JP2011247472A - Pid control method of absorption type device - Google Patents

Pid control method of absorption type device Download PDF

Info

Publication number
JP2011247472A
JP2011247472A JP2010120877A JP2010120877A JP2011247472A JP 2011247472 A JP2011247472 A JP 2011247472A JP 2010120877 A JP2010120877 A JP 2010120877A JP 2010120877 A JP2010120877 A JP 2010120877A JP 2011247472 A JP2011247472 A JP 2011247472A
Authority
JP
Japan
Prior art keywords
flow rate
brine
rated flow
rated
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010120877A
Other languages
Japanese (ja)
Inventor
Yuta Masubuchi
佑太 増渕
Hideaki Oana
秀明 小穴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010120877A priority Critical patent/JP2011247472A/en
Publication of JP2011247472A publication Critical patent/JP2011247472A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a PID control method of an absorption type device that stabilizes a brine outlet temperature, even if a brine flow rate is changed from a rated value.SOLUTION: There are defined an input heat quantity as M (%), a flow rate ratio with respect to a rated flow rate of brine as F, a difference between brine temperatures at an inlet and an outlet of an evaporator as e (°C), a proportional zone in the rated flow rate as P(°C), an integrated time in the rated flow rate as Ti(sec), and a differential time in the rated flow rate as Td(sec). Then, the input heat quantity M is PID-controlled by a following expression in which the proportional zone is set as (P/F), the integrated time as (Ti/F), and the differential time as (Td.F). M=(100/(P/F)).e+(1/(Ti/F))∫edt+(Td.F)de/dt.

Description

本発明は、吸収式冷凍機や吸収式冷温水機(本願ではこの両者を含めて吸収式装置と呼ぶことにする)の入熱制御をPID方式にて行う制御方法に関する。   The present invention relates to a control method for performing heat input control of an absorption refrigerator or an absorption chiller / heater (in the present application, including both of them) by a PID method.

吸収式装置によって冷暖房を行う場合に、再生器への入熱量を制御するのにPID制御という方式が用いられることが多い。一般に、これは熱負荷機器を流れるブラインの流量が定格の場合を基に設定した比例帯P、積分時間Ti、微分時間Tdの各パラメータで演算制御する。一方、省エネ等の目的からブラインの流量を定格値よりも減らすことがある。PID制御の一例が下記特許文献1に開示されている。   When air conditioning is performed by an absorption device, a system called PID control is often used to control the amount of heat input to the regenerator. Generally, this is arithmetically controlled by the parameters of the proportional band P, the integration time Ti, and the differentiation time Td set based on the case where the flow rate of the brine flowing through the heat load device is rated. On the other hand, the flow rate of brine may be reduced below the rated value for the purpose of energy saving. An example of PID control is disclosed in Patent Document 1 below.

特開2007−263462号公報JP 2007-263462 A

しかし、ブラインの流量を変えても、従来の制御ではPIDの各パラメータは定格流量値を基にした設定値のままであるため、蒸発器から出る際のブライン出口温度が、上下に大きく振れつつ上昇、下降を繰り返すことがある(ハンチング現象)。
依って解決しようとする課題は、ブライン流量を定格値から変化させても、ブライン出口温度が安定化する吸収式装置のPID制御方法の提供である。
However, even if the brine flow rate is changed, in the conventional control, the parameters of the PID remain set values based on the rated flow rate value, so that the brine outlet temperature when leaving the evaporator fluctuates up and down greatly. It may rise and fall repeatedly (hunting phenomenon).
Therefore, a problem to be solved is to provide a PID control method for an absorption type device in which the brine outlet temperature is stabilized even if the brine flow rate is changed from the rated value.

上記課題に鑑みて第1の発明は、
入熱量をM(%)、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
M=(100/(P/F))・e+
(1/(Ti/F))∫edt+(Td・F)de/dt・・・・・・(2)
比例帯を(P/F)、積分時間を(Ti/F)、微分時間を(Td・F)とした上記式で入熱量MをPID制御することを特徴とする吸収式装置のPID制御方法を提供する。
In view of the above problems, the first invention
Heat input is M (%),
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
M = (100 / (P r / F)) · e +
(1 / (Ti r / F )) ∫edt + (Td r · F) de / dt ······ (2)
An absorption-type apparatus characterized in that the heat input M is PID controlled by the above formula where the proportional band is (P r / F), the integration time is (Ti r / F), and the differential time is (Td r · F). A PID control method is provided.

第2〜第4の発明では、第1の発明と異なり、3つのパラメータの全てをFの関数として置換するのではなく、P、I、Dの1つずつをFの関数としている。
即ち、下記式の何れかでPID制御を行う。
M=(100/(P/F))・e+(1/Ti)∫edt+(Td)de/dt
M=(100/P)・e+(1/(Ti/F))∫edt+(Td)de/dt
M=(100/P)・e+(1/Ti)∫edt+(Td・F)de/dt
In the second to fourth inventions, unlike the first invention, not all three parameters are replaced as a function of F, but one of P, I, and D is used as a function of F.
That is, PID control is performed using one of the following equations.
M = (100 / (P r / F)) · e + (1 / Ti r ) ∫edt + (Td r ) de / dt
M = (100 / P r) · e + (1 / (Ti r / F)) ∫edt + (Td r) de / dt
M = (100 / P r ) · e + (1 / Ti r ) ∫edt + (Td r · F) de / dt

第5の発明では、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
(100/P)e+(1/Ti)∫edt+(Td)de/dt
比例帯をP、積分時間をTi、微分時間をTdとしたこの式による演算値に流量比率Fを掛けた値をPID制御の入熱量(%)とすることを特徴とする吸収式装置のPID制御方法を提供する。
In the fifth invention,
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
(100 / P r ) e + (1 / Ti r ) ∫edt + (Td r ) de / dt
An absorption formula characterized by setting the value obtained by multiplying the calculated value by this formula, where the proportional band is P r , the integration time is Ti r , and the differential time is Td r to the flow rate ratio F, the heat input amount (%) of PID control. A device PID control method is provided.

第6の発明では、第1〜第5の発明の前記流量比率Fに替え、ブライン流れの蒸発器入口と出口の圧力差の定格流量時の圧力差に対する比率を使用する。   In 6th invention, it replaces with the said flow rate ratio F of 1st-5th invention, and uses the ratio with respect to the pressure difference at the time of the rated flow of the pressure difference of the evaporator inlet and outlet of a brine flow.

ブライン流量を定格値よりも小さくする、即ち、流量比率Fを小さくすると、ブライン温度の差eは拡大すると考えられる。従って、定格流量時の蒸発器の入口と出口におけるブライン温度の差をeとすれば、e=e/Fと置換しても、eはeよりもFの値(1よりも小)に応じて拡大するという意味で妥当である。この置換を行うと、上記入熱量Mを求める式(2)は次式(4)になる。
M=(100/P)・e+(1/Ti)∫edt+
(Td)de/dt・・・・・・・・・・・・・・・・(4)
実施形態例の所で再度説明するが、この式(4)は定格流量時の式と同じである。即ち、流量比率Fを低下させた場合でも、各パラメータをP=P/F、Ti=Ti/F、Td=Td・Fと置換したことによる制御演算式(2)の時間tによる変化の様子は、定格流量時の制御演算式の時間変化状態と同じであり、流量比率Fが低下した場合の従来のような大きなハンチング現象が防止でき、安定化に寄与する。
If the brine flow rate is made smaller than the rated value, that is, the flow rate ratio F is made small, it is considered that the brine temperature difference e increases. Small Therefore, if the difference between the brine temperature at the inlet and outlet of the evaporator at the rated flow rate e r, be replaced with e = e r / F, e is than the value (1 F than e r ) Is appropriate in the sense that it expands according to When this substitution is performed, the formula (2) for obtaining the heat input M is the following formula (4).
M = (100 / P r) · e r + (1 / Ti r) ∫e r dt +
(Td r ) de r / dt (4)
Although described again in the embodiment, this equation (4) is the same as the equation at the rated flow rate. That is, even when the flow rate ratio F is decreased, the time t in the control equation (2) is obtained by replacing each parameter with P = P r / F, Ti = Ti r / F, and Td = Td r · F. The state of the change is the same as the time change state of the control arithmetic expression at the rated flow rate, and a large hunting phenomenon as in the conventional case when the flow rate ratio F is reduced can be prevented, contributing to stabilization.

第2〜第4の発明では、夫々一部の項が式(2)と同じであるため、第1の発明程ではないが、大きなハンチング現象が同じ項に応じて緩和される。   In the second to fourth inventions, some of the terms are the same as those in the formula (2), and thus, a large hunting phenomenon is mitigated according to the same terms, although not as much as the first invention.

第5の発明では、下記式、即ち、従来の入熱量(%)を算定する制御演算式による出力値に対し、更に流量比率Fを掛けて出力値を小さくし、その再計算値を入熱量とする制御方法である。従って、従来制御方式の入熱量出力値にFを掛けるだけの簡便な修正で運用できる。
(100/P)e+(1/Ti)∫edt+(Td)de/dt
第6の発明では、流量は圧力差の大小によるため、流量比率に替えて圧力差比率を使用できる。
In the fifth invention, the output value is made smaller by multiplying the output value by the following formula, that is, the control arithmetic expression for calculating the conventional heat input (%) by the flow rate ratio F, and the recalculated value is used as the heat input. This is a control method. Therefore, it can be operated with a simple correction by simply multiplying the heat input value of the conventional control method by F.
(100 / P r ) e + (1 / Ti r ) ∫edt + (Td r ) de / dt
In the sixth invention, since the flow rate depends on the pressure difference, the pressure difference ratio can be used instead of the flow rate ratio.

図1は熱負荷機器を併せて表示した本発明に係る吸収式装置の全体図である。FIG. 1 is an overall view of an absorption type apparatus according to the present invention in which heat load devices are also displayed. 図2は本発明の制御方法の一例を示すフロー図である。FIG. 2 is a flowchart showing an example of the control method of the present invention.

以下、本発明を添付図面を用いて更に詳細に説明する。本発明は一重効用の吸収式装置でも二重効用以上の多重効用の吸収式装置でもよいが、典型的な二重効用吸収式冷温水機を例として、全体構造を図1を参照して説明する。外部の室内冷房機等の熱負荷機器Fと接続されており、これによって冷房も暖房も可能となっている。
冷房の場合は、開閉弁V1,V2,V3を閉じておく。筐体部は上胴11と下胴10とに分かれている。下胴10の左右方向の一側には蒸発器12が、他側には吸収器14が形成配設されている。また、上胴11には、低温再生器18と凝縮器20とが形成配設されており、これらと離れて高温再生器16が設けられている。この例の高温再生器16はガスバーナ式であるが、オイルバーナ式でもよい。以下、これら各機器の役目と冷媒や吸収液の流れを概説する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. The present invention may be a single-effect absorption device or a double-effect or higher-effect absorption device, but the entire structure will be described with reference to FIG. 1, taking a typical double-effect absorption chiller / heater as an example. To do. It is connected to a heat load device F such as an external indoor air conditioner, thereby enabling cooling and heating.
In the case of cooling, the on-off valves V1, V2, and V3 are closed. The casing is divided into an upper body 11 and a lower body 10. An evaporator 12 is formed on one side of the lower body 10 in the left-right direction, and an absorber 14 is formed on the other side. The upper body 11 is provided with a low temperature regenerator 18 and a condenser 20, and a high temperature regenerator 16 is provided apart from these. The high-temperature regenerator 16 in this example is a gas burner type, but may be an oil burner type. In the following, the role of each of these devices and the flow of refrigerant and absorbent are outlined.

蒸発器12には、熱負荷機器Fを通って循環するブライン(ここでは水)が流れるブライン管Dが通るように配設されている。このブライン管Dの途中には後述の制御に使用する流量計S1が設けられているが、これに代えて、ブライン管Dの蒸発器12への入口側と出口側との差圧を測定する圧力センサを入口側と出口側に亘って設ける場合もある。また、吸収器14には、図示しない冷却塔を介して循環する冷却水が流れる冷却水管C1が通る。吸収器14を出た冷却水管C1は凝縮器20をも通り、凝縮器20を出た冷却水は冷却塔を介して循環可能になっている。   The evaporator 12 is disposed so that a brine pipe D through which brine (water here) circulates through the heat load device F flows. In the middle of the brine pipe D, a flow meter S1 used for control described later is provided. Instead, the differential pressure between the inlet side and the outlet side of the brine pipe D to the evaporator 12 is measured. In some cases, a pressure sensor is provided across the inlet side and the outlet side. The absorber 14 also passes through a cooling water pipe C1 through which cooling water circulating through a cooling tower (not shown) flows. The cooling water pipe C1 exiting the absorber 14 also passes through the condenser 20, and the cooling water exiting the condenser 20 can be circulated through the cooling tower.

蒸発器12で蒸発した冷媒(この例では水)の蒸気は、吸収器14にて吸収液(この例では臭化リチウム溶液)に吸収され、蒸発器12の高真空状態が維持される。冷媒を吸収した吸収液は濃度が薄くなって希吸収液となる。下胴10の下部であって、吸収器14の下部に溜まった希吸収液は、吸収液ポンプP1によって希吸収液管H1に流され、高温再生器16に向かう。その途中、後述する濃吸収液の流れている濃吸収液管H3との間で低温熱交換器N1を介して濃吸収液から熱を奪って温度上昇する。その後、希吸収液は高温再生器16によって濃度が中間濃度となった中間吸収液の流れる中間吸収液管H2との間の高温熱交換器N2を介して中間吸収液からも熱を奪って更に温度上昇する。   The refrigerant vapor (water in this example) evaporated by the evaporator 12 is absorbed by the absorber 14 in the absorbing liquid (lithium bromide solution in this example), and the evaporator 12 is maintained in a high vacuum state. The absorbent that has absorbed the refrigerant has a reduced concentration and becomes a diluted absorbent. The dilute absorbent stored in the lower part of the lower body 10 and in the lower part of the absorber 14 is flowed to the dilute absorbent pipe H1 by the absorbent pump P1 and travels to the high temperature regenerator 16. In the middle of this, heat is removed from the concentrated absorbent via the low-temperature heat exchanger N1 with the concentrated absorbent pipe H3 through which the concentrated absorbent flows, which will be described later, and the temperature rises. Thereafter, the dilute absorbing liquid also takes heat from the intermediate absorbing liquid via the high temperature heat exchanger N2 between the intermediate absorbing liquid pipe H2 through which the intermediate absorbing liquid whose concentration has become intermediate by the high temperature regenerator 16 flows. The temperature rises.

こうして、吸収器14から出た時よりも温度の上昇した希吸収液が高温再生器16に流入する。そして、ガス式バーナ17によって加熱される。この加熱量は、後述の制御方法によってステッピングモータ等の駆動装置22に指令を発し、ガス流路と空気流路の開閉弁24を適宜な角度開放したり、閉じたりする。高温再生器16において希吸収液がバーナ17によって加熱されると冷媒が蒸発分離する。この冷媒蒸気は冷媒管R1を通って既述の低温再生器18を通る。一方、高温再生器16において冷媒が蒸発分離して中間濃度となった中間吸収液が中間吸収液管H2を流れて低温再生器18に入る。   In this way, the diluted absorbent whose temperature is higher than that when it comes out of the absorber 14 flows into the high temperature regenerator 16. Then, it is heated by the gas burner 17. This heating amount is instructed to a driving device 22 such as a stepping motor by a control method to be described later, and the on-off valve 24 of the gas flow path and the air flow path is opened or closed at an appropriate angle. When the diluted absorbent is heated by the burner 17 in the high-temperature regenerator 16, the refrigerant is evaporated and separated. This refrigerant vapor passes through the low-temperature regenerator 18 described above through the refrigerant pipe R1. On the other hand, the intermediate absorption liquid whose intermediate concentration is obtained by evaporating and separating the refrigerant in the high temperature regenerator 16 flows through the intermediate absorption liquid pipe H2 and enters the low temperature regenerator 18.

低温再生器18に入った中間吸収液は、冷媒蒸気の流れている既述の冷媒管R1の伝熱部によって加熱される。この熱により更に中間吸収液から蒸発した冷媒蒸気は凝縮器20に入る。また、冷媒管R1を流れていた冷媒蒸気も、蒸気のまま或いは冷媒液となって冷媒管先部R1’を介して凝縮器20に入る。凝縮器内の冷媒蒸気は、器内を通る冷却水管C1の伝熱部を流れる冷却水によって冷却されて冷媒液に戻る。   The intermediate absorption liquid that has entered the low-temperature regenerator 18 is heated by the heat transfer section of the above-described refrigerant pipe R1 in which the refrigerant vapor flows. The refrigerant vapor further evaporated from the intermediate absorbing liquid by this heat enters the condenser 20. Further, the refrigerant vapor flowing through the refrigerant pipe R1 enters the condenser 20 via the refrigerant pipe tip portion R1 'as vapor or as a refrigerant liquid. The refrigerant vapor in the condenser is cooled by the cooling water flowing through the heat transfer section of the cooling water pipe C1 passing through the inside of the condenser, and returns to the refrigerant liquid.

この冷媒液は第2冷媒管R2を通って蒸発器12へ流下する。蒸発器12の下部に溜まった冷媒液は冷媒ポンプP2によって第3冷媒管R3を通って蒸発器12の上部に設けた散布器R3Aから散布される。この散布された冷媒液がブライン管Dの伝熱部を流れるブラインから蒸発熱を奪って冷媒蒸気になると共に、ブラインの温度を下げる。既述の如く、この冷媒蒸気は吸収器14において吸収液に吸収される。   This refrigerant liquid flows down to the evaporator 12 through the second refrigerant pipe R2. The refrigerant liquid collected in the lower part of the evaporator 12 is sprayed from the sprayer R3A provided in the upper part of the evaporator 12 through the third refrigerant pipe R3 by the refrigerant pump P2. The sprayed refrigerant liquid takes evaporative heat from the brine flowing through the heat transfer section of the brine pipe D to become refrigerant vapor, and lowers the temperature of the brine. As described above, the refrigerant vapor is absorbed by the absorbent in the absorber 14.

以上は、熱負荷機器Fが冷房をしている場合の説明であるが、暖房の場合は、開閉弁V1,V2,V3を開き、冷却水ポンプP3を停止して冷却水管C1に冷却水を流さないでガス式バーナ17を点火し、高温再生器において希吸収液を加熱する。この加熱によって発生する冷媒蒸気は冷媒管R1の途中から、主に流路抵抗の小さな暖房管R1”を通って吸収器14と蒸発器12に入る。こうしてブライン管Dの伝熱部を介してブラインを加熱し、熱負荷機器Fは暖房を行える。   The above is an explanation of the case where the heat load device F is cooling, but in the case of heating, the on-off valves V1, V2, V3 are opened, the cooling water pump P3 is stopped, and cooling water is supplied to the cooling water pipe C1. The gas burner 17 is ignited without flowing, and the diluted absorbent is heated in the high temperature regenerator. The refrigerant vapor generated by this heating enters the absorber 14 and the evaporator 12 from the middle of the refrigerant pipe R1 mainly through the heating pipe R1 "having a small flow resistance. Thus, through the heat transfer section of the brine pipe D. The brine is heated and the heat load device F can be heated.

一方、冷媒蒸気は蒸発器12でブラインを加熱し、熱を失って凝縮して冷媒液となる。この冷媒液は第4冷媒管R4を通って吸収器14の下部に入り、高温再生器16において冷媒を蒸発分離して吸収液管H2’を介して流入する吸収液と混合される。そして、吸収液ポンプP1の運転によって高温再生器16に送られる。   On the other hand, the refrigerant vapor heats the brine in the evaporator 12, loses heat and condenses into a refrigerant liquid. This refrigerant liquid enters the lower part of the absorber 14 through the fourth refrigerant pipe R4, and is mixed with the absorption liquid flowing in through the absorption liquid pipe H2 'by evaporating and separating the refrigerant in the high temperature regenerator 16. And it is sent to the high temperature regenerator 16 by the operation of the absorption liquid pump P1.

本発明に係る吸収式装置のPID制御方法の第1実施形態例を説明する。
入熱量をM(%)、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
比例帯をP(℃)、
積分時間をTi(秒)、
微分時間をTd(秒)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義する。
A first embodiment of a PID control method for an absorption type device according to the present invention will be described.
Heat input is M (%),
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band is P (° C),
Integration time is Ti (seconds),
The derivative time is Td (seconds),
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow rate is defined as Td r (seconds).

従来の入熱量のPID制御方法として、下記式(1)によって演算制御する代表的な方法がある。
M=(100/P)e+(1/Ti)∫edt+(Td)de/dt・・・(1)
この式の3つのパラメータP、Ti、Tdは、ブラインの定格流量時を基準に定めている。即ち、これまでP=P、Ti=Ti、Td=Tdの次式(1’)で制御してきた。
M=(100/P)e+(1/Ti)∫edt+(Td)de/dt…(1’)
ここで、本発明では、式(1)の3つのパラメータP、Ti、Tdにつき、夫々、P=P/F、Ti=Ti/F、Td=Td・Fと置換するが、これにより式(1)は次式(2)となる。この式(2)でPID制御を行う。
M=(100/(P/F))e+
(1/(Ti/F))∫edt+(Td・F)de/dt・・・・・(2)
As a conventional heat input PID control method, there is a typical method of calculating and controlling by the following equation (1).
M = (100 / P) e + (1 / Ti) ∫edt + (Td) de / dt (1)
The three parameters P, Ti, and Td of this equation are determined based on the rated flow rate of the brine. That is, until now, control has been performed by the following equation (1 ′) where P = P r , Ti = Ti r , and Td = Td r .
M = (100 / P r ) e + (1 / Ti r ) tedt + (Td r ) de / dt (1 ′)
Here, in the present invention, the three parameters P, Ti, and Td in the formula (1) are replaced with P = P r / F, Ti = Ti r / F, and Td = Td r · F, respectively. Thus, the expression (1) becomes the following expression (2). PID control is performed using this equation (2).
M = (100 / (P r / F)) e +
(1 / (Ti r / F)) ∫edt + (Td r · F) de / dt (2)

ここで、ブライン流量が減少すれば、ブライン温度差eは拡大すると考えられる。従って、下記式(2)のように置換することには妥当性がある。
e=e/F ・・・・・・・・・・・・・・(3)
これを式(2)に代入すると次式となる。
M=(100/P)e+(1/Ti)∫edt+
(Td)de/dt・・・・・・・・・・・・・・・・・・・・・(4)
即ち、PID制御式(1)に上記の3つのパラメータの置換を行い、更に式(3)の置換をすれば式(4)となるのであり、この式(4)はPID制御式(1)が定格流量時のものと同じである。
Here, if the brine flow rate decreases, the brine temperature difference e is considered to increase. Therefore, it is appropriate to substitute as in the following formula (2).
e = er / F (3)
Substituting this into equation (2) yields:
M = (100 / P r) e r + (1 / Ti r) ∫e r dt +
(Td r ) de r / dt (4)
That is, if the above three parameters are replaced in the PID control equation (1) and further replaced by the equation (3), the equation (4) is obtained. The equation (4) is expressed by the PID control equation (1). Is the same as that at the rated flow rate.

即ち、流量比率Fを低下させた場合でも、各PIDパラメータをP=P/F、Ti=Ti/F、Td=Td・Fと置換したことによる本発明PID制御式(2)の時間tによる変化の様子は、式(4)になると考えられる。実際に式(4)になるか否かは式(3)の妥当性に依存するが、この妥当性は上記の通りである。即ち、流量比率Fを低下させた場合の従来のような大きなハンチング現象が防止でき、安定化に寄与することが分かる。 That is, even when the flow rate ratio F is lowered, the PID control equation (2) of the present invention by replacing each PID parameter with P = P r / F, Ti = Ti r / F, Td = Td r · F. It is considered that the state of change with time t is expressed by equation (4). Whether or not the equation (4) is actually obtained depends on the validity of the equation (3), and this validity is as described above. That is, it can be understood that a large hunting phenomenon as in the conventional case when the flow rate ratio F is reduced can be prevented, which contributes to stabilization.

上記第1の制御方法に代わる第2の方法を説明する。
式(1)の3つのパラメータP、Ti、Tdの内PについてのみP=P/Fと置換し、他はTi=Ti、Td=Tdのままとすると、式(1)は次式となり、この式(2.1)でPID制御を行う。
M=(100/(P/F))e+
(1/Ti)∫edt+(Td)de/dt・・・・・・・・・(2.1)
また、式(3)をこれに代入すると次式となる。
M=(100/P)e
(1/(Ti・F))∫edt+(Td/F)de/dt・・(4.1)
この式(4.1)は、比例項である第1項のみがPID制御式(1)の定格流量時のものと同じであるため、上記第1制御方法程ではないが、流量比率Fを低下させた場合の従来のような大きなハンチング現象が、比例部に対応する分防止でき、安定化に寄与する。
A second method that replaces the first control method will be described.
If only P of the three parameters P, Ti, and Td in the equation (1) is replaced with P = P r / F, and the others are left as Ti = Ti r and Td = Td r , then the equation (1) becomes Equation (2.1) is used to perform PID control.
M = (100 / (P r / F)) e +
(1 / Ti r ) ∫edt + (Td r ) de / dt (2.1)
Moreover, if Formula (3) is substituted into this, it will become the following Formula.
M = (100 / P r ) er +
(1 / (Ti r · F )) ∫e r dt + (Td r / F) de r / dt ·· (4.1)
In this equation (4.1), only the first term which is a proportional term is the same as that at the rated flow rate of the PID control equation (1). A large hunting phenomenon as in the conventional case when it is reduced can be prevented by the amount corresponding to the proportional portion, and contributes to stabilization.

第1の制御方法に代わる第3の方法を説明する。
式(1)の3つのパラメータP、Ti、Tdの内TiについてのみTi=Ti/Fと置換し、他はP=P、Td=Tdのままとすると、式(1)は次式となり、この式(2.2)でPID制御を行う。
M=(100/P)e+
(1/(Ti/F))∫edt+(Td)de/dt・・・・・(2.2)
また、式(3)をこれに代入すると次式となる。
M=(100/(P・F))・e
(1/Ti)∫edt+(Td/F)de/dt・・・・・(4.2)
この式(4.2)は、積分項である第2項のみがPID制御式(1)の定格流量時のものと同じであるため、上記第1制御方法程ではないが、流量比率Fを低下させた場合の従来のような大きなハンチング現象が、積分部に対応する分防止でき、安定化に寄与する。
A third method instead of the first control method will be described.
If only Ti among the three parameters P, Ti, and Td in the formula (1) is replaced with Ti = Ti r / F, and the others are left as P = P r and Td = Td r , the formula (1) is The PID control is performed using this equation (2.2).
M = (100 / P r ) e +
(1 / (Ti r / F)) ∫edt + (Td r ) de / dt (2.2)
Moreover, if Formula (3) is substituted into this, it will become the following Formula.
M = (100 / (P r · F)) · e r +
(1 / Ti r) ∫e r dt + (Td r / F) de r / dt ····· (4.2)
In this equation (4.2), only the second term which is an integral term is the same as that at the rated flow rate of the PID control equation (1). A large hunting phenomenon as in the conventional case in the case of lowering can be prevented by the amount corresponding to the integration part, and contributes to stabilization.

第1の制御方法に代わる第4の方法を説明する。
式(1)の3つのパラメータP、Ti、Tdの内TdについてのみTd=Td・Fと置換し、他はP=P、Ti=Tiのままとすると、式(1)は次式となり、この式(2.3)でPID制御を行う。
M=(100/P)e+
(1/Ti)∫edt+(Td・F)de/dt・・・・・・(2.3)
また、式(3)をこれに代入すると次式となる。
M=(100/(P・F))・e
(1/(Ti/F))∫edt+(Td)de/dt・・・(4.3)
この式(4.3)は、微分項である第3項のみがPID制御式(1)の定格流量時のものと同じであるため、上記第1制御方法程ではないが、流量比率Fを低下させた場合の従来のような大きなハンチング現象が、微分部に対応する分防止でき、安定化に寄与する。
A fourth method instead of the first control method will be described.
If only Td of the three parameters P, Ti, and Td in equation (1) is replaced with Td = Td r · F, and the others are left as P = P r and Ti = Ti r , equation (1) becomes The PID control is performed by this equation (2.3).
M = (100 / P r ) e +
(1 / Ti r) ∫edt + (Td r · F) de / dt ······ (2.3)
Moreover, if Formula (3) is substituted into this, it will become the following Formula.
M = (100 / (P r · F)) · e r +
(1 / (Ti r / F )) ∫e r dt + (Td r) de r / dt ··· (4.3)
In this equation (4.3), only the third term, which is a differential term, is the same as that at the rated flow rate of the PID control equation (1). A large hunting phenomenon as in the conventional case in the case of lowering can be prevented by the amount corresponding to the differential portion, and contributes to stabilization.

式(1’)M=(100/P)e+(1/Ti)∫edt+(Td)de/dt
の両辺に流量比率Fを掛けると次式となる。
F・M=(100/P)F・e+
(1/Ti)∫F・edt+(Td)d(F・e)/dt
この式(5)の左辺F・Mは、流量比率Fが低下した場合に、従来の制御によって算定された入熱量M(%)をこの低下割合に下げた値を意味しており、このF・Mの値を本発明制御の入熱量とすれば妥当な入熱量制御になると考えられる(第5の制御方法)。
Formula (1 ′) M = (100 / P r ) e + (1 / Ti r ) ∫edt + (Td r ) de / dt
When the flow rate ratio F is multiplied on both sides, the following equation is obtained.
F · M = (100 / P r ) F · e +
(1 / Ti r ) ∫F · edt + (Td r ) d (F · e) / dt
The left side F · M of the equation (5) means a value obtained by lowering the heat input M (%) calculated by the conventional control to this decrease rate when the flow rate ratio F decreases. If the value of M is the heat input amount according to the control of the present invention, it is considered that the heat input control is appropriate (fifth control method).

一方、この式は下記式に書き直すことができる。
F・M=(100/(P/F))e+
(1/(Ti/F))∫edt+(Td・F)de/dt・・・(5)
即ち、この式(5)の右辺は式(2)の右辺と同じである。式(2)の左辺はMであり、式(2)の右辺を入熱量とする制御を意味しており、この式(5)も右辺を入熱量とするのであり、式(2)と同じ入熱量を算定する。従って、式(2)に基づく第1の制御方法による入熱量は、従来の入熱制御の入熱量をF倍した当該第5の制御方法の入熱量と同じである。
On the other hand, this equation can be rewritten as:
F · M = (100 / (P r / F)) e +
(1 / (Ti r / F )) ∫edt + (Td r · F) de / dt ··· (5)
That is, the right side of equation (5) is the same as the right side of equation (2). The left side of Expression (2) is M, which means control with the right side of Expression (2) as the heat input, and this Expression (5) also has the right side as heat input, which is the same as Expression (2). Calculate heat input. Therefore, the heat input amount by the first control method based on the formula (2) is the same as the heat input amount of the fifth control method, which is F times the heat input amount of the conventional heat input control.

更には、ブライン管Dを流れるブラインは、蒸発器12の内部に位置する伝熱部において強い流体抵抗が存在する。このためブライン流の圧力損失が生じる。流量を多くしようとすれば、それだけ大きな圧力損失を生じ、ブライン管の蒸発器12への入口側と出口側とにおける圧力(静圧)差が大きくなる。また、流量を小さくしようとすれば圧力損失が小さくなり、圧力差が小さくなる。即ち、ブライン管の蒸発器12への入口側と出口側とにおける圧力差は流量の大小に対応すると考えることができる。従って、定格流量時の圧力差に対する流量減少時の圧力差の比率をαとすれば、上記説明の流量比率Fに替え、この圧力差比率αを使用してもよい。   Further, the brine flowing through the brine pipe D has a strong fluid resistance in the heat transfer section located inside the evaporator 12. This causes a pressure loss in the brine stream. Increasing the flow rate causes a large pressure loss, and the pressure (static pressure) difference between the inlet side and the outlet side of the brine pipe to the evaporator 12 increases. Further, if the flow rate is reduced, the pressure loss is reduced and the pressure difference is reduced. That is, it can be considered that the pressure difference between the inlet side and the outlet side of the brine pipe to the evaporator 12 corresponds to the magnitude of the flow rate. Therefore, if the ratio of the pressure difference when the flow rate is reduced to the pressure difference at the rated flow rate is α, the pressure difference ratio α may be used instead of the flow rate ratio F described above.

本発明のPID制御方法を、上記第1の制御方法に対応する図2のフロー図を基に再度簡単に説明する。ステップ30では、定格流量時の比例帯P、定格流量時の積分時間Ti、定格流量時の微分時間Tdを読み込む。或いは、予めROMメモリ等に記憶されている値を取り出す。ステップ32で、流量計S1からの流量信号か、又はブラインの出入口間の圧力差を計測する図示しない圧力センサからの信号を受信する。ステップ34では、これらの信号から流量比率Fか圧力差比率αを算定する。 The PID control method of the present invention will be briefly described again based on the flowchart of FIG. 2 corresponding to the first control method. In step 30, the proportional band P r at the rated flow rate, the integration time Ti r at the rated flow rate, and the differential time Td r at the rated flow rate are read. Alternatively, a value stored in advance in a ROM memory or the like is taken out. In step 32, a flow signal from the flow meter S1 or a signal from a pressure sensor (not shown) that measures a pressure difference between the inlet and outlet of the brine is received. In step 34, the flow rate ratio F or the pressure difference ratio α is calculated from these signals.

ステップ36では、流量比率Fを使う場合は、比例帯P=P/F、積分時間Ti=Ti/F、微分時間Td=Td・FとしてPIDパラメータを算定する。ステップ38では、ステップ36で求めた3つのパラメータを用いて、従来から行っているPID制御を行う。その結果、入熱量M(%)を演算出力する。この演算において、既述の式(2)におけるブライン温度差eは、所定時間の平均値を使用して制御演算することで制御の演算負荷を軽減できる。 In step 36, if using the flow rate ratio F, the proportional band P = P r / F, integral time Ti = Ti r / F, to calculate the PID parameters as derivative time Td = Td r · F. In step 38, the conventional PID control is performed using the three parameters obtained in step 36. As a result, the heat input M (%) is calculated and output. In this calculation, the calculation load of control can be reduced by performing the control calculation of the brine temperature difference e in the above-described equation (2) using an average value for a predetermined time.

ステップ40では、入熱量Mに応じた制御弁開度を算定して、図1に示す駆動装置22に駆動信号を発し、ガス流路と空気流路の開閉弁(制御弁)24を適宜な角度開放したり、閉じたりさせる。ステップ42において吸収式装置停止の信号の有無を判定し、無しの場合はステップ30に戻り、有りの場合は停止させる。   In step 40, the control valve opening according to the heat input M is calculated, a drive signal is issued to the drive device 22 shown in FIG. 1, and the gas flow passage and the air flow passage opening / closing valve (control valve) 24 are appropriately set. Open or close the angle. In step 42, it is determined whether or not there is an absorption device stop signal. If not, the process returns to step 30, and if it is present, the signal is stopped.

第2〜第4の方法では、ステップ36における3つのパラメータの算定式が異なるが、その他は同様である。
第5の方法では、ステップ36の3つのパラメータを、P=P、Ti=Ti、Td=Tdとして算定し、ステップ38の算定結果の入熱量Mの値にFを掛けた値を、ステップ40に送る入熱量Mとすればよい。
In the second to fourth methods, the calculation formulas of the three parameters in step 36 are different, but the others are the same.
In the fifth method, the three parameters of step 36 are calculated as P = P r , Ti = Ti r , Td = Td r , and the value obtained by multiplying the value of heat input M of the calculation result of step 38 by F is The amount of heat input M sent to step 40 may be used.

本発明は、吸収式冷凍機や吸収式冷温水機のPID制御に利用できる。   The present invention can be used for PID control of an absorption refrigerator or an absorption chiller / heater.

12 蒸発器
14 吸収器
16 高温再生器
18 低温再生器
20 凝縮器
22 ステッピングモータ等の駆動装置
24 開閉弁(制御弁)
D ブライン管
S1 流量計
DESCRIPTION OF SYMBOLS 12 Evaporator 14 Absorber 16 High temperature regenerator 18 Low temperature regenerator 20 Condenser 22 Driving devices, such as a stepping motor 24 On-off valve (control valve)
D brine tube S1 flow meter

Claims (6)

入熱量をM(%)、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
M=(100/(P/F))・e+
(1/(Ti/F))∫edt+(Td・F)de/dt
比例帯を(P/F)、積分時間を(Ti/F)、微分時間を(Td・F)とした上記式で入熱量MをPID制御する
ことを特徴とする吸収式装置のPID制御方法。
Heat input is M (%),
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
M = (100 / (P r / F)) · e +
(1 / (Ti r / F)) ∫edt + (Td r · F) de / dt
A heat input M is PID controlled by the above equation where the proportional band is (P r / F), the integration time is (Ti r / F), and the derivative time is (Td r · F). PID control method.
入熱量をM(%)、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
M=(100/(P/F))・e+(1/Ti)∫edt+(Td)de/dt
比例帯を(P/F)、積分時間をTi、微分時間をTdとした上記式で入熱量MをPID制御する
ことを特徴とする吸収式装置のPID制御方法。
Heat input is M (%),
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
M = (100 / (P r / F)) · e + (1 / Ti r ) ∫edt + (Td r ) de / dt
A PID control method for an absorption type apparatus, wherein the heat input M is PID controlled by the above formula where the proportional band is (P r / F), the integration time is Ti r , and the differential time is Td r .
入熱量をM(%)、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
M=(100/P)・e+(1/(Ti/F))∫edt+(Td)de/dt
比例帯をP、積分時間を(Ti/F)、微分時間をTdとした上記式で入熱量MをPID制御する
ことを特徴とする吸収式装置のPID制御方法。
Heat input is M (%),
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
M = (100 / P r) · e + (1 / (Ti r / F)) ∫edt + (Td r) de / dt
A PID control method for an absorption type device, wherein the heat input M is PID-controlled by the above equation where the proportional band is P r , the integration time is (Ti r / F), and the derivative time is Td r .
入熱量をM(%)、
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
M=(100/P)・e+(1/Ti)∫edt+(Td・F)de/dt
比例帯をP、積分時間をTi、微分時間を(Td・F)とした上記式で入熱量MをPID制御する
ことを特徴とする吸収式装置のPID制御方法。
Heat input is M (%),
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
M = (100 / P r ) · e + (1 / Ti r ) ∫edt + (Td r · F) de / dt
A PID control method for an absorption-type apparatus, wherein the heat input M is PID-controlled by the above formula where the proportional band is P r , the integration time is Ti r , and the differentiation time is (Td r · F).
ブラインの定格流量に対する流量比率をF、
蒸発器の入口と出口におけるブライン温度の差をe(℃)、
定格流量時の比例帯をP(℃)、
定格流量時の積分時間をTi(秒)、
定格流量時の微分時間をTd(秒)と定義し、
(100/P)e+(1/Ti)∫edt+(Td)de/dt
比例帯をP、積分時間をTi、微分時間をTdとしたこの式による演算値に流量比率Fを掛けた値をPID制御の入熱量(%)とする
ことを特徴とする吸収式装置のPID制御方法。
F is the flow rate ratio relative to the rated flow rate of brine.
E (° C), the difference in brine temperature at the inlet and outlet of the evaporator
The proportional band at the rated flow is P r (° C),
The integration time at the rated flow is Ti r (seconds),
The differential time at the rated flow is defined as Td r (seconds)
(100 / P r ) e + (1 / Ti r ) ∫edt + (Td r ) de / dt
The proportional band P r, the integration time Ti r, absorption, characterized in that the heat input of the PID control value obtained by multiplying the flow rate ratio F value in the calculated value by the equation where the differentiation time Td r (%) Device PID control method.
前記流量比率Fに替え、ブライン流れの蒸発器入口と出口の圧力差の定格流量時の圧力差に対する比率を使用する請求項1〜5の何れか1記載の吸収式装置のPID制御方法。   The PID control method for an absorption type apparatus according to any one of claims 1 to 5, wherein the ratio of the pressure difference between the evaporator inlet and outlet of the brine flow to the pressure difference at the rated flow rate is used instead of the flow rate ratio F.
JP2010120877A 2010-05-26 2010-05-26 Pid control method of absorption type device Pending JP2011247472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120877A JP2011247472A (en) 2010-05-26 2010-05-26 Pid control method of absorption type device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120877A JP2011247472A (en) 2010-05-26 2010-05-26 Pid control method of absorption type device

Publications (1)

Publication Number Publication Date
JP2011247472A true JP2011247472A (en) 2011-12-08

Family

ID=45412950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120877A Pending JP2011247472A (en) 2010-05-26 2010-05-26 Pid control method of absorption type device

Country Status (1)

Country Link
JP (1) JP2011247472A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018344A1 (en) * 1993-12-27 1995-07-06 Daikin Industries, Ltd. Absorption refrigerator
JPH07225061A (en) * 1994-02-15 1995-08-22 Sanyo Electric Co Ltd Controller for absorption type chilled and warm water machine
JP2003148829A (en) * 2001-11-13 2003-05-21 Mitsubishi Heavy Ind Ltd Cogeneration type absorption refrigerating machine and its operation control method
JP2007003122A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Operation control method of absorption chiller and heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018344A1 (en) * 1993-12-27 1995-07-06 Daikin Industries, Ltd. Absorption refrigerator
JPH07225061A (en) * 1994-02-15 1995-08-22 Sanyo Electric Co Ltd Controller for absorption type chilled and warm water machine
JP2003148829A (en) * 2001-11-13 2003-05-21 Mitsubishi Heavy Ind Ltd Cogeneration type absorption refrigerating machine and its operation control method
JP2007003122A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Operation control method of absorption chiller and heater

Similar Documents

Publication Publication Date Title
JP3753356B2 (en) Triple effect absorption refrigerator
JP2009085509A (en) Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine
KR100990822B1 (en) Control Method for Absorption Refrigerator
JP2008025915A (en) Absorption refrigerator system
JP7213476B2 (en) Absorption chiller
JP2011247472A (en) Pid control method of absorption type device
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP2012202589A (en) Absorption heat pump apparatus
JP5575519B2 (en) Absorption refrigerator
JP2000274864A (en) Method for controlling absorption refrigerator
JP5606796B2 (en) Absorption-type device and method for adjusting cooling capacity of absorption-type device
JP2011094910A (en) Absorption refrigerating machine
JP3630775B2 (en) Heat input control method of absorption refrigerator
JP5449862B2 (en) Absorption refrigeration system
JP5484784B2 (en) Absorption refrigerator
JP2708809B2 (en) Control method of absorption refrigerator
JPH07190537A (en) Absorption type refrigerating machine
JP5091590B2 (en) Absorption type water heater
KR0171307B1 (en) Proportional control apparatus of absorptive type airconditioner
JP3163411B2 (en) Absorption chiller / heater and liquid refrigerant controller
JPH01107066A (en) Method of controlling operation of absorption type refrigerator
JP2017036856A (en) Waste heat input type absorption chiller heater and waste heat recovery amount control method thereof
JP4330522B2 (en) Absorption refrigerator operation control method
JP2002323269A (en) Absorption refrigerating machine
JPH04110572A (en) Control device for absorption type freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701