JPS6342290Y2 - - Google Patents

Info

Publication number
JPS6342290Y2
JPS6342290Y2 JP12660183U JP12660183U JPS6342290Y2 JP S6342290 Y2 JPS6342290 Y2 JP S6342290Y2 JP 12660183 U JP12660183 U JP 12660183U JP 12660183 U JP12660183 U JP 12660183U JP S6342290 Y2 JPS6342290 Y2 JP S6342290Y2
Authority
JP
Japan
Prior art keywords
separator
concentrated solution
temperature regenerator
solution
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12660183U
Other languages
Japanese (ja)
Other versions
JPS6035173U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12660183U priority Critical patent/JPS6035173U/en
Publication of JPS6035173U publication Critical patent/JPS6035173U/en
Application granted granted Critical
Publication of JPS6342290Y2 publication Critical patent/JPS6342290Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 この考案は二重効用吸収式冷凍機に係り、特に
暖房時に冷房溶液循環回路に溶液が流入するのを
防止した二重効用吸収式冷凍機に関するものであ
る。
[Detailed description of the invention] [Field of application of the invention] This invention relates to a dual-effect absorption refrigerating machine, and particularly to a dual-effect absorption refrigerating machine that prevents solution from flowing into the cooling solution circulation circuit during heating. It is something.

〔考案の背景〕[Background of the idea]

従来のこの種の二重効用吸収式冷凍機は、例え
ば第1図に示すように、稀溶液をボイラ等の加熱
源で加熱する高温再生器1と、該高温再生器1で
加熱された溶液を取り込み冷媒蒸気及び中間濃溶
液に分離する分離器2と、該分離器2からの中間
濃溶液を中間濃溶液取出管11を介して取り込み
熱交換する高温熱交換器3と、該高温熱交換器3
で熱交換した中間濃溶液を取り込み、かつ該分離
器2で分離された冷媒蒸気を取り込み冷媒蒸気の
一部を凝縮すると共に、中間濃溶液から濃溶液を
得る低温再生器4と、該低温再生器4からの濃溶
液を熱交換する熱交換器5と、該熱交換器5から
の濃溶液を散布して冷媒を吸収する吸収器6と、
液体冷媒を散布して冷水を得る蒸発器7と、該低
温再生器4からの冷媒蒸気を取り込み冷却水で冷
却して液体冷媒を得て蒸発器7に供給する凝縮器
8と、該蒸発器7で得た稀溶液を低温熱交換器
5、高温熱交換器3を介して高温再生器1に供給
するために稀溶液を加圧する溶液循環ポンプ9
と、該分離器2及び該蒸発器7とを結ぶ暖房回路
管13に設けられ暖房時には分離器2と蒸発器7
との間を連通する冷暖房切換弁10とを含んで構
成されている。
For example, as shown in FIG. 1, a conventional dual-effect absorption refrigerator of this type includes a high-temperature regenerator 1 that heats a dilute solution with a heat source such as a boiler, and a solution heated by the high-temperature regenerator 1. a separator 2 that takes in and separates it into refrigerant vapor and an intermediate concentrated solution; a high-temperature heat exchanger 3 that takes in the intermediate concentrated solution from the separator 2 through an intermediate concentrated solution extraction pipe 11 and exchanges heat; Vessel 3
a low-temperature regenerator 4 that takes in the intermediate concentrated solution heat-exchanged with the separator 2, takes in the refrigerant vapor separated by the separator 2, condenses a part of the refrigerant vapor, and obtains a concentrated solution from the intermediate concentrated solution; A heat exchanger 5 that exchanges heat with the concentrated solution from the heat exchanger 5, and an absorber 6 that absorbs the refrigerant by dispersing the concentrated solution from the heat exchanger 5.
An evaporator 7 that sprays liquid refrigerant to obtain cold water; a condenser 8 that takes in refrigerant vapor from the low-temperature regenerator 4 and cools it with cooling water to obtain liquid refrigerant and supplies it to the evaporator 7; A solution circulation pump 9 that pressurizes the dilute solution in order to supply the dilute solution obtained in step 7 to the high-temperature regenerator 1 via the low-temperature heat exchanger 5 and the high-temperature heat exchanger 3.
It is installed in the heating circuit pipe 13 connecting the separator 2 and the evaporator 7, and the separator 2 and the evaporator 7 are connected during heating.
and a heating/cooling switching valve 10 that communicates with the air conditioner.

上記した如く構成された冷凍機について説明す
る。
A refrigerator configured as described above will be explained.

まず、冷房時の動作について説明する。 First, the operation during cooling will be explained.

冷房時において、高温再生器1で加熱された溶
液は、分離器2内で冷媒蒸気と中間濃溶液とに分
離される。分離後の中間濃溶液は高温熱交換器3
を介して低温再生器4に送られる。分離器2より
低温再生器4に流れる中間濃溶液は、分離器2の
内部圧力と低温再生器4の内部圧力との差、及び
分離器2の中間濃溶液出口位置と低温再生器4の
中間濃溶液入口12の位置との差によつて分離器
2より低温再生器4へと流れる。低温再生器4で
は中間濃溶液は、該分離器2からの冷媒蒸気によ
つてさらに濃溶液と冷媒蒸気とに分離される。ま
た、該分離器2からの冷媒蒸気は、その一部が凝
縮して気液混合体となり、前記低温再生器4で発
生した冷媒蒸気と共に凝縮器8に供給される。
During cooling, the solution heated in the high-temperature regenerator 1 is separated into refrigerant vapor and intermediate concentrated solution in the separator 2. The intermediate concentrated solution after separation is transferred to high temperature heat exchanger 3.
It is sent to the low temperature regenerator 4 via. The intermediate concentrated solution flowing from the separator 2 to the low temperature regenerator 4 is determined by the difference between the internal pressure of the separator 2 and the internal pressure of the low temperature regenerator 4, and between the intermediate concentrated solution outlet position of the separator 2 and the low temperature regenerator 4. Depending on the position of the concentrated solution inlet 12, it flows from the separator 2 to the low temperature regenerator 4. In the low temperature regenerator 4, the intermediate concentrated solution is further separated into a concentrated solution and a refrigerant vapor by the refrigerant vapor from the separator 2. Further, a part of the refrigerant vapor from the separator 2 is condensed to become a gas-liquid mixture, and is supplied to the condenser 8 together with the refrigerant vapor generated in the low-temperature regenerator 4.

低温再生器4で得た濃溶液は、低温熱交換器5
を介して吸収器6に供給される。該吸収器6は、
蒸発器7と連通されており、該吸収器6内に濃溶
液が伝熱管60に散布されている。蒸発器7で
は、凝縮器8からの液体冷媒が伝熱管70に散布
されており、上記濃溶液の散布によつて液体冷媒
が蒸発する。したがつて、伝熱管70に水を流す
ことによつて冷水を取り出すことができるのであ
る。
The concentrated solution obtained in the low temperature regenerator 4 is transferred to the low temperature heat exchanger 5.
It is supplied to the absorber 6 via. The absorber 6 is
It is in communication with an evaporator 7 , and a concentrated solution is sprayed onto heat transfer tubes 60 in the absorber 6 . In the evaporator 7, the liquid refrigerant from the condenser 8 is sprayed onto the heat transfer tubes 70, and the liquid refrigerant is evaporated by the spraying of the concentrated solution. Therefore, cold water can be taken out by flowing water through the heat transfer tubes 70.

次に、暖房時の動作について説明する。 Next, the operation during heating will be explained.

暖房時においては、冷暖房切換弁10を開放状
態とし高温再生器1からの蒸気と濃溶液を分離器
2を通して蒸発器7に導き、蒸発器7内の伝熱管
70を加熱し、伝熱管70に水を流すことによる
温水を得ている。このような従来技術にあつて
は、暖房時において、分離器2の内部圧力によつ
て加熱溶液が低温再生器4へ流入し、冷房溶液循
環回路を通じて加熱溶液が吸収器6の伝熱管60
に散布され、この伝熱管60を腐食するという弊
害があつた。かかる弊害を防止するため、従来よ
り次のような対策がとられてきた。
During heating, the heating/cooling switching valve 10 is opened, and the steam and concentrated solution from the high-temperature regenerator 1 are guided to the evaporator 7 through the separator 2, heating the heat exchanger tube 70 in the evaporator 7, and the heat exchanger tube 70 is heated. Hot water is obtained by running water. In such conventional technology, during heating, the heated solution flows into the low temperature regenerator 4 due to the internal pressure of the separator 2, and the heated solution flows through the cooling solution circulation circuit to the heat transfer tubes 60 of the absorber 6.
This caused the problem that the heat exchanger tubes 60 were corroded. In order to prevent such harmful effects, the following measures have conventionally been taken.

すなわち、第一に、暖房時における分離器2内
圧力を低くするために蒸発器7へ至る暖房回路管
13及び切換弁10の寸法を大きくするという対
策をとること。
That is, first, in order to lower the internal pressure of the separator 2 during heating, measures should be taken to increase the dimensions of the heating circuit pipe 13 leading to the evaporator 7 and the switching valve 10.

第二に、分離器2の中間濃溶液取出口と低温再
生器4の中間濃溶液取入口との位置差が大きくと
れるように分離器2位置を低い位置とするという
対策をとること。
Second, take measures to lower the position of the separator 2 so that there is a large positional difference between the intermediate concentrated solution outlet of the separator 2 and the intermediate concentrated solution intake of the low temperature regenerator 4.

しかしながら、上記対策をとると、次のような
欠点が生じる。すなわち、第一の対策の場合は、
暖房回路管13及び切換弁10のサイズアツプ
は、暖房運転機能から考えると過剰であり、その
ために製品価格が高価となつてしまう。第二の対
策の場合は、分離器2と低温再生器4の位置差を
大きくするので、冷房始動時の溶液循環時間の短
縮をすることができなくなる。
However, if the above measures are taken, the following drawbacks arise. In other words, in the case of the first measure,
The increase in size of the heating circuit pipe 13 and the switching valve 10 is excessive considering the heating operation function, and therefore the product price becomes expensive. In the case of the second measure, since the positional difference between the separator 2 and the low-temperature regenerator 4 is increased, it becomes impossible to shorten the solution circulation time at the time of starting cooling.

〔考案の目的〕[Purpose of invention]

この考案の目的は、上記欠点を解消し、暖房時
における冷房溶液循環回路への溶液の循環を防止
し、かつ冷房運転始動の溶液循環時間を短縮でき
る二重効用吸収式冷凍機を提供することにある。
The purpose of this invention is to provide a dual-effect absorption refrigerating machine that can eliminate the above-mentioned drawbacks, prevent solution circulation to the cooling solution circulation circuit during heating, and shorten the solution circulation time at the start of cooling operation. It is in.

〔考案の概要〕[Summary of the idea]

この考案は、上記目的を達成するため、二重効
用吸収式冷凍機において、気液分離器より低温再
生器へ至る中間濃溶液循環回路の分離器側取入口
を、分離器より蒸発器へ至る暖房回路より分岐さ
せたことを特徴とする。
In order to achieve the above objective, this invention was developed to connect the separator side intake of the intermediate concentrated solution circulation circuit from the gas-liquid separator to the low-temperature regenerator in a dual-effect absorption refrigerating machine, and from the separator to the evaporator. It is characterized by having a branch from the heating circuit.

〔考案の実施例〕[Example of idea]

以下、この考案の実施例を図面に基づいて説明
する。
Hereinafter, embodiments of this invention will be described based on the drawings.

第2図は、この考案に係る二重効用吸収式冷凍
機の実施例を示す系統図である。第2図におい
て、従来例の構成要素と同一の構成要素には同一
の符号を付して説明の省略する。
FIG. 2 is a system diagram showing an embodiment of the dual-effect absorption refrigerator according to this invention. In FIG. 2, the same components as those of the conventional example are given the same reference numerals, and the explanation thereof will be omitted.

第2図に示す実施例が従来例と異なるところ
は、気液分離器2から低温再生器4に至る中間濃
溶液取出管11の分離器2側の取入口12を、分
離器2から蒸発器に至る暖房回路管13より分岐
した点にあり、他の構成は何ら異ならない。
The difference between the embodiment shown in FIG. 2 and the conventional example is that the intake port 12 on the separator 2 side of the intermediate concentrated solution extraction pipe 11 leading from the gas-liquid separator 2 to the low-temperature regenerator 4 is connected to the evaporator from the separator 2. It is located at a point where it branches from the heating circuit pipe 13 leading to , and the other configurations are no different.

上記のように構成された実施例の作用を以下に
説明する。
The operation of the embodiment configured as described above will be explained below.

まず、冷房運転の場合を説明する。 First, the case of cooling operation will be explained.

高温再生器1で加熱された溶液は、分離器2で
冷媒蒸気と中間濃溶液とに分離される。分離後の
中間濃溶液は、分離器2の底部に接続された暖房
回路管13に流入する。
The solution heated in the high temperature regenerator 1 is separated into refrigerant vapor and intermediate concentrated solution in the separator 2. The intermediate concentrated solution after separation flows into the heating circuit pipe 13 connected to the bottom of the separator 2.

冷房時の場合は冷暖房切換弁10が閉塞状態に
あるため、暖房回路管13に流入した中間濃溶液
は、暖房回路管13より分岐された中間濃溶液取
出管11に入り、高温熱交換器3を経て、低温再
生器4に供給される。低温再生器4からの濃溶液
は、低温熱交換器5を介して吸収器6の伝熱管6
0に散布される。ところで、本実施によれば、分
離器2の底部と、低温再生器4の濃溶液取入口1
2との位置差を小さくすることができるので、分
離器2と低温再生器4との圧力差が小さいときで
も、溶液循環が容易となる。
During cooling, the air conditioning/heating switching valve 10 is closed, so the intermediate concentrated solution that has flowed into the heating circuit pipe 13 enters the intermediate concentrated solution extraction pipe 11 branched from the heating circuit pipe 13 and passes through the high temperature heat exchanger 3. It is then supplied to the low temperature regenerator 4. The concentrated solution from the low temperature regenerator 4 is passed through the low temperature heat exchanger 5 to the heat exchanger tubes 6 of the absorber 6.
Distributed to 0. By the way, according to this implementation, the bottom of the separator 2 and the concentrated solution intake port 1 of the low-temperature regenerator 4
Since the positional difference between separator 2 and low-temperature regenerator 4 can be made small, solution circulation becomes easy even when the pressure difference between separator 2 and low-temperature regenerator 4 is small.

一方、暖房運転時には、切換弁10が開放状態
にあるため、分離器2内へ流入した加熱溶液と蒸
気は、暖房回路管13及び切換弁10を通して蒸
発器7に高速度で流入し、蒸発器7内の伝熱管7
0を加熱する。このとき暖房回路管13より分岐
された中間濃溶液取出管11の入口部(分岐部)
12の圧力は、暖房回路管13内を溶液と蒸気が
高速度で蒸発器7へ流れるため、その速度水頭分
の圧力降下を受ける。したがつて、入口部12の
圧力はそのときの分離器2内の圧力より低くな
る。そのため、中間濃溶液は、中間濃溶液取出管
11を通して冷房回路に溶液が循環するのを防止
することができる。
On the other hand, during heating operation, the switching valve 10 is in an open state, so the heated solution and steam that have flowed into the separator 2 flow into the evaporator 7 at high speed through the heating circuit pipe 13 and the switching valve 10, and the evaporator Heat exchanger tube 7 in 7
Heat 0. At this time, the inlet part (branch part) of the intermediate concentrated solution extraction pipe 11 branched from the heating circuit pipe 13
Since the solution and steam flow into the evaporator 7 at a high velocity within the heating circuit pipe 13, the pressure at 12 is subject to a pressure drop corresponding to the water head of the velocity. Therefore, the pressure in the inlet section 12 is lower than the pressure in the separator 2 at that time. Therefore, the intermediate concentrated solution can be prevented from circulating through the intermediate concentrated solution extraction pipe 11 into the cooling circuit.

中間濃溶液取出管11の分岐部12では、上述
の如き圧力降下が得られるため、分離器2内の圧
力を所定の圧力以下に降下させるために、暖房回
路13及び切換弁10の寸法を過大にするという
対策は必要がなくなる。また、分離器2の位置の
上昇に対する制限が減少され、分離器2と低温再
生器4との位置差を小さくすることができる。
At the branch part 12 of the intermediate concentrated solution extraction pipe 11, the pressure drop as described above is obtained. Therefore, in order to reduce the pressure inside the separator 2 to a predetermined pressure or less, the dimensions of the heating circuit 13 and the switching valve 10 are oversized. There is no need to take measures to do so. Furthermore, restrictions on the rise in the position of the separator 2 are reduced, and the difference in position between the separator 2 and the low-temperature regenerator 4 can be reduced.

〔考案の効果〕 以上述べたようにこの考案によれば、低温再生
器から低温再生器に至る中間濃溶液循環回路の分
離器の取入口を、分離器より蒸発器に至る暖房回
路より分岐させたので、暖房運転時に冷房回路へ
高温溶液が循環することを防止することができ、
かつ、冷房始動時における溶液循環時間を短縮す
ることができるという効果がある。
[Effects of the invention] As described above, according to this invention, the separator intake of the intermediate concentrated solution circulation circuit from the low-temperature regenerator to the low-temperature regenerator is branched from the heating circuit from the separator to the evaporator. Therefore, it is possible to prevent high temperature solution from circulating to the cooling circuit during heating operation.
In addition, there is an effect that the solution circulation time at the time of starting cooling can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す系統図、第2図はこの考
案に係る二重効用吸収式冷凍機の実施例を示す系
統図である。 1……高温再生器、2……分離器、3……高温
熱交換器、4……低温再生器、5……低温熱交換
器、6……吸収器、7……蒸発器、8……凝縮
器、9……溶液循環ポンプ、10……冷暖房切換
弁、11……中間濃溶液取出管、12……取入
口、13……暖房回路管。
FIG. 1 is a system diagram showing a conventional example, and FIG. 2 is a system diagram showing an embodiment of the dual-effect absorption refrigerator according to this invention. 1... High temperature regenerator, 2... Separator, 3... High temperature heat exchanger, 4... Low temperature regenerator, 5... Low temperature heat exchanger, 6... Absorber, 7... Evaporator, 8... ... Condenser, 9 ... Solution circulation pump, 10 ... Air conditioning/heating switching valve, 11 ... Intermediate concentrated solution extraction pipe, 12 ... Intake port, 13 ... Heating circuit pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 稀溶液を加熱する高温再生器と、該高温再生器
で加熱された溶液を冷媒蒸気及び中間濃溶液に分
離する分離器と、該分離器からの中間濃溶液を中
間濃溶液管を介して高温熱交換器に導き熱交換さ
せてから取り込むと共に、前記冷媒蒸気を取り込
んで濃溶液を得る低温再生器と、該低温再生器か
らの濃溶液を濃溶液管を通して低温熱交換器に導
き、ここで熱交換をしてから取り込み冷媒を吸収
する吸収器と、前記冷媒蒸気を冷却して液体冷媒
とする凝縮器と、該凝縮器からの液体冷媒を蒸発
させる蒸発器と、該蒸発器で得た稀溶液を低温熱
交換器、高温熱交換器を介して高温再生器に送る
循環ポンプと、上記蒸発器と分離器とを連通する
と共に冷暖切換弁を有する暖房回路とを備えた二
重効用吸収式冷凍機において、該分離器側の中間
濃溶液管を、前記暖房回路より分岐させたことを
特徴とする二重効用吸収式冷凍機。
A high-temperature regenerator that heats a dilute solution, a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentrated solution, and an intermediate concentrated solution from the separator that is heated through an intermediate concentrated solution pipe. a low-temperature regenerator for introducing the refrigerant vapor into a high-temperature heat exchanger for heat exchange and then taking in the refrigerant vapor to obtain a concentrated solution; an absorber that absorbs the refrigerant taken in after heat exchange; a condenser that cools the refrigerant vapor into a liquid refrigerant; an evaporator that evaporates the liquid refrigerant from the condenser; A dual-effect absorption system comprising a circulation pump that sends the dilute solution to a high-temperature regenerator via a low-temperature heat exchanger and a high-temperature heat exchanger, and a heating circuit communicating the evaporator and separator and having a cooling/heating switching valve. A double-effect absorption refrigerator, characterized in that the intermediate concentrated solution pipe on the separator side is branched from the heating circuit.
JP12660183U 1983-08-16 1983-08-16 Dual effect absorption chiller Granted JPS6035173U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12660183U JPS6035173U (en) 1983-08-16 1983-08-16 Dual effect absorption chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12660183U JPS6035173U (en) 1983-08-16 1983-08-16 Dual effect absorption chiller

Publications (2)

Publication Number Publication Date
JPS6035173U JPS6035173U (en) 1985-03-11
JPS6342290Y2 true JPS6342290Y2 (en) 1988-11-07

Family

ID=30287821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12660183U Granted JPS6035173U (en) 1983-08-16 1983-08-16 Dual effect absorption chiller

Country Status (1)

Country Link
JP (1) JPS6035173U (en)

Also Published As

Publication number Publication date
JPS6035173U (en) 1985-03-11

Similar Documents

Publication Publication Date Title
JP3287131B2 (en) Absorption chiller / heater
US4791790A (en) Air-cooled absorption-type water cooling and heating apparatus
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JPS6342290Y2 (en)
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JPS5812507B2 (en) Hybrid type absorption heat pump
JPH0354378Y2 (en)
JPS58203368A (en) Absorption type cold and hot water machine
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP2787182B2 (en) Single / double absorption chiller / heater
JPS60162166A (en) Multiple effect absorption type refrigerator
JPH0658186B2 (en) Double-effect absorption chiller / heater
JPH0429340Y2 (en)
JPS5829424Y2 (en) absorption cold water machine
KR100213794B1 (en) Ammonia absorption type cooler
JPS602540Y2 (en) absorption cold water machine
JPS5816628Y2 (en) Water-lithium salt absorption air conditioner
JPS6135897Y2 (en)
JP2545858Y2 (en) Absorption chiller / heater
JPH0198863A (en) Absorption refrigerator
JPH0429339Y2 (en)
JPS6135898Y2 (en)
JPS5829818Y2 (en) absorption refrigerator
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JPH01244257A (en) Double-effect absorption water cooler/heater