JPH038465B2 - - Google Patents
Info
- Publication number
- JPH038465B2 JPH038465B2 JP5111283A JP5111283A JPH038465B2 JP H038465 B2 JPH038465 B2 JP H038465B2 JP 5111283 A JP5111283 A JP 5111283A JP 5111283 A JP5111283 A JP 5111283A JP H038465 B2 JPH038465 B2 JP H038465B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- low
- regenerator
- liquid
- absorption liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 105
- 238000010521 absorption reaction Methods 0.000 claims description 92
- 239000003507 refrigerant Substances 0.000 claims description 34
- 239000006096 absorbing agent Substances 0.000 claims description 23
- 230000000694 effects Effects 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000005057 refrigeration Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000002918 waste heat Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
(a) 産業上の利用分野
本発明は、真空タンク内に蒸発器、吸収器、低
温再生器および凝縮器が構成されている吸収式冷
凍機において、冷凍効率の向上と小型化を図ると
共に、天然エネルギーまたは廃熱エネルギーなど
を利用することができる一重二重効用組合せ吸収
式冷凍機に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is directed to an absorption refrigerator in which an evaporator, an absorber, a low-temperature regenerator, and a condenser are configured in a vacuum tank, to improve refrigeration efficiency. The present invention relates to a single-double effect combination absorption refrigerator that is compact and can utilize natural energy or waste heat energy.
(b) 従来技術
従来、第1図に示すような二重効用吸収式冷凍
機1においては、吸収液ポンプ2を介して熱交換
器3に送液される吸収器4の稀吸収液5は、前記
熱交換器3の出口側分岐点6で分流され、一部は
低温再生器7に送液されて散布され、残部は高温
再生器8のバーナ9で加熱され、高温の冷媒蒸気
と濃吸収液となる。後者は気液分離器10で冷媒
蒸気と濃吸収液に分離され、その冷媒蒸気は低温
再生器7の伝熱管11に導入される。この冷媒蒸
気は低温再生器7内で散布されている稀吸収液を
加熱して冷媒を蒸発させると共に、冷媒蒸気は伝
熱管11を流過する間に凝縮して凝縮器12に導
出される。凝縮器12では低温再生器7からの冷
媒蒸気が、冷却水の流過する伝熱管13で凝縮さ
れ、これと前記伝熱管11内の凝縮冷媒とが、蒸
発器14に供給されかつ散布されるようになつて
いる。(b) Prior Art Conventionally, in a dual-effect absorption refrigerator 1 as shown in FIG. The liquid is divided at the branch point 6 on the outlet side of the heat exchanger 3, a part of which is sent to the low-temperature regenerator 7 and dispersed, and the remaining part is heated by the burner 9 of the high-temperature regenerator 8, where it is mixed with high-temperature refrigerant vapor. It becomes an absorbing liquid. The latter is separated into refrigerant vapor and concentrated absorption liquid by the gas-liquid separator 10, and the refrigerant vapor is introduced into the heat exchanger tubes 11 of the low-temperature regenerator 7. This refrigerant vapor heats the dilute absorption liquid distributed in the low-temperature regenerator 7 to evaporate the refrigerant, and the refrigerant vapor condenses while flowing through the heat transfer tube 11 and is led out to the condenser 12. In the condenser 12, refrigerant vapor from the low-temperature regenerator 7 is condensed in a heat transfer tube 13 through which cooling water flows, and this and the condensed refrigerant in the heat transfer tube 11 are supplied to an evaporator 14 and dispersed. It's becoming like that.
このような吸収式冷凍機1は、常時、高温再生
器8のバーナ9を用いて高エネルギーを供給しな
ければ作動させることができず、無尽蔵にある太
陽の熱エネルギー、工場やビル内の廃熱エネルギ
ーなどを利用する省エネルギー運転をすることが
できない欠点がある。 Such an absorption chiller 1 cannot be operated unless high energy is constantly supplied using the burner 9 of the high-temperature regenerator 8. The disadvantage is that it is not possible to perform energy-saving operation using heat energy or the like.
このような欠点を解消するものとして、第2図
に示すような一重二重効用組合せ吸収式冷凍機2
0が提案されている。これは、低温熱交換器21
から低温再生器7への管路に、太陽の熱エネルギ
ーなどを利用する低温熱源再生器22を介在させ
たものであり、低温熱源再生器22と高温再生器
8との組合せで一重二重効用組合せ運転させる場
合、高温再生器8のみで二重効用運転させる場合
または低温熱源再生器22のみで一重効用運転さ
せる場合とが、可能となつている。 As a solution to these drawbacks, a single-double effect combination absorption refrigerator 2 as shown in FIG.
0 is proposed. This is the low temperature heat exchanger 21
A low-temperature heat source regenerator 22 that utilizes solar thermal energy is interposed in the pipeline from the low-temperature regenerator 7 to the low-temperature regenerator 7. In the case of combined operation, it is possible to perform double-effect operation with only the high-temperature regenerator 8 or to perform single-effect operation with only the low-temperature heat source regenerator 22.
このような吸収式冷凍機20において一重二重
効用組合せ運転させる場合は、吸収液ポンプ2を
介して低温熱交換器21に送液される吸収器4の
稀吸収液5は、低温再生器7および低温熱源再生
器22からの中間液と高温再生器8からの濃吸収
液との混合液により加熱された後、前記低温熱交
換器21の出口の分岐点23で分流され、その約
2/3の量の稀吸収液は次の分岐点24に向けて送
液され、残部の約1/3は高温熱交換器25の受熱
側に導入される。そして、分岐点24へ送液され
た稀吸収液は、そこで低温熱源再生器22に導入
されるものと低温再生器7に導入されるものとに
分流される。 When such an absorption chiller 20 is operated in a single/double effect combination, the dilute absorption liquid 5 of the absorber 4 sent to the low temperature heat exchanger 21 via the absorption liquid pump 2 is transferred to the low temperature regenerator 7. After being heated by a mixture of the intermediate liquid from the low-temperature heat source regenerator 22 and the concentrated absorption liquid from the high-temperature regenerator 8, the mixture is divided at the branch point 23 at the outlet of the low-temperature heat exchanger 21, and about 2/2 3 of the dilute absorption liquid is sent toward the next branch point 24, and about 1/3 of the remaining amount is introduced into the heat receiving side of the high temperature heat exchanger 25. Then, the dilute absorption liquid sent to the branch point 24 is divided there into two types: one to be introduced into the low temperature heat source regenerator 22 and the other to be introduced into the low temperature regenerator 7.
上述の高温熱交換器25に導入された稀吸収液
は、高温再生器8の戻りの高温濃吸収液で加熱さ
れた後、高温再生器8に導入され図示しないバー
ナの燃焼によつて冷媒を蒸発させ、稀吸収液は濃
吸収液となる一方、冷媒蒸気は低温再生器7の伝
熱管11に導入される。低温熱源再生器22に導
入された稀吸収液は、伝熱管26内の太陽熱など
によつて加熱された温水により、冷媒を蒸発させ
て中間液となり、その冷媒蒸気は低温再生器7に
導入される。低温再生器7で散布される稀吸収液
は、伝熱管11内の高温冷媒蒸気により加熱さ
れ、冷媒を蒸発させて中間液となる。なお、この
中間液は合流点27で低温熱源再生器22の中間
液と合流し、さらに、次の合流点28で高温熱交
換器25を通過した高温再生器8の濃吸収液と合
流した後、低温熱交換器21の加熱側に導入され
る。その他の作動は前述した従来例と異なるとこ
ろはない。 The dilute absorption liquid introduced into the high-temperature heat exchanger 25 is heated by the high-temperature concentrated absorption liquid returned from the high-temperature regenerator 8, and then introduced into the high-temperature regenerator 8, where the refrigerant is converted by combustion in a burner (not shown). The dilute absorption liquid is evaporated to become a concentrated absorption liquid, while the refrigerant vapor is introduced into the heat exchanger tube 11 of the low temperature regenerator 7. The dilute absorption liquid introduced into the low-temperature heat source regenerator 22 evaporates the refrigerant into an intermediate liquid by hot water heated by solar heat or the like in the heat transfer tube 26, and the refrigerant vapor is introduced into the low-temperature regenerator 7. Ru. The dilute absorption liquid sprayed in the low-temperature regenerator 7 is heated by the high-temperature refrigerant vapor in the heat transfer tube 11, evaporates the refrigerant, and becomes an intermediate liquid. Note that this intermediate liquid merges with the intermediate liquid of the low-temperature heat source regenerator 22 at the confluence point 27, and furthermore, after combining with the concentrated absorption liquid of the high-temperature regenerator 8 that has passed through the high-temperature heat exchanger 25 at the next confluence point 28. , are introduced into the heating side of the low temperature heat exchanger 21. Other operations are the same as those of the conventional example described above.
上述の説明から判るように、高温再生器8のみ
で二重効用作動させる場合、つまり、天候が悪く
て太陽熱を利用することができないなどの理由
で、低温熱源再生器22を作動させることができ
ない場合は、前記分岐点24で分離された約1/3
の稀吸収液は、低温熱源再生器22を通過するに
過ぎず、稀吸収液のまゝ合流点27に戻される。
また、太陽の熱エネルギーやその他の廃熱エネル
ギーを十分利用できる場合は、低温熱源再生器2
2に導入される約1/3の稀吸収液から蒸発する冷
媒蒸気のみが凝縮器12に送られ、高温再生器8
内は稀吸収液が通過するにすぎない。 As can be seen from the above explanation, when dual-effect operation is performed using only the high temperature regenerator 8, in other words, the low temperature heat source regenerator 22 cannot be operated due to bad weather and the inability to utilize solar heat. In this case, about 1/3 separated at the branch point 24
The diluted absorption liquid simply passes through the low temperature heat source regenerator 22 and is returned to the confluence point 27 as the diluted absorption liquid.
In addition, if sufficient solar thermal energy or other waste heat energy can be used, low-temperature heat source regenerator 2
Only the refrigerant vapor evaporated from about 1/3 of the dilute absorption liquid introduced into the condenser 12 is sent to the high temperature regenerator 8.
Only the dilute absorbent liquid passes through.
このような一重二重組合せ吸収式冷凍機20で
上述したような一重二重効用組合せ運転をする場
合、低温熱源再生器22に導入される稀吸収液量
が約1/3と少なく、低温熱源再生器22の中間液
の濃度、温度とも高くなり過ぎ、天然エネルギー
および廃熱エネルギーを低温度まで有効に利用で
きなくなる。また、低温熱源再生器22の中間液
の温度が高くなり過ぎるため、この中間液に低温
再生器7からの中間液および高温再生器8からの
高温濃吸収液とを混合させて、低温熱交換器21
で吸収器4からの低温の稀吸収液5に放熱しても
適正な温度に下がりきらない。したがつて、吸収
器4での散布濃液の温度が高くなり過ぎ、蒸発器
14からの冷媒蒸気を吸収する効果が低下し、冷
却能力を十分に発揮できなくなる。したがつて、
これを回避するためには、吸収器4の伝熱管29
内を流過する冷却水の温度を下げて運転する必要
があり、図示しない冷却塔が大型化する欠点があ
る。また、二重効用運転時稀吸収液5の一部は低
温熱源再生器22を通過するだけで、そのまゝ吸
収器4へ戻るため冷凍サイクルを構成せず熱損失
が大きくなる。加えて、前記2つの分岐点23,
24における分流の適正な流量配分が難しく、低
負荷、低冷却水、低温水などのあらゆる運転状況
に応じて、稀吸収液の循環量が適正に追随して行
かず、高温再生器8の圧力変動が大きくなる。 When performing the single-double effect combination operation as described above in such a single-double combination absorption refrigerator 20, the amount of dilute absorption liquid introduced into the low-temperature heat source regenerator 22 is as small as about 1/3, and the low-temperature heat source Both the concentration and temperature of the intermediate liquid in the regenerator 22 become too high, making it impossible to effectively utilize natural energy and waste heat energy at low temperatures. Furthermore, since the temperature of the intermediate liquid in the low-temperature heat source regenerator 22 becomes too high, the intermediate liquid from the low-temperature regenerator 7 and the high-temperature concentrated absorption liquid from the high-temperature regenerator 8 are mixed to exchange low-temperature heat. Vessel 21
Even if heat is radiated from the absorber 4 to the low-temperature dilute absorption liquid 5, the temperature cannot be lowered to an appropriate level. Therefore, the temperature of the sprayed concentrated liquid in the absorber 4 becomes too high, and the effect of absorbing the refrigerant vapor from the evaporator 14 decreases, making it impossible to fully demonstrate the cooling capacity. Therefore,
In order to avoid this, the heat exchanger tube 29 of the absorber 4
It is necessary to operate the cooling water while lowering the temperature of the cooling water flowing therethrough, which has the disadvantage that the cooling tower (not shown) becomes large in size. Furthermore, during dual-effect operation, a portion of the dilute absorption liquid 5 only passes through the low-temperature heat source regenerator 22 and returns to the absorber 4 as it is, so no refrigeration cycle is formed and heat loss increases. In addition, the two branch points 23,
It is difficult to properly allocate the flow rate of the diversion in 24, and depending on various operating conditions such as low load, low cooling water, low temperature water, etc., the circulation amount of the dilute absorption liquid does not follow appropriately, and the pressure of the high temperature regenerator 8 Fluctuations increase.
また、一重効用運転をする場合、低温再生器7
から凝縮器12へ送られる冷媒蒸気量が1/3と少
ないので、低温熱源再生器22のみを作動させる
場合は冷凍能力が低下し、高温再生器8のみを作
動させる場合の、二重効用運転をする場合と同じ
冷凍能力をあげようとすると、その加熱量を増大
させるか、低温熱源再生器を大型化させなければ
ならない欠点がある。 In addition, when performing single effect operation, the low temperature regenerator 7
Since the amount of refrigerant vapor sent to the condenser 12 is as small as 1/3, when only the low temperature heat source regenerator 22 is operated, the refrigeration capacity is reduced, and when only the high temperature regenerator 8 is operated, double effect operation is possible. If you try to increase the same refrigerating capacity as when using a conventional method, the disadvantage is that you either have to increase the amount of heating or increase the size of the low-temperature heat source regenerator.
(c) 発明の目的
本発明は上述の問題点を解決するためになされ
たもので、稀吸収液の分流を少なくしてその流量
配分を容易にすると共に、一重二重効用組合せ運
転時吸収器に帰還される散布濃液の温度を低下さ
せ、かつ、低温再生器における冷媒蒸気の発生を
より一層促進させ、冷凍効率の高い小型の一重二
重効用組合せ吸収式冷凍機を提供することを目的
とする。(c) Purpose of the Invention The present invention has been made to solve the above-mentioned problems, and it reduces the number of diversions of the dilute absorbent liquid to facilitate its flow distribution, and also improves the efficiency of the absorber during single-double effect combination operation. The purpose of the present invention is to provide a compact single-double effect combination absorption refrigerator with high refrigeration efficiency by lowering the temperature of the sprayed concentrated liquid returned to the refrigerator and further promoting the generation of refrigerant vapor in a low-temperature regenerator. shall be.
(d) 発明の構成
本発明の特徴とするところは、熱交換器と低温
再生器との間の稀吸収液管路に、低温熱源を利用
して冷媒蒸気を発生させる低温熱源再生器を介在
させた一重二重効用組合せ吸収式冷凍機としたこ
とであり、さらに、第2の発明は上記の構成に加
えて、熱交換器と高温再生器との間の管路に、高
温再生器の高温濃吸収液により前記吸収器からの
稀吸収液を加熱することができる高温熱交換器を
介在させた一重二重効用組合せ吸収式冷凍機とし
たことである。(d) Structure of the Invention The present invention is characterized in that a low-temperature heat source regenerator that generates refrigerant vapor using a low-temperature heat source is interposed in the dilute absorption liquid pipeline between the heat exchanger and the low-temperature regenerator. Furthermore, in addition to the above-mentioned configuration, the second invention also provides a high-temperature regenerator in a conduit between the heat exchanger and the high-temperature regenerator. The present invention is a single-double effect combination absorption refrigerating machine in which a high-temperature heat exchanger capable of heating a dilute absorption liquid from the absorber with a high-temperature concentrated absorption liquid is interposed.
(e) 実施例
以下に本発明の一重二重効用組合せ吸収式冷凍
機を、その実施例に基づいて詳細に説明する。(e) Examples The single-double effect combination absorption refrigerator of the present invention will be described in detail below based on examples thereof.
第3図は本発明の一実施例である一重二重効用
組合せ吸収式冷凍機30の系統図を示す。これは
第1図で説明した吸収式冷凍機に低温熱源再生器
31を付加したものである。吸収器4からの稀吸
収液5を熱交換器3で加熱後、その一部を低温再
生器7へ残部を高温再生器8へ導くと共に、高温
再生器8からの濃吸収液と低温再生器7からの中
間液とを前記熱交換器3の加熱側に戻して混合
し、散布濃液として吸収器4に帰還させるように
なつていて、前記熱交換器3と低温再生器7との
間の稀吸収液管路32に、外部から導入される太
陽熱などの天然または廃熱エネルギーなどを伝熱
管33を介して利用し、冷媒蒸気を発生させる低
温熱源再生器31が介在されている。なお、低温
熱源再生器31内の冷媒蒸気および中間液をそれ
ぞれ凝縮器12および低温再生器7とに導出する
2本の管路34,35が接続されている。 FIG. 3 shows a system diagram of a single/double effect combination absorption refrigerator 30 which is an embodiment of the present invention. This is the absorption refrigerator described in FIG. 1 with a low-temperature heat source regenerator 31 added thereto. After heating the dilute absorption liquid 5 from the absorber 4 in the heat exchanger 3, a part of it is guided to the low temperature regenerator 7 and the remainder to the high temperature regenerator 8, and the concentrated absorption liquid from the high temperature regenerator 8 and the low temperature regenerator are introduced. The intermediate liquid from 7 is returned to the heating side of the heat exchanger 3, mixed, and returned to the absorber 4 as a sprayed concentrated liquid, and between the heat exchanger 3 and the low-temperature regenerator 7. A low-temperature heat source regenerator 31 is interposed in the dilute absorption liquid pipe line 32 to generate refrigerant vapor by utilizing natural or waste heat energy such as solar heat introduced from the outside through a heat transfer tube 33. Note that two pipe lines 34 and 35 are connected to lead out the refrigerant vapor and intermediate liquid in the low-temperature heat source regenerator 31 to the condenser 12 and the low-temperature regenerator 7, respectively.
このような構成による一重二重効用組合せ運転
の作動は、次のようになる。 The operation of the single/double effect combination operation with such a configuration is as follows.
まづ、吸収器4の稀吸収液5は吸収液ポンプ2
により熱交換器3に導入され、加熱後その出口の
分岐点6で分流され、約1/2の稀吸収液は稀吸収
液管路32を介して低温熱源再生器31に導入さ
れる。そこで、伝熱管33を介して加熱され、冷
媒を蒸発させて中間液となる。その冷媒蒸気は管
路34を介して凝縮器12に導入され、前記中間
液は管路35を介して低温再生器7の散布装置3
6で散布される。前記分岐点6で分流された残り
の約1/2の稀吸収液は、管路37を介して高温再
生器8に導入されて加熱され、高温の冷媒蒸気と
濃吸収液になり、気液分離器10に導入される。
なお、稀吸収液の分岐点6における配分は実験な
どで予め確認した上で、管路37あるいは稀吸収
液管路32にオリフイスなどを介在させて流量の
調整がなされる。前記気液分離器10で冷媒蒸気
と濃吸収液とが分離され、冷媒蒸気が低温再生器
7内の伝熱管11に導入され、低温再生器7内で
散布される中間液はさらに冷媒を蒸気させる。前
記気液分離器10内の濃吸収液は熱交換器3に戻
され、そこで前記低温再生器7から戻されてきた
中間液と混合され、前記稀吸収液5に放熱して冷
却された後、管路38を介して散布濃液として吸
収器4の散布装置39で散布される。 First, the diluted absorption liquid 5 of the absorber 4 is supplied to the absorption liquid pump 2.
After being heated, the diluted absorption liquid is introduced into the heat exchanger 3 , and after being heated, it is divided at a branch point 6 at its outlet, and approximately 1/2 of the diluted absorption liquid is introduced into the low-temperature heat source regenerator 31 via the diluted absorption liquid pipe 32 . There, it is heated via the heat exchanger tube 33, evaporates the refrigerant, and becomes an intermediate liquid. The refrigerant vapor is introduced into the condenser 12 via a line 34, and the intermediate liquid is transferred via a line 35 to the sparging device 3 of the low temperature regenerator 7.
Dispersed at 6. The remaining approximately 1/2 of the dilute absorption liquid separated at the branch point 6 is introduced into the high-temperature regenerator 8 via the pipe 37, where it is heated and becomes high-temperature refrigerant vapor and concentrated absorption liquid. is introduced into the separator 10.
Note that the distribution of the diluted absorbent liquid at the branch point 6 is confirmed in advance through experiments or the like, and the flow rate is adjusted by interposing an orifice or the like in the pipe line 37 or the diluted absorbent liquid line 32. The refrigerant vapor and the concentrated absorption liquid are separated in the gas-liquid separator 10, and the refrigerant vapor is introduced into the heat transfer tubes 11 in the low-temperature regenerator 7, and the intermediate liquid sprayed in the low-temperature regenerator 7 further converts the refrigerant into vapor. let The concentrated absorption liquid in the gas-liquid separator 10 is returned to the heat exchanger 3, where it is mixed with the intermediate liquid returned from the low-temperature regenerator 7, and is cooled by radiating heat to the dilute absorption liquid 5. , is sprayed as a spray concentrate via a pipe 38 in a spray device 39 of the absorber 4.
一方、低温熱源再生器31のみを使用して高温
再生器8を使用しない一重効用の作動は、吸収器
4から稀吸収液の一部は単に高温再生器8を通過
し、残部の1/2の稀吸収液は低温熱源再生器31
に導入される。また、高温再生器8のみを使用す
る二重効用の作動は、吸収器4からの稀吸収液の
一部は単に低温熱源再生器31を通過し、残部の
1/2の稀吸収液は高温再生器8に導入される。 On the other hand, in single-effect operation using only the low-temperature heat source regenerator 31 and not using the high-temperature regenerator 8, a portion of the dilute absorption liquid from the absorber 4 simply passes through the high-temperature regenerator 8, and 1/2 of the remaining The diluted absorption liquid is transferred to the low temperature heat source regenerator 31.
will be introduced in In addition, double-effect operation using only the high-temperature regenerator 8 means that a portion of the dilute absorption liquid from the absorber 4 simply passes through the low-temperature heat source regenerator 31, and the remaining 1/2 of the dilute absorption liquid is heated to a high temperature. It is introduced into the regenerator 8.
このような作動においては、前記低温熱源再生
器31への稀吸収液の送液量を1/2とすることが
できるので、従来例のところで述べたような稀吸
収液量が1/3の場合に比べ、低温熱源再生器31
内の中間液温度が高くなり過ぎることはなく、天
然エネルギーおよび廃熱エネルギーを低温度まで
有効に利用することができる。また、散布濃液の
温度が低くなるため、吸収器4における蒸発器1
4からの冷媒蒸気の散布濃液への吸収効果を向上
させることができ、図示しない冷却塔の容量を小
型化できる。また、二重効用専用運転時において
も、熱交換器3を通つた稀吸収液は全て冷凍サイ
クルを構成して循環するので、熱損失が少なくな
る。さらに、稀吸収液の分岐点を1個所にしたの
で、種々の負荷運転でも高温再生器8内の圧力変
動を小さく維持でき、適正な稀吸収液量に追随し
て運転することができる。 In such an operation, the amount of dilute absorption liquid sent to the low temperature heat source regenerator 31 can be reduced to 1/2, so the amount of dilute absorption liquid sent to the low temperature heat source regenerator 31 can be reduced to 1/3 as described in the conventional example. Compared to the case, low temperature heat source regenerator 31
The temperature of the intermediate liquid inside the tank does not become too high, and natural energy and waste heat energy can be effectively utilized down to low temperatures. In addition, since the temperature of the sprayed concentrated liquid becomes low, the evaporator 1 in the absorber 4
The absorption effect of the refrigerant vapor from No. 4 into the sprayed concentrated liquid can be improved, and the capacity of the cooling tower (not shown) can be reduced in size. Further, even during dual-effect dedicated operation, all of the dilute absorption liquid that has passed through the heat exchanger 3 is circulated as part of the refrigeration cycle, so that heat loss is reduced. Furthermore, since the dilute absorption liquid branch point is set to one location, pressure fluctuations in the high temperature regenerator 8 can be kept small even under various load operations, and operation can be performed following an appropriate amount of dilute absorption liquid.
加えて、低温熱源再生器31から導出される中
間液の量が多くその温度を従来例よりも低くする
ことができるので、対数平均温度差が大きくなり
伝熱管33の伝熱面積も小さくできる。ちなみ
に、前記低温熱源再生器31の伝熱面積の小さく
できることを理論的に説明すると、例えば、供給
される熱量が従来例と同じであれば、低温熱源再
生器31の伝熱面積は、主に外部の熱エネルギー
を供給する液体の入口と出口の温度および稀吸収
液の入口温度と導出される中間液の温度との対数
平均温度差によつて決まる。すなわち、伝熱面積
を決める式は、
HS=Q/(K・Δtm)
たゞし、
HS:伝熱面積
K:熱伝達率(ほゞ一定)
Δtm:対数平均温度差
Q:外部から供給される熱量(一定)
となり、対数平均温度差Δtmが大きくなれば、
伝熱面積も小さくすることができるからである。
したがつて、低温熱源再生器31を小型化するこ
とができる。 In addition, since the amount of intermediate liquid drawn out from the low temperature heat source regenerator 31 is large and its temperature can be lowered than in the conventional example, the logarithmic average temperature difference becomes large and the heat transfer area of the heat transfer tubes 33 can also be reduced. By the way, to explain theoretically how the heat transfer area of the low temperature heat source regenerator 31 can be made small, for example, if the amount of heat supplied is the same as in the conventional example, the heat transfer area of the low temperature heat source regenerator 31 is mainly It is determined by the inlet and outlet temperatures of the liquid supplying external thermal energy and by the logarithmic mean temperature difference between the inlet temperature of the dilute absorption liquid and the temperature of the derived intermediate liquid. In other words, the formula for determining the heat transfer area is HS=Q/(K・Δtm) where HS: heat transfer area K: heat transfer coefficient (approximately constant) Δtm: log average temperature difference Q: externally supplied amount of heat (constant), and if the logarithmic mean temperature difference Δtm increases,
This is because the heat transfer area can also be reduced.
Therefore, the low temperature heat source regenerator 31 can be downsized.
第4図は異なる発明の実施例である一重二重効
用組合せ吸収式冷凍機40である。これは、上記
の発明の構成に加えて、吸収器4からの稀吸収液
が前記熱交換器3から高温再生器8に至るまでの
管路37に、高温再生器8の高温濃吸収液により
稀吸収液5を加熱することができる高温熱交換器
41を介在させたものである。 FIG. 4 shows a single/double effect combination absorption refrigerator 40 which is a different embodiment of the invention. In addition to the configuration of the invention described above, this is because the dilute absorption liquid from the absorber 4 is transferred to the pipe 37 from the heat exchanger 3 to the high temperature regenerator 8 by the high temperature concentrated absorption liquid of the high temperature regenerator 8. A high-temperature heat exchanger 41 that can heat the dilute absorption liquid 5 is interposed.
これによれば、熱交換器3からの稀吸収液5
は、高温再生器8に導入される前にさらに高温熱
交換器41で、高温再生器8からの高温濃吸収液
により加熱されるので、冷媒蒸気を発生し易い状
態で高温再生器8に導入されることになる。その
後の作動は前述の発明と異なるところはない。 According to this, the dilute absorption liquid 5 from the heat exchanger 3
Before being introduced into the high-temperature regenerator 8, the refrigerant is further heated by the high-temperature concentrated absorption liquid from the high-temperature regenerator 8 in the high-temperature heat exchanger 41, so it is introduced into the high-temperature regenerator 8 in a state where refrigerant vapor is easily generated. will be done. The subsequent operation is no different from that of the invention described above.
したがつて、冷凍効果の面では上述の発明と同
様であることに加えて、高温熱交換器41を介在
させることによつて高温再生器8に導入される稀
吸収液の温度が一層高められるので、高温再生器
8で使用されるバーナ9の燃料消費量を減らすこ
とができると共に、高温再生器8で冷媒蒸気を多
く発生させることができ、冷凍効果の向上をより
一層図ることができる。 Therefore, in addition to being similar to the above-described invention in terms of the refrigeration effect, the temperature of the dilute absorption liquid introduced into the high-temperature regenerator 8 can be further increased by interposing the high-temperature heat exchanger 41. Therefore, the fuel consumption of the burner 9 used in the high-temperature regenerator 8 can be reduced, and a large amount of refrigerant vapor can be generated in the high-temperature regenerator 8, so that the refrigeration effect can be further improved.
(f) 発明の効果
本発明は以上詳細に説明したように、熱交換器
と低温再生器との間の稀吸収液管路に、低温熱源
を利用して冷媒蒸気を発生させる低温熱源再生器
を介在させた一重二重効用組合せ吸収式冷凍機と
したので、低温熱源再生器の中間液温度を低くす
ることができ、コンパクトな低温熱源再生器とす
ることができる。また、冷却塔の容量を小型化す
ることができ、かつ、サイクル効率を上げること
により熱損失を少なくできると共に、稀吸収液系
統の分岐点が減るので種々の負荷運転においても
追随がよく、高い冷却効率で作動させることがで
きる。さらに、異なる発明は上記の構成に加え
て、熱交換器と高温再生器との間の管路に、高温
再生器の高温濃吸収液により前記吸収器からの稀
吸収液を加熱することができる高温熱交換器を介
在させたので、冷凍効果をさらに向上させること
ができる。(f) Effects of the Invention As explained in detail above, the present invention provides a low temperature heat source regenerator that uses a low temperature heat source to generate refrigerant vapor in a dilute absorption liquid pipeline between a heat exchanger and a low temperature regenerator. Since the single-double effect combination absorption refrigerator is used, the intermediate liquid temperature of the low-temperature heat source regenerator can be lowered, and the low-temperature heat source regenerator can be made compact. In addition, the capacity of the cooling tower can be reduced, heat loss can be reduced by increasing cycle efficiency, and the number of branch points in the dilute absorption liquid system has been reduced, so it can be easily followed under various load operations. It can be operated with cooling efficiency. Furthermore, in addition to the above configuration, a different invention may include a pipe line between the heat exchanger and the high temperature regenerator, in which the dilute absorption liquid from the absorber is heated by the high temperature concentrated absorption liquid of the high temperature regenerator. Since a high temperature heat exchanger is provided, the refrigeration effect can be further improved.
第1図は従来例の二重効用吸収式冷凍機の系統
図、第2図は従来例の一重二重効用組合せ吸収式
冷凍機の系統図、第3図は本発明の一重二重効用
組合せ吸収式冷凍機の系統図、第4図は異なる発
明の系統図である。
3……熱交換器、4……吸収器、5……稀吸収
液、7……低温再生器、8……高温再生器、3
0,40……一重二重効用組合せ吸収式冷凍機、
31……低温熱源再生器、32……稀吸収液管
路、37……管路、41……高温熱交換器。
Fig. 1 is a system diagram of a conventional double-effect absorption refrigerator, Fig. 2 is a system diagram of a conventional single-double-effect combination absorption refrigerator, and Fig. 3 is a system diagram of a conventional single-double-effect combination absorption refrigerator. A system diagram of an absorption refrigerator, FIG. 4 is a system diagram of a different invention. 3... Heat exchanger, 4... Absorber, 5... Dilute absorption liquid, 7... Low temperature regenerator, 8... High temperature regenerator, 3
0,40...Single and double effect combination absorption refrigerator,
31... Low temperature heat source regenerator, 32... Dilute absorption liquid pipe line, 37... Pipe line, 41... High temperature heat exchanger.
Claims (1)
その一部を低温再生器へ残部を高温再生器へ導く
と共に、高温再生器からの濃吸収液と低温再生器
からの中間液とを前記熱交換器の加熱側に戻して
混合し、散布濃液として吸収器に帰還させる吸収
式冷凍機において、 前記熱交換器と低温再生器との間の稀吸収液管
路に、低温熱源を利用して冷媒蒸気を発生させる
低温熱源再生器を介在させたことを特徴とする一
重二重効用組合せ吸収式冷凍機。 2 吸収器からの稀吸収液を熱交換器で加熱後、
その一部を低温再生器へ残部を高温再生器へ導く
と共に、高温再生器からの濃吸収液と低温再生器
からの中間液とを前記熱交換器の加熱側に戻して
混合し、散布濃液として吸収器に帰還させる吸収
式冷凍機において、 前記熱交換器と低温再生器との間の稀吸収液管
路に、低温熱源を利用して冷媒蒸気を発生させる
低温熱源再生器を介在させると共に、 前記熱交換器と高温再生器との間の管路に、高
温再生器の高温濃吸収液により前記吸収器からの
稀吸収液を加熱することができる高温熱交換器を
介在させたことを特徴とする一重二重効用組合せ
吸収式冷凍機。[Claims] 1. After heating the dilute absorption liquid from the absorber with a heat exchanger,
A part of it is led to a low-temperature regenerator and the rest is led to a high-temperature regenerator, and the concentrated absorption liquid from the high-temperature regenerator and the intermediate liquid from the low-temperature regenerator are returned to the heating side of the heat exchanger and mixed. In an absorption refrigerator that returns liquid to the absorber, a low-temperature heat source regenerator that generates refrigerant vapor using a low-temperature heat source is interposed in the dilute absorption liquid pipeline between the heat exchanger and the low-temperature regenerator. This is a single/double effect combination absorption refrigerator. 2 After heating the diluted absorption liquid from the absorber with a heat exchanger,
A part of it is led to a low-temperature regenerator and the rest is led to a high-temperature regenerator, and the concentrated absorption liquid from the high-temperature regenerator and the intermediate liquid from the low-temperature regenerator are returned to the heating side of the heat exchanger and mixed. In an absorption refrigerator that returns liquid to the absorber, a low-temperature heat source regenerator that generates refrigerant vapor using a low-temperature heat source is interposed in the dilute absorption liquid pipeline between the heat exchanger and the low-temperature regenerator. In addition, a high-temperature heat exchanger capable of heating the dilute absorption liquid from the absorber with the high-temperature concentrated absorption liquid of the high-temperature regenerator is interposed in the pipeline between the heat exchanger and the high-temperature regenerator. A single/double effect combination absorption chiller featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5111283A JPS59176550A (en) | 1983-03-25 | 1983-03-25 | Single and double effect combination abroption type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5111283A JPS59176550A (en) | 1983-03-25 | 1983-03-25 | Single and double effect combination abroption type refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59176550A JPS59176550A (en) | 1984-10-05 |
JPH038465B2 true JPH038465B2 (en) | 1991-02-06 |
Family
ID=12877717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5111283A Granted JPS59176550A (en) | 1983-03-25 | 1983-03-25 | Single and double effect combination abroption type refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59176550A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015048958A (en) * | 2013-08-30 | 2015-03-16 | パナソニックIpマネジメント株式会社 | Absorption type refrigerator |
-
1983
- 1983-03-25 JP JP5111283A patent/JPS59176550A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015048958A (en) * | 2013-08-30 | 2015-03-16 | パナソニックIpマネジメント株式会社 | Absorption type refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JPS59176550A (en) | 1984-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61110852A (en) | Absorption heat pump/refrigeration system | |
US4546620A (en) | Absorption machine with desorber-resorber | |
JPS5913670B2 (en) | Dual effect absorption refrigeration equipment | |
US4470269A (en) | Absorption refrigeration system utilizing low temperature heat source | |
JP2000121196A (en) | Cooling/heating system utilizing waste heat | |
JPH038465B2 (en) | ||
US5216891A (en) | Solution flows in direct expansion lithium bromide air conditioner/heater | |
CN112413925A (en) | Low-temperature heat source refrigerating device | |
KR200144045Y1 (en) | Absorption type cooler | |
JP2657703B2 (en) | Absorption refrigerator | |
JPH0429339Y2 (en) | ||
JPS5913667B2 (en) | Absorption type water cooler/heater | |
JP2000088391A (en) | Absorption refrigerating machine | |
JPH0522760Y2 (en) | ||
KR0114912Y1 (en) | Absorptive refrigerator/heater using libr solution | |
JP2785154B2 (en) | Single effect absorption refrigerator | |
JPH0350373Y2 (en) | ||
JPH0354378Y2 (en) | ||
JP3723372B2 (en) | Waste heat input type absorption chiller / heater | |
JPH06137703A (en) | Tripple effect heat pump | |
JPS6024903B2 (en) | Multiple effect absorption refrigerator | |
JPH05187206A (en) | Waste heat recovery method in cogeneration system | |
KR19980059048U (en) | Absorption Air Conditioner | |
JPH076709B2 (en) | Absorption type water heater | |
JPH01266476A (en) | Absorption refrigerator |