JPH0429339Y2 - - Google Patents

Info

Publication number
JPH0429339Y2
JPH0429339Y2 JP16788886U JP16788886U JPH0429339Y2 JP H0429339 Y2 JPH0429339 Y2 JP H0429339Y2 JP 16788886 U JP16788886 U JP 16788886U JP 16788886 U JP16788886 U JP 16788886U JP H0429339 Y2 JPH0429339 Y2 JP H0429339Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
low
refrigerant vapor
temperature regenerator
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16788886U
Other languages
Japanese (ja)
Other versions
JPS6372461U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16788886U priority Critical patent/JPH0429339Y2/ja
Publication of JPS6372461U publication Critical patent/JPS6372461U/ja
Application granted granted Critical
Publication of JPH0429339Y2 publication Critical patent/JPH0429339Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、二重効用吸収冷凍機に係り、特
に、高温再生器用加熱源の排熱を回収する熱交換
器を備えた二重効用吸収冷凍機に関する。
[Detailed description of the invention] [Industrial application field] This invention relates to a double-effect absorption refrigerator, and in particular, a double-effect absorption refrigerator equipped with a heat exchanger that recovers waste heat from a heating source for a high-temperature regenerator. Regarding refrigerators.

〔従来の技術〕[Conventional technology]

従来この種の二重効用吸収冷凍機は、第2図に
示すように構成されている。すなわち、高温再生
器10は、加熱源12が設けられるとともに、配
管14を介して分離器16と連通している。分離
器16は、蒸気管18と送液管20に接続されて
いる。蒸気管18が接続してある低温再生器22
の出側配管24は凝縮器26に接続されている。
また、低温再器器22と凝縮器26とは、蒸気管
28によつて連通されている。凝縮器26は散布
管30を介して冷温水熱交換器32が設けてある
蒸発器34と連通されている。
A conventional dual-effect absorption refrigerator of this type is constructed as shown in FIG. That is, the high temperature regenerator 10 is provided with a heat source 12 and communicates with a separator 16 via piping 14 . The separator 16 is connected to a steam pipe 18 and a liquid feed pipe 20. Low temperature regenerator 22 to which steam pipe 18 is connected
The outlet pipe 24 is connected to a condenser 26 .
Further, the low temperature regenerator 22 and the condenser 26 are communicated through a steam pipe 28. The condenser 26 is connected via a sparge pipe 30 to an evaporator 34 provided with a cold/hot water heat exchanger 32 .

一方、前記した送液管20は、高温熱交換器3
6に接続されている。高温熱交換器36の出側配
管38は低温再生器22に接続されている。低温
再生器22の底部に設けた濃溶液配管40は、低
温熱交換器42を介して吸収器44に接続されて
いる。この吸収器44には冷却水熱交換器46が
配設されており、この冷却水熱交換器46は、連
結管48を介して凝縮器26に配設した冷却水熱
交換器50と接続されている。
On the other hand, the liquid sending pipe 20 described above is connected to the high temperature heat exchanger 3.
6. An outlet pipe 38 of the high temperature heat exchanger 36 is connected to the low temperature regenerator 22. A concentrated solution pipe 40 provided at the bottom of the low-temperature regenerator 22 is connected to an absorber 44 via a low-temperature heat exchanger 42 . A cooling water heat exchanger 46 is disposed in the absorber 44, and the cooling water heat exchanger 46 is connected to a cooling water heat exchanger 50 disposed in the condenser 26 via a connecting pipe 48. ing.

吸収器44の下部には、戻り配管52の一端が
接続されている。この戻り配管52の他端は、循
環ポンプ54が接続されており、ポンプ54の吐
出側は出側配管55、低温熱交換器42、高温熱
交換器36を介して高温再生器10に接続されて
いる。循環ポンプ54の出側配管55を分岐した
分岐管56は、加熱源12の煙道58に設けた排
ガス熱交換器60に接続されている。この排ガス
熱交換器60は、濃溶液配管62を介して吸収器
44に接続されるとともに、蒸気管64を介して
凝縮器26に接続されている。
One end of a return pipe 52 is connected to the lower part of the absorber 44 . A circulation pump 54 is connected to the other end of the return pipe 52, and the discharge side of the pump 54 is connected to the high-temperature regenerator 10 via an outlet pipe 55, a low-temperature heat exchanger 42, and a high-temperature heat exchanger 36. ing. A branch pipe 56 branching off from the outlet pipe 55 of the circulation pump 54 is connected to an exhaust gas heat exchanger 60 provided in the flue 58 of the heat source 12 . This exhaust gas heat exchanger 60 is connected to the absorber 44 via a concentrated solution pipe 62 and to the condenser 26 via a steam pipe 64.

上述のように構成された二重効用吸収冷凍機の
作用は次のとおりである。
The operation of the dual effect absorption refrigerator constructed as described above is as follows.

高温再生器10内の希溶液は、加熱源12によ
り加熱され、高温状態となつて分離器16に入
る。分離器16は、高温の希溶液を冷媒蒸気と中
間濃度溶液とに分離し、冷媒蒸気を蒸気管18に
より低温再生器22に送るとともに、中間濃度溶
液を送液管20により高温熱交換器36に送る。
高温熱交換器36に入つた中間濃度溶液は、高温
再生器10に送られる希溶液と熱交換をして希溶
液を温めた後、出側配管38により低温再生器2
2内に入る。
The dilute solution in the high temperature regenerator 10 is heated by the heating source 12 and enters the separator 16 at a high temperature. The separator 16 separates the high temperature dilute solution into refrigerant vapor and intermediate concentration solution, sends the refrigerant vapor to the low temperature regenerator 22 through the steam pipe 18, and sends the intermediate concentration solution to the high temperature heat exchanger 36 through the liquid sending pipe 20. send to
The intermediate concentration solution entering the high temperature heat exchanger 36 exchanges heat with the dilute solution sent to the high temperature regenerator 10 to warm the dilute solution, and then is transferred to the low temperature regenerator 2 via the output pipe 38.
Enter 2.

蒸気管18により低温再生器22に入つた冷媒
蒸気は、高温熱交換器36からの中間濃度溶液を
加熱した後、出側配管24により凝縮器26に導
かれる。また、低温再生器22内の中間濃度溶液
は、加熱されて濃溶液と冷媒蒸気とになり、冷媒
蒸気が蒸気管28を介して凝縮器26に導かれ、
濃溶液が濃溶液配管40により低温熱交換器42
に導かれる。
The refrigerant vapor that enters the low temperature regenerator 22 through the steam pipe 18 heats the intermediate concentration solution from the high temperature heat exchanger 36 and is then led to the condenser 26 through the outlet pipe 24. Further, the intermediate concentration solution in the low temperature regenerator 22 is heated to become a concentrated solution and refrigerant vapor, and the refrigerant vapor is led to the condenser 26 via the steam pipe 28.
The concentrated solution is transferred to the low temperature heat exchanger 42 via the concentrated solution piping 40.
guided by.

凝縮器26内に入つた冷媒蒸気は、冷却水熱交
換器50により冷却され、液体冷媒となつた後、
散布管30を介して低圧の蒸発器34の冷温水熱
交換器32に散布される。蒸発器34内に散布さ
れた液体冷媒は蒸発器34内において冷温水熱交
換器32内を流れる冷却用の水を冷却しつつ蒸発
し、吸収器44内に流入する。他方、低温再生器
22から低温熱交換器42に導かれた濃溶液は、
循環ポンプ54により低温熱交換器42に圧送さ
れてくる希溶液と熱交換をして冷却された後、吸
収器44内に散布される。この吸収器44内に散
布された濃溶液は、冷却水熱交換器44に冷却さ
れるとともに、蒸発器34から流入してくる冷媒
蒸気を吸収し、希溶液となる。この希溶液は、戻
り配管52を介して循環ポンプ54により吸引さ
れ、低温熱交換器42、高温熱交換器36を介し
て再び高温再生器10に送られるとともに、分岐
管56により排ガス熱交換器60に導かれ煙道5
8を通る加熱源12の排ガスにより温められる。
希溶液は、排ガス熱交換器60において加熱され
て濃溶液と冷媒蒸気とに分離し、その冷媒蒸気が
蒸気管64を介して凝縮器26に導かれて、この
凝縮器26にて液体冷媒となる。
The refrigerant vapor that has entered the condenser 26 is cooled by the cooling water heat exchanger 50 and becomes a liquid refrigerant.
It is distributed via the distribution pipe 30 to the cold/hot water heat exchanger 32 of the low-pressure evaporator 34 . The liquid refrigerant spread in the evaporator 34 evaporates while cooling the cooling water flowing in the cold/hot water heat exchanger 32 in the evaporator 34 and flows into the absorber 44 . On the other hand, the concentrated solution led from the low-temperature regenerator 22 to the low-temperature heat exchanger 42 is
After being cooled by exchanging heat with the dilute solution pumped to the low-temperature heat exchanger 42 by the circulation pump 54, it is dispersed into the absorber 44. The concentrated solution dispersed in the absorber 44 is cooled by the cooling water heat exchanger 44, absorbs refrigerant vapor flowing from the evaporator 34, and becomes a dilute solution. This dilute solution is sucked by the circulation pump 54 via the return pipe 52, sent to the high temperature regenerator 10 again via the low temperature heat exchanger 42 and the high temperature heat exchanger 36, and is also sent to the high temperature regenerator 10 via the branch pipe 56. Flue 5 led to 60
It is heated by the exhaust gas of the heating source 12 passing through 8 .
The dilute solution is heated in the exhaust gas heat exchanger 60 and separated into a concentrated solution and refrigerant vapor, and the refrigerant vapor is led to the condenser 26 via the steam pipe 64, where it is converted into a liquid refrigerant. Become.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、このような従来の二重効用吸収
冷凍機にあつては、排ガス熱交換器60における
排ガスからの熱の回収が充分に行われていなかつ
た。
However, in such a conventional dual-effect absorption refrigerator, heat recovery from the exhaust gas in the exhaust gas heat exchanger 60 was not sufficiently performed.

すなわち、排ガス熱交換器60の蒸気管64が
低温再生器22の出側配管24と同様に凝縮器2
6に接続されているため、排ガス熱交換器60内
の溶液は、低温再生器22内の溶液と同様に90℃
以上に加熱しなければ冷媒蒸気が発生しないとい
う問題があつた。
That is, the steam pipe 64 of the exhaust gas heat exchanger 60 is connected to the condenser 2 in the same way as the outlet pipe 24 of the low-temperature regenerator 22.
6, the solution in the exhaust gas heat exchanger 60 is heated to 90°C like the solution in the low temperature regenerator 22.
There was a problem in that refrigerant vapor would not be generated unless it was heated to a higher level.

このため、排ガス熱交換器60の面積を大きく
しても、回収熱量は、入熱比で約5%が限界であ
り、排ガスの有する熱量を充分回収することがで
きないという不都合があつた。
Therefore, even if the area of the exhaust gas heat exchanger 60 is increased, the maximum amount of heat that can be recovered is limited to about 5% in terms of heat input ratio, which is disadvantageous in that the amount of heat contained in the exhaust gas cannot be sufficiently recovered.

この考案の目的は、排ガス熱交換器による排ガ
ス中の熱量を効率よく回収することができる二重
効用吸収冷凍機を提供することにある。
The purpose of this invention is to provide a dual-effect absorption refrigerator that can efficiently recover the amount of heat in exhaust gas using an exhaust gas heat exchanger.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決したこの考案は、希溶液を加
熱する加熱源が設けてある高温再生器と、この高
温再器器により加熱した希溶液を冷媒蒸気と中間
濃度溶液とに分離する分離器と、この分離器から
の中間濃度溶液が前記高温再生器に流入する希溶
液と熱交換をする高温熱交換器と、前記分離器か
ら導かれた冷媒蒸気により前記高温熱交換器から
流入する中間濃度溶液を加熱し、冷媒蒸気と濃溶
液とに分離する低温再生器と、この低温再生器か
らの冷媒蒸気を凝縮させる凝縮器と、この凝縮器
により凝縮した液体冷媒が散布されて蒸発し、冷
却用水を冷却する低圧の蒸発器と、前記低温再生
器から流入した前記濃溶液が前記高温熱交換器に
流入する希溶液と熱交換をして冷却される低温熱
交換器と、この低温熱交換器からの前記濃溶液が
散布され、前記蒸発器から流入した蒸気を吸収し
て希溶液となる吸収器と、この吸収器において生
じた希溶液を前記低温熱交換器・前記高温熱交換
器を介して前記高温再生器に圧送する循環ポンプ
と、前記低温熱交換器に流入する希溶液の一部を
加熱し冷媒蒸気を発生させる前記加熱源の煙道に
設けた排ガス熱交換器とを有する二重効用吸収冷
凍機において、前記高温熱交換器にて熱交換した
中間濃度溶液を低温再生器に導く配管に、前記排
ガス熱交換器で発生させた冷媒蒸気を吸引する吸
引装置を設けたことを特徴とするものである。
This invention, which solved the above problems, consists of a high-temperature regenerator equipped with a heating source for heating the dilute solution, and a separator that separates the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution. , a high temperature heat exchanger in which an intermediate concentration solution from the separator exchanges heat with a dilute solution flowing into the high temperature regenerator; and an intermediate concentration solution flowing from the high temperature heat exchanger with refrigerant vapor led from the separator. A low-temperature regenerator that heats a solution and separates it into refrigerant vapor and a concentrated solution, a condenser that condenses the refrigerant vapor from the low-temperature regenerator, and a liquid refrigerant condensed by the condenser that is sprayed and evaporated to cool it. a low-pressure evaporator that cools utility water; a low-temperature heat exchanger in which the concentrated solution flowing from the low-temperature regenerator is cooled by exchanging heat with the dilute solution flowing into the high-temperature heat exchanger; and the low-temperature heat exchanger. The concentrated solution from the evaporator is dispersed, and the absorber absorbs the vapor flowing in from the evaporator to become a dilute solution, and the dilute solution generated in this absorber is passed through the low temperature heat exchanger and the high temperature heat exchanger. and an exhaust gas heat exchanger installed in the flue of the heating source that heats a portion of the dilute solution flowing into the low temperature heat exchanger to generate refrigerant vapor. In the dual-effect absorption refrigerator, a suction device for sucking the refrigerant vapor generated by the exhaust gas heat exchanger is provided in the piping that leads the intermediate concentration solution heat-exchanged in the high-temperature heat exchanger to the low-temperature regenerator. It is characterized by:

〔作用〕[Effect]

排ガス熱交換器で発生した冷媒蒸気は、高温熱
交換器で熱交換した中間濃度溶液を低温再生器に
導く配管に接続された吸引装置により中間濃度溶
液中に吸引される。これにより、排ガス熱交換器
内を低圧にして希溶液の沸点を低下させ、冷媒蒸
気の発生を活発化したので、排ガスが有する熱量
を効率よく回収できる。
The refrigerant vapor generated in the exhaust gas heat exchanger is sucked into the intermediate concentration solution by a suction device connected to a pipe that leads the intermediate concentration solution heat exchanged in the high temperature heat exchanger to the low temperature regenerator. This lowers the pressure inside the exhaust gas heat exchanger, lowers the boiling point of the dilute solution, and activates the generation of refrigerant vapor, making it possible to efficiently recover the amount of heat contained in the exhaust gas.

〔実施例〕〔Example〕

以下、この考案の実施例を図面に基づいて説明
する。なお、前記従来技術において説明した部分
に対応する部分については、同一の符号を付しそ
の説明を省略する。
Hereinafter, embodiments of this invention will be described based on the drawings. Note that the same reference numerals are given to the parts corresponding to the parts explained in the prior art, and the explanation thereof will be omitted.

第1図はこの考案に係る二重効用吸引冷凍機の
実施例を示す概略構成図である。
FIG. 1 is a schematic diagram showing an embodiment of the dual-effect suction refrigerator according to this invention.

第1図において、この実施例が第2図の構成と
異なるところは、高温熱交換器36で熱交換した
中間濃度溶液を低温再生器22に導く配管38
に、吸引装置としてのベンチユリ66を設け、こ
のベンチユリ66ののど部に排ガス熱交換器60
で発生した冷媒蒸気を導く蒸気管64を接続した
点にあり、この他の構造は前記従来技術と同様で
ある。
In FIG. 1, this embodiment differs from the configuration in FIG.
A bench lily 66 is provided as a suction device, and an exhaust gas heat exchanger 60 is installed in the throat of this bench lily 66.
The other point is that a steam pipe 64 for guiding the refrigerant vapor generated in the above is connected, and the other structure is the same as that of the prior art.

このように構成した実施例の作用を説明する。 The operation of the embodiment configured in this way will be explained.

中間濃度溶液は配管38を流れる際にベンチユ
リ66ののど部を高速で通過する。これによりベ
ンチユリ66ののど部における圧力が低下し、排
ガス熱交換器60において発生した冷媒蒸気は蒸
気管64を介して吸引されて、中間濃度溶液とと
もに低温再生器22に導かれる。排ガス熱交換器
60はベンチユリ66ののど部における圧力低下
により低圧(負圧)となり、排ガス熱交換器60
に流入してくる希溶液の沸点を低下させる。この
ように沸点が低下することに伴い、冷媒蒸気の発
生が活発になつて排ガスの有する熱量を効率よく
排ガス熱交換器内の希溶液に取り込むことがで
き、しかも配管38内を流れる中間濃度溶液にそ
の取り込んだ熱量を与えることができる。このた
め、中間濃度溶液に与えた熱が低温再生器22に
おいて再度冷媒蒸気を発生するために利用するこ
とができるので、冷房時における成績係数の大幅
な上昇を得ることができる。
As the intermediate concentration solution flows through the pipe 38, it passes through the throat of the bench lily 66 at high speed. This reduces the pressure at the throat of the bench lily 66, and the refrigerant vapor generated in the exhaust gas heat exchanger 60 is sucked through the steam pipe 64 and guided to the low temperature regenerator 22 together with the intermediate concentration solution. The exhaust gas heat exchanger 60 becomes low pressure (negative pressure) due to the pressure drop at the throat of the bench lily 66, and the exhaust gas heat exchanger 60
lowers the boiling point of the dilute solution flowing into the As the boiling point is lowered in this way, the generation of refrigerant vapor becomes more active, and the amount of heat contained in the exhaust gas can be efficiently taken into the dilute solution in the exhaust gas heat exchanger. The absorbed heat can be given to the Therefore, the heat given to the intermediate concentration solution can be used to generate refrigerant vapor again in the low-temperature regenerator 22, resulting in a significant increase in the coefficient of performance during cooling.

なお、上記実施例では、中間濃度溶液配管38
に吸引装置としてベンチユリ66を設けて構成し
た場合について説明したが、ベンチユリ66の代
わりに吸収装置としてエゼクタ等を使用してもよ
いことはもちろんである。
In addition, in the above embodiment, the intermediate concentration solution piping 38
Although a case has been described in which a bench lily 66 is provided as a suction device, an ejector or the like may of course be used as an absorption device instead of the bench lily 66.

〔考案の効果〕[Effect of idea]

以上説明したように、この考案によれば、排ガ
スの有する熱量を効率よく回収することができる
という効果がある。
As explained above, this invention has the effect that the amount of heat contained in the exhaust gas can be efficiently recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る直焚二重効用吸収冷凍機
の実施例の概略構成図、第2図は従来の直焚二重
効用吸収冷凍機の概略構成図である。 10……高温再生器、12……加熱源、16…
…分離器、22……低温再生器、26……凝縮
器、34……蒸発器、36……高温熱交換器、4
2……低温熱交換器、44……吸収器、54……
循環ポンプ、60……排ガス熱交換器、66……
ベンチユリ。
FIG. 1 is a schematic diagram of an embodiment of a direct-fired dual-effect absorption refrigerator according to the present invention, and FIG. 2 is a schematic diagram of a conventional direct-fired dual-effect absorption refrigerator. 10... High temperature regenerator, 12... Heat source, 16...
... Separator, 22 ... Low temperature regenerator, 26 ... Condenser, 34 ... Evaporator, 36 ... High temperature heat exchanger, 4
2... Low temperature heat exchanger, 44... Absorber, 54...
Circulation pump, 60...Exhaust gas heat exchanger, 66...
Bench lily.

Claims (1)

【実用新案登録請求の範囲】 (1) 希溶液を加熱する加熱源が設けてある高温再
生器と、この高温再生器により加熱した希溶液
を冷媒蒸気と中間濃度溶液とに分離する分離器
と、この分離器からの中間濃度溶液が前記高温
再生器に流入する希溶液と熱交換する高温熱交
換器と、前記分離器から導かれた冷媒蒸気によ
り前記高温熱交換器から流入する中間濃度溶液
を加熱し、冷媒蒸気と濃溶液とに分離する低温
再生器と、この低温再生器からの冷媒蒸気を凝
縮させる凝縮器と、この凝縮器により凝縮した
液体冷媒が散布されて蒸発し、冷却用水を冷却
する低圧の蒸発器と、前記低温再生器から流入
した前記濃溶液が前記高温熱交換器に流入する
希溶液と熱交換をして冷却される低温熱交換器
と、この低温熱交換器からの前記濃溶液が散布
され、前記蒸発器から流入した蒸気を吸収して
希溶液となる吸収器と、この吸収器において生
じた希溶液を前記低温熱交換器・前記高温熱交
換器を介して前記高温再生器に圧送する循環ポ
ンプと、前記低温熱交換器に流入する希溶液の
一部を加熱し冷媒蒸気を発生させる前記加熱源
の煙道に設けた排ガス熱交換器とを有する二重
効用吸収冷凍機において、前記高温熱交換器に
て熱交換した中間濃度溶液を低温再生器に導く
配管に、前記排ガス熱交換器で発生させた冷媒
蒸気を吸引する吸引装置を設けたことを特徴と
する二重効用吸収冷凍機。 (2) 前記吸引装置は、ベンチユリであることを特
徴とする実用新案登録請求の範囲第1項に記載
の二重効用吸収冷凍機。 (3) 前記吸引装置は、エゼクタであることを特徴
とする実用新案登録請求の範囲第1項に記載の
二重効用吸収冷凍機。
[Claims for Utility Model Registration] (1) A high-temperature regenerator equipped with a heating source for heating a dilute solution, and a separator that separates the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution. , a high temperature heat exchanger in which an intermediate concentration solution from the separator exchanges heat with a dilute solution flowing into the high temperature regenerator; and an intermediate concentration solution flowing from the high temperature heat exchanger with refrigerant vapor led from the separator. A low-temperature regenerator that heats the refrigerant and separates it into refrigerant vapor and a concentrated solution, a condenser that condenses the refrigerant vapor from the low-temperature regenerator, and the condensed liquid refrigerant that is sprayed and evaporated by the condenser to produce cooling water. a low-pressure heat exchanger in which the concentrated solution flowing from the low-temperature regenerator is cooled by exchanging heat with the dilute solution flowing into the high-temperature heat exchanger; and this low-temperature heat exchanger The concentrated solution is sprayed from the evaporator, and the absorber absorbs the vapor flowing in from the evaporator to become a dilute solution. The dilute solution generated in this absorber is passed through the low temperature heat exchanger and the high temperature heat exchanger. and an exhaust gas heat exchanger installed in the flue of the heating source that heats a part of the dilute solution flowing into the low temperature heat exchanger to generate refrigerant vapor. In the heavy-effect absorption refrigerator, a suction device for sucking refrigerant vapor generated in the exhaust gas heat exchanger is provided in the piping leading the intermediate concentration solution heat-exchanged in the high-temperature heat exchanger to the low-temperature regenerator. Features a dual-effect absorption refrigerator. (2) The dual-effect absorption refrigerator according to claim 1, wherein the suction device is a bench lily. (3) The dual-effect absorption refrigerator according to claim 1, wherein the suction device is an ejector.
JP16788886U 1986-10-31 1986-10-31 Expired JPH0429339Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16788886U JPH0429339Y2 (en) 1986-10-31 1986-10-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16788886U JPH0429339Y2 (en) 1986-10-31 1986-10-31

Publications (2)

Publication Number Publication Date
JPS6372461U JPS6372461U (en) 1988-05-14
JPH0429339Y2 true JPH0429339Y2 (en) 1992-07-16

Family

ID=31100245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16788886U Expired JPH0429339Y2 (en) 1986-10-31 1986-10-31

Country Status (1)

Country Link
JP (1) JPH0429339Y2 (en)

Also Published As

Publication number Publication date
JPS6372461U (en) 1988-05-14

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
CN105783023A (en) Device and method for driving air heater through absorption type heat pump
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JPH0429339Y2 (en)
JPH0429340Y2 (en)
JPH0354376Y2 (en)
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
KR0132391B1 (en) Absorptive refrig
JPH0354378Y2 (en)
JP2750783B2 (en) Exhaust heat recovery method in cogeneration system
JP2657703B2 (en) Absorption refrigerator
JPS6122225B2 (en)
JPH0658186B2 (en) Double-effect absorption chiller / heater
JPH0350373Y2 (en)
JP4201403B2 (en) Absorption refrigerator
JPH0473060B2 (en)
JPS6273052A (en) Direct-firing double-effect absorption water chiller and heater
JPS6136137Y2 (en)
JPS6024903B2 (en) Multiple effect absorption refrigerator
JPH0820141B2 (en) Absorption refrigerator
JP2000257978A (en) Exhaust heat utilizing absorption heater chillear
JPH0663672B2 (en) Double-effect absorption chiller / heater
JPH038465B2 (en)
JPH04106375A (en) Absorption type heat pump
JPH0689965B2 (en) Double-effect absorption chiller / heater