JPS6024903B2 - Multiple effect absorption refrigerator - Google Patents

Multiple effect absorption refrigerator

Info

Publication number
JPS6024903B2
JPS6024903B2 JP942280A JP942280A JPS6024903B2 JP S6024903 B2 JPS6024903 B2 JP S6024903B2 JP 942280 A JP942280 A JP 942280A JP 942280 A JP942280 A JP 942280A JP S6024903 B2 JPS6024903 B2 JP S6024903B2
Authority
JP
Japan
Prior art keywords
temperature
low
absorption liquid
temperature regenerator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP942280A
Other languages
Japanese (ja)
Other versions
JPS56108066A (en
Inventor
憲司 大岡
修蔵 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP942280A priority Critical patent/JPS6024903B2/en
Publication of JPS56108066A publication Critical patent/JPS56108066A/en
Publication of JPS6024903B2 publication Critical patent/JPS6024903B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 図一1は従来の吸収冷凍機の系統を示すもので、充分に
気密にして高度の真空に保持された筒状胴を上下に2分
し、下部低圧室には蒸発器1および吸収器2を上部高圧
室には凝縮器3および低温再生器4を内蔵し、いずれも
所要の流体を管内に流通させる管群より構成される。
DETAILED DESCRIPTION OF THE INVENTION Figure 11 shows the system of a conventional absorption refrigerating machine, in which the cylindrical body, which is sufficiently airtight and maintained in a high vacuum, is divided into upper and lower parts. A condenser 3 and a low-temperature regenerator 4 are built in the upper high-pressure chamber of the evaporator 1 and absorber 2, both of which are composed of a group of tubes through which the required fluid flows.

5は高温再生器、6は吸収器2から低温再生器4への稀
吸収液系統に設けた低温熱交換器、7は高温熱交換器、
8は袷媒ポンプ、9は低温吸収液循環ポンプ、10は高
温吸収液ポンプ、11は冷煤液溜め、12は稀吸収液溜
めである。
5 is a high temperature regenerator, 6 is a low temperature heat exchanger installed in the dilute absorption liquid system from the absorber 2 to the low temperature regenerator 4, 7 is a high temperature heat exchanger,
8 is a liner medium pump, 9 is a low-temperature absorption liquid circulation pump, 10 is a high-temperature absorption liquid pump, 11 is a cold soot liquid reservoir, and 12 is a dilute absorption liquid reservoir.

図一1において、蒸発器1で冷却作用を行って蒸発した
冷媒蒸気が吸収器2で吸収液に吸収され、吸収液は濃度
が低下して吸収力を失って下部の稀吸収液溜め12に溜
められる。
In FIG. 11, the refrigerant vapor that has been evaporated by the cooling effect in the evaporator 1 is absorbed by the absorption liquid in the absorber 2, and the absorption liquid decreases in concentration and loses its absorption capacity, and flows into the dilute absorption liquid reservoir 12 at the bottom. It can be accumulated.

この稀薄な吸収液を低温吸収液ポンプ9で配管15低温
熱交換器6、配管16を経て低温再生器4に送り、後に
詳述する高温再生器5で発生した冷媒蒸気により加熱さ
れて稀吸収液の濃縮を行なう。低温再生器4で稀吸収液
を加熱して袷煤を蒸発分離して、吸収液の濃度が上昇す
るが、このとき蒸発した冷媒は凝縮器3で冷却水により
凝縮させる。一方、濃度の上昇した吸収液は高温吸収液
ポンプ10により、配管17、高温熱交換器7、配管1
8を経て高温再生器5に送られ、外部からの熱源により
加熱され、冷煤が蒸発して吸収液は濃縮される。高温再
生器5で蒸発した袷媒蒸気は前述のように低温再生器4
で加熱に使用され、自らは凝縮して冷煤液となり凝縮器
3に導かれ、冷却水で冷却され、更に温度が下がり、前
述の冷媒液とともに配管22を経て蒸発器1に戻り冷却
作用をする。一方、高温再生器5で濃縮された濃吸収液
は配管19、高温熱交換器7、配管20を経てさらに低
温熱交換器6、配管21を経て散布装置から散布され吸
収器2に戻り、吸収作用を行なう。尚、蒸発器1の蒸発
器管内には冷やされる液体が流れており、蒸発器警世口
部に設けた温度検出端23の信号により高温再生器5の
加熱量を調節し、冷凍効果を必要量に調整する。吸収器
2の吸収器管内には矢示のごとく冷却水が流され、吸収
器2の管表面に散布される吸収液が低温なほど吸収能力
が大きいので吸収液を冷却させつつ、蒸発器1で発生す
る冷煤蒸気を吸収するようになっている。
This diluted absorption liquid is sent to the low-temperature regenerator 4 via a pipe 15, a low-temperature heat exchanger 6, and a pipe 16 by a low-temperature absorption liquid pump 9, and is heated by refrigerant vapor generated in a high-temperature regenerator 5, which will be described in detail later, to absorb the diluted liquid. Concentrate the liquid. The dilute absorption liquid is heated in the low-temperature regenerator 4 to evaporate and separate the soot, increasing the concentration of the absorption liquid. At this time, the evaporated refrigerant is condensed with cooling water in the condenser 3. On the other hand, the absorption liquid with increased concentration is pumped to the piping 17, the high temperature heat exchanger 7, and the piping 1 by the high temperature absorption liquid pump 10.
The absorbent liquid is sent to the high-temperature regenerator 5 via a filter 8, where it is heated by an external heat source to evaporate the cold soot and concentrate the absorbent liquid. The medium vapor evaporated in the high temperature regenerator 5 is transferred to the low temperature regenerator 4 as described above.
The soot is used for heating, and it condenses to become a cold soot liquid, which is led to the condenser 3, where it is cooled by cooling water, the temperature of which is further lowered, and then returns to the evaporator 1 through the piping 22 along with the refrigerant liquid, where it exerts a cooling effect. do. On the other hand, the concentrated absorption liquid concentrated in the high-temperature regenerator 5 passes through the pipe 19, the high-temperature heat exchanger 7, and the pipe 20, and further passes through the low-temperature heat exchanger 6 and the pipe 21, and then is sprayed from the spraying device, returns to the absorber 2, and is absorbed. perform an action. In addition, the liquid to be cooled is flowing in the evaporator tube of the evaporator 1, and the amount of heating of the high temperature regenerator 5 is adjusted by the signal from the temperature detection end 23 provided at the evaporator opening, and the cooling effect is adjusted to the required amount. Adjust to. Cooling water is flowed through the absorber tube of the absorber 2 as shown by the arrow, and the lower the temperature of the absorption liquid sprayed on the tube surface of the absorber 2, the greater the absorption capacity. It is designed to absorb the cold soot vapor generated by

また凝縮器3の凝縮器管内にも冷却水が流れており、低
温再生器4からの冷煤蒸気や冷煤ドレーンを冷却するよ
うになっている。吸収冷凍機の吸収器2に下部はとくに
箸じるしく低くし、圧力になるため不凝縮性ガスが溜り
やすいので、吸収器2下部より柚気装置により不凝縮性
ガスを外部に排出する必要があり、13はその排出用の
抽気ポンプである。
Cooling water also flows in the condenser tube of the condenser 3 to cool the cold soot vapor and cold soot drain from the low-temperature regenerator 4. The lower part of the absorber 2 of the absorption chiller is extremely low, and as the pressure increases, non-condensable gas tends to accumulate, so it is necessary to discharge non-condensable gas to the outside from the lower part of the absorber 2 using a gas aeration device. 13 is a bleed pump for discharging the air.

上記の作動状態を、冷煤に水、吸収液として臭化リチウ
ム水溶液を使用する場合について各部の温度、濃度およ
び圧力を図一2に示す。
Figure 12 shows the temperature, concentration, and pressure of each part in the above operating state when water is used as the cold soot and a lithium bromide aqueous solution is used as the absorption liquid.

図一2において、縦軸は圧力、機軸は液温、Q曲線は結
晶限界を示す。
In FIG. 12, the vertical axis shows the pressure, the mechanical axis shows the liquid temperature, and the Q curve shows the crystal limit.

■は低温熱交換器6の出口の稀吸収液の状態を示し、稀
吸収液の■における状態は温度が7300で濃度は58
%である。低温再生器4内で冷煤が蒸発いまじめる点は
■で、吸収液が濃縮されて、■の点で低温再生器4を出
て高温吸収液ポンプ101こより高温再生器へ送り出さ
れる。吸収冷凍機の熱効率は蒸発器1における冷凍効果
に対して、外部から与える熱量(図一1の冷凍機の系統
においては高温再生器5での加熱量)が少ない程、熱効
率が高くなるが、低温再生器4での加熱量が少なくなれ
ば、高温再生器5での袷煤の蒸発量が少なくてすむこと
から、低温熱交換器6で稀吸収液の温度を高めることは
熱効率の点で効果があり、かつ、吸収器2へ流入する濃
吸収液の温度を下げることになり吸収器2での吸収能力
を増すことになる。
■ indicates the state of the dilute absorption liquid at the outlet of the low-temperature heat exchanger 6, and the state of the dilute absorption liquid in ■ is a temperature of 7300 and a concentration of 58.
%. The point at which the cold soot evaporates in the low-temperature regenerator 4 is point (3), and the absorption liquid is concentrated and leaves the low-temperature regenerator 4 at the point (2) and is sent to the high-temperature regenerator from the high-temperature absorption liquid pump 101. The thermal efficiency of an absorption refrigerator increases as the amount of heat applied from the outside (in the refrigerator system of FIG. 11, the amount of heating in the high-temperature regenerator 5) is smaller than the refrigeration effect in the evaporator 1. If the amount of heating in the low-temperature regenerator 4 is reduced, the amount of evaporation of soot in the high-temperature regenerator 5 will be reduced, so increasing the temperature of the dilute absorption liquid in the low-temperature heat exchanger 6 is beneficial in terms of thermal efficiency. This is effective and reduces the temperature of the concentrated absorption liquid flowing into the absorber 2, thereby increasing the absorption capacity of the absorber 2.

(吸収液は温度が低くし、程吸収能力が大きい性質があ
る)。したがって、図一1に示すように従来の吸収冷凍
機には、低温熱交換器6を、図一1に示した位置に設け
ることが実施されている。同様の考え方により、低温再
生器4と高温再生器5の間にも高温熱交換器7を設けて
熱効率の改善を計ることができ、実施されている。以上
の見地から稀吸収液の状態を図一2において■の点を■
の点に近づけることは、熱効率を高める上で効果が大き
いが、稀吸収液と濃吸収液の流量を比較すると、濃吸収
液は袷媒が蒸発した分だムナ流量が少なくなっているの
で、■の点を■の点に完全に一致させることがむづかし
いし、又、■の点を■の点に近づけると、低温熱交換器
6の出口の濃吸収液の温度が下がり、吸収液として臭化
リチウム水溶液を使用する場合には吸収液が結晶するこ
ともあり、通常は■の点は■の点より低くし、温度レベ
ルとなることが多い。
(The temperature of the absorption liquid is low and the absorption capacity is large.) Therefore, as shown in FIG. 11, a conventional absorption refrigerator is provided with a low-temperature heat exchanger 6 at the position shown in FIG. Based on the same concept, a high temperature heat exchanger 7 can be provided between the low temperature regenerator 4 and the high temperature regenerator 5 to improve thermal efficiency, and this has been implemented. From the above point of view, the state of the dilute absorption liquid can be determined by the point ■ in Figure 12.
Bringing it closer to the point is very effective in increasing thermal efficiency, but when comparing the flow rates of the dilute absorption liquid and the concentrated absorption liquid, the flow rate of the concentrated absorption liquid is smaller due to the evaporation of the lining medium. It is difficult to make the point () completely coincide with the point (■), and if the point (■) is brought close to the point (■), the temperature of the concentrated absorption liquid at the outlet of the low-temperature heat exchanger 6 will decrease, and the absorption liquid will have an odor. When using a lithium chloride aqueous solution, the absorption liquid may crystallize, so the point (■) is usually lower than the point (2), and the temperature level is often the same.

′省エネルギ−の見地から、本発明は稀吸収液系統の低
温熱交換器6の出口と低温再生器4との間に熱回収器1
4を設け、太陽熱で得られた温水や工場緋熱から得られ
た温水等の低温の熱源をその熱回収器14へ導びくこと
により、濃吸収液の低温熱交換器の出口付近での結晶の
心配なく低温熱交換器を出た稀吸収液を昇温せしめるこ
とができ、かつ、稀吸収液温度が低くし、ので、上記大
陽熱や工場排熱等の低温度の熱源でも有効に利用できる
ようにしたものである。
'From the viewpoint of energy saving, the present invention provides a heat recovery device 1 between the outlet of the low temperature heat exchanger 6 of the dilute absorption liquid system and the low temperature regenerator 4.
4, and by guiding a low-temperature heat source such as hot water obtained from solar heat or hot water obtained from factory scarlet heat to the heat recovery device 14, crystallization of the concentrated absorption liquid near the outlet of the low-temperature heat exchanger is achieved. It is possible to raise the temperature of the diluted absorbent liquid leaving the low-temperature heat exchanger without worrying about the temperature of the diluted absorbent liquid, and the temperature of the diluted absorbent liquid is kept low, so it is effective even with low-temperature heat sources such as the solar heat and factory waste heat. It has been made available.

図一3に示す実施例について説明すると、高温再生器5
の熱源としてボィラ等からの蒸気を使用するが、図一2
の従来例のごと〈、高温再生器5内の吸収液の温度は1
64qC位あり、加熱して復水した蒸気のドレーンは1
60℃位の温度である。
To explain the embodiment shown in FIG. 13, the high temperature regenerator 5
Steam from a boiler, etc. is used as the heat source for the
As in the conventional example, the temperature of the absorption liquid in the high-temperature regenerator 5 is 1
There is about 64qC, and the drain of heated and condensed steam is 1
The temperature is around 60°C.

この高い温度のドレーンを高温再生器5から大気に放出
すると著じるしい熱損失になるため、本発明の熱回収器
14に導びき、ドレーンの熱を回収し、熱効率を上げる
ことができる。図一3で24は蒸気のドレーンのみを排
出するためのトラップであるM 25は蒸気ドレーンを
熱回収器14に導びく導管、26は熱回収器14で発生
する冷媒蒸気を低温再生器4を経て凝縮器3に導びく導
管である。−図一4に示す別の実施例では高温再生器5
の熱源として燃焼熱を利用した場合で、高温再生器5で
吸収液を加熱した燃焼ガスは高い温度で排出される。
If this high-temperature drain is discharged from the high-temperature regenerator 5 to the atmosphere, significant heat loss will occur, so it is led to the heat recovery device 14 of the present invention, where the heat of the drain can be recovered and thermal efficiency can be increased. In FIG. 13, 24 is a trap for discharging only the steam drain, M 25 is a conduit that leads the steam drain to the heat recovery device 14, and 26 is a conduit that leads the refrigerant vapor generated in the heat recovery device 14 to the low temperature regenerator 4. This is a conduit that leads to the condenser 3 through the condenser. - In another embodiment shown in Figure 14, the high temperature regenerator 5
When combustion heat is used as a heat source, the combustion gas that has heated the absorption liquid in the high-temperature regenerator 5 is discharged at a high temperature.

この排出された燃焼ガスを導管27で直接、本発明の熱
回収器14へ導びき熱効率を上げることができる。図一
6の別の実施例の場合は図一4のごとく、燃焼排ガスを
導管28により温水加熱器29に導びき温水を加熱して
、この加熱された温水を環状導管31に設けた温水循環
ポンプ30によって本発明の熱回収器14へ導びき熱回
収して熱効率を高めるようにしている。
This discharged combustion gas can be directly led to the heat recovery device 14 of the present invention through the conduit 27 to increase thermal efficiency. In the case of another embodiment shown in FIG. 16, as shown in FIG. 14, combustion exhaust gas is guided to a hot water heater 29 through a conduit 28 to heat hot water, and the heated hot water is disposed in an annular conduit 31 for hot water circulation. The pump 30 guides the heat to the heat recovery device 14 of the present invention and recovers the heat to improve thermal efficiency.

図一6に示すもう一つの別の実施例は、高温再生器5か
ら排出される加熱源の低温部分以外に(図一3)、利用
されずに捨てられている熱源を熱回収器14へ導入して
熱回収し熱効率をより高めるようにしたものである。
In another embodiment shown in FIG. 16, in addition to the low-temperature portion of the heating source discharged from the high-temperature regenerator 5 (FIG. 13), the heat source that is not used and is discarded is transferred to the heat recovery device 14. This system is designed to recover heat and improve thermal efficiency.

32は廃熱を熱回収器14に導び〈導管である。32 is a conduit that guides waste heat to the heat recovery device 14.

図一7は示す更にもう一つの別の実施例は、他に低温熱
源がある場合には高温再生器5より熱源を導びくことな
く、本発明の熱回収器14にその熱源を導びき、冷凍作
用を行なわせることが可能であり、冷凍機としての冷煤
、吸収液の循環系統は従来の吸収冷凍機の運転系統をそ
のまま利用しうると云う利点を有するものとなる。
FIG. 17 shows yet another embodiment in which, if there is another low-temperature heat source, the heat source is not guided from the high-temperature regenerator 5, but is guided to the heat recovery device 14 of the present invention, It is possible to perform a refrigeration action, and the cold soot and absorption liquid circulation system as a refrigerator has the advantage that the operation system of a conventional absorption refrigerator can be used as is.

したがって、高温再生器5へ加熱源を供給して従来通り
の運転も可能であり、また、高温再生器5と熱回収器1
4の両方に熱源を導びし、て併用することもできる。
Therefore, it is possible to supply the heat source to the high-temperature regenerator 5 and operate it as usual.
It is also possible to introduce a heat source to both of 4 and use them together.

33は廃熱などを熱回収器14に導びく導管である。33 is a conduit that guides waste heat and the like to the heat recovery device 14.

以上の各実施例で示したごと〈本発明によれば低温熱交
換器と低温再生器との間の稀吸収液系統に熱回収器を設
けると共に熱回収器と低温再生器とを冷媒蒸気導管によ
って結んだので、熱効率の向上、省エネルギーの効果が
極めて大きい。
As shown in each of the above embodiments, according to the present invention, a heat recovery device is provided in the dilute absorption liquid system between the low-temperature heat exchanger and the low-temperature regenerator, and the heat recovery device and the low-temperature regenerator are connected by a refrigerant vapor conduit. Since the wires are tied together, the effect of improving thermal efficiency and saving energy is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図一1は従来の二重効用吸収冷凍機の系統図、図一2は
図一1の冷凍機の作動時における各部の温度、濃度およ
び圧力を示す特性曲線図、図一3は本発明の一実施例を
示す系統図、図一4および図一5はそれぞれ別の実施例
を示す系統図、図一6はもう一つの別の実施例を示す系
統図、図−7は更にもう一つの別の実施例を示す系統図
である。 1・・・・・・蒸発器、2・・・・・・吸収器、4・・
・・・・低温再生器、5・・・・・・高温再生器、6・
・・・・・低温熱交換器、7・・・・・・高温熱交換器
、14・・・・・・熱回収器。 図一ア■ 図 〜 ■ 図 〜 ■ 図 寸 ■ 図 り ・ 図 図一5
Fig. 11 is a system diagram of a conventional double-effect absorption refrigerator, Fig. 12 is a characteristic curve diagram showing the temperature, concentration, and pressure of each part during operation of the refrigerator of Fig. 11, and Fig. 13 is a diagram of the characteristic curve of the refrigerator of the present invention. A system diagram showing one embodiment, FIGS. 14 and 15 are system diagrams showing different embodiments, FIG. 16 is a system diagram showing another embodiment, and FIG. 7 is a system diagram showing yet another embodiment. It is a system diagram showing another example. 1...Evaporator, 2...Absorber, 4...
...Low temperature regenerator, 5...High temperature regenerator, 6.
...low temperature heat exchanger, 7 ... high temperature heat exchanger, 14 ... heat recovery device. Figure 1A ■ Figure~ ■ Figure~ ■ Figure size■ Diagram・Figure 15

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発器、吸収器、凝縮器、低温再生器、高温再生器
、熱交換器を冷凍作用を行なうごとく配置、接続し、吸
収器から低温再生器へ稀吸収液を導入する系統に低温熱
交換器を設けた多重効用吸収冷凍機において、その低温
熱交換器と低温再生器の間の稀吸収液系統に、熱源で加
熱する熱回収器を配置すると共にその熱回収器と低温再
生器を蒸気導管で結ぶことにより、稀吸収液を加熱し冷
媒を蒸発せしめて濃縮をするようにしたことを特徴とす
る多重効用吸収冷凍機。
1 The evaporator, absorber, condenser, low-temperature regenerator, high-temperature regenerator, and heat exchanger are arranged and connected to perform refrigeration, and low-temperature heat exchange is performed in the system that introduces the diluted absorption liquid from the absorber to the low-temperature regenerator. In a multi-effect absorption refrigerator equipped with a heat exchanger, a heat recovery device that is heated by a heat source is placed in the dilute absorption liquid system between the low-temperature heat exchanger and the low-temperature regenerator, and the heat recovery device and the low-temperature regenerator are A multi-effect absorption refrigerator characterized in that the dilute absorption liquid is heated and the refrigerant is evaporated to concentrate it by connecting it with a conduit.
JP942280A 1980-01-31 1980-01-31 Multiple effect absorption refrigerator Expired JPS6024903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP942280A JPS6024903B2 (en) 1980-01-31 1980-01-31 Multiple effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP942280A JPS6024903B2 (en) 1980-01-31 1980-01-31 Multiple effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS56108066A JPS56108066A (en) 1981-08-27
JPS6024903B2 true JPS6024903B2 (en) 1985-06-15

Family

ID=11719914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP942280A Expired JPS6024903B2 (en) 1980-01-31 1980-01-31 Multiple effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6024903B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056160A (en) * 1999-08-17 2001-02-27 Tokyo Gas Co Ltd Absorption hot and chilled water generator
JP2001056161A (en) * 1999-08-17 2001-02-27 Tokyo Gas Co Ltd Absorption hot and chilled water generator

Also Published As

Publication number Publication date
JPS56108066A (en) 1981-08-27

Similar Documents

Publication Publication Date Title
JPS6024903B2 (en) Multiple effect absorption refrigerator
US4662191A (en) Absorption - type refrigeration system
JP3231441B2 (en) Absorption refrigerator, chiller / heater and heat pump with steam turbine and compressor in absorber
JPH0820141B2 (en) Absorption refrigerator
JPS5849872A (en) Heat pump device
JPH0419410Y2 (en)
JPS6122225B2 (en)
JPS58219371A (en) Double effect absorption type heat pump
JPH04268170A (en) Absorption type heat pump device
JPH0429339Y2 (en)
KR0113790Y1 (en) Absorption refrigerating machine
JP4201403B2 (en) Absorption refrigerator
JPS6115982B2 (en)
JPS6122224B2 (en)
JPS6138787B2 (en)
CN112413925A (en) Low-temperature heat source refrigerating device
JPH0354376Y2 (en)
JPS631510B2 (en)
JPH04106375A (en) Absorption type heat pump
JPS6113554B2 (en)
JPH0663672B2 (en) Double-effect absorption chiller / heater
JPH08261589A (en) Absorption type refrigerator
JPS6196371A (en) Absorption type refrigerator
JPH073302B2 (en) Absorption refrigerator
JPS62196568A (en) Multi-effect absorption refrigerator