JPS6277566A - Double-effect absorption refrigerator - Google Patents

Double-effect absorption refrigerator

Info

Publication number
JPS6277566A
JPS6277566A JP21768585A JP21768585A JPS6277566A JP S6277566 A JPS6277566 A JP S6277566A JP 21768585 A JP21768585 A JP 21768585A JP 21768585 A JP21768585 A JP 21768585A JP S6277566 A JPS6277566 A JP S6277566A
Authority
JP
Japan
Prior art keywords
low
heat exchanger
temperature regenerator
dilute solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21768585A
Other languages
Japanese (ja)
Other versions
JPH0473060B2 (en
Inventor
大島 正彦
智春 久土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP21768585A priority Critical patent/JPS6277566A/en
Publication of JPS6277566A publication Critical patent/JPS6277566A/en
Publication of JPH0473060B2 publication Critical patent/JPH0473060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重効用吸収冷凍機に係り、特に発生冷媒量を
増加させてなる二重効用吸収冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a double-effect absorption refrigerator, and more particularly to a double-effect absorption refrigerator in which the amount of refrigerant generated is increased.

〔従来の技術〕[Conventional technology]

従来のこの種の二重効用吸収冷凍機は、第2図に示すよ
うに構成されている。すなわち、高温再生器10は加熱
源12が設けられるとともに、配管14を介して分離器
16と連通している。分離器16には、蒸気管18と送
液管20とが設けてある。蒸気管18が接続しである低
温再生器22の出側配管24は凝縮器26に接続される
。また、低温再生器22と凝縮器26とは、蒸気管28
によって連通されている。凝縮器26は散布管30を介
して冷温水熱交換器32が設れである蒸発器34と連通
している。
A conventional dual-effect absorption refrigerator of this type is constructed as shown in FIG. That is, the high temperature regenerator 10 is provided with a heat source 12 and communicates with a separator 16 via piping 14 . The separator 16 is provided with a steam pipe 18 and a liquid feed pipe 20. An outlet pipe 24 of the low temperature regenerator 22 to which the steam pipe 18 is connected is connected to a condenser 26 . Further, the low temperature regenerator 22 and the condenser 26 are connected to the steam pipe 28
communicated by. The condenser 26 communicates via a sparge pipe 30 with an evaporator 34 equipped with a cold/hot water heat exchanger 32 .

一方、前記した送液管20は、高温熱交換器36に接続
しである。高温熱交換器36の出側配管38は低温再生
器22に接続しである。そして、低温再生器22の底部
に設けた濃溶液配管40は、低温熱交換器42を介して
吸収器44に接続される。
On the other hand, the liquid sending pipe 20 described above is connected to the high temperature heat exchanger 36. The outlet pipe 38 of the high temperature heat exchanger 36 is connected to the low temperature regenerator 22. A concentrated solution pipe 40 provided at the bottom of the low-temperature regenerator 22 is connected to an absorber 44 via a low-temperature heat exchanger 42.

この吸収器44には冷却水熱交換器46が配設されてお
り、この冷却水熱交換器46は、連結管48を介して凝
縮器26に配設した冷却水熱交換器50と接続されてい
る。
A cooling water heat exchanger 46 is disposed in the absorber 44, and the cooling water heat exchanger 46 is connected to a cooling water heat exchanger 50 disposed in the condenser 26 via a connecting pipe 48. ing.

吸収器44の下部には、戻り配管52の一端が接続して
あり、この戻り配管52の他端は、循環ポンプ54、低
温熱交換器42、高温熱交換器36を介して高温再生器
10に接続しである。
One end of a return pipe 52 is connected to the lower part of the absorber 44, and the other end of the return pipe 52 is connected to the high temperature regenerator 10 via the circulation pump 54, the low temperature heat exchanger 42, and the high temperature heat exchanger 36. It is connected to.

上記の直焚二重効用吸収冷凍機の作用は次の通りである
The operation of the above-mentioned direct-fired dual-effect absorption refrigerator is as follows.

高温再生器10内の希溶液は、加熱源12により加熱さ
れ、高温状態となって分離器16に入る。
The dilute solution in the high temperature regenerator 10 is heated by the heating source 12 and enters the separator 16 at a high temperature.

分離器16は、高温の希溶液を冷媒蒸気と中間濃度溶液
とに分離し、冷媒蒸気を蒸気管18により低温再生器2
2に送るとともに、中間濃度溶液を送液管20により高
温熱交換器36に送る。高温熱交換器36に入った中間
濃度溶液は、高温再生器10に送られる希溶液と熱交換
をして希溶液を温めた後、出側配管38により低温再生
器22内に入る。
The separator 16 separates the high temperature dilute solution into refrigerant vapor and intermediate concentration solution, and the refrigerant vapor is passed through the steam pipe 18 to the low temperature regenerator 2.
At the same time, the intermediate concentration solution is sent to the high temperature heat exchanger 36 through the liquid sending pipe 20. The intermediate concentration solution entering the high temperature heat exchanger 36 exchanges heat with the dilute solution sent to the high temperature regenerator 10 to warm the dilute solution, and then enters the low temperature regenerator 22 through the outlet pipe 38.

蒸気管18により低温再生器22に入った冷媒蒸気は、
高温熱交換器36からの中間濃度溶液を加熱した後、出
側配管24により凝縮器26に導かれる。また、低温再
生器22内の中間濃度溶液は、加熱されて濃溶液と冷媒
蒸気とになり、冷媒蒸気蒸気管28を介して凝縮器26
に導かれ、濃溶液が濃溶液配管40により低温熱交換器
42に導かれる。
The refrigerant vapor that entered the low temperature regenerator 22 through the steam pipe 18 is
After heating the intermediate concentration solution from the high temperature heat exchanger 36, it is led to the condenser 26 via the outlet pipe 24. Further, the intermediate concentration solution in the low temperature regenerator 22 is heated to become a concentrated solution and refrigerant vapor, and is passed through the refrigerant vapor pipe 28 to the condenser 26.
The concentrated solution is introduced into the low temperature heat exchanger 42 via the concentrated solution piping 40.

凝縮器26内に入った冷媒蒸気は、冷却水熱交換器50
により冷却され、液体冷媒となった後、散布管30を介
して低圧の蒸発器34内に散布される。蒸発器34内に
散布された液体冷媒は蒸発器34内において冷温水熱交
換器32内を流れる冷却用の水を冷却しつつ蒸発し、吸
収器44内に流入する。他方、低温再生器22から低温
熱交換器42に導かれた濃溶液は、循環ポンプ54によ
り低温熱交換器42に圧送されてくる希溶液と熱交換を
して冷却された後、吸収器44内に散布される。この吸
収器44内に散布された濃溶液は、冷却水熱交換器44
に冷却されるとともに、蒸発器34から流入してくる冷
媒蒸気を吸収し、希溶液となる。この希溶液は、戻り配
管52を介して循環ポンプ54により吸収され、低温熱
交換器42、高温熱交換器36を介して再び高温再生器
10に送られる。
The refrigerant vapor that has entered the condenser 26 is transferred to the cooling water heat exchanger 50.
After being cooled and turned into a liquid refrigerant, it is sprayed into a low-pressure evaporator 34 via a spray pipe 30. The liquid refrigerant spread in the evaporator 34 evaporates while cooling the cooling water flowing in the cold/hot water heat exchanger 32 in the evaporator 34 and flows into the absorber 44 . On the other hand, the concentrated solution led from the low-temperature regenerator 22 to the low-temperature heat exchanger 42 is cooled by exchanging heat with the dilute solution pumped to the low-temperature heat exchanger 42 by the circulation pump 54, and then transferred to the absorber 44. distributed within. The concentrated solution sprayed into the absorber 44 is transferred to the cooling water heat exchanger 44.
At the same time, it absorbs the refrigerant vapor flowing in from the evaporator 34 and becomes a dilute solution. This dilute solution is absorbed by the circulation pump 54 via the return pipe 52 and sent to the high temperature regenerator 10 again via the low temperature heat exchanger 42 and the high temperature heat exchanger 36.

第3図は他の従来例を示す系統図である。FIG. 3 is a system diagram showing another conventional example.

第3図に示す従来例が前述の従来例と異なるところは、
吸収器44からの希溶液を全て高温再生器10に送り込
んでしまうのではなく高温熱交換器36に低温熱交換器
42の間で分流させ、一部を高温再生器10に一部を低
温再生器22に送り、かつ高温再生器10および低温再
生器22で濃縮された中間濃溶液を低温熱交換器42の
入口で合流させ、低温熱交換器42を通過させた後吸収
器44に流入させるようにしたものである。
The conventional example shown in FIG. 3 differs from the conventional example described above.
Rather than sending all of the dilute solution from the absorber 44 to the high temperature regenerator 10, the diluted solution is divided between the high temperature heat exchanger 36 and the low temperature heat exchanger 42, and a portion is sent to the high temperature regenerator 10 and a portion is regenerated at a low temperature. The intermediate concentrated solution sent to the reactor 22 and concentrated in the high-temperature regenerator 10 and the low-temperature regenerator 22 is combined at the inlet of the low-temperature heat exchanger 42, and after passing through the low-temperature heat exchanger 42, flows into the absorber 44. This is how it was done.

このような従来例も上記従来例の作用とほぼ同じとなる
Such a conventional example also has almost the same effect as the above-mentioned conventional example.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前者の従来の技術にあっては、高温再生
器10に入る希溶液の温度が、高温再生器10の圧力に
おける飽和温度に達していないため、高温再生器10の
加熱量の一部が顕熱として使用されてしまうことになっ
て熱量が大きくなってしまう。一方、後者の従来の技術
にあっては、希溶液の分流によって、高温再生器10に
入る溶液量が減るため高温再生器10での顕熱量は減る
ものの、低温再生器22に入る希溶液の温度が、濃溶液
との熱交換により高温となるが、低温再生器22の飽和
温度以上にはならないため、低温再生器22で顕熱とし
て使用されてしまい、結局熱量が大きくなってしまう。
However, in the former conventional technology, since the temperature of the dilute solution entering the high temperature regenerator 10 has not reached the saturation temperature at the pressure of the high temperature regenerator 10, part of the heating amount of the high temperature regenerator 10 is This will be used as sensible heat, resulting in a large amount of heat. On the other hand, in the latter conventional technique, the amount of solution entering the high temperature regenerator 10 is reduced by diversion of the dilute solution, so although the amount of sensible heat in the high temperature regenerator 10 is reduced, the amount of dilute solution entering the low temperature regenerator 22 is reduced. The temperature becomes high due to heat exchange with the concentrated solution, but since it does not rise above the saturation temperature of the low temperature regenerator 22, it is used as sensible heat in the low temperature regenerator 22, resulting in a large amount of heat.

したがって、上記いずれの従来技術とも冷媒の発生に必
要な潜熱として使用される熱量分が減少し、冷凍成績係
数が低下してしまうという問題点があった。
Therefore, all of the above conventional techniques have the problem that the amount of heat used as latent heat necessary for generating refrigerant decreases, resulting in a decrease in the refrigeration coefficient of performance.

本発明は上述の問題点に鑑みてなされたもので、その目
的は入力した熱量を有効に利用できるようにして発生冷
媒量を多くし冷凍成績係数を向上させた二重効用吸収冷
凍機を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a dual-effect absorption refrigerating machine that can effectively utilize input heat, increase the amount of refrigerant generated, and improve the refrigeration coefficient of performance. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決した本発明の二重効用吸収冷凍機は、
希溶液を加熱する加熱源が設けてある高温再生器と、こ
の高温再生器により加熱した希溶液を冷媒蒸気と中間濃
度溶流とに分離する分離器と、この分離器からの中間濃
度溶液が前記高温再生器に流入する希溶液と熱交換をす
る高温熱交換器と、前記分離器から導かれた冷媒蒸気に
より前記高温熱交換器から流入する中間濃度溶液を加熱
し、冷媒蒸気と濃溶液とに分離する低温再生器と、この
低温再生器からの冷媒蒸気を凝縮させる凝縮器と、この
凝縮器により凝縮した液体冷媒が散布されて蒸発し、冷
却用水を冷却する低圧の蒸発器と、前記低温再生器から
流入した前記濃溶液が前記高温熱交換器に流入する希溶
液と熱交換をして冷却される低温熱交換器と、この低温
熱交換器からの前記濃溶液が散布され、前記蒸発器から
流入した蒸気を吸収して希溶液となる吸収器と、この吸
収器において生じた希溶液を前記低温熱交換器に気送す
る循環ポンプとを有する二重効用吸収冷凍機において、
前記吸収器からの希溶液を前記低温熱交換器の出口側で
分流させ、これの2部を前記低温再生器に導くようにし
たものである。
The dual-effect absorption refrigerator of the present invention, which solves the above problems, has the following features:
A high-temperature regenerator equipped with a heating source for heating a dilute solution, a separator for separating the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution, and an intermediate concentration solution from the separator. a high-temperature heat exchanger that exchanges heat with the dilute solution flowing into the high-temperature regenerator; and a high-temperature heat exchanger that exchanges heat with the dilute solution flowing into the high-temperature regenerator; a low-temperature regenerator that is separated into a low-temperature regenerator, a condenser that condenses refrigerant vapor from the low-temperature regenerator, and a low-pressure evaporator that sprays and evaporates the liquid refrigerant condensed by the condenser to cool cooling water; a low-temperature heat exchanger in which the concentrated solution flowing from the low-temperature regenerator exchanges heat with the dilute solution flowing into the high-temperature heat exchanger and is cooled; and the concentrated solution from the low-temperature heat exchanger is sprayed; A dual-effect absorption refrigerator comprising an absorber that absorbs vapor flowing from the evaporator to form a dilute solution, and a circulation pump that pneumatically conveys the dilute solution generated in the absorber to the low-temperature heat exchanger,
The dilute solution from the absorber is divided at the outlet side of the low temperature heat exchanger, and two parts of the solution are led to the low temperature regenerator.

〔作用〕[Effect]

吸収器からの希溶液を低温熱交換器の出口側で分流して
高温再生器と低温再生器とに流入させ、この希溶液が分
流したことにより高温再生器での顕熱量が減少し、しか
も低温再生器における飽和温度より高温な中間濃溶液の
熱を希溶液に与えることになるから低温再生器での顕熱
量が減少することになる。
The dilute solution from the absorber is divided at the outlet side of the low-temperature heat exchanger and flows into the high-temperature regenerator and the low-temperature regenerator, and as this dilute solution is diverted, the amount of sensible heat in the high-temperature regenerator is reduced. Since the heat of the intermediate concentrated solution, which is higher than the saturation temperature in the low temperature regenerator, is given to the dilute solution, the amount of sensible heat in the low temperature regenerator is reduced.

本発明によれば従来の技術に比び加熱量における潜熱量
の割合が増すため、冷媒発生量が増加し冷凍効率が向上
する。
According to the present invention, since the ratio of the amount of latent heat to the amount of heating increases compared to the conventional technology, the amount of refrigerant generated increases and the refrigeration efficiency improves.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明に係る二重効用吸収冷凍機の実施例を示
す構成図である。
FIG. 1 is a block diagram showing an embodiment of a dual-effect absorption refrigerator according to the present invention.

第1図において、低温熱交換器42と高温熱交換器36
との間で吸収器44からの希溶液を分流させ、希溶液の
一部を配管50を介して低温再生器22に導くと共に、
希溶液の残りを高温再生器10に流入させるようにした
ものであり、他の構成は第2図に示す従来技術と同様で
ある。
In FIG. 1, a low temperature heat exchanger 42 and a high temperature heat exchanger 36 are shown.
The dilute solution from the absorber 44 is diverted between the absorber 44 and a part of the dilute solution is guided to the low temperature regenerator 22 via the pipe 50,
The remainder of the dilute solution is made to flow into the high temperature regenerator 10, and the other configurations are the same as the prior art shown in FIG.

このような構成からなる実施例の作用を説明する。吸収
器44を出た希溶液は、低温熱交換器42と高温熱交換
器36との間で分流され、一方を高温再生器10を流入
させ、他の一方を低温再生器22に流入させる。高温再
生器10で濃縮され分離器16で気水分離された中間濃
溶液は、高温熱交換器36を通って低温再生器22に送
られ、分流された配管50を介して低温再生器22に流
入してきた希溶液と混合された後、低温再生器22にお
いて濃縮される。低温再生器22で濃縮された濃溶液は
配管40、低温熱交換器42を通って吸収器44に送ら
れる。
The operation of the embodiment having such a configuration will be explained. The dilute solution leaving the absorber 44 is split between the low temperature heat exchanger 42 and the high temperature heat exchanger 36, with one flowing into the high temperature regenerator 10 and the other flowing into the low temperature regenerator 22. The intermediate concentrated solution that has been concentrated in the high-temperature regenerator 10 and separated into steam and water in the separator 16 is sent to the low-temperature regenerator 22 through the high-temperature heat exchanger 36, and is then sent to the low-temperature regenerator 22 via the branched piping 50. After being mixed with the incoming dilute solution, it is concentrated in the low temperature regenerator 22. The concentrated solution concentrated in the low-temperature regenerator 22 is sent to the absorber 44 through a pipe 40 and a low-temperature heat exchanger 42 .

本実施例は、上述のように作用するので、吸収器44か
らの希溶液の分流による高温再生器10で顕熱量が減少
し、しかも低温再生器22における飽和温度より高温な
中間濃溶液の熱を配管56を介して流入されてくる希溶
液に与えることになるから低温再生器22での顕熱量が
減少することになる。よって、本実施例によれば、従来
の技術に比べ加熱量における潜熱量の割合が増すため。
Since this embodiment operates as described above, the amount of sensible heat is reduced in the high temperature regenerator 10 due to the diversion of the dilute solution from the absorber 44, and the heat of the intermediate concentrated solution higher than the saturation temperature in the low temperature regenerator 22 is reduced. is given to the dilute solution flowing in through the pipe 56, so the amount of sensible heat in the low-temperature regenerator 22 is reduced. Therefore, according to this embodiment, the ratio of the amount of latent heat to the amount of heating increases compared to the conventional technology.

冷媒発生量が増加し冷凍効率が向上する。The amount of refrigerant generated increases and refrigeration efficiency improves.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、冷媒発生量が増加し
冷凍成績が向上するという効果がある。
As described above, the present invention has the effect of increasing the amount of refrigerant generated and improving the refrigeration performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る二重効用吸収冷凍機の実施例の概
略構成図、第2図および第3図は従来の二重効用吸収冷
凍機の概略構成図である。 10・・・高温再成器、    12・・・加熱源、1
6・・・分離器、      22・・・低温再生器、
26・・・凝縮器、      34・・・蒸発器、3
6・・・高温熱交換器、  42・・・低温熱交換器、
44・・吸収器、     54・・・循環ポンプ。
FIG. 1 is a schematic diagram of an embodiment of a dual-effect absorption refrigerator according to the present invention, and FIGS. 2 and 3 are schematic diagrams of a conventional dual-effect absorption refrigerator. 10... High temperature regenerator, 12... Heating source, 1
6... Separator, 22... Low temperature regenerator,
26... Condenser, 34... Evaporator, 3
6... High temperature heat exchanger, 42... Low temperature heat exchanger,
44...Absorber, 54...Circulation pump.

Claims (1)

【特許請求の範囲】[Claims] (1)希溶液を加熱する加熱源が設けてある高温再生器
と、この高温再生器により加熱した希溶液を冷媒蒸気と
中間濃度溶液とに分離する分離器と、この分離器からの
中間濃度溶液が前記高温再生器に流入する希溶液と熱交
換をする高温熱交換器と、前記分離器から導かれた冷媒
蒸気により前記高温熱交換器から流入する中間濃度溶液
を加熱し、冷媒蒸気と濃溶液とに分離する低温再生器と
、この低温再生器からの冷媒蒸気を凝縮させる凝縮器と
、この凝縮器により凝縮した液体冷媒が散布されて蒸発
し、冷却用水を冷却する低圧の蒸発器と、前記低温再生
器から流入した前記濃溶液が前記高温熱交換器に流入す
る希溶液と熱交換をして冷却される低温熱交換器と、こ
の低温熱交換器からの前記濃溶液が散布され、前記蒸発
器から流入した蒸気姿吸収して希溶液となる吸収器と、
この吸収器において生じた希溶液を前記低温熱交換器に
圧送する循環ポンプを有する二重効用吸収冷凍機におい
て、前記吸収器からの希溶液を前記低温熱交換器の出口
側で分離させ、これの2部を前記低温再生器に導くよう
にしたことを特徴とする二重効用吸収冷凍機。
(1) A high-temperature regenerator equipped with a heating source that heats the dilute solution, a separator that separates the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution, and an intermediate concentration solution from this separator. a high-temperature heat exchanger in which the solution exchanges heat with the dilute solution flowing into the high-temperature regenerator; and a high-temperature heat exchanger for exchanging heat with the dilute solution flowing into the high-temperature regenerator; A low-temperature regenerator that separates the refrigerant into a concentrated solution, a condenser that condenses the refrigerant vapor from the low-temperature regenerator, and a low-pressure evaporator that sprays and evaporates the liquid refrigerant condensed by the condenser to cool the cooling water. and a low-temperature heat exchanger in which the concentrated solution flowing from the low-temperature regenerator exchanges heat with the dilute solution flowing into the high-temperature heat exchanger and is cooled, and the concentrated solution from the low-temperature heat exchanger is sprayed. an absorber that absorbs the vapor form flowing from the evaporator and becomes a dilute solution;
In a dual-effect absorption refrigerator having a circulation pump that pumps a dilute solution generated in the absorber to the low-temperature heat exchanger, the dilute solution from the absorber is separated at the outlet side of the low-temperature heat exchanger; A dual-effect absorption refrigerator characterized in that two parts of the above are led to the low-temperature regenerator.
JP21768585A 1985-09-30 1985-09-30 Double-effect absorption refrigerator Granted JPS6277566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21768585A JPS6277566A (en) 1985-09-30 1985-09-30 Double-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21768585A JPS6277566A (en) 1985-09-30 1985-09-30 Double-effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS6277566A true JPS6277566A (en) 1987-04-09
JPH0473060B2 JPH0473060B2 (en) 1992-11-19

Family

ID=16708114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21768585A Granted JPS6277566A (en) 1985-09-30 1985-09-30 Double-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6277566A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193169U (en) * 1981-06-03 1982-12-07
JPS6035174U (en) * 1983-08-16 1985-03-11 矢崎総業株式会社 Dual effect absorption chiller
JPS6238562U (en) * 1985-08-28 1987-03-07

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035174B2 (en) * 1979-05-10 1985-08-13 株式会社日本触媒 Catalyst for producing alkylene glycol ethers
JPS6237510A (en) * 1985-08-09 1987-02-18 Nippon Thompson Co Ltd Securing device for direct rolling bearing made of thin steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193169U (en) * 1981-06-03 1982-12-07
JPS6035174U (en) * 1983-08-16 1985-03-11 矢崎総業株式会社 Dual effect absorption chiller
JPS6238562U (en) * 1985-08-28 1987-03-07

Also Published As

Publication number Publication date
JPH0473060B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
JP2000171119A (en) Triple-effect absorption refrigerating machine
JP2000257976A (en) Absorption refrigerating machine
JPS6277566A (en) Double-effect absorption refrigerator
JP3297720B2 (en) Absorption refrigerator
KR20080094985A (en) Hot-water using absorption chiller
WO2002018850A1 (en) Absorption refrigerating machine
JP2000154946A (en) Triple effect absorption refrigeration machine
JPS63116066A (en) Double effect absorption water chiller and heater
CN216281670U (en) Hot water supply system
JPH0429340Y2 (en)
CN112747494B (en) Two-stage and double-effect composite lithium bromide absorption type water chilling unit
JP3812934B2 (en) Double-effect absorption refrigerator
JPH0429339Y2 (en)
KR100234062B1 (en) Ammonia absorber cycle
JPS58219371A (en) Double effect absorption type heat pump
JPS6135897Y2 (en)
JPS6342290Y2 (en)
CN114034080A (en) Hot water supply system
JP3173057B2 (en) Absorption heat pump
JPH01244257A (en) Double-effect absorption water cooler/heater
JP3401545B2 (en) Absorption refrigerator
JPH08159591A (en) Absorption type refrigerator
JPH0354378Y2 (en)
KR100213794B1 (en) Ammonia absorption type cooler
JPS6089645A (en) Absorption type heat pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees