JPH0473060B2 - - Google Patents

Info

Publication number
JPH0473060B2
JPH0473060B2 JP60217685A JP21768585A JPH0473060B2 JP H0473060 B2 JPH0473060 B2 JP H0473060B2 JP 60217685 A JP60217685 A JP 60217685A JP 21768585 A JP21768585 A JP 21768585A JP H0473060 B2 JPH0473060 B2 JP H0473060B2
Authority
JP
Japan
Prior art keywords
low
heat exchanger
temperature
temperature regenerator
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60217685A
Other languages
Japanese (ja)
Other versions
JPS6277566A (en
Inventor
Masahiko Ooshima
Tomoharu Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Yazaki Sogyo KK
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yazaki Sogyo KK, Toho Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP21768585A priority Critical patent/JPS6277566A/en
Publication of JPS6277566A publication Critical patent/JPS6277566A/en
Publication of JPH0473060B2 publication Critical patent/JPH0473060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重効用吸収冷凍機に係り、特に発生
冷媒量を増加させてなる二重効用吸収冷凍機に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a double-effect absorption refrigerator, and more particularly to a double-effect absorption refrigerator in which the amount of refrigerant generated is increased.

〔従来の技術〕[Conventional technology]

従来のこの種の二重効用吸収冷凍機は、第2図
に示すように構成されている。すなわち、高温再
生器10は加熱源12が設けられるとともに、配
管14を介して分離器16と連通している。分離
器16には、蒸気管18と送液管20とが設けて
ある。蒸気管18が接続してある低温再生器22
の出側配管24は凝縮器26に接続される。ま
た、低温再生器22と凝縮器26とは、蒸気管2
8によつて連通されている。凝縮器26は散布管
30を介して冷温水熱交換器32が設れてある蒸
発器34と連通している。
A conventional dual-effect absorption refrigerator of this type is constructed as shown in FIG. That is, the high temperature regenerator 10 is provided with a heat source 12 and communicates with a separator 16 via piping 14 . The separator 16 is provided with a steam pipe 18 and a liquid feed pipe 20. Low temperature regenerator 22 to which steam pipe 18 is connected
The outlet pipe 24 is connected to a condenser 26 . Furthermore, the low temperature regenerator 22 and the condenser 26 are connected to the steam pipe 2
8. The condenser 26 communicates via a sparge pipe 30 with an evaporator 34 in which a cold/hot water heat exchanger 32 is provided.

一方、前記した送液管20は、高温熱交換器3
6に接続してある。高温熱交換器36の出側配管
38は低温再生器22に接続してある。そして、
低温再生器22の底部に設けた濃溶液配管40
は、低温熱交換器42を介して吸収器44に接続
される。
On the other hand, the liquid sending pipe 20 described above is connected to the high temperature heat exchanger 3.
It is connected to 6. An outlet pipe 38 of the high temperature heat exchanger 36 is connected to the low temperature regenerator 22. and,
Concentrated solution piping 40 provided at the bottom of the low temperature regenerator 22
is connected to an absorber 44 via a low temperature heat exchanger 42.

この吸収器44には冷却水熱交換器46が配設
されており、この冷却水熱交換器46は、連結管
48を介して凝縮器26に配設した冷却水熱交換
器50と接続されている。
A cooling water heat exchanger 46 is disposed in the absorber 44, and the cooling water heat exchanger 46 is connected to a cooling water heat exchanger 50 disposed in the condenser 26 via a connecting pipe 48. ing.

吸収器44の下部には、戻り配管52の一端が
接続してあり、この戻り配管52の他端は、循環
ポンプ54、低温熱交換器42、高温熱交換器3
6を介して高温再生器10に接続してある。
One end of a return pipe 52 is connected to the lower part of the absorber 44, and the other end of this return pipe 52 is connected to the circulation pump 54, the low temperature heat exchanger 42, and the high temperature heat exchanger 3.
6 to a high temperature regenerator 10.

上記の直焚二重効用吸収冷凍機の作用は次の通
りである。
The operation of the above-mentioned direct-fired dual-effect absorption refrigerator is as follows.

高温再生器10内の希溶液は、加熱源12によ
り加熱され、高温状態となつて分離器16に入
る。
The dilute solution in the high temperature regenerator 10 is heated by the heating source 12 and enters the separator 16 at a high temperature.

分離器16は、高温の希溶液を冷媒蒸気と中間
濃度溶液とに分離し、冷媒蒸気を蒸気管18によ
り低温再生器22に送るとともに、中間濃度溶液
を送液管20により高温熱交換器36に送る。高
温熱交換器36に入つた中間濃度溶液は、高温再
生器10に送られる希溶液と熱交換をして希溶液
を温めた後、出側配管38により低温再生器22
内に入る。
The separator 16 separates the high temperature dilute solution into refrigerant vapor and intermediate concentration solution, sends the refrigerant vapor to the low temperature regenerator 22 through the steam pipe 18, and sends the intermediate concentration solution to the high temperature heat exchanger 36 through the liquid sending pipe 20. send to The intermediate concentration solution entering the high temperature heat exchanger 36 exchanges heat with the dilute solution sent to the high temperature regenerator 10 to warm the dilute solution, and then is transferred to the low temperature regenerator 22 via the output pipe 38.
Go inside.

蒸気管18により低温再生器22に入つた冷媒
蒸気は、高温熱交換器36からの中間濃度溶液を
加熱した後、出側配管24により凝縮器26に導
かれる。また、低温再生器22内の中間濃度溶液
は、加熱されて濃溶液と冷媒蒸気とになり、冷媒
蒸気蒸気管28を介して凝縮器26に導かれ、濃
溶液が濃溶液配管40により低温熱交換器42に
導かれる。
The refrigerant vapor that enters the low temperature regenerator 22 through the steam pipe 18 heats the intermediate concentration solution from the high temperature heat exchanger 36 and is then led to the condenser 26 through the outlet pipe 24. Further, the intermediate concentration solution in the low temperature regenerator 22 is heated to become a concentrated solution and refrigerant vapor, which are led to the condenser 26 via the refrigerant vapor steam pipe 28, and the concentrated solution is heated to low temperature heat by the concentrated solution pipe 40. It is led to an exchanger 42.

凝縮器26内に入つた冷媒蒸気は、冷却水熱交
換器50により冷却され、液体冷媒となつた後、
散布管30を介して低圧の蒸発器34内に散布さ
れる。蒸発器34内に散布された液体冷媒は蒸発
器34内において冷温水熱交換器32内を流れる
冷却用の水を冷却しつつ蒸発し、吸収器44内に
流入する。他方、低温再生器22から低温熱交換
器42に導かれた濃溶液は、循環ポンプ54によ
り低温熱交換器42に圧送されてくる希溶液と熱
交換をして冷却された後、吸収器44内に散布さ
れる。この吸収器44内に散布された濃溶液は、
冷却水熱交換器46に冷却されるとともに、蒸発
器34から流入してくる冷媒蒸気を吸収し、希溶
液となる。この希溶液は、戻り配管52を介して
循環ポンプ54により吸引され、低温熱交換器4
2、高温熱交換器36を介して再び高温再生器1
0に送られる。
The refrigerant vapor that has entered the condenser 26 is cooled by the cooling water heat exchanger 50 and becomes a liquid refrigerant.
It is distributed via a distribution pipe 30 into a low-pressure evaporator 34 . The liquid refrigerant spread in the evaporator 34 evaporates while cooling the cooling water flowing in the cold/hot water heat exchanger 32 in the evaporator 34 and flows into the absorber 44 . On the other hand, the concentrated solution led from the low-temperature regenerator 22 to the low-temperature heat exchanger 42 is cooled by exchanging heat with the dilute solution pumped to the low-temperature heat exchanger 42 by the circulation pump 54, and then transferred to the absorber 44. distributed within. The concentrated solution sprayed into this absorber 44 is
It is cooled by the cooling water heat exchanger 46 and absorbs the refrigerant vapor flowing in from the evaporator 34 to become a dilute solution. This diluted solution is sucked by the circulation pump 54 via the return pipe 52 and is transferred to the low temperature heat exchanger 4.
2. High temperature regenerator 1 again via high temperature heat exchanger 36
Sent to 0.

第3図は他の従来例を示す系統図である。 FIG. 3 is a system diagram showing another conventional example.

第3図に示す従来例が前述を従来例と異なると
ころは、吸収器44からの希溶液を全て高温再生
器10に送り込んでしまうのではなく高温熱交換
器36と低温熱交換器42の間で分流させ、一部
を高温再生器10に一部を低温再生器22に送
り、かつ高温再生器10および低温再生器22で
濃縮された中間濃溶液を低温熱交換器42の入口
で合流させ、低温熱交換器42を通過させた後吸
収器44に流入させるようにしたものである。
The difference between the conventional example shown in FIG. A portion is sent to the high temperature regenerator 10 and a portion is sent to the low temperature regenerator 22, and the intermediate concentrated solution concentrated in the high temperature regenerator 10 and the low temperature regenerator 22 is combined at the inlet of the low temperature heat exchanger 42. , after passing through a low-temperature heat exchanger 42, it flows into an absorber 44.

このような従来例も上記従来例の作用とほぼ同
じとなる。
Such a conventional example also has almost the same effect as the above-mentioned conventional example.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前者の従来の技術にあつては、
高温再生器10に入る希溶液の温度が、高温再生
器10の圧力における飽和温度に達していないた
め、高温再生器10の加熱量の一部が顕熱として
使用されてしまうことになつて熱量が大きくなつ
てしまう。一方、後者の従来の技術にあつては、
希溶液の分流によつて、高温再生器10に入る溶
液量が減るため高温再生器10での顕熱量は減る
ものの、低温再生器22に入る希溶液の温度が、
濃溶液との熱交換により高温となるが、低温再生
器22の飽和温度以上にはならないため、低温再
生器22で顕熱として使用されてしまい、結局熱
量が大きくなつてしまう。
However, in the case of the former conventional technology,
Since the temperature of the dilute solution entering the high-temperature regenerator 10 has not reached the saturation temperature at the pressure of the high-temperature regenerator 10, a part of the heating amount of the high-temperature regenerator 10 is used as sensible heat, resulting in a decrease in the amount of heat. becomes larger. On the other hand, regarding the latter conventional technology,
Due to the diversion of the dilute solution, the amount of solution entering the high-temperature regenerator 10 is reduced, so the amount of sensible heat in the high-temperature regenerator 10 is reduced, but the temperature of the dilute solution entering the low-temperature regenerator 22 is
Although the temperature becomes high due to heat exchange with the concentrated solution, the temperature does not rise above the saturation temperature of the low-temperature regenerator 22, so the low-temperature regenerator 22 ends up using it as sensible heat, resulting in a large amount of heat.

したがつて、上記いずれの従来技術とも冷媒の
発生に必要な潜熱として使用される熱量分が減少
し、冷凍成績係数が低下してしまうという問題点
があつた。
Therefore, all of the above conventional techniques have the problem that the amount of heat used as latent heat necessary for generating refrigerant decreases, resulting in a decrease in the refrigeration coefficient of performance.

本発明は上述の問題点に鑑みてなされたもの
で、その目的は入力した熱量を有効に利用できる
ようにして発生冷媒量を多くし冷凍成績係数を向
上させた二重効用吸収冷凍機を提供することにあ
る。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a dual-effect absorption refrigerating machine that can effectively utilize input heat, increase the amount of refrigerant generated, and improve the refrigeration coefficient of performance. It's about doing.

〔問題点を解決するための手段〕 上記問題点を解決した本発明の二重効用吸収冷
凍機は、希溶液を加熱する加熱源が設けてある高
温再生器と、この高温再生器により加熱した希溶
液を冷媒蒸気と中間濃度溶流とに分離する分離器
と、この分離器からの中間濃度溶液が前記高温再
生器に流入する希溶液と熱交換をする高温熱交換
器と、前記分離器から導かれた冷媒蒸気により前
記高温熱交換器から流入する中間濃度溶液を加熱
し、冷媒蒸気と濃溶液とに分離する低温再生器
と、この低温再生器からの冷媒蒸気を凝縮させる
凝縮器と、この凝縮器により凝縮した液体冷媒が
散布されて蒸発し、冷却用水を冷却する低圧の蒸
発器と、前記低温再生器から流入した前記濃溶液
が前記高温熱交換器に流入する希溶液と熱交換を
して冷却される低温熱交換器と、この低温熱交換
器からの前記濃溶液が散布され、前記蒸発器から
流入した蒸気を吸収して希溶液となる吸収器と、
この吸収器において生じた希溶液を前記低温熱交
換器に圧送する循環ポンプとを有する二重効用吸
収冷凍機において、前記吸収器からの希溶液を前
記低温熱交換器の出口側で分流させ、前記高温熱
交換器にて温度が低下した前記中間濃溶液と前記
分岐した希溶液とを混合させ、前記低温再生器に
導く配管を備えたものである。
[Means for Solving the Problems] The dual-effect absorption refrigerator of the present invention that solves the above problems includes a high-temperature regenerator provided with a heating source for heating a dilute solution, and a high-temperature regenerator that is heated by the high-temperature regenerator. a separator for separating a dilute solution into a refrigerant vapor and an intermediate concentration solution stream; a high temperature heat exchanger for exchanging heat between the intermediate concentration solution from the separator and the dilute solution flowing into the high temperature regenerator; and the separator. a low-temperature regenerator that heats the intermediate concentration solution flowing in from the high-temperature heat exchanger with refrigerant vapor led from the high-temperature heat exchanger and separates it into refrigerant vapor and a concentrated solution; and a condenser that condenses the refrigerant vapor from the low-temperature regenerator. The liquid refrigerant condensed by the condenser is sprayed and evaporated, and the low-pressure evaporator cools the cooling water, and the concentrated solution flowing from the low-temperature regenerator flows into the high-temperature heat exchanger. a low-temperature heat exchanger that is cooled by exchange, and an absorber in which the concentrated solution from the low-temperature heat exchanger is sprayed and absorbs vapor flowing from the evaporator to become a dilute solution;
In a dual-effect absorption refrigerator having a circulation pump that pumps the dilute solution generated in the absorber to the low-temperature heat exchanger, the dilute solution from the absorber is divided at the outlet side of the low-temperature heat exchanger, The intermediate concentrated solution whose temperature has been lowered in the high temperature heat exchanger and the branched dilute solution are mixed and are provided with piping that leads to the low temperature regenerator.

〔作用〕[Effect]

吸収器からの希溶液を低温熱交換器の出口側で
分流して高温再生器と低温再生器とに流入させ、
この希溶液が分流したことにより高温再生器での
顕熱量が減少し、しかも低温再生器における飽和
温度より高温な中間濃溶液の熱を希溶液に与える
ことになるから低温再生器での顕熱量が減少する
ことになる。
Dividing the dilute solution from the absorber at the outlet side of the low-temperature heat exchanger to flow into the high-temperature regenerator and the low-temperature regenerator,
By diverting this dilute solution, the amount of sensible heat in the high-temperature regenerator decreases, and since the heat of the intermediate concentrated solution, which is higher than the saturation temperature in the low-temperature regenerator, is given to the dilute solution, the amount of sensible heat in the low-temperature regenerator decreases. will decrease.

本発明によれば従来の技術に比べ加熱量におけ
る潜熱量の割合が増すため、冷媒発生量が増加し
冷凍効率が向上する。
According to the present invention, since the ratio of the amount of latent heat to the amount of heating increases compared to the conventional technology, the amount of refrigerant generated increases and the refrigeration efficiency improves.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明に係る二重効用吸収冷凍機の実
施例を示す構成図である。
FIG. 1 is a block diagram showing an embodiment of a dual-effect absorption refrigerator according to the present invention.

第1図において、低温熱交換器42と高温熱交
換器36との間で吸収器44からの希溶液を分流
させ、希溶液の一部を配管56を介して低温再生
器22に導くと共に、希溶液の残りを高温再生器
10に流入させるようにしたものであり、他の構
成は第2図に示す従来技術と同様である。
In FIG. 1, the dilute solution from the absorber 44 is divided between the low-temperature heat exchanger 42 and the high-temperature heat exchanger 36, and a portion of the dilute solution is guided to the low-temperature regenerator 22 via piping 56. The remainder of the dilute solution is made to flow into the high temperature regenerator 10, and the other configurations are the same as the prior art shown in FIG.

このような構成からなる実施例の作用を説明す
る。吸収器44を出た希溶液は、低温熱交換器4
2と高温熱交換器36との間で分流され、一方を
高温再生器10を流入させ、他の一方を低温再生
器22に流入させる。高温再生器10で濃縮され
分離器16で気水分離された中間濃溶液は、高温
熱交換器36を通つて低温再生器22に送られ、
分流された配管56を介して低温再生器22に流
入してきた希溶液と混合された後、低温再生器2
2において濃縮される。低温再生器22で濃縮さ
れた濃溶液は配管40、低温熱交換器42を通つ
て吸収器44に送られる。
The operation of the embodiment having such a configuration will be explained. The dilute solution leaving the absorber 44 is transferred to the low temperature heat exchanger 4
2 and the high-temperature heat exchanger 36 , one side flows into the high-temperature regenerator 10 and the other side flows into the low-temperature regenerator 22 . The intermediate concentrated solution concentrated in the high-temperature regenerator 10 and separated into steam and water in the separator 16 is sent to the low-temperature regenerator 22 through the high-temperature heat exchanger 36.
After being mixed with the dilute solution that has flowed into the low-temperature regenerator 22 via the branched pipe 56, the low-temperature regenerator 2
It is concentrated in 2. The concentrated solution concentrated in the low-temperature regenerator 22 is sent to the absorber 44 through a pipe 40 and a low-temperature heat exchanger 42 .

本実施例は、上述のように作用するので、吸収
器44からの希溶液の分流による高温再生器10
で顕熱量が減少し、しかも低温再生器22におけ
る飽和温度より高温な中間濃溶液の熱を配管56
を介して流入されてくる希溶液に与えることにな
るから低温再生器22での顕熱量が減少すること
になる。よつて、本実施例によれば、従来の技術
に比べ加熱量における潜熱量の割合が増すため、
冷媒発生量が増加し冷凍効率が向上する。
This embodiment works as described above, so that the high temperature regenerator 10 by diversion of dilute solution from the absorber 44
The amount of sensible heat is reduced in
The amount of sensible heat in the low temperature regenerator 22 is reduced because it is given to the dilute solution flowing in through the low temperature regenerator 22. Therefore, according to this embodiment, the proportion of latent heat in the amount of heating increases compared to the conventional technology, so
The amount of refrigerant generated increases and refrigeration efficiency improves.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、低温熱交換
器出口で希溶液が分流されるので高温再生器の入
熱量のうち、顕熱の上昇に費やされる熱量が少な
くなつて、冷媒発生に使われる熱量の割合が増加
し、低温再生器における飽和温度よりも高温な中
間濃溶液の熱が低温再生器に流入する希溶液に与
えられ、低温再生器で希溶液の顕熱の上昇に費や
される冷媒蒸気の熱量が少なくなつて、冷媒発生
に使われる熱量の割合が増加し、全体として、高
温再生器で加えられる熱量のうち、冷媒蒸気の蒸
発潜熱に利用される割合が増加して冷媒発生量が
増加し冷凍成績が向上するという効果がある。
As described above, according to the present invention, the dilute solution is divided at the outlet of the low-temperature heat exchanger, so of the heat input to the high-temperature regenerator, the amount of heat consumed for increasing sensible heat is reduced, and the amount of heat used for generating refrigerant is reduced. The heat of the intermediate concentrated solution, which is higher than the saturation temperature in the low-temperature regenerator, is given to the dilute solution flowing into the low-temperature regenerator, and is used to raise the sensible heat of the dilute solution in the low-temperature regenerator. As the heat value of refrigerant vapor decreases, the proportion of heat used for refrigerant generation increases, and overall, of the heat added by the high-temperature regenerator, the proportion used for latent heat of vaporization of refrigerant vapor increases, resulting in increased refrigerant generation. This has the effect of increasing the amount and improving the freezing performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る二重効用吸収冷凍機の実
施例の概略構成図、第2図および第3図は従来の
二重効用吸収冷凍機の概略構成図である。 10……高温再成器、12……加熱源、16…
…分離器、22……低温再生器、26……凝縮
器、34……蒸発器、36……高温熱交換器、4
2……低温熱交換器、44……吸収器、54……
循環ポンプ。
FIG. 1 is a schematic diagram of an embodiment of a dual-effect absorption refrigerator according to the present invention, and FIGS. 2 and 3 are schematic diagrams of a conventional dual-effect absorption refrigerator. 10...High temperature regenerator, 12...Heating source, 16...
... Separator, 22 ... Low temperature regenerator, 26 ... Condenser, 34 ... Evaporator, 36 ... High temperature heat exchanger, 4
2... Low temperature heat exchanger, 44... Absorber, 54...
circulation pump.

Claims (1)

【特許請求の範囲】 1 希溶液を加熱する加熱源が設けてある高温再
生器と、この高温再生器により加熱した希溶液を
冷媒蒸気と中間濃度溶液とに分離する分離器と、
この分離器からの中間濃度溶液が前記高温再生器
に流入する希溶液と熱交換する高温熱交換器と、
前記分離器から導かれた冷媒蒸気により前記高温
熱交換器から流入する中間濃度溶液を加熱し、冷
媒蒸気と濃溶液とに分離する低温再生器と、この
低温再生器からの冷媒蒸気を凝縮させる凝縮器
と、この凝縮器により凝縮した液体冷媒が散布さ
れて蒸発し、冷却用水を冷却する低圧の蒸発器
と、前記低温再生器から流入した前記濃溶液が前
記高温熱交換器に流入する希溶液と熱交換をして
冷却される低温熱交換器と、この低温熱交換器か
らの前記濃溶液が散布され、前記蒸発器から流入
した冷媒蒸気を吸収して希溶液となる吸収器と、
この吸収器において生じた希溶液を前記低温熱交
換器に圧送する循環ポンプを有する二重効用吸収
式冷凍機において、 前記吸収器からの希溶液を前記低温熱交換器の
出口側で分岐させ、前記高温熱交換器にて温度が
低下した前記中間濃溶液と前記分岐した希溶液と
を混合させ、前記低温再生器に導く配管を備えた
ことを特徴とする二重効用吸収式冷凍機。
[Scope of Claims] 1. A high-temperature regenerator provided with a heating source for heating a dilute solution; a separator that separates the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution;
a high temperature heat exchanger in which the intermediate concentration solution from the separator exchanges heat with the dilute solution flowing into the high temperature regenerator;
a low-temperature regenerator that heats the intermediate concentration solution flowing from the high-temperature heat exchanger with the refrigerant vapor led from the separator and separates it into refrigerant vapor and a concentrated solution; and a low-temperature regenerator that condenses the refrigerant vapor from the low-temperature regenerator. a condenser, a low-pressure evaporator in which liquid refrigerant condensed by the condenser is sprayed and evaporated to cool cooling water; and a diluted liquid refrigerant in which the concentrated solution flowing from the low-temperature regenerator flows into the high-temperature heat exchanger. a low-temperature heat exchanger that cools by exchanging heat with a solution; an absorber into which the concentrated solution from the low-temperature heat exchanger is sprayed and which absorbs refrigerant vapor flowing from the evaporator to become a dilute solution;
In a dual-effect absorption refrigerator having a circulation pump that pumps a dilute solution generated in the absorber to the low-temperature heat exchanger, branching the dilute solution from the absorber at the outlet side of the low-temperature heat exchanger; A dual-effect absorption refrigerating machine characterized by comprising a pipe for mixing the intermediate concentrated solution whose temperature has been lowered in the high-temperature heat exchanger and the branched dilute solution and guiding the mixture to the low-temperature regenerator.
JP21768585A 1985-09-30 1985-09-30 Double-effect absorption refrigerator Granted JPS6277566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21768585A JPS6277566A (en) 1985-09-30 1985-09-30 Double-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21768585A JPS6277566A (en) 1985-09-30 1985-09-30 Double-effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS6277566A JPS6277566A (en) 1987-04-09
JPH0473060B2 true JPH0473060B2 (en) 1992-11-19

Family

ID=16708114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21768585A Granted JPS6277566A (en) 1985-09-30 1985-09-30 Double-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6277566A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035174B2 (en) * 1979-05-10 1985-08-13 株式会社日本触媒 Catalyst for producing alkylene glycol ethers
JPS6238562B2 (en) * 1985-08-09 1987-08-18 Nippon Thompson Co Ltd

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193169U (en) * 1981-06-03 1982-12-07
JPS6035174U (en) * 1983-08-16 1985-03-11 矢崎総業株式会社 Dual effect absorption chiller
JPS6238562U (en) * 1985-08-28 1987-03-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035174B2 (en) * 1979-05-10 1985-08-13 株式会社日本触媒 Catalyst for producing alkylene glycol ethers
JPS6238562B2 (en) * 1985-08-09 1987-08-18 Nippon Thompson Co Ltd

Also Published As

Publication number Publication date
JPS6277566A (en) 1987-04-09

Similar Documents

Publication Publication Date Title
EP0702773B1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US4546620A (en) Absorption machine with desorber-resorber
KR0177719B1 (en) Gax absorptive type cycle apparatus
US3495420A (en) Two stage generator absorption unit with condensate heat exchanger
CN107356016A (en) A kind of evaporator and the changeable heat exchange unit of loop circuit heat pipe
KR101060776B1 (en) Absorption Chiller
JP3591324B2 (en) Absorption refrigerator
JPH0473060B2 (en)
JPH0581816B2 (en)
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
KR0132391B1 (en) Absorptive refrig
JPH0429339Y2 (en)
JPH0429340Y2 (en)
CN216281670U (en) Hot water supply system
JPS63116066A (en) Double effect absorption water chiller and heater
JPH0354378Y2 (en)
KR100234062B1 (en) Ammonia absorber cycle
JPH0522760Y2 (en)
KR0139349Y1 (en) Circulation of condensed water of evaporator for absorption type refrigerator
JPS6342290Y2 (en)
JPS6148064B2 (en)
CN114034080A (en) Hot water supply system
JPS6135897Y2 (en)
JPH0354376Y2 (en)
KR0173495B1 (en) Absorptive type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees