JPS58203368A - Absorption type cold and hot water machine - Google Patents

Absorption type cold and hot water machine

Info

Publication number
JPS58203368A
JPS58203368A JP8474182A JP8474182A JPS58203368A JP S58203368 A JPS58203368 A JP S58203368A JP 8474182 A JP8474182 A JP 8474182A JP 8474182 A JP8474182 A JP 8474182A JP S58203368 A JPS58203368 A JP S58203368A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature regenerator
refrigerant
heat
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8474182A
Other languages
Japanese (ja)
Other versions
JPS6148064B2 (en
Inventor
大内 富久
臼井 三平
大沢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8474182A priority Critical patent/JPS58203368A/en
Publication of JPS58203368A publication Critical patent/JPS58203368A/en
Publication of JPS6148064B2 publication Critical patent/JPS6148064B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は空気調和等に多用される水−臭化リチウム系吸
収式冷温水機に係り、特に高温再生器に設けたボイラの
排ガスから熱を回収して、冷房。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-lithium bromide absorption type water chiller/heater that is frequently used for air conditioning, etc., and in particular, it recovers heat from the exhaust gas of a boiler installed in a high-temperature regenerator to cool the air conditioner.

暖房の熱利用効率の向上に好適な吸収式冷温水機に関す
る。
The present invention relates to an absorption type water chiller/heater suitable for improving heat utilization efficiency in heating.

従来のこの種冷温水機は第1図に示すように、蒸発器1
.吸収器2.凝縮器3.高温再生器4゜低温再生器5.
低温熱交換器6.高温熱交換器7゜循環ポンプ8.溶液
スプレエゼクタポンプ9.冷媒スプレポンプ10.高温
再生器4を加熱するボイラ11からなる。
As shown in Fig. 1, the conventional water chiller/heater of this type has an evaporator 1.
.. Absorber 2. Condenser 3. High temperature regenerator 4° low temperature regenerator 5.
Low temperature heat exchanger6. High temperature heat exchanger 7° circulation pump 8. Solution spray ejector pump9. Refrigerant spray pump 10. It consists of a boiler 11 that heats the high temperature regenerator 4.

冷房運転時は、弁14を閉める。高温再生器4内の水と
臭化リチウムの混合溶液(以下、溶液と略記)はボイラ
11の燃焼ガスに加熱されて冷媒蒸気(水蒸気である)
を発生する。発生した冷媒蒸気は低温再生器5に導かれ
、低温再生器5内の溶液を加熱して自身値凝縮液化して
、出口ヘッダ16を経て凝縮器3に供給される。低温再
生器5内の溶液は前記高温再生器4で発生した冷媒蒸気
により加熱され、冷媒蒸気を発生する。該冷媒蒸気は凝
縮器3に導かれて、伝熱管内を流れる冷却水13により
冷却されて凝縮液化され、前記低温再生器5を加熱して
凝縮液化した冷媒とともに弁25を経て蒸発器1に供給
される。蒸発器1に供給されだ液冷媒は冷媒スプレポン
プ10によシ伝熱管群上に散布され、伝熱管内を流れる
冷水12と熱交換して蒸発気化し、その際の蒸発潜熱を
冷水12から奪うことにより冷水12が冷却され、冷凍
作用を供する。蒸発器1で蒸発した冷媒蒸気は、吸収器
2に導かれる。一方、高温再生器4で冷媒蒸気を発生し
て濃縮された溶液(以下、濃溶液と呼ぶ)と低温再生器
5の濃溶液とはそれぞれ高温熱交換器7および低温熱交
換器6を経た後、循環ポンプ8の高圧の溶液で駆動され
る溶液エゼクタスプレポンプ9に吸引、昇圧されて吸収
器2の伝熱管群上に散布されて、伝熱管内を流れる冷却
水13により冷却されるとともに、前記蒸発器1で蒸発
した冷媒蒸気を吸収して稀釈されて稀溶液となる。吸収
器2の稀溶液は循環ポンプ8により吸引・昇圧されて低
温熱交換器6で予熱されて低温再生器5に、また一部は
高温熱交換器で予熱されて高温再生器4に、それぞれ供
給される。以上説明した様に冷房サイクルが構成されて
いた。
During cooling operation, valve 14 is closed. A mixed solution of water and lithium bromide (hereinafter abbreviated as solution) in the high-temperature regenerator 4 is heated by the combustion gas of the boiler 11 and becomes refrigerant vapor (steam).
occurs. The generated refrigerant vapor is led to the low-temperature regenerator 5, heats the solution in the low-temperature regenerator 5, condenses it into a liquid, and supplies the solution to the condenser 3 via the outlet header 16. The solution in the low temperature regenerator 5 is heated by the refrigerant vapor generated in the high temperature regenerator 4 to generate refrigerant vapor. The refrigerant vapor is led to the condenser 3, cooled by the cooling water 13 flowing in the heat transfer tube, condensed and liquefied, heated the low temperature regenerator 5 and sent to the evaporator 1 together with the condensed and liquefied refrigerant through the valve 25. Supplied. The liquid refrigerant supplied to the evaporator 1 is sprayed onto the heat transfer tube group by the refrigerant spray pump 10, exchanges heat with the cold water 12 flowing inside the heat transfer tubes, evaporates and vaporizes, and deprives the cold water 12 of the latent heat of evaporation. This cools the cold water 12 and provides a refrigeration effect. Refrigerant vapor evaporated in the evaporator 1 is guided to the absorber 2. On the other hand, the solution concentrated by generating refrigerant vapor in the high-temperature regenerator 4 (hereinafter referred to as concentrated solution) and the concentrated solution in the low-temperature regenerator 5 pass through the high-temperature heat exchanger 7 and the low-temperature heat exchanger 6, respectively. The solution is sucked into the solution ejector spray pump 9 driven by the high-pressure solution of the circulation pump 8, is pressurized, is spread over the heat transfer tube group of the absorber 2, and is cooled by the cooling water 13 flowing inside the heat transfer tubes. The refrigerant vapor evaporated in the evaporator 1 is absorbed and diluted to form a dilute solution. The dilute solution in the absorber 2 is sucked and pressurized by the circulation pump 8, preheated by the low temperature heat exchanger 6, and sent to the low temperature regenerator 5, and a portion is preheated by the high temperature heat exchanger and sent to the high temperature regenerator 4, respectively. Supplied. The cooling cycle was configured as explained above.

次に暖房運転について説明する。暖房時は高温再生器4
に配設されたボイラ11によシ加熱された溶液が発生す
る冷媒蒸気で間接的に吸収器2および凝縮器3内を流れ
る温水13を加熱する方式が一般的である。例えば、弁
14を開き、弁20゜21.22,23,24.25を
閉じると、高温再生器4で発生した冷媒蒸気は低温再生
器5内の溶液を加熱し、自身は凝縮液化して再び弁14
を経て高温再生器4に戻る。低温再生器5で前記高温再
生器4の冷媒蒸気で加熱されて発生した冷媒蒸気は、凝
縮器3の伝熱管内を流れる温水13を加熱して、自身は
凝縮液化して再び低温再生器5にバイパス流路(5♀示
せず、冷房時は閉じている)を経て戻される。以上の様
に暖房サイクルを構成していた。
Next, heating operation will be explained. High temperature regenerator 4 during heating
A common method is to indirectly heat the hot water 13 flowing in the absorber 2 and condenser 3 with refrigerant vapor generated from a solution heated by a boiler 11 installed in the absorber 2 and the condenser 3. For example, when the valve 14 is opened and the valves 20° 21.22, 23, 24.25 are closed, the refrigerant vapor generated in the high temperature regenerator 4 heats the solution in the low temperature regenerator 5, and the refrigerant vapor itself is condensed and liquefied. Valve 14 again
and then returns to the high temperature regenerator 4. The refrigerant vapor generated by being heated by the refrigerant vapor of the high-temperature regenerator 4 in the low-temperature regenerator 5 heats the hot water 13 flowing in the heat transfer tube of the condenser 3, and is condensed and liquefied, and then regenerated into the low-temperature regenerator 5. The air is returned through the bypass flow path (5♀ not shown, closed during cooling). The heating cycle was configured as described above.

以上のような直だき二重効用吸収式冷温水機において、
高温再生器4内の溶液は、約140〜170Cの温度レ
ベルであり、ボイラ11から排出される燃焼排気ガスの
温度は上記140〜170C以上の高温度のまま大気中
に捨てられていて、何ら利用されていないので効率が充
分でなかった。
In the above-mentioned direct-heating double-effect absorption type water chiller/heater,
The solution in the high-temperature regenerator 4 is at a temperature level of approximately 140 to 170C, and the combustion exhaust gas discharged from the boiler 11 is discarded into the atmosphere at a high temperature of 140 to 170C or higher. The efficiency was not sufficient because it was not used.

本発明の目的は、高温再生器4に設けたボイラ11の燃
焼排ガス流路に熱交換器を配設して低温再生器5の高温
の液冷媒を使って低温再生器5に熱回収して冷房、暖房
の熱利用効率の向上を図るとともに、前記熱交換器配役
による不具合点すなわち界面活性剤の滞留、凝縮器への
冷媒蒸気流出。
An object of the present invention is to provide a heat exchanger in the flue gas passage of the boiler 11 provided in the high-temperature regenerator 4 and recover heat to the low-temperature regenerator 5 using the high-temperature liquid refrigerant of the low-temperature regenerator 5. In addition to improving the heat utilization efficiency of cooling and heating, problems caused by the heat exchanger arrangement, such as retention of surfactant and leakage of refrigerant vapor to the condenser, are addressed.

凝縮器流出液冷媒の高温度化に伴う熱損失の増大等の防
止を図った吸収式冷温水機を提供することにある。
An object of the present invention is to provide an absorption type water chiller/heater that prevents an increase in heat loss due to an increase in the temperature of a liquid refrigerant flowing out of a condenser.

高温再生器4に設けたボイラ11の燃焼排ガス流路に熱
交換器を配設して低温再生器5の凝縮液冷媒を一部また
は全部を供給し、発生した冷媒蒸気は低温再生器5の加
熱に利用するとともに、余った液冷媒を冷房時は凝縮器
3に、暖房時は高温再生器4にそれぞれ供給して (1)熱交換器内の液冷媒液面を適正に保持して、冷媒
蒸気に同伴する液冷媒の流出量を少なくして、冷房時該
液冷媒が高温再生器4の溶液の濃縮を阻害しないように
した。
A heat exchanger is disposed in the flue gas flow path of the boiler 11 provided in the high-temperature regenerator 4 to supply part or all of the condensed liquid refrigerant of the low-temperature regenerator 5, and the generated refrigerant vapor is transferred to the low-temperature regenerator 5. In addition to using the liquid refrigerant for heating, the remaining liquid refrigerant is supplied to the condenser 3 during cooling and to the high-temperature regenerator 4 during heating to (1) maintain an appropriate level of liquid refrigerant in the heat exchanger; The outflow amount of the liquid refrigerant accompanying the refrigerant vapor is reduced so that the liquid refrigerant does not inhibit the concentration of the solution in the high temperature regenerator 4 during cooling.

(11)熱交換器に流入する液冷媒中に含まれる微量の
溶液分が蒸発しないで残ることによる熱交換器内冷媒の
溶液化(沸点上昇をやたらす)を蒸発量より多い液冷媒
を供給して再び液冷媒のままで排出させることによシ防
止した。
(11) Supplying liquid refrigerant in an amount greater than the amount of evaporation to prevent the refrigerant in the heat exchanger from becoming a solution (causing a rise in boiling point) due to the trace amount of solution contained in the liquid refrigerant flowing into the heat exchanger remaining without evaporation. This was prevented by draining the refrigerant again as a liquid refrigerant.

0il)熱交換器に流入する液冷媒中に含まれる微量の
界面活性剤(たとえばnオクチルアルコール)が蒸発し
ないで残ることによる熱交換器内冷媒の界面活性剤化を
(11)と同様にして防止した。
0il) The refrigerant in the heat exchanger is converted into a surfactant by a small amount of surfactant (for example, n-octyl alcohol) contained in the liquid refrigerant flowing into the heat exchanger remaining without evaporation, in the same manner as in (11). Prevented.

ことを特徴とする。また、上述のように熱交換器と凝縮
器3とを連絡したところ、熱交換器で発生した冷媒蒸気
が液冷媒とともに同伴して凝縮器3内に流入して熱損失
(冷媒蒸気は液冷媒の場合に比べ約500 kcat/
Kfだけエンタルピが大きく熱損失も大きい)となるこ
とが判明した。そこで冷媒蒸気が流出しないように熱交
換器内の冷媒液面に応じて開閉する制御弁(例えばフロ
ート弁)を前記熱交換器と凝縮器3とを連絡する冷媒導
管に配設したことを特徴とする。さらに、熱交換器内の
液冷媒は、熱交換器と低温再生器5の加熱部とを連絡す
るダクトおよび低温再生器5の加熱管5aの流動圧力損
失分だけ、熱交換器に供給される液冷媒の温度より高温
度となっていることが分った。この熱交換器の液冷媒を
そのまま凝縮器3に供給すれば、熱損失が大きい。そこ
で、吸収器2から高温再生器4および低温再生器5に送
られる溶液と、前記熱交換器から凝縮器へ送られる液冷
媒とを熱交換させたことを特徴とする。
It is characterized by Furthermore, when the heat exchanger and the condenser 3 are connected as described above, the refrigerant vapor generated in the heat exchanger flows into the condenser 3 together with the liquid refrigerant, resulting in heat loss (refrigerant vapor is mixed with the liquid refrigerant). Approximately 500 kcat/compared to the case of
It was found that the enthalpy is large and the heat loss is also large by Kf. Therefore, in order to prevent refrigerant vapor from flowing out, a control valve (for example, a float valve) that opens and closes depending on the refrigerant liquid level in the heat exchanger is disposed in the refrigerant conduit connecting the heat exchanger and the condenser 3. shall be. Furthermore, the liquid refrigerant in the heat exchanger is supplied to the heat exchanger by the flow pressure loss of the duct connecting the heat exchanger and the heating section of the low-temperature regenerator 5 and the heating pipe 5a of the low-temperature regenerator 5. It was found that the temperature was higher than that of the liquid refrigerant. If the liquid refrigerant in the heat exchanger is supplied as it is to the condenser 3, heat loss will be large. Therefore, the present invention is characterized in that heat is exchanged between the solution sent from the absorber 2 to the high temperature regenerator 4 and the low temperature regenerator 5, and the liquid refrigerant sent from the heat exchanger to the condenser.

以下、本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図ないし第6図において、同一または相当するもの
には第1図に示す符号と同一符号を付し、それらの説明
は省略する。第2図および第3図において30はボイラ
11によ紋ニー生する燃焼排ガスGの排気路37に配設
された熱交換器で、その熱交換器30は下部ヘッダ31
と気水分離器を兼ねた上部へラダ32と、そのヘッダ3
1.32に連結する多数の伝熱管とそれらの伝熱管に植
えられた多数のフィンとから構成されている。下部へラ
ダ31と低温再生器5の液冷媒出口ヘッダ16とが冷媒
導管33で連結されている。上部ヘッダ32はその下部
で弁34を介して高温再生器4の気相部と連結され、同
じく弁20を介して液冷媒導管35により凝縮器3と連
結されている。また、高温再生器4と低温再生器50入
口蒸気ヘッダ18とを連絡する蒸気管17と、上部へラ
ダ32の頂部とが蒸気ダクト36により連絡されている
In FIGS. 2 to 6, the same or equivalent parts are given the same reference numerals as those shown in FIG. 1, and their explanation will be omitted. 2 and 3, 30 is a heat exchanger disposed in the exhaust path 37 of the combustion exhaust gas G generated by the boiler 11, and the heat exchanger 30 is connected to the lower header 31.
and the upper ladder 32 which also serves as a steam/water separator, and its header 3.
It consists of a large number of heat exchanger tubes connected to 1.32 and a large number of fins planted on these heat exchanger tubes. The lower ladder 31 and the liquid refrigerant outlet header 16 of the low temperature regenerator 5 are connected by a refrigerant conduit 33 . The upper header 32 is connected at its lower part via a valve 34 to the gas phase of the high-temperature regenerator 4 and via a valve 20 to the condenser 3 via a liquid refrigerant line 35 . Further, a steam pipe 17 that connects the high temperature regenerator 4 and the low temperature regenerator 50 inlet steam header 18 is connected to the top of the ladder 32 via a steam duct 36 .

次に上記のような構成からなる本実施例の作用および効
果について説明する。
Next, the operation and effects of this embodiment having the above-described configuration will be explained.

冷房運転時には仕切弁34を閉状態に、仕切弁3g、2
1,22,23,24.25を開状態にセットする。低
温再生器5の加熱管5a内で凝縮液化した液冷媒は出口
ヘッダ16、導管33を経て熱交換器30に導、入され
、ボイラ11の燃焼排□・、。
During cooling operation, the gate valve 34 is closed, and the gate valves 3g and 2 are closed.
1, 22, 23, 24. Set 25 to open state. The liquid refrigerant condensed and liquefied in the heating pipe 5a of the low-temperature regenerator 5 is introduced into the heat exchanger 30 via the outlet header 16 and the conduit 33, and is then discharged from the combustion exhaust of the boiler 11.

気ガスと熱交換して86C〜96trの冷媒蒸気を発生
する。この冷媒蒸気はエリミネータ(図示せず)を経て
蒸気ダクト36および蒸気管17に導かれ、高温再生器
4で発生した冷媒蒸気とともに低温再生器5の入口ヘッ
ダ18を経て加熱管5aに導かれて凝縮液化し、その際
の潜熱の放熱により、低温再生器5内の溶液を加熱して
、冷媒蒸気発生と溶液濃縮の作用を行う。液化した冷媒
は再び出口ヘッダ16、導管33を経て熱交換器30に
導入される。熱交換器30の液冷媒は高温再生器4で発
生した冷媒蒸気量と等しい量だけ凝縮器3に導管35と
仕切弁38とを経て排出される。
It exchanges heat with gas and generates refrigerant vapor of 86C to 96tr. This refrigerant vapor is led to the steam duct 36 and the steam pipe 17 through an eliminator (not shown), and is led together with the refrigerant vapor generated in the high temperature regenerator 4 to the heating pipe 5a through the inlet header 18 of the low temperature regenerator 5. The solution is condensed and liquefied, and the solution in the low-temperature regenerator 5 is heated by the radiation of latent heat at that time, thereby generating refrigerant vapor and concentrating the solution. The liquefied refrigerant is again introduced into the heat exchanger 30 via the outlet header 16 and the conduit 33. The liquid refrigerant in the heat exchanger 30 is discharged to the condenser 3 via the conduit 35 and the gate valve 38 in an amount equal to the amount of refrigerant vapor generated in the high temperature regenerator 4.

したがって熱交換器30が液冷媒で溢れて、蒸気ダクト
36および蒸気管17を経て液冷媒が高温再生器4に溢
流して、溶液の濃縮作用を阻害するという不具合を防止
できた。高温再生器4で発生した冷媒蒸気中には、吸収
器2の熱伝達を促進させる作用がある界面活性剤(例え
ばnオクチルアルコール)の蒸気および微細な溶液ミス
トが含まれている。該界面活性剤は一般に冷媒(水)よ
り沸点の高い高級アルコール系を用いている。熱交換器
30では高温再生器4よりも低温で冷媒蒸気が発生する
ため、前記界面活性剤が滞留するが、(9) 液冷媒とともに凝縮器3に導管35により排出される。
Therefore, it was possible to prevent the heat exchanger 30 from overflowing with liquid refrigerant and the liquid refrigerant flowing into the high-temperature regenerator 4 through the steam duct 36 and the steam pipe 17, thereby inhibiting the concentration action of the solution. The refrigerant vapor generated in the high-temperature regenerator 4 contains vapor of a surfactant (for example, n-octyl alcohol) that has the effect of promoting heat transfer in the absorber 2 and fine solution mist. The surfactant is generally a higher alcohol type having a higher boiling point than the refrigerant (water). In the heat exchanger 30, since refrigerant vapor is generated at a lower temperature than in the high-temperature regenerator 4, the surfactant remains, but (9) is discharged together with the liquid refrigerant to the condenser 3 through the conduit 35.

したがって、熱交換器30内の界面活性剤濃度および溶
液の濃度は極めて低く、これら不純分による沸点上昇は
ほとんど起らない。したがって、熱交換器30の圧力レ
ベルは高温再生器4とほぼ同一であるのに対して、被加
熱媒体の温度レベルは、60〜70C低く、ボイラ11
の排気ガスと十分熱交換可能な温度レベルにある。以上
のようにしてボイラ11の排ガスの熱は、低温再生器5
の溶液に回収され、溶液の濃縮と冷媒発生e使われるの
で、吸収式冷温水機の冷凍能力の増大に寄与する。
Therefore, the concentration of the surfactant and the concentration of the solution in the heat exchanger 30 are extremely low, and these impurities hardly cause an increase in the boiling point. Therefore, the pressure level of the heat exchanger 30 is almost the same as that of the high temperature regenerator 4, whereas the temperature level of the heated medium is 60-70C lower and the boiler 11
The temperature is at a level that allows sufficient heat exchange with the exhaust gas. As described above, the heat of the exhaust gas from the boiler 11 is transferred to the low temperature regenerator 5.
It is recovered into a solution and used for concentrating the solution and generating refrigerant, contributing to an increase in the refrigerating capacity of the absorption type water chiller/heater.

通常、上記低温再生器5および高温再生器4の溶液温度
はそれぞれ80〜90C,および130〜160Cであ
り、ボイラ11の排ガス温度は約200t:’である。
Usually, the solution temperatures in the low-temperature regenerator 5 and the high-temperature regenerator 4 are 80 to 90C and 130 to 160C, respectively, and the exhaust gas temperature in the boiler 11 is about 200t:'.

熱交換器30の冷媒の沸点が低温再生器5の溶液温度よ
シ高い86〜96Cであり、熱交換器30で熱交換後の
排ガス温度レベルを約1000にすることは容易である
。これから、おおよそボイラ11の熱入力の約5%が熱
回収で(10) き、その結果回収熱量の70〜80チの冷凍能力の増大
が図られる。すなわち、熱入力をベースとする成績係数
を約4%向上でき、省エネルギーが図れる効果が得られ
る。
The boiling point of the refrigerant in the heat exchanger 30 is 86-96C, which is higher than the solution temperature in the low-temperature regenerator 5, and it is easy to make the exhaust gas temperature level after heat exchange in the heat exchanger 30 about 1000. From this, approximately 5% of the heat input to the boiler 11 will be recovered (10), and as a result, the refrigerating capacity will be increased by 70 to 80 inches of recovered heat. In other words, the coefficient of performance based on heat input can be improved by about 4%, resulting in the effect of saving energy.

暖房運転時には、仕切弁34を開状態に、仕切弁38,
21,22.23,24.25を閉状態にセットする。
During heating operation, the gate valve 34 is opened, the gate valves 38,
21, 22, 23, and 24.25 are set to the closed state.

低温再生器5の加熱管5a内で凝縮液化した液冷媒は出
口ヘッダ16、導管33を経て熱交換器30に導入され
、ボイラ11の燃焼排気ガスと熱交換して冷媒蒸気を発
生する。また、余った液冷媒は弁34を介して高温再生
器4の気相部に戻される。この冷媒蒸気はエリミネータ
(図示せず)を経て蒸気ダクト36および蒸気管17に
導かれ、高温再生器4で発生した冷媒蒸気とともに低温
再生器の入口ヘッダ18を経て加熱管5aに導かれて凝
縮液化し1.、その際の潜熱の放熱により、低温再生器
5内溶液を加熱して冷媒蒸気を発生させる。低温再生器
5で発生した冷媒蒸気は凝縮器3に導かれ、伝熱管内を
流れる温水13を加熱して凝縮液化し、再び低温再生器
5に(11) 戻される。以上のようにして、ボイラ11の排気ガスの
熱が温水に回収される。
The liquid refrigerant condensed and liquefied in the heating pipe 5a of the low-temperature regenerator 5 is introduced into the heat exchanger 30 via the outlet header 16 and the conduit 33, where it exchanges heat with the combustion exhaust gas of the boiler 11 to generate refrigerant vapor. Further, the remaining liquid refrigerant is returned to the gas phase portion of the high temperature regenerator 4 via the valve 34. This refrigerant vapor is guided through an eliminator (not shown) to the steam duct 36 and the steam pipe 17, and together with the refrigerant vapor generated in the high temperature regenerator 4, is led to the heating pipe 5a through the inlet header 18 of the low temperature regenerator, where it is condensed. Liquefied 1. The latent heat released at this time heats the solution in the low-temperature regenerator 5 and generates refrigerant vapor. The refrigerant vapor generated in the low-temperature regenerator 5 is led to the condenser 3, heats the hot water 13 flowing in the heat transfer tube, condenses and liquefies it, and returns to the low-temperature regenerator 5 (11) again. As described above, the heat of the exhaust gas from the boiler 11 is recovered into hot water.

熱回収の効果は冷房時と異なり、回収した熱量の全量が
その効果であり、およそ5チの省エネルギーが図れる。
The effect of heat recovery is different from that during cooling, and the effect is based on the entire amount of heat recovered, resulting in energy savings of approximately 5.5 cm.

次に、本発明の他の実施例を第4図によシ説明する。本
実施例と前述の実施例とは、 低温再生器5の出口水室16と熱交換器30とを仕切弁
39を介して接続し、また、熱交換器30と蒸気管17
とを仕切弁40を介して接続するとともに、従来のサイ
クルが持っている冷媒流路系即ち、仕切弁20を介して
凝縮器3と出口水室16とを接続する系と高温再生器4
の気相部と出口氷室16とを接続する系とが残されたま
まであるところが、異なる。以上のようにしたので、仕
切弁40,39.34を閉じることにより、排熱回収用
熱交換i、30を冷温水機の主サイクルから切離すこと
が容易になる。したがって既設の冷温水機への熱回収用
熱交換器30の設置も容易にできるという利点がある。
Next, another embodiment of the present invention will be explained with reference to FIG. This embodiment and the above-mentioned embodiments are such that the outlet water chamber 16 of the low-temperature regenerator 5 and the heat exchanger 30 are connected via a gate valve 39, and the heat exchanger 30 and the steam pipe 17 are connected to each other via a gate valve 39.
The conventional cycle has a refrigerant flow path system, that is, a system that connects the condenser 3 and the outlet water chamber 16 via the gate valve 20, and the high-temperature regenerator 4.
The difference is that the system connecting the gas phase and the outlet ice chamber 16 remains. As described above, by closing the gate valves 40, 39, 34, it becomes easy to disconnect the exhaust heat recovery heat exchanger i, 30 from the main cycle of the water cooler/heater. Therefore, there is an advantage that the heat recovery heat exchanger 30 can be easily installed in an existing water cooler/heater.

なお、不凝縮性ガスは、(12) 出口水室16に滞留するので、抽気管45が配設されて
いる。
Note that since the non-condensable gas (12) remains in the outlet water chamber 16, a bleed pipe 45 is provided.

つぎに、動作を説明する。冷房時は仕切弁20゜21.
22,23,24,25,38,39゜40を開状態に
、仕切弁14.34を閉状態にセットする。低温再生器
5の凝縮液冷媒は出口氷室16よシ、一部は仕切弁20
を経て凝縮器3へ、残りは仕切弁39を経て熱交換器3
0へ供給される。熱交換器30で発生した冷媒蒸気は仕
切弁40、ダクト36、蒸気管17、入口氷室18を経
て高温再生器4で発生した冷媒蒸気とともに低温再生器
5に供給され溶液を加熱する。また、余った液冷媒は仕
切弁38、導管35を経て凝縮器3に送られる。なお、
前記導管35の液冷媒の取出し口は、下部へラダ31に
取付けても熱交換器30の冷媒液面は適当にバランスし
た位置に維持される。適当にバランスした位置とは熱交
換器30の液ヘッドとダクト36、蒸気管17、伝熱管
5aの圧力降下が、液冷媒導管33の液ヘッドとその流
動圧力降下を考慮したバランス点である。
Next, the operation will be explained. When cooling, use the gate valve 20°21.
22, 23, 24, 25, 38, 39° 40 are set in the open state and the gate valves 14 and 34 are set in the closed state. The condensate refrigerant of the low-temperature regenerator 5 is supplied to the outlet ice chamber 16, and a portion is supplied to the gate valve 20.
to the condenser 3 via the gate valve 39, and the rest to the heat exchanger 3 via the gate valve 39.
0. The refrigerant vapor generated in the heat exchanger 30 passes through the gate valve 40, the duct 36, the steam pipe 17, and the inlet ice chamber 18, and is supplied to the low-temperature regenerator 5 together with the refrigerant vapor generated in the high-temperature regenerator 4 to heat the solution. Further, the remaining liquid refrigerant is sent to the condenser 3 via the gate valve 38 and the conduit 35. In addition,
Even if the liquid refrigerant outlet of the conduit 35 is attached to the ladder 31 at the bottom, the refrigerant liquid level of the heat exchanger 30 is maintained at an appropriately balanced position. An appropriately balanced position is a point where the liquid head of the heat exchanger 30 and the pressure drop of the duct 36, the steam pipe 17, and the heat transfer tube 5a are balanced in consideration of the liquid head of the liquid refrigerant conduit 33 and the flow pressure drop thereof.

(13) 暖房時には、仕切弁20,21,22,23゜24.2
5.38を閉状態に、仕切弁14,34゜39.40を
開状態にセットする。出口水室16の液冷媒の一部は仕
切弁14を経て高温再生器4に戻る。残りの液冷媒は導
管33、仕切弁39を経熱交換器30に導入され、ボイ
ラ11の排ガスと熱交換して冷媒蒸気を発生する。発生
した冷媒蒸気は、ダクト36、仕切弁40を経て、蒸気
管17、入口ダクト18を経て、高温再生器4で発生し
た冷媒蒸気とともに低温再生器5に供給され、低温再生
器5内の溶液を加熱する。また、余った液冷媒は仕切弁
34を経て高温再生器4に戻される。以上のようにして
ボイラ11の排気ガスの熱を低温再生器5の溶液に回収
される。
(13) During heating, gate valves 20, 21, 22, 23°24.2
5.38 to the closed state, and the gate valve 14, 34°39.40 to the open state. A portion of the liquid refrigerant in the outlet water chamber 16 returns to the high temperature regenerator 4 via the gate valve 14. The remaining liquid refrigerant is introduced into the transthermal exchanger 30 through a conduit 33 and a gate valve 39, and exchanges heat with the exhaust gas of the boiler 11 to generate refrigerant vapor. The generated refrigerant vapor is supplied to the low-temperature regenerator 5 together with the refrigerant vapor generated in the high-temperature regenerator 4 through the duct 36, the gate valve 40, the steam pipe 17, and the inlet duct 18, and the solution in the low-temperature regenerator 5 is heat up. Further, the remaining liquid refrigerant is returned to the high temperature regenerator 4 via the gate valve 34. As described above, the heat of the exhaust gas from the boiler 11 is recovered into the solution in the low temperature regenerator 5.

効果については、前述の通りである。The effects are as described above.

ただし、導管35を経由して、熱交換器30で発生した
冷媒蒸気の一部(1チ程度)が凝縮器3に排出される。
However, a portion (about 1 inch) of the refrigerant vapor generated in the heat exchanger 30 is discharged to the condenser 3 via the conduit 35.

それによる熱損失を防止する手段として、次の方法があ
る。以下、第5図を使ってこの発明を説明する。
The following methods can be used to prevent heat loss caused by this. This invention will be explained below using FIG. 5.

(14) 熱交換器30にフロート室42をせき43を介して接続
し、フロート弁41を介して導管35、仕切弁38を介
して凝縮器3と接続している。フロート弁41はフロー
ト室42の冷媒液面が低下すると閉じられ冷媒蒸気が導
管35に排出されないので、蒸気流出による熱損失がな
く、より熱回収による効果を高めることができる。また
、熱交換器30の液面が冷媒の沸とうにより波山ってい
るのに対して、フロート室42はせき43を溢れだ液冷
媒で満たされるので、フロート弁41が異常に振動した
りすることがなく、フロート弁41の耐久上好都合であ
る。
(14) A float chamber 42 is connected to the heat exchanger 30 via a weir 43, and is connected to the condenser 3 via a conduit 35 via a float valve 41 and a gate valve 38. The float valve 41 is closed when the refrigerant liquid level in the float chamber 42 decreases, and refrigerant vapor is not discharged into the conduit 35, so there is no heat loss due to vapor outflow, and the effect of heat recovery can be further enhanced. Furthermore, while the liquid level in the heat exchanger 30 is undulating due to boiling of the refrigerant, the float chamber 42 is filled with liquid refrigerant overflowing the weir 43, which causes the float valve 41 to vibrate abnormally. This is advantageous in terms of durability of the float valve 41.

ところで、前述の如く、熱交換器30内の液冷媒は、低
温再生器5の出口氷室16の液冷媒にくらべ、流路の圧
力降下および冷媒のヘッド分だけ温度レベルが約2〜3
C高い。従って凝縮器3に供給される液冷媒のエンタル
ピーが大きく、熱回収1 による熱効率の向上が十分でない。そこで、第6図のよ
うに構成して、さらに熱効率の向上を図った。
By the way, as mentioned above, the temperature level of the liquid refrigerant in the heat exchanger 30 is about 2 to 3 times higher than that of the liquid refrigerant in the outlet ice chamber 16 of the low temperature regenerator 5 due to the pressure drop in the flow path and the refrigerant head.
C high. Therefore, the enthalpy of the liquid refrigerant supplied to the condenser 3 is large, and the improvement in thermal efficiency by heat recovery 1 is not sufficient. Therefore, an attempt was made to further improve the thermal efficiency by configuring the device as shown in FIG.

(15) 第6図において、第2図に示した実施例と異なる点は、
熱交換器30と凝縮器3とを連絡する導管35が、吸収
器2から低温熱交換器6に循環ポンプ8により圧送され
る溶液と熱交換する熱交換器44を配設した点にある。
(15) In FIG. 6, the differences from the embodiment shown in FIG. 2 are as follows:
A conduit 35 connecting the heat exchanger 30 and the condenser 3 is provided with a heat exchanger 44 that exchanges heat with the solution pumped from the absorber 2 to the low-temperature heat exchanger 6 by the circulation pump 8.

該熱交換器44の作用は熱交換器30から排出される高
温の液冷媒の顕熱を溶液に熱回収して、もって凝縮器3
より冷却水13にすてられる熱エネルギーを少なくして
、冷房運転時の熱利用効率を高めるものである。
The action of the heat exchanger 44 is to recover the sensible heat of the high temperature liquid refrigerant discharged from the heat exchanger 30 into a solution, and thereby to transfer the sensible heat to the condenser 3.
The thermal energy wasted into the cooling water 13 is further reduced, thereby increasing the heat utilization efficiency during cooling operation.

なお、熱交換器30より導管35へ排出される液冷媒に
冷媒蒸気が混入する場合も、溶液に熱回収できる。
Note that even if refrigerant vapor is mixed into the liquid refrigerant discharged from the heat exchanger 30 to the conduit 35, heat can be recovered to the solution.

以上説明したように、第1の発明に於いて、ボイラの燃
焼ガスの排気路に熱交換器を配設して低温再生器の高温
の液冷媒を供給して、低温再生器の溶液にサーモサイフ
オン(冷媒の沸とうと凝縮により、、i移動させる)の
原理で熱回収できるように構成するとともに、余った液
冷媒を冷房時は凝縮器に、暖房時は高温再生器に戻すよ
うに構成したので、 (16) (1)前記熱交換器内の液冷媒が、溶液化、界面活性剤
化しないので、冷媒の沸点上昇が起らず、熱回収温度を
ほぼ一定に維持できる。
As explained above, in the first invention, a heat exchanger is disposed in the combustion gas exhaust path of the boiler to supply a high temperature liquid refrigerant to the low temperature regenerator, so that the solution in the low temperature regenerator is heated to a high temperature. It is configured to recover heat based on the principle of siphon (i.e., transferred by boiling and condensation of the refrigerant), and is configured to return excess liquid refrigerant to the condenser during cooling and to the high-temperature regenerator during heating. (16) (1) Since the liquid refrigerant in the heat exchanger does not become a solution or a surfactant, the boiling point of the refrigerant does not increase, and the heat recovery temperature can be maintained almost constant.

(2)冷、暖房時にサイクルに熱回収できるので、熱交
換器の利用効率が高く、投入資金当りの省エネルギー効
果が大きい。
(2) Since heat can be recovered in the cycle during cooling and heating, the utilization efficiency of the heat exchanger is high and the energy saving effect per invested capital is large.

また、第2の発明を併用することにより、(3)冷房時
、熱交換器30で発生した冷媒蒸気の凝縮器への吹き抜
けが防止できるので、その分熱利用効率が向上する。
Further, by using the second invention in combination, (3) during cooling, it is possible to prevent the refrigerant vapor generated in the heat exchanger 30 from blowing through to the condenser, so that the heat utilization efficiency is improved accordingly.

さらに、第3の発明を併用することによシ、(4)冷房
時、熱交換器30で加熱された高温の液冷媒の顕熱を溶
液に熱回収してから凝縮器に送るように構成したので、
前記液冷媒の顕熱分だけ熱利用効率が向上する。
Furthermore, by using the third invention in combination, (4) during cooling, the sensible heat of the high temperature liquid refrigerant heated by the heat exchanger 30 is recovered into a solution and then sent to the condenser. So,
Heat utilization efficiency is improved by the sensible heat of the liquid refrigerant.

という効果がある。There is an effect.

なお、低温再生器5の液冷媒出口へラダ16から熱交換
器30へ導入される液冷媒と、熱交換器30から凝縮器
3へ排出される液冷媒とを熱交換させることも考えられ
る。これは、出口氷室16(17) から熱交換器30へ導入される液冷媒が前記熱交換器3
0から凝縮器3へ排出される液冷媒と比べて、温度が低
いことによる。したがって、冷媒蒸気が凝縮器3へ排出
されて効率が低下することを゛ 軽減できる効果がある
It is also conceivable that the liquid refrigerant introduced from the ladder 16 to the liquid refrigerant outlet of the low-temperature regenerator 5 into the heat exchanger 30 and the liquid refrigerant discharged from the heat exchanger 30 to the condenser 3 undergo heat exchange. This means that the liquid refrigerant introduced from the outlet ice chamber 16 (17) into the heat exchanger 30
This is because the temperature is lower than that of the liquid refrigerant discharged from 0 to the condenser 3. Therefore, there is an effect of reducing the reduction in efficiency due to refrigerant vapor being discharged to the condenser 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸収式冷温水機の構成図、第2図は本発
明の一実施例の構成図、第3図は第2図の部分詳細説明
図、第4図、第5図、第6図は本発明の他の実施例の構
成図である。 1・・・蒸発器、2・・・吸収器、3・・・凝縮器、4
・・・高温再生器、5・・・低温再生器、30・・・熱
交換器、42・・・フロートボックス、41・・・フロ
ー11P、44・・・冷媒顕熱回収用熱交換器、45・
・・抽気配管。 代理人 弁理士 薄田利幸 I Ql ;tl(21 第2 目 才3閉 ζ 第4N21
Fig. 1 is a block diagram of a conventional absorption type water chiller/heater, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a partial detailed explanatory diagram of Fig. 2, Figs. 4 and 5, FIG. 6 is a block diagram of another embodiment of the present invention. 1... Evaporator, 2... Absorber, 3... Condenser, 4
... high temperature regenerator, 5 ... low temperature regenerator, 30 ... heat exchanger, 42 ... float box, 41 ... flow 11P, 44 ... heat exchanger for refrigerant sensible heat recovery, 45・
・Bleed air piping. Agent Patent Attorney Toshiyuki Usuda I Ql ;tl (21 2nd eye 3 closing

Claims (1)

【特許請求の範囲】 1、高温再生器に設けたボイラの燃焼ガスの排気路に熱
交換器を設け、該熱交換器に低温再生器の凝縮液冷媒を
供給し、該熱交換器で発生した冷媒蒸気を高温再生器で
発生した冷媒蒸気とともに低温再生器に供給するととも
に、該熱交換器の液冷媒を冷房運転時は凝縮器に、暖房
運転時は高温再生器に供給したことを特徴とする吸収式
冷温水機。 2 前記熱交換器と凝縮器とを連絡する液冷媒導管に、
前記熱交換器の液冷媒液面に応じて開閉する制御弁を設
けたことを特徴とする特許請求の範囲第1項記載の吸収
式冷温水機。 3、前記熱交換器から凝縮器へ供給される液冷媒と、吸
収器から低温再生器または高温再生器に供給される溶液
とを熱交換させたことを特徴とする特許請求の範囲第1
項または第2項記載の吸収式冷温水機。
[Claims] 1. A heat exchanger is provided in the exhaust path of the combustion gas of the boiler provided in the high-temperature regenerator, and the condensed liquid refrigerant of the low-temperature regenerator is supplied to the heat exchanger, and the refrigerant generated in the heat exchanger is The refrigerant vapor generated in the heat exchanger is supplied to the low-temperature regenerator along with the refrigerant vapor generated in the high-temperature regenerator, and the liquid refrigerant from the heat exchanger is supplied to the condenser during cooling operation and to the high-temperature regenerator during heating operation. Absorption type water chiller/heater. 2. A liquid refrigerant conduit connecting the heat exchanger and the condenser,
2. The absorption chiller/heater according to claim 1, further comprising a control valve that opens and closes depending on the liquid level of the liquid refrigerant in the heat exchanger. 3. Claim 1, characterized in that the liquid refrigerant supplied from the heat exchanger to the condenser and the solution supplied from the absorber to the low-temperature regenerator or the high-temperature regenerator are heat-exchanged.
The absorption type water chiller/heater according to item 1 or 2.
JP8474182A 1982-05-21 1982-05-21 Absorption type cold and hot water machine Granted JPS58203368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8474182A JPS58203368A (en) 1982-05-21 1982-05-21 Absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8474182A JPS58203368A (en) 1982-05-21 1982-05-21 Absorption type cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS58203368A true JPS58203368A (en) 1983-11-26
JPS6148064B2 JPS6148064B2 (en) 1986-10-22

Family

ID=13839115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8474182A Granted JPS58203368A (en) 1982-05-21 1982-05-21 Absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58203368A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148067U (en) * 1984-09-29 1986-03-31 國夫 宮嶋 pesticide spraying hose
JPS6148066U (en) * 1984-09-29 1986-03-31 國夫 宮嶋 pesticide spraying hose
JP5522651B2 (en) * 2009-06-02 2014-06-18 川重冷熱工業株式会社 Absorption chiller / heater using ultra low temperature waste heat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652217A (en) * 1979-10-03 1981-05-11 Toto Denki Kogyo Kk Management device for grouting
JPS571739A (en) * 1980-06-06 1982-01-06 Furukawa Electric Co Ltd:The Device for taking out product in injection molding machine for coating resin layer around outer periphery of sleeve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652217A (en) * 1979-10-03 1981-05-11 Toto Denki Kogyo Kk Management device for grouting
JPS571739A (en) * 1980-06-06 1982-01-06 Furukawa Electric Co Ltd:The Device for taking out product in injection molding machine for coating resin layer around outer periphery of sleeve

Also Published As

Publication number Publication date
JPS6148064B2 (en) 1986-10-22

Similar Documents

Publication Publication Date Title
CN107014015B (en) Recovery type heat evaporating condensation type handpiece Water Chilling Units
US3491545A (en) Absorption refrigeration system
KR101060776B1 (en) Absorption Chiller
JPS58203368A (en) Absorption type cold and hot water machine
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JP3865346B2 (en) Absorption chiller / heater
JP2865305B2 (en) Absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JPS62218771A (en) Air cooling type absorption cold and hot water unit
JP4073219B2 (en) Absorption chiller / heater
JPS6311570Y2 (en)
JPS6122225B2 (en)
JPS6342290Y2 (en)
JPH08159591A (en) Absorption type refrigerator
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JPH0658186B2 (en) Double-effect absorption chiller / heater
JPH01244257A (en) Double-effect absorption water cooler/heater
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JP2005300126A (en) Absorption type refrigerating machine
JPS6135897Y2 (en)
JPH0429340Y2 (en)
JPS58198659A (en) Multiple-effect absorption type cold and hot water machine
JPH0621743B2 (en) Air-cooled absorption chiller / heater
JPH0355744B2 (en)