JP5606796B2 - Absorption-type device and method for adjusting cooling capacity of absorption-type device - Google Patents

Absorption-type device and method for adjusting cooling capacity of absorption-type device Download PDF

Info

Publication number
JP5606796B2
JP5606796B2 JP2010122002A JP2010122002A JP5606796B2 JP 5606796 B2 JP5606796 B2 JP 5606796B2 JP 2010122002 A JP2010122002 A JP 2010122002A JP 2010122002 A JP2010122002 A JP 2010122002A JP 5606796 B2 JP5606796 B2 JP 5606796B2
Authority
JP
Japan
Prior art keywords
cooling water
brine
temperature
cooling
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010122002A
Other languages
Japanese (ja)
Other versions
JP2011247510A (en
Inventor
隼介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010122002A priority Critical patent/JP5606796B2/en
Publication of JP2011247510A publication Critical patent/JP2011247510A/en
Application granted granted Critical
Publication of JP5606796B2 publication Critical patent/JP5606796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸収式冷凍機や吸収式冷温水機(本願ではこの両者を含めて吸収式装置と呼ぶことにする)によって冷房を行う場合、所定時に省エネ運転の可能な吸収式装置に関する。   The present invention relates to an absorption type apparatus capable of energy-saving operation at a predetermined time when cooling is performed by an absorption type refrigerator or an absorption type chiller / heater (hereinafter referred to as an absorption type apparatus).

吸収式装置によって冷房を行う場合、冷却水の入口温度は、これらの吸収式装置の定格(例えば、ブライン出口温度7℃)に対応した所定値温度(例えば、32℃)に設定する場合、冷却水の循環する途中に設けた冷却塔において、そこに設けた冷却塔ファンを回転させて冷却水の温度を低下調節させる。一方、特に冬場等外気温度等の環境温度が低い場合、冷房・冷却の省エネ運転等の観点から、ユーザーが吸収式装置による冷房・冷却温度を上昇させたい場合、即ち、ブライン出口温度を高く設定したい場合がある。一般的な吸収式装置の1例が下記特許文献1に開示されている。   When cooling is performed by an absorption type device, the cooling water inlet temperature is set to a predetermined value temperature (for example, 32 ° C.) corresponding to the rating of the absorption type device (for example, brine outlet temperature: 7 ° C.). In the cooling tower provided in the middle of water circulation, the cooling tower fan provided there is rotated to adjust the temperature of the cooling water to be lowered. On the other hand, especially when the ambient temperature is low, such as in the winter, when the user wants to increase the cooling / cooling temperature by the absorption device from the viewpoint of energy saving operation of cooling / cooling, that is, the brine outlet temperature is set high. You may want to An example of a general absorption type device is disclosed in Patent Document 1 below.

特開2002−156169号公報JP 2002-156169 A

しかし、従来の吸収式装置の有する冷却水の温度調節では、冷却水の入口温度が外気温度等の環境温度の影響で所定値よりも低くなってしまい、その影響で吸収器内の吸収液温度が低くなり、吸収液による冷媒蒸気の吸収作用が過剰に促進されて蒸発器内を過剰に高真空状態にさせ、冷媒の蒸発が過剰に促進される。その結果、ブラインに対する冷却作用が促進されてしまい、ユーザーの希望に従ったブライン出口温度の上昇設定ができないという問題がある。また、蒸発器下部に溜まる冷媒液の量が少なくなり、場合によっては、冷媒液を循環させる冷媒ポンプの、所謂、エア噛みが発生するという問題もある。
依って解決しようとする課題は、環境温度が低い場合の冷房・冷却の省エネ運転の可能な吸収式装置の提供である。
However, when adjusting the temperature of the cooling water in a conventional absorption device, the inlet temperature of the cooling water becomes lower than a predetermined value due to the influence of the ambient temperature such as the outside air temperature, and the absorption liquid temperature in the absorber is affected by that influence. As a result, the absorption of the refrigerant vapor by the absorbing liquid is excessively promoted, the inside of the evaporator is excessively brought into a high vacuum state, and the evaporation of the refrigerant is excessively promoted. As a result, the cooling effect on the brine is promoted, and there is a problem that the increase of the brine outlet temperature cannot be set according to the user's wish. In addition, the amount of refrigerant liquid that accumulates in the lower part of the evaporator decreases, and in some cases, there is a problem that so-called air biting of the refrigerant pump that circulates the refrigerant liquid occurs.
Therefore, the problem to be solved is to provide an absorption type apparatus capable of energy-saving operation of cooling and cooling when the environmental temperature is low.

上記課題に鑑みて第1の発明は、ブラインが蒸発器を通り、熱負荷機器を経由して前記蒸発器に戻るブライン循環路と、冷却水が、冷却水ポンプの動力によって吸収器を通って冷却塔ファンを設けた冷却塔を経由することができて前記吸収器に戻る冷却水循環路と、を備える吸収式装置であって、
前記吸収器に入る冷却水の冷却水入口温度を測定する温度センサと、
前記吸収器の吸収液に対する冷却水の冷却能力が低下するよう調節制御できる冷却能力調節手段を備え、
前記冷却能力調節手段は、前記冷却水ポンプによる循環する冷却水の流量を制御する流量制御手段を具備し、
前記流量制御手段は、前記冷却水ポンプの回転数を調節制御できるインバータ回路と、前記蒸発器出口のブライン定格温度以上のブライン設定温度と、前記温度センサによって測定された冷却水入口温度とを与えると、前記ブライン設定温度を達成するための前記冷却水ポンプの定格流量に対する制限率が求まる式又はデータテーブルを読み出し可能なメモリとを有し前記ブライン設定温度の変更要求があるまで、または前記吸収式装置の停止指令を受信するまで、前記ブライン設定温度の要求を満たす運転を継続する
ことを特徴とする吸収式装置を提供する。
In view of the above problems, the first invention is that the brine passes through the evaporator, returns to the evaporator via the heat load device, and the cooling water passes through the absorber by the power of the cooling water pump. A cooling water circulation path that can pass through a cooling tower provided with a cooling tower fan and return to the absorber,
A temperature sensor for measuring a cooling water inlet temperature of the cooling water entering the absorber ;
A cooling capacity adjusting means capable of adjusting and controlling so that the cooling capacity of the cooling water with respect to the absorption liquid of the absorber is lowered;
The cooling capacity adjusting means comprises a flow rate control means for controlling the flow rate of cooling water circulated by the cooling water pump,
The flow rate control means gives an inverter circuit capable of adjusting and controlling the number of revolutions of the cooling water pump, a brine set temperature equal to or higher than a brine rated temperature at the evaporator outlet, and a cooling water inlet temperature measured by the temperature sensor. And a memory capable of reading a formula or a data table for obtaining a limiting rate for the rated flow rate of the cooling water pump for achieving the brine set temperature until the brine set temperature is changed, or Provided is an absorptive device characterized in that an operation that satisfies the brine set temperature requirement is continued until a stop command for the absorptive device is received .

第2の発明は、ブラインが蒸発器を通り、熱負荷機器を経由して前記蒸発器に戻るブライン循環路と、冷却水が、冷却水ポンプの動力によって吸収器を通って冷却塔ファンを設けた冷却塔を経由することができて前記吸収器に戻る冷却水循環路と、を備える吸収式装置であって、
前記吸収器に入る冷却水の冷却水入口温度を測定する温度センサを設け、
前記蒸発器出口のブライン定格温度に対して順次高い温度に設定したブライン設定温度の一つと、前記温度センサによって測定された冷却水入口温度とに基づき、前記一つのブライン設定温度を達成するための前記冷却水ポンプの定格流量に対する制限率を求め、この制限率に基づき前記冷却水ポンプを定格の回転数で稼動させ、前記ブライン設定温度の変更要求があるまで、または前記吸収式装置の停止指令を受信するまで、前記一つのブライン設定温度の要求を満たす運転を継続する
ことを特徴とする吸収式装置の冷却能力調節方法である。
According to a second aspect of the present invention, a brine circulation path in which brine passes through an evaporator and returns to the evaporator via a heat load device, and cooling water is provided with a cooling tower fan through an absorber by power of a cooling water pump. A cooling water circuit that can pass through the cooling tower and return to the absorber,
Providing a temperature sensor for measuring the cooling water inlet temperature of the cooling water entering the absorber ;
To achieve the one brine set temperature based on one of the brine set temperatures set sequentially higher than the brine rated temperature of the evaporator outlet and the cooling water inlet temperature measured by the temperature sensor A limiting rate for the rated flow rate of the cooling water pump is obtained, the cooling water pump is operated at a rated speed based on the limiting rate, and a stop command for the absorption type device is issued until there is a request to change the brine set temperature. Until it receives the one brine set temperature requirement.
This is a method for adjusting the cooling capacity of the absorption type device.

第1の発明及び第2の発明では、吸収液に対する冷却水の冷却能力が低下するよう調節制御できる冷却能力調節手段を有するので、冷却液の冷却能力を低下させることができ、その結果、ブライン出口温度が定格値よりも上昇させられ、設定したブライン出口温度を達成できる。従って、冷房・冷却の省エネ運転が可能になり、また、冷媒の蒸発量が低減されてエア噛みの発生も防止され易い。
また、ブライン設定温度と冷却水入口温度とを与えると、冷却水ポンプの制限率が求まるので、冷却水ポンプの流量を低減でき、これにより冷却水の冷却能力を低下させてブライン出口温度を上昇させられ、設定したブライン出口温度を達成できる。
In the first invention and the second invention , since the cooling capacity adjusting means capable of adjusting and controlling the cooling capacity of the cooling water with respect to the absorbing liquid is provided, the cooling capacity of the cooling liquid can be decreased. The outlet temperature is raised above the rated value, and the set brine outlet temperature can be achieved. Therefore, energy saving operation of cooling and cooling is possible, and the amount of refrigerant evaporation is reduced, and the occurrence of air biting is easily prevented.
Also, if the brine set temperature and the cooling water inlet temperature are given, the limiting rate of the cooling water pump can be obtained, so the flow rate of the cooling water pump can be reduced, thereby reducing the cooling capacity of the cooling water and raising the brine outlet temperature And set brine outlet temperature can be achieved.

併せて熱負荷機器をも表示した本発明に係る吸収式装置の全体システム図である。It is a whole system diagram of an absorption type device concerning the present invention which also displayed heat load equipment. 図1の制御装置の説明図である。It is explanatory drawing of the control apparatus of FIG. 本発明に係る1つの制御方法に使用するグラフ図である。It is a graph used for one control method concerning the present invention. 本発明に係る他の制御方法に使用するグラフ図である。It is a graph used for the other control method which concerns on this invention. 本発明に係る他の制御方法に使用するグラフ図である。It is a graph used for the other control method which concerns on this invention.

以下、本発明を添付図面を用いて更に詳細に説明する。本発明は一重効用の吸収式装置でも二重効用以上の多重効用の吸収式装置でもよいが、典型的な二重効用吸収式冷温水機を例として、全体構造を図1を参照して説明する。外部の室内冷房機等の熱負荷機器Fと接続されており、これによって冷房も暖房も可能となっている。
冷房の場合は、開閉弁V1,V2,V3を閉じておく。筐体部は上胴11と下胴10とに分かれている。下胴10の左右方向の一側には蒸発器12が、他側には吸収器14が形成配設されている。また、上胴11は、低温再生器18と凝縮器20とが形成配設されている。他方、高温再生器16も具備している。この例の高温再生器16はバーナ式である。以下、これら各機器の役目と冷媒や吸収液の流れを概説する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. The present invention may be a single-effect absorption device or a double-effect or higher-effect absorption device, but the entire structure will be described with reference to FIG. 1, taking a typical double-effect absorption chiller / heater as an example. To do. It is connected to a heat load device F such as an external indoor air conditioner, thereby enabling cooling and heating.
In the case of cooling, the on-off valves V1, V2, and V3 are closed. The casing is divided into an upper body 11 and a lower body 10. An evaporator 12 is formed on one side of the lower body 10 in the left-right direction, and an absorber 14 is formed on the other side. The upper body 11 is provided with a low temperature regenerator 18 and a condenser 20. On the other hand, a high temperature regenerator 16 is also provided. The high temperature regenerator 16 in this example is a burner type. In the following, the role of each of these devices and the flow of refrigerant and absorbent are outlined.

蒸発器12には、熱負荷機器Fを通って循環するブライン(ここでは水)が流れるブライン管Dが通るように配設されている。また、吸収器14には、通常、冷却塔RTを介して循環する冷却水が流れる冷却水管C1が通り、吸収器14を出た冷却水管C1は凝縮器20をも通り、凝縮器20を出た冷却水管C1は前記冷却塔RTに接続されており、冷却水が循環可能になっている。   The evaporator 12 is disposed so that a brine pipe D through which brine (water here) circulates through the heat load device F flows. The absorber 14 normally passes through a cooling water pipe C1 through which cooling water circulated through the cooling tower RT flows, and the cooling water pipe C1 exiting the absorber 14 also passes through the condenser 20 and exits the condenser 20. The cooling water pipe C1 is connected to the cooling tower RT so that the cooling water can be circulated.

蒸発器12で蒸発した冷媒(この例では水)の蒸気は、吸収器14にて吸収液(この例では臭化リチウム溶液)に吸収され、蒸発器の高真空状態が維持される。冷媒を吸収した吸収液は濃度が薄くなって希吸収液となる。下胴10の下部であって、吸収器14の下部に溜まった希吸収液は、吸収液ポンプP1によって希吸収液管H1に流され、高温再生器16に向かう。その途中、後述する濃吸収液の流れている濃吸収液管H3との間で低温熱交換器N1を介して濃吸収液から熱を奪って温度上昇する。その後、希吸収液は高温再生器16によって濃度が中間濃度となった中間吸収液の流れる中間吸収液管H2との間の高温熱交換器N2を介して中間吸収液からも熱を奪って更に温度上昇する。   The refrigerant vapor (water in this example) evaporated by the evaporator 12 is absorbed by the absorber 14 in the absorbing liquid (lithium bromide solution in this example), and the high vacuum state of the evaporator is maintained. The absorbent that has absorbed the refrigerant has a reduced concentration and becomes a diluted absorbent. The dilute absorbent stored in the lower part of the lower body 10 and in the lower part of the absorber 14 is flowed to the dilute absorbent pipe H1 by the absorbent pump P1 and travels to the high temperature regenerator 16. In the middle of this, heat is removed from the concentrated absorbent via the low-temperature heat exchanger N1 with the concentrated absorbent pipe H3 through which the concentrated absorbent flows, which will be described later, and the temperature rises. Thereafter, the dilute absorbing liquid also takes heat from the intermediate absorbing liquid via the high temperature heat exchanger N2 between the intermediate absorbing liquid pipe H2 through which the intermediate absorbing liquid whose concentration has become intermediate by the high temperature regenerator 16 flows. The temperature rises.

こうして、吸収器14から出た時よりも温度の上昇した希吸収液が高温再生器16に流入する。そして、バーナ17によって加熱される。高温再生器16において希吸収液がバーナ17によって加熱されると、冷媒が蒸発分離する。この冷媒蒸気は冷媒管R1を通って既述の低温再生器18を通る。一方、高温再生器16において冷媒が蒸発分離して中間濃度となった中間吸収液が中間吸収液管H2を流れて低温再生器18に入る。   In this way, the diluted absorbent whose temperature is higher than that when it comes out of the absorber 14 flows into the high temperature regenerator 16. Then, it is heated by the burner 17. When the diluted absorbent is heated by the burner 17 in the high-temperature regenerator 16, the refrigerant is evaporated and separated. This refrigerant vapor passes through the low-temperature regenerator 18 described above through the refrigerant pipe R1. On the other hand, the intermediate absorption liquid whose intermediate concentration is obtained by evaporating and separating the refrigerant in the high temperature regenerator 16 flows through the intermediate absorption liquid pipe H2 and enters the low temperature regenerator 18.

低温再生器18に入った中間吸収液は、冷媒蒸気の流れている既述の冷媒管R1の伝熱部によって加熱される。この熱により、更に中間吸収液から蒸発した冷媒蒸気は凝縮器20に入る。また、冷媒管R1を流れていた冷媒蒸気も、蒸気のまま或いは冷媒液となって冷媒管先部R1’を介して凝縮器20に入る。凝縮器20内の冷媒蒸気は、器内を通る冷却水管C1の伝熱部を流れる冷却水によって冷却されて冷媒液に戻る。   The intermediate absorption liquid that has entered the low-temperature regenerator 18 is heated by the heat transfer section of the above-described refrigerant pipe R1 in which the refrigerant vapor flows. Due to this heat, the refrigerant vapor further evaporated from the intermediate absorption liquid enters the condenser 20. Further, the refrigerant vapor flowing through the refrigerant pipe R1 enters the condenser 20 via the refrigerant pipe tip portion R1 'as vapor or as a refrigerant liquid. The refrigerant vapor in the condenser 20 is cooled by the cooling water flowing through the heat transfer section of the cooling water pipe C1 passing through the inside of the condenser 20 and returns to the refrigerant liquid.

この冷媒液は第2冷媒管R2を通って蒸発器12へ流下する。蒸発器12の下部に溜まった冷媒液は冷媒ポンプP2によって第3冷媒管R3を通って蒸発器12の上部に設けた散布器R3Aから散布される。この散布された冷媒液がブライン管Dの伝熱部を流れるブラインから蒸発熱を奪って冷媒蒸気になると共に、ブラインの温度を下げる。既述の如く、この冷媒蒸気は吸収器14において吸収液に吸収される。   This refrigerant liquid flows down to the evaporator 12 through the second refrigerant pipe R2. The refrigerant liquid collected in the lower part of the evaporator 12 is sprayed from the sprayer R3A provided in the upper part of the evaporator 12 through the third refrigerant pipe R3 by the refrigerant pump P2. The sprayed refrigerant liquid takes evaporative heat from the brine flowing through the heat transfer section of the brine pipe D to become refrigerant vapor, and lowers the temperature of the brine. As described above, the refrigerant vapor is absorbed by the absorbent in the absorber 14.

以上は、熱負荷機器Fが冷房をしている場合の説明であるが、暖房の場合は、開閉弁V1,V2,V3を開き、冷却水ポンプP3を停止して冷却水管C1に冷却水を流さないでガス式バーナ17を点火し、高温再生器16において希吸収液を加熱する。この加熱によって発生する冷媒蒸気は冷媒管R1の途中から、主に流路抵抗の小さな暖房管R1”を通って吸収器14と蒸発器12に入る。こうしてブライン管Dの伝熱部を介してブラインを加熱し、熱負荷機器Fは暖房を行える。   The above is an explanation of the case where the heat load device F is cooling, but in the case of heating, the on-off valves V1, V2, V3 are opened, the cooling water pump P3 is stopped, and cooling water is supplied to the cooling water pipe C1. The gas burner 17 is ignited without flowing, and the high temperature regenerator 16 heats the diluted absorbent. The refrigerant vapor generated by this heating enters the absorber 14 and the evaporator 12 from the middle of the refrigerant pipe R1 mainly through the heating pipe R1 "having a small flow resistance. Thus, through the heat transfer section of the brine pipe D. The brine is heated and the heat load device F can be heated.

一方、冷媒蒸気は蒸発器12でブラインを加熱し、熱を失って凝縮して冷媒液となる。この冷媒液は第4冷媒管R4を通って吸収器14の下部に入り、高温再生器16において冷媒を蒸発分離して吸収液管H2’を介して流入する吸収液と混合される。そして、吸収液ポンプP1の運転によって高温再生器16に送られる。   On the other hand, the refrigerant vapor heats the brine in the evaporator 12, loses heat and condenses into a refrigerant liquid. This refrigerant liquid enters the lower part of the absorber 14 through the fourth refrigerant pipe R4, and is mixed with the absorption liquid flowing in through the absorption liquid pipe H2 'by evaporating and separating the refrigerant in the high temperature regenerator 16. And it is sent to the high temperature regenerator 16 by the operation of the absorption liquid pump P1.

本発明の特徴の一部である冷却水の循環する既述の冷却水管C1の構成を詳説する。冷却水が凝縮器20を出た後、冷却塔RTに至る手前において冷却水管C1が分岐し、冷却塔RTに接続される冷却塔流入側の本管C1Aとバイパス管C1Bとに分かれている。このバイパス管C1Bは冷却水が冷却塔RTから流れ出る側の本管C1Aに連通接続されている。この連通接続位置の下流位置に冷却水ポンプP3が位置している。   The structure of the above-described cooling water pipe C1 that circulates the cooling water, which is a part of the present invention, will be described in detail. After the cooling water exits the condenser 20, the cooling water pipe C1 branches before reaching the cooling tower RT, and is divided into a main pipe C1A and a bypass pipe C1B on the cooling tower inflow side connected to the cooling tower RT. The bypass pipe C1B is connected to the main pipe C1A on the side where the cooling water flows out from the cooling tower RT. The cooling water pump P3 is positioned downstream of the communication connection position.

上記分岐の位置には電動制御弁としての3方弁B3が配設されており、この3方弁の下流側であって、冷却塔流入側の本管C1Aの途中には2方弁B2が配設されている。この3方弁、2方弁、冷却水ポンプP3のインバータ部P3I、更には、冷却塔RTに設けられている冷却塔ファンRFのインバータ部RFIは、夫々が制御装置30に電気的に接続されている。   A three-way valve B3 as an electric control valve is disposed at the branch position. A two-way valve B2 is provided downstream of the three-way valve and in the middle of the main pipe C1A on the cooling tower inflow side. It is arranged. The three-way valve, the two-way valve, the inverter part P3I of the cooling water pump P3, and the inverter part RFI of the cooling tower fan RF provided in the cooling tower RT are electrically connected to the control device 30, respectively. ing.

また、吸収器14へ冷却水が流入する入口付近の冷却水管C1には温度センサS1が設けられており、この温度センサS1の出力は前記制御装置30に入力するように接続されている。制御装置30は図2に示すように、中央演算処理部(CPU)32と、ROM等のメモリ34と、出入力部(I/O)36とを有しており、後述の図3のグラフデータ又はグラフ対応の計算式がROM等のメモリ34に記憶されている。   In addition, a temperature sensor S1 is provided in the cooling water pipe C1 in the vicinity of the inlet through which the cooling water flows into the absorber 14, and the output of the temperature sensor S1 is connected to be input to the control device 30. As shown in FIG. 2, the control device 30 includes a central processing unit (CPU) 32, a memory 34 such as a ROM, and an input / output unit (I / O) 36. The graph of FIG. Calculation formulas corresponding to data or graphs are stored in a memory 34 such as a ROM.

入出力部36には、ブライン定格温度、ブライン設定温度、温度センサS1によって測定された冷却水入口温度が入力される。なお、ブライン定格温度は、予めメモリ34に記憶していてもよい。これらの入力値を受け、以下に説明するような制御方法の一つでは、冷却水ポンプP3の回転数を制御すべく、冷却水ポンプP3のインバータ部P3Iに指令を与える。また、他の制御方法では、冷却水ファンRFの回転数を制御すべく、冷却塔ファンRFのインバータ部RFIに指令を与えたり、3方弁B3や2方弁B2に弁の開閉、開度の指令を与える。   The input / output unit 36 receives the brine rated temperature, the brine set temperature, and the cooling water inlet temperature measured by the temperature sensor S1. The brine rated temperature may be stored in the memory 34 in advance. In response to these input values, in one of the control methods described below, a command is given to the inverter P3I of the cooling water pump P3 in order to control the rotational speed of the cooling water pump P3. In another control method, in order to control the rotation speed of the cooling water fan RF, a command is given to the inverter unit RFI of the cooling tower fan RF, and the opening / closing and opening of the three-way valve B3 and the two-way valve B2 are controlled. Is given.

一つの制御方法は、メモリ34に記憶されている図3に相当するグラフ図データを使用するものである。また、冷却水循環路では、冷却水管C1を流れる冷却水が、バイパス管C1Bを流れることなく、全てが本管C1Aを流れて冷却塔RTに流入するように、3方弁B3も2方弁B2も、その方向の弁を開放している。即ち、3方弁では、冷却水がバイパス管C1Bに流れ込む弁だけが閉じられている。   One control method uses graph diagram data corresponding to FIG. 3 stored in the memory 34. Further, in the cooling water circulation path, the three-way valve B3 is also connected to the two-way valve B2 so that the cooling water flowing through the cooling water pipe C1 flows through the main pipe C1A and flows into the cooling tower RT without flowing through the bypass pipe C1B. Even open the valve in that direction. That is, in the three-way valve, only the valve through which the cooling water flows into the bypass pipe C1B is closed.

上記図3は横軸が温度センサS1によって測定された冷却水入口温度であり、縦軸が冷却水ポンプP3の回転を、定格回転に対して制限する割合である制限率をパーセント表示したものである。グラフ線G1〜G6は、順次、ブライン定格温度に対して+0,1,2,3,4,5℃ずつ高いブライン設定温度に対する各グラフ線である。これら各グラフ線の中間のブライン設定温度の場合は、隣接するグラフ線間で、例えば、線形補間を行って算定することができる。   In FIG. 3, the horizontal axis represents the cooling water inlet temperature measured by the temperature sensor S1, and the vertical axis represents the percentage that is a ratio that limits the rotation of the cooling water pump P3 with respect to the rated rotation. is there. Graph lines G1 to G6 are graph lines with respect to the brine set temperature that is sequentially increased by +0, 1, 2, 3, 4, 5 ° C. with respect to the brine rated temperature. In the case of the brine set temperature between these graph lines, it can be calculated by performing, for example, linear interpolation between adjacent graph lines.

制御装置30のメモリ34に記憶させているか、或いは外部から入力されるブライン定格温度に対して、例えば、+4℃のブライン設定温度の要求が入力されると、グラフ線G5がその要求ラインとなる。ここで、温度センサS1によって測定した冷却水入口温度が25℃であるとすると、グラフ線G5によって65%の制限率が求まる。この値を冷却水ポンプP3のインバータ部P3Iに対して出力する。これにより、冷却水ポンプは定格の35%の回転数で稼働させる。   When a request for a brine set temperature of, for example, + 4 ° C. is input to the brine rated temperature stored in the memory 34 of the control device 30 or input from the outside, the graph line G5 becomes the required line. . Here, assuming that the cooling water inlet temperature measured by the temperature sensor S1 is 25 ° C., the limiting rate of 65% is obtained by the graph line G5. This value is output to the inverter part P3I of the cooling water pump P3. Thereby, the cooling water pump is operated at a rotation speed of 35% of the rated value.

その後、所定の時間間隔毎、例えば、1分後に再度冷却水の温度を測定すると、先程の25度という温度とは異なり、例えば、25.5℃に上昇したとする。この場合は、グラフ線G5によって58%の制限率が求まる。この値を冷却水ポンプP3のインバータ部P3Iに対して出力する。これにより、次の1分まで、冷却水ポンプは定格の41%の回転数で稼働させる。   Thereafter, when the temperature of the cooling water is measured again every predetermined time interval, for example, after 1 minute, it is assumed that the temperature has increased to, for example, 25.5 ° C., unlike the temperature of 25 degrees. In this case, a limiting rate of 58% is obtained by the graph line G5. This value is output to the inverter part P3I of the cooling water pump P3. Thereby, until the next 1 minute, the cooling water pump is operated at a rotational speed of 41% of the rated value.

以後、同様に、1分後に再度、冷却水温度の測定値を読み込み、同様に冷却水ポンプP3の回転を制御する。こうして、次にブライン設定温度の変更要求があるまで、或いは吸収式装置の停止指令を受信するまで、ブライン設定温度の要求を満たした運転が続けられる。   Thereafter, similarly, the measured value of the cooling water temperature is read again one minute later, and similarly the rotation of the cooling water pump P3 is controlled. In this way, the operation that satisfies the request for the brine set temperature is continued until the next request for changing the brine set temperature is received or until the stop command for the absorption type device is received.

図4は、横軸は冷却水入口温度であり、縦軸は、図1に示す2方弁B2及び/又は3方弁B3を使用してバイパス管C1Bに流す冷却水の割合を示したグラフ図である。例えば、+4℃のブライン設定温度の要求が入力されると、グラフ線H5がその要求ラインとなる。ここで、温度センサS1によって測定した冷却水入口温度が25℃であるとすると、グラフ線H5によって46%のバイパス割合が求まる。この割合信号又はこれを弁の開度信号に変えて3方弁や2方弁に送る。   In FIG. 4, the horizontal axis represents the cooling water inlet temperature, and the vertical axis represents the ratio of the cooling water flowing to the bypass pipe C1B using the two-way valve B2 and / or the three-way valve B3 shown in FIG. FIG. For example, when a request for a brine set temperature of + 4 ° C. is input, the graph line H5 becomes the request line. Here, if the cooling water inlet temperature measured by the temperature sensor S1 is 25 ° C., a bypass ratio of 46% is obtained by the graph line H5. This ratio signal or this is changed to a valve opening signal and sent to a three-way valve or a two-way valve.

バイパス割合が0%であったものを46%のバイパス割合で冷却水を流し始めるので、冷却水入口温度は上昇する。例えば、1分後に25.5℃になったとすると、グラフ線H5の上に位置した状態を維持するため、今度は37%のバイパス割合で流すこととなる。以後、同様に1分後に再度、測定した冷却水入口温度を読み込み、同様にバイパス割合を制御する。こうして、次にブライン設定温度の変更要求があるまで、或いは吸収式装置の停止指令を受信するまで、ブライン設定温度の要求を満たした運転が続けられる。   Since the cooling water starts flowing at a bypass rate of 46% from what was 0%, the cooling water inlet temperature rises. For example, if it becomes 25.5 degreeC after 1 minute, in order to maintain the state located on the graph line H5, it will flow by a 37% bypass ratio this time. Thereafter, similarly, the measured cooling water inlet temperature is read again after 1 minute, and the bypass ratio is similarly controlled. In this way, the operation that satisfies the request for the brine set temperature is continued until the next request for changing the brine set temperature is received or until the stop command for the absorption type device is received.

図5は、横軸は冷却水入口温度であり、縦軸は図1に示す冷却塔ファンRFの回転数割合を示したグラフ図である。例えば、+4℃のブライン設定温度の要求が入力されると、グラフ線I5がその要求ラインとなる。ここで、温度センサS1によって測定した冷却水入口温度が25℃であるとすると、グラフ線H5によって63%の回転数割合が求まる。この信号をインバータ部RFIに送信する。   FIG. 5 is a graph showing the cooling water inlet temperature on the horizontal axis and the rotation speed ratio of the cooling tower fan RF shown in FIG. 1 on the vertical axis. For example, when a request for a brine set temperature of + 4 ° C. is input, the graph line I5 becomes the request line. Here, if the cooling water inlet temperature measured by the temperature sensor S1 is 25 ° C., a rotation rate ratio of 63% is obtained by the graph line H5. This signal is transmitted to the inverter unit RFI.

こうして回転数割合100%であったものを63%の回転数割合に落として回転させ始めるので、冷却水入口温度は上昇する。例えば1分後に、25.5℃になったとすると、グラフ線I5の上に位置した状態を維持するため、今度は73%の回転数割合にすることとなる。以後、同様に1分後に再度、測定した冷却水入口温度を読み込み、同様に回転数割合を制御する。こうして、次にブライン設定温度の変更要求があるまで、或いは吸収式装置の停止指令を受信するまで、ブライン設定温度の要求を満たした運転が続けられる。   Thus, since the rotation speed ratio of 100% is reduced to the rotation speed ratio of 63% and the rotation starts, the cooling water inlet temperature rises. For example, if it becomes 25.5 degreeC after 1 minute, in order to maintain the state located on the graph line I5, this will be 73% of rotation speed ratio this time. Thereafter, similarly, the measured cooling water inlet temperature is read again after 1 minute, and the rotation speed ratio is similarly controlled. In this way, the operation that satisfies the request for the brine set temperature is continued until the next request for changing the brine set temperature is received or until the stop command for the absorption type device is received.

本発明は、冷却水の冷却能力を調節制御する吸収式装置に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for an absorption type apparatus that adjusts and controls the cooling capacity of cooling water.

12 蒸発器
14 吸収器
16 高温再生器
18 低温再生器
20 凝縮器
C1 冷却水管
C1B バイパス管
P3 冷却水ポンプ
P3I インバータ部
RF 冷却塔ファン
RFI インバータ部
RT 冷却塔
S1 温度センサ
DESCRIPTION OF SYMBOLS 12 Evaporator 14 Absorber 16 High temperature regenerator 18 Low temperature regenerator 20 Condenser C1 Cooling water pipe C1B Bypass pipe P3 Cooling water pump P3I Inverter part RF cooling tower fan RFI inverter part RT Cooling tower S1 Temperature sensor

Claims (2)

ブラインが蒸発器を通り、熱負荷機器を経由して前記蒸発器に戻るブライン循環路と、冷却水が、冷却水ポンプの動力によって吸収器を通って冷却塔ファンを設けた冷却塔を経由することができて前記吸収器に戻る冷却水循環路と、を備える吸収式装置であって、
前記吸収器に入る冷却水の冷却水入口温度を測定する温度センサと、
前記吸収器の吸収液に対する冷却水の冷却能力が低下するよう調節制御できる冷却能力調節手段を備え、
前記冷却能力調節手段は、前記冷却水ポンプによる循環する冷却水の流量を制御する流量制御手段を具備し、
前記流量制御手段は、前記冷却水ポンプの回転数を調節制御できるインバータ回路と、前記蒸発器出口のブライン定格温度以上のブライン設定温度と、前記温度センサによって測定された冷却水入口温度とを与えると、前記ブライン設定温度を達成するための前記冷却水ポンプの定格流量に対する制限率が求まる式又はデータテーブルを読み出し可能なメモリとを有し前記ブライン設定温度の変更要求があるまで、または前記吸収式装置の停止指令を受信するまで、前記ブライン設定温度の要求を満たす運転を継続する
ことを特徴とする吸収式装置。
The brine passes through the evaporator, returns to the evaporator via the heat load device, and the cooling water passes through the absorber and the cooling tower provided with the cooling tower fan by the power of the cooling water pump. A cooling water circuit that can be returned to the absorber,
A temperature sensor for measuring a cooling water inlet temperature of the cooling water entering the absorber ;
A cooling capacity adjusting means capable of adjusting and controlling so that the cooling capacity of the cooling water with respect to the absorption liquid of the absorber is lowered;
The cooling capacity adjusting means comprises a flow rate control means for controlling the flow rate of cooling water circulated by the cooling water pump,
The flow rate control means gives an inverter circuit capable of adjusting and controlling the number of revolutions of the cooling water pump, a brine set temperature equal to or higher than a brine rated temperature at the evaporator outlet, and a cooling water inlet temperature measured by the temperature sensor. And a memory capable of reading a formula or a data table for obtaining a limiting rate for the rated flow rate of the cooling water pump for achieving the brine set temperature until the brine set temperature is changed, or The absorption-type apparatus is characterized in that the operation that satisfies the demand for the brine set temperature is continued until the absorption-type apparatus stop command is received .
ブラインが蒸発器を通り、熱負荷機器を経由して前記蒸発器に戻るブライン循環路と、冷却水が、冷却水ポンプの動力によって吸収器を通って冷却塔ファンを設けた冷却塔を経由することができて前記吸収器に戻る冷却水循環路と、を備える吸収式装置であって、
前記吸収器に入る冷却水の冷却水入口温度を測定する温度センサを設け、
前記蒸発器出口のブライン定格温度に対して順次高い温度に設定したブライン設定温度の一つと、前記温度センサによって測定された冷却水入口温度とに基づき、前記一つのブライン設定温度を達成するための前記冷却水ポンプの定格流量に対する制限率を求め、この制限率に基づき前記冷却水ポンプを定格の回転数で稼動させ、前記ブライン設定温度の変更要求があるまで、または前記吸収式装置の停止指令を受信するまで、前記一つのブライン設定温度の要求を満たす運転を継続する
ことを特徴とする吸収式装置の冷却能力調節方法。
The brine passes through the evaporator, returns to the evaporator via the heat load device, and the cooling water passes through the absorber and the cooling tower provided with the cooling tower fan by the power of the cooling water pump. A cooling water circuit that can be returned to the absorber,
Providing a temperature sensor for measuring the cooling water inlet temperature of the cooling water entering the absorber ;
To achieve the one brine set temperature based on one of the brine set temperatures set sequentially higher than the brine rated temperature of the evaporator outlet and the cooling water inlet temperature measured by the temperature sensor A limiting rate for the rated flow rate of the cooling water pump is obtained, the cooling water pump is operated at a rated speed based on the limiting rate, and a stop command for the absorption type device is issued until there is a request to change the brine set temperature. Until it receives the one brine set temperature requirement.
A method for adjusting the cooling capacity of an absorption type device.
JP2010122002A 2010-05-27 2010-05-27 Absorption-type device and method for adjusting cooling capacity of absorption-type device Active JP5606796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122002A JP5606796B2 (en) 2010-05-27 2010-05-27 Absorption-type device and method for adjusting cooling capacity of absorption-type device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122002A JP5606796B2 (en) 2010-05-27 2010-05-27 Absorption-type device and method for adjusting cooling capacity of absorption-type device

Publications (2)

Publication Number Publication Date
JP2011247510A JP2011247510A (en) 2011-12-08
JP5606796B2 true JP5606796B2 (en) 2014-10-15

Family

ID=45412984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122002A Active JP5606796B2 (en) 2010-05-27 2010-05-27 Absorption-type device and method for adjusting cooling capacity of absorption-type device

Country Status (1)

Country Link
JP (1) JP5606796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322593B (en) * 2015-07-03 2022-11-15 广州市华德工业有限公司 Evaporative cooling type water chilling unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385549A (en) * 1977-01-06 1978-07-28 Sanyo Electric Co Ltd Absorption type refrigerator
JPS59225265A (en) * 1983-06-06 1984-12-18 三洋電機株式会社 Controller for absorption refrigerator
JP2000356430A (en) * 1999-06-16 2000-12-26 Tokyo Gas Co Ltd Water cooled air conditioner and its operation method
JP4398360B2 (en) * 2004-12-28 2010-01-13 川重冷熱工業株式会社 Cooling water temperature control method for absorption chiller / heater
JP5088783B2 (en) * 2007-10-10 2012-12-05 川重冷熱工業株式会社 Energy-saving control operation method and apparatus for vapor absorption refrigerator

Also Published As

Publication number Publication date
JP2011247510A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
CN103294086B (en) Constant-temperature liquid circulating device and temperature-controlling method
JP2011163601A (en) Absorption type heat pump device
JP5606796B2 (en) Absorption-type device and method for adjusting cooling capacity of absorption-type device
JP2009085509A (en) Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine
JP2008025915A (en) Absorption refrigerator system
Yang et al. Performance study of a heat pump fresh air unit based on desiccant coated heat exchangers under different operation strategies
KR20030091755A (en) Absorption Water Chiller/Heater
JP2004101129A (en) Control method for refrigerator and refrigeration device
JP2005003312A (en) Triple effect absorption refrigerating plant
CN203940651U (en) Superposition type air-cooled lithium-bromide absorption-type refrigerating machine
JP2012202589A (en) Absorption heat pump apparatus
JP5976447B2 (en) Solar heat generation cold generation system
JP6871015B2 (en) Absorption refrigeration system
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2000274864A (en) Method for controlling absorption refrigerator
JP2012167905A (en) Double effect absorption refrigerating machine
JP3630775B2 (en) Heat input control method of absorption refrigerator
JP2011094910A (en) Absorption refrigerating machine
JP2708809B2 (en) Control method of absorption refrigerator
JP5091590B2 (en) Absorption type water heater
JP2011190943A (en) Refrigerating/air conditioning method and device
JP2777471B2 (en) Absorption chiller / heater controller
JP2000241039A (en) Controller for absorption refrigerating machine
JP2011247472A (en) Pid control method of absorption type device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5606796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150