margin falls below a predetermined value, calculate the margin. The present invention is characterized in that a control system is provided which determines an appropriate value of the solution circulation amount as a function and controls the solution circulation amount control system to increase the solution circulation amount. Calculate the crystal concentration margin of the solution as described above, and when this falls below a predetermined value, calculate the appropriate value for the amount of heat source as a function of this and reduce the amount of heat source so as not to cause crystal precipitation. This can prevent crystal precipitation. Also,
Similarly, crystal precipitation can also be prevented by finding an appropriate value for the solution circulation amount as a function of the crystal concentration margin and increasing the solution circulation amount. Therefore, it is possible to accurately control the capacity with respect to the load, reliably prevent crystal precipitation, and operate with a high solution concentration, so that efficiency can be improved.

以下、本発明を図示実施例に基いて説明する。
第2図において、1乃至34は前記した第1図に
示したものと同様のものを示し、同様の作用を行
なうものである。
The present invention will be explained below based on illustrated embodiments.
In FIG. 2, numerals 1 to 34 are similar to those shown in FIG. 1, and perform the same functions.

本実施例においては、凝縮冷媒温度を検出する
温度検出器101、低圧再生器2の出口における
濃溶液温度を検出する温度検出器102、及び高
温熱交換器6の出口における濃溶液温度を検出す
る温度検出器103と、これらの検出値から後述
するようにして溶液の結晶濃度余裕度を算出する
マイクロコンピユーター等の計算装置104を設
けると共にこの計算装置104により管出された
濃度余裕度が所定値以下になつたとき、予め設定
された関数から加熱源量及び溶液循環量の適正値
を求める関数発生器105及び106を設けその
出力とコントローラ28及び33からの出力とか
ら比較器107及び108を介して加熱源量調節
弁29及び溶液循環量調節弁34を制御するよう
にしている。
In this embodiment, a temperature detector 101 detects the temperature of the condensed refrigerant, a temperature detector 102 detects the temperature of the concentrated solution at the outlet of the low-pressure regenerator 2, and a temperature detector 102 detects the temperature of the concentrated solution at the outlet of the high-temperature heat exchanger 6. A temperature detector 103 and a calculation device 104 such as a microcomputer that calculates the crystal concentration margin of the solution from these detected values as described later are provided, and the concentration margin outputted from the calculation device 104 is set to a predetermined value. When the following conditions occur, function generators 105 and 106 are provided to determine appropriate values for the amount of heat source and the amount of solution circulated from a preset function. The heat source amount control valve 29 and the solution circulation amount control valve 34 are controlled through the heat source amount control valve 29 and the solution circulation amount control valve 34.

上記構成において、関数発生器105には、濃
度余裕度が所定値以下になつたとき加熱源量を減
らすような予め定められた適正な関数が、また、
関数発生器106には溶液循環量を増すような予
め定められた適正な関数がそれぞれ設定されてい
る。
In the above configuration, the function generator 105 has a predetermined appropriate function that reduces the amount of heat source when the concentration margin becomes less than a predetermined value.
The function generators 106 are each set with a predetermined appropriate function that increases the amount of solution circulated.

一方、溶液の結晶濃度余裕度△Xは、第3図に
示すリチウムブロマイド溶液の濃度曲線から次の
ようにして算出される。
On the other hand, the crystal concentration margin ΔX of the solution is calculated from the concentration curve of the lithium bromide solution shown in FIG. 3 as follows.

溶液の濃度X1は、検出器101からの凝縮冷
媒温度T1と水の飽和特性とから計算した低圧再
生器2内の圧力P1と、検出器102からの低圧
再生器出口溶液温度T2とから溶液濃度曲線に従
つて計算することにより求められ、これと、溶液
結晶特性における検出器103で検出された低温
熱交換器出口溶液温度T3での結晶析出濃度X2
の差(△X=X1−X2)から計算することができ
る。
The concentration of the solution X 1 is determined by the pressure P 1 in the low pressure regenerator 2 calculated from the condensed refrigerant temperature T 1 from the detector 101 and the saturation characteristics of water, and the low pressure regenerator outlet solution temperature T 2 from the detector 102. The difference ( X=X 1 −X 2 ).

ここで、濃度余裕度△Xが△X<0となると結
晶析出を起してしまうので、これを防止するた
め、加熱源量を減らしてやるか、溶液循環量を増
やしてやるかのいずれか一方、又は両方の操作を
行なえばよく、濃度余裕度△Xが、ある値以下に
なつたとき、予め設定された関数に従つて関数発
生器105及び106から対応する出力が出さ
れ、比較器107,108及び調節弁29,34
を介して加熱源量が減少されると共に溶液循環量
が増加される。従つて、結晶析出を確実に防止し
て、従来のものにおける欠点を解消することがで
きる。
Here, if the concentration margin △X becomes △X<0, crystal precipitation will occur, so to prevent this, either reduce the amount of heating source or increase the amount of solution circulation. , or both operations. When the concentration margin ΔX becomes less than a certain value, the function generators 105 and 106 output corresponding outputs according to a preset function, and the comparator 107 outputs corresponding outputs according to a preset function. , 108 and control valves 29, 34
The amount of heat source is reduced and the amount of solution circulated is increased via. Therefore, it is possible to reliably prevent crystal precipitation and eliminate the drawbacks of conventional products.

なお、上記実施例における温度検出器101に
代えて、低圧再生器内の圧力を検出する圧力検出
器を設けてもよいことは上記の説明から明らかな
通りである。
Note that it is clear from the above description that a pressure detector for detecting the pressure within the low pressure regenerator may be provided in place of the temperature detector 101 in the above embodiment.

また、本発明は一重効用吸収冷凍機にも同様に
適用できることはいうまでもない。
Furthermore, it goes without saying that the present invention can be similarly applied to a single-effect absorption refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のものを示す構成図、第2図は本
発明の一実施例を示す構成図、第3図はリチウム
ブロマイド溶液の濃度曲線図である。 1:高圧再生器、2:低圧再生器、3:凝縮
器、4:蒸発器、5:吸収器、6:低温熱交換
器、7:高温熱交換器、8乃至13:溶液配管、
14:再生器ポンプ、15:吸収器ポンプ、1
6:エゼクター、17乃至19:冷媒配管、2
0:冷媒ポンプ、21:加熱源配管、22:冷却
水配管、23:冷水配管、24:冷却水ポンプ、
25:冷水出口温度検出器、26:温度設定器、
27:比較器、28:コントローラ、29:加熱
源量調節弁、30:液位検出器、31:液位設定
器、32:比較器、33:コントローラ、34:
溶液循環量調節弁、101,102,103:温
度検出器、104:計算装置、105,106:
関数発生器、107,108:比較器。
FIG. 1 is a block diagram showing a conventional one, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a concentration curve diagram of a lithium bromide solution. 1: High pressure regenerator, 2: Low pressure regenerator, 3: Condenser, 4: Evaporator, 5: Absorber, 6: Low temperature heat exchanger, 7: High temperature heat exchanger, 8 to 13: Solution piping,
14: Regenerator pump, 15: Absorber pump, 1
6: Ejector, 17 to 19: Refrigerant piping, 2
0: Refrigerant pump, 21: Heat source piping, 22: Cooling water piping, 23: Chilled water piping, 24: Cooling water pump,
25: Chilled water outlet temperature detector, 26: Temperature setting device,
27: Comparator, 28: Controller, 29: Heat source amount control valve, 30: Liquid level detector, 31: Liquid level setter, 32: Comparator, 33: Controller, 34:
Solution circulation amount control valve, 101, 102, 103: Temperature detector, 104: Computing device, 105, 106:
Function generator, 107, 108: Comparator.

Claims (1)

【特許請求の範囲】 1 冷水出口温度を検出して再生器への加熱源量
を制御する制御系と、再生器内溶液レベルを検出
して吸収器から再生器への溶液循環量を制御する
制御系を設けると共に、凝縮冷媒温度又は再生器
内圧力と、再生器出口の濃溶液温度と、溶液熱交
換器出口の濃溶液温度とを検出し、これらから溶
液の結晶濃度余裕度を算出し、同余裕度が所定値
以下になつたとき同余裕度を関数として加熱源量
の適正値を求め、前記加熱源量制御系において加
熱源量を減らすよう制御する制御系を設けたこと
を特徴とする吸収冷凍機制御装置。 2 冷水出口温度を検出して再生器への加熱源量
を制御する制御系と、再生器内溶液レベルを検出
して吸収器から再生器への溶液循環量を制御する
制御系を設けると共に凝縮冷媒温度又は再生器内
圧力と、再生器出口の濃溶液温度と溶液熱交換器
出口の濃溶液温度とを検出し、これらから溶液の
結晶濃度余裕度を算出し、同余裕度が所定値以下
になつたとき同余裕度を関数として溶液循環量の
適正値を求め、前記溶液循環量制御系において溶
液循環量を増すよう制御する制御系を設けたこと
を特徴とする吸収冷凍機制御装置。
[Claims] 1. A control system that detects the cold water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the solution level in the regenerator and controls the amount of solution circulated from the absorber to the regenerator. In addition to providing a control system, the temperature of the condensing refrigerant or the pressure inside the regenerator, the temperature of the concentrated solution at the outlet of the regenerator, and the temperature of the concentrated solution at the outlet of the solution heat exchanger are detected, and the crystal concentration margin of the solution is calculated from these. , characterized in that a control system is provided that determines an appropriate value of the amount of heat source as a function of the margin when the margin becomes equal to or less than a predetermined value, and controls the heating source amount control system to reduce the amount of the heat source. Absorption chiller control device. 2 A control system that detects the cold water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the solution level in the regenerator and controls the amount of solution circulated from the absorber to the regenerator are installed. Detect the refrigerant temperature or pressure inside the regenerator, the concentrated solution temperature at the outlet of the regenerator, and the concentrated solution temperature at the outlet of the solution heat exchanger, calculate the crystal concentration margin of the solution from these, and check if the margin is below a predetermined value. An absorption refrigerating machine control device comprising: a control system that determines an appropriate value of the solution circulation amount as a function of the margin when the solution circulation amount becomes equal to 1, and controls the solution circulation amount control system to increase the solution circulation amount.
JP4390382A 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI Expired - Lifetime JPH0236868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4390382A JPH0236868B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4390382A JPH0236868B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Publications (2)

Publication Number Publication Date
JPS58160779A JPS58160779A (en) 1983-09-24
JPH0236868B2 true JPH0236868B2 (en) 1990-08-21

Family

ID=12676666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4390382A Expired - Lifetime JPH0236868B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Country Status (1)

Country Link
JP (1) JPH0236868B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method

Also Published As

Publication number Publication date
JPS58160779A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
JPH0236868B2 (en) KYUSHUREITOKISEIGYOSOCHI
JPH0236869B2 (en) KYUSHUREITOKISEIGYOSOCHI
JPS58160783A (en) Controller for absorption refrigerator
JP2708809B2 (en) Control method of absorption refrigerator
JPS58160778A (en) Controller for absorption refrigerator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JPS58160782A (en) Controller for absorption refrigerator
JP2785143B2 (en) Operating method of absorption refrigerator
JPS6117319Y2 (en)
JP2977999B2 (en) Absorption refrigerator
JPS58156166A (en) Controller for absorption refrigerator
JPS58158464A (en) Controller for absorption refrigerator
JP3279069B2 (en) Absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JPH0126458B2 (en)
JPS58158467A (en) Controller for absorption refrigerator
JPH0275865A (en) Controlling method for absorption refrigerator
JP2654137B2 (en) Control method of absorption refrigerator
JPS58158466A (en) Controller for absorption refrigerator
JPS58160777A (en) Controller for absorption refrigerator
JPH02140564A (en) Controlling method for absorption refrigerator
JPH07280384A (en) Double effect absorption chilled and warm water machine
JPS58156167A (en) Controller for absorption refrigerator
JPS6115983B2 (en)
JPS5834733B2 (en) How to control absorption chiller operation