JPS6135898Y2 - - Google Patents

Info

Publication number
JPS6135898Y2
JPS6135898Y2 JP1981112567U JP11256781U JPS6135898Y2 JP S6135898 Y2 JPS6135898 Y2 JP S6135898Y2 JP 1981112567 U JP1981112567 U JP 1981112567U JP 11256781 U JP11256781 U JP 11256781U JP S6135898 Y2 JPS6135898 Y2 JP S6135898Y2
Authority
JP
Japan
Prior art keywords
liquid
temperature
regenerator
low
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981112567U
Other languages
Japanese (ja)
Other versions
JPS5816869U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11256781U priority Critical patent/JPS5816869U/en
Publication of JPS5816869U publication Critical patent/JPS5816869U/en
Application granted granted Critical
Publication of JPS6135898Y2 publication Critical patent/JPS6135898Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、直焚二重効用吸収冷凍機に関するも
ので、高温熱交換器から分流させた稀液の一部を
凝縮器の気相部と連通している補助再生器におい
て高温再生器の燃焼排ガスの熱により再生し、再
生された吸収液を高温再生器および低温再生器へ
導かずに低温熱交換器の手前で低温再生器からの
濃液と合流させる構成を採ることにより、燃焼排
ガスの熱を回収して再生器での吸収液の再生効率
の向上を図ることを目的とする。
[Detailed description of the invention] This invention relates to a direct-fired dual-effect absorption refrigerator, in which a part of the diluted liquid diverted from the high-temperature heat exchanger is communicated with the gas phase of the condenser for auxiliary regeneration. The absorbent liquid is regenerated in the heat exchanger using the heat of the combustion exhaust gas from the high-temperature regenerator, and the regenerated absorption liquid is combined with the concentrated liquid from the low-temperature regenerator before the low-temperature heat exchanger without being led to the high-temperature regenerator or the low-temperature regenerator. The purpose is to recover the heat of the combustion exhaust gas and improve the regeneration efficiency of the absorption liquid in the regenerator.

以下、本考案を図面に示す実施例に基づいて説
明する。1は熱源流体により加熱され稀釈から冷
媒を加熱分離して中間液を再生する高温再生器、
2は、前記高温再生器1から送出された冷媒蒸気
を熱源として再熱し中間液の冷媒を更に分離して
濃液を再生する低温再生器、3は、冷却水によつ
て前記両再生器1,2から流入する冷媒を凝縮し
且つ冷却する凝縮器、4は前記凝縮器3からの液
冷媒を散布し気化させる際の潜熱を利用して冷房
用の冷水を得るようにした蒸発器、5は、前記低
温再生器2で再生された濃液を散布して器内の冷
媒蒸気を吸収して前記蒸発器4の内部を低圧に維
持し連続した冷水の供給を可能とする吸収器、6
は前記吸収器5から高温再生器1に戻る稀液と高
温再生器1から低温再生器2に流入する中間液と
の熱の受授をする高温熱交換器、7は、吸収器5
から高温再生器1に戻る稀液と低温再生器2から
吸収器5へ流入する濃液との熱の受授をする低温
熱交換器で、これらは冷媒蒸気管8、冷媒液管9
及び冷媒ポンプ10を有する冷媒液管11で構成
する冷媒用管路並びに吸収液ポンプ12を有する
稀液管13,14,15、中間液管16,17及
び濃液管18,19により気密に接続されて冷凍
サイイクルを構成している。そして、吸収液は、
実線矢視で示すように、高温再生器1、中間液管
16、高温熱交換器6、中間液管17、低温再生
器2、濃液管18、低温熱交換器7、濃液管1
9、吸収器5、稀液ポンプ12、稀液管13、低
温熱交換器7、稀液管14、高温熱交換器6、稀
液管15を逐次流れて高温再生器1に戻る吸収液
循環路20を構成している。21は一端を稀液管
15に接続する一方で他端を濃液管18に接続し
て吸収液循環路20と並列に形成した別の吸収液
管路であり、この管路の途中には下部に吸収液の
出入口を有した補助再生器22が配備されてい
る。尚、吸収液管路21はその一端を稀液管13
もしくは14に接続する一方他端を中間液管16
もしくは濃液管18に接続して形成することも可
能であるが、このように形成された吸収液管路2
1に補助再生器22に配備した場合には低温再生
器2での吸収液の再生効率を向上させにくい欠点
や補助再生器22に流入する稀液の温度を高めに
くい欠点などがあり、好ましくない。前記補助再
生器22の吸収液流通部には高温再生器1から出
る燃焼排ガスの通路23,23…を配設し、且つ
補助再生器22の気相部24は蒸気冷媒管25に
より前記凝縮器3に接続されている。又26は燃
焼ガス排気筒、27は煙道で、夫々、前記通路2
3,23…の入口、出口に連通している。
Hereinafter, the present invention will be explained based on embodiments shown in the drawings. 1 is a high-temperature regenerator that is heated by a heat source fluid and heats and separates the refrigerant from the diluent to regenerate the intermediate liquid;
2 is a low-temperature regenerator that reheats the refrigerant vapor sent out from the high-temperature regenerator 1 as a heat source and further separates the intermediate liquid refrigerant to regenerate a concentrated liquid; 3 is a low-temperature regenerator that uses cooling water to regenerate the refrigerant 1; , 2 is a condenser that condenses and cools the refrigerant flowing in; 4 is an evaporator that obtains cold water for air conditioning by utilizing latent heat when dispersing and vaporizing the liquid refrigerant from the condenser 3; 5; an absorber 6 that sprays the concentrated liquid regenerated by the low-temperature regenerator 2 and absorbs refrigerant vapor in the evaporator 4 to maintain a low pressure inside the evaporator 4 and to continuously supply cold water;
7 is a high-temperature heat exchanger that receives heat between the dilute liquid returning from the absorber 5 to the high-temperature regenerator 1 and the intermediate liquid flowing from the high-temperature regenerator 1 to the low-temperature regenerator 2; 7 is the absorber 5;
This is a low-temperature heat exchanger that exchanges heat between the dilute liquid that returns to the high-temperature regenerator 1 and the concentrated liquid that flows from the low-temperature regenerator 2 to the absorber 5.
and a refrigerant pipe line consisting of a refrigerant liquid pipe 11 having a refrigerant pump 10, dilute liquid pipes 13, 14, 15 having an absorption liquid pump 12, intermediate liquid pipes 16, 17, and concentrated liquid pipes 18, 19, which are airtightly connected. The refrigeration cycle is made up of And the absorption liquid is
As shown by solid line arrows, high temperature regenerator 1, intermediate liquid pipe 16, high temperature heat exchanger 6, intermediate liquid pipe 17, low temperature regenerator 2, concentrated liquid pipe 18, low temperature heat exchanger 7, concentrated liquid pipe 1
9. Absorption liquid circulation that sequentially flows through the absorber 5, diluted liquid pump 12, diluted liquid pipe 13, low temperature heat exchanger 7, diluted liquid pipe 14, high temperature heat exchanger 6, diluted liquid pipe 15 and returns to the high temperature regenerator 1 road 20. Reference numeral 21 designates another absorption liquid pipe line which is formed in parallel with the absorption liquid circulation path 20 by connecting one end to the dilute liquid pipe 15 and the other end to the concentrated liquid pipe 18. An auxiliary regenerator 22 having an inlet and outlet for absorbing liquid is provided at the bottom. Note that the absorption liquid pipe 21 has one end connected to the dilute liquid pipe 13.
Or connect the other end to intermediate liquid pipe 16
Alternatively, it is also possible to form it by connecting it to the concentrated liquid pipe 18, but the absorption liquid pipe line 2 formed in this way
1, when it is installed in the auxiliary regenerator 22, it is not preferable because it has the disadvantage that it is difficult to improve the regeneration efficiency of the absorption liquid in the low-temperature regenerator 2, and it is difficult to increase the temperature of the dilute liquid flowing into the auxiliary regenerator 22. . The absorption liquid distribution section of the auxiliary regenerator 22 is provided with passages 23, 23, . Connected to 3. Further, 26 is a combustion gas exhaust stack, and 27 is a flue, each of which is connected to the passage 2.
It communicates with the entrance and exit of 3, 23...

一般に直焚二重効用吸収冷凍機においては、高
温再生器1内の吸収液温度は160℃程度に設定さ
れており、これに対し燃焼ガス排気筒26から大
気中に放出される燃焼排ガスの温度は250℃で、
当該排ガスは未だ充分な余熱を有している。そし
てこの余熱は、直焚二重効用吸収冷凍機の駆動燃
料を有する熱量のおよそ21%に達する。本考案
は、補助再生器22の気相部24を凝縮器3に接
続し、該凝縮器内の圧力とと略同圧となしている
ので、補助再生器22内の蒸気圧は高温再生器1
内の蒸気圧より低く維持される。したがつて、補
助再生器22内で加熱再生される稀液の沸謄温度
は高温再生器1内の稀液沸謄温度より低くなり、
燃焼ガス排気筒26から排出される熱を利用でき
る。例えば、高温再生器1内の稀液温度が160℃
の場合、補助再生器22内の稀液沸謄温度は75℃
乃至90℃であり、煙道27から大気中に放散され
る燃焼排ガスが95℃乃至145℃になるまで燃料の
有する熱量を利用して5.3%乃至7.4%の燃料低減
が可能となる。
Generally, in a direct-fired dual-effect absorption refrigerator, the temperature of the absorption liquid in the high-temperature regenerator 1 is set to about 160°C, whereas the temperature of the combustion exhaust gas released into the atmosphere from the combustion gas exhaust stack 26 is set to about 160°C. is 250℃,
The exhaust gas still has sufficient residual heat. This residual heat amounts to approximately 21% of the amount of heat contained in the driving fuel of the direct-fired dual-effect absorption refrigerator. In the present invention, the gas phase part 24 of the auxiliary regenerator 22 is connected to the condenser 3, and the pressure in the condenser is made to be approximately the same, so that the vapor pressure in the auxiliary regenerator 22 is lower than that of the high temperature regenerator. 1
The vapor pressure is maintained below the internal vapor pressure. Therefore, the boiling temperature of the dilute liquid heated and regenerated in the auxiliary regenerator 22 is lower than the boiling temperature of the dilute liquid in the high temperature regenerator 1,
The heat discharged from the combustion gas stack 26 can be utilized. For example, the temperature of the diluted liquid in the high temperature regenerator 1 is 160℃.
In this case, the boiling temperature of the dilute liquid in the auxiliary regenerator 22 is 75°C.
It is possible to reduce the fuel by 5.3% to 7.4% by utilizing the heat value of the fuel until the combustion exhaust gas released into the atmosphere from the flue 27 reaches 95°C to 145°C.

なお、燃焼排ガスと補助再生器22内の稀液と
の温度差は燃焼ガスと高温再生器1内の稀液との
温度差より小さいので、補助再生器22は、その
伝熱面積を充分に採るために、直焚高温再生器1
に比し、燃焼排ガス通路23,23…を多数密集
して配設した構造となり、該通路の流動抵抗が増
して、吸収液が前記通路23,23…間を充分に
撹拌され乍ら流れ得ず、熱交換率が低くなる欠点
を有する。本考案は、破線矢視に示すように、高
温熱交換器6より受熱して90℃を越える温度に昇
温した稀液を補助再生器22に供給し、該再生器
に流入した直後の稀液が激しく沸謄し、冷媒蒸気
が無数の気泡となつて稀液より分離する所謂自己
フラツシユ現象を起こさせ、補助再生器22内で
吸収液を激しく撹拌して該吸収液と燃焼排ガス通
路23,23…外壁との間の熱伝達率を向上せし
めるようにしたものであるから、排ガス通路2
3,23…を密集させ伝熱面積を充分に広くとり
つつその流動抵抗増大を補つて補助再生器22の
熱回収率を向上させる効果と再生効率を向上させ
る効果とを有する。
Note that the temperature difference between the combustion exhaust gas and the dilute liquid in the auxiliary regenerator 22 is smaller than the temperature difference between the combustion gas and the dilute liquid in the high-temperature regenerator 1, so the auxiliary regenerator 22 has a sufficient heat transfer area. Direct-fired high-temperature regenerator 1
Compared to the above, the structure has a large number of combustion exhaust gas passages 23, 23... arranged densely, and the flow resistance of the passages increases, so that the absorption liquid cannot flow between the passages 23, 23... while being sufficiently stirred. First, it has the disadvantage of a low heat exchange rate. In the present invention, as shown by the broken line arrow, the diluted liquid that has received heat from the high-temperature heat exchanger 6 and has been heated to a temperature exceeding 90°C is supplied to the auxiliary regenerator 22, and the diluted liquid immediately after flowing into the regenerator is supplied to the auxiliary regenerator 22. The liquid boils violently, causing a so-called self-flashing phenomenon in which the refrigerant vapor becomes countless bubbles and separates from the dilute liquid, and the absorption liquid is vigorously stirred in the auxiliary regenerator 22, and the absorption liquid and the combustion exhaust gas passage 23 are stirred violently. , 23...The exhaust gas passage 2 is designed to improve the heat transfer coefficient with the outer wall.
3, 23... are densely packed to make the heat transfer area sufficiently wide while compensating for the increase in flow resistance, which has the effect of improving the heat recovery rate of the auxiliary regenerator 22 and the effect of improving the regeneration efficiency.

かつまた、本考案は、高温熱交換器6出口側で
分流した稀液を補助再生器22で凝縮してこれを
高温再生器1および低温再生器2へ導かずに低温
熱交換器7の手前で低温再生器2からの濃液と合
流させる一方、稀液の一部を高温再生器1および
低温再生器2で順に濃液させるようにしたもので
あるから、高温再生器1および低温再生器2にお
いて吸収液を沸謄温度まで昇温するための熱源の
熱量を節約でき、その分、これら再生器1,2の
再生効率を向上させる効果を有する。以上のよう
に、本考案は、燃焼排ガスの熱を補助再生器で効
率良く回収する効果と補助再生器および高温再生
器ならびに低温再生器の再生効率を総合的に高め
得る効果とを奏するものである。実用上有益な直
焚二重効用吸収冷凍機を提供するものである。
Moreover, the present invention condenses the diluted liquid separated at the outlet side of the high temperature heat exchanger 6 in the auxiliary regenerator 22 and directs it to the high temperature regenerator 1 and the low temperature regenerator 2, but before the low temperature heat exchanger 7. While the concentrated liquid from the low-temperature regenerator 2 is combined with the concentrated liquid from the low-temperature regenerator 2, a part of the diluted liquid is concentrated in turn in the high-temperature regenerator 1 and the low-temperature regenerator 2. In step 2, the amount of heat of the heat source for raising the temperature of the absorption liquid to boiling temperature can be saved, and the regeneration efficiency of these regenerators 1 and 2 can be improved accordingly. As described above, the present invention has the effect of efficiently recovering the heat of combustion exhaust gas with the auxiliary regenerator and the effect of comprehensively increasing the regeneration efficiency of the auxiliary regenerator, high temperature regenerator, and low temperature regenerator. be. The present invention provides a practically useful direct-fired dual-effect absorption refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示す直焚二重効用吸
収冷凍機の回路説明図である。 1……高温再生器、2……低温再生器、3……
凝縮器、5……吸収器、6……高温熱交換器、7
……低温熱交換器、12……吸収液ポンプ、1
3,14,15……稀液管、16,17……中間
液管、18,19……濃液管、20……吸収液循
環路、21……吸収液管路、22……補助再生
器、23……通路。
The drawing is a circuit explanatory diagram of a direct-fired dual-effect absorption refrigerator showing an embodiment of the present invention. 1...High temperature regenerator, 2...Low temperature regenerator, 3...
Condenser, 5...Absorber, 6...High temperature heat exchanger, 7
...Low temperature heat exchanger, 12 ...Absorption liquid pump, 1
3, 14, 15... Dilute liquid pipe, 16, 17... Intermediate liquid pipe, 18, 19... Concentrated liquid pipe, 20... Absorption liquid circulation path, 21... Absorption liquid pipe line, 22... Auxiliary regeneration Vessel, 23...Aisle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高温再生器、低温再生器、凝縮器、蒸発器、吸
収器、高温熱交換器、低温熱交換器、吸収液ポン
プ等の機器を稀液管、中間液管、濃液管および冷
媒用管路で接続して冷凍サイクルを構成する二重
効用吸収冷凍機において、前記高温熱交換器出口
側の稀液管から分岐し高温再生器および低温再生
器をバイパスさせて低温熱交換器入口側の濃液管
に接続した吸収液管路の途中には下部に吸収液の
出入口を有した補助再生器を備え、この補助再生
器の吸収液流通部には高温再生器の燃焼排ガスの
流通する多数の通路を配設し、かつ、前記補助再
生器の気相部を凝縮器に接続したことを特徴とす
る直焚二重効用吸収冷凍機。
Equipment such as high-temperature regenerators, low-temperature regenerators, condensers, evaporators, absorbers, high-temperature heat exchangers, low-temperature heat exchangers, absorption liquid pumps, etc., as well as dilute liquid pipes, intermediate liquid pipes, concentrated liquid pipes, and refrigerant pipes. In a dual-effect absorption refrigerator, which is connected to a refrigeration cycle by connecting the diluted liquid pipe with An auxiliary regenerator is provided in the middle of the absorption liquid pipe line connected to the liquid pipe, and has an absorption liquid inlet/outlet at the bottom. 1. A direct-fired dual-effect absorption refrigerating machine, characterized in that a passage is provided and a gas phase portion of the auxiliary regenerator is connected to a condenser.
JP11256781U 1981-07-28 1981-07-28 Direct-fired dual-effect absorption refrigerator Granted JPS5816869U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11256781U JPS5816869U (en) 1981-07-28 1981-07-28 Direct-fired dual-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11256781U JPS5816869U (en) 1981-07-28 1981-07-28 Direct-fired dual-effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS5816869U JPS5816869U (en) 1983-02-02
JPS6135898Y2 true JPS6135898Y2 (en) 1986-10-18

Family

ID=29906892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11256781U Granted JPS5816869U (en) 1981-07-28 1981-07-28 Direct-fired dual-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS5816869U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428051A (en) * 1977-08-02 1979-03-02 Sanyo Electric Co Ltd Dual-effect suction type refregerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428051A (en) * 1977-08-02 1979-03-02 Sanyo Electric Co Ltd Dual-effect suction type refregerator

Also Published As

Publication number Publication date
JPS5816869U (en) 1983-02-02

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
CN1227492C (en) Main body of absorbing air-conditioner
CN209263411U (en) Absorption type heat exchange system
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JPS6135898Y2 (en)
CN210922310U (en) Ammonia still tower top ammonia steam waste heat recovery system and coking process system
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
KR20080094985A (en) Hot-water using absorption chiller
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JPS6135897Y2 (en)
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JPH0345090Y2 (en)
JP4562323B2 (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
CN2615596Y (en) Sorption air conditioner main body
JP4201403B2 (en) Absorption refrigerator
JP3948548B2 (en) Exhaust gas driven absorption chiller / heater
CN109028251A (en) A kind of multifunctional wind cooling Screw chiller ground heating system
JPS60599Y2 (en) low temperature generator
JPS6148064B2 (en)
JP2004011928A (en) Absorption refrigerator
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JP2003222425A (en) Absorption type refrigeration unit
JPS5829424Y2 (en) absorption cold water machine