JPH0752039B2 - Air-cooled absorption chiller / heater - Google Patents

Air-cooled absorption chiller / heater

Info

Publication number
JPH0752039B2
JPH0752039B2 JP63197475A JP19747588A JPH0752039B2 JP H0752039 B2 JPH0752039 B2 JP H0752039B2 JP 63197475 A JP63197475 A JP 63197475A JP 19747588 A JP19747588 A JP 19747588A JP H0752039 B2 JPH0752039 B2 JP H0752039B2
Authority
JP
Japan
Prior art keywords
refrigerant
heater
separator
circulating water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63197475A
Other languages
Japanese (ja)
Other versions
JPH0250057A (en
Inventor
伸二 頓宮
栄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP63197475A priority Critical patent/JPH0752039B2/en
Publication of JPH0250057A publication Critical patent/JPH0250057A/en
Publication of JPH0752039B2 publication Critical patent/JPH0752039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空冷吸収冷温水機に係り、特に冷温水循環配
管内の圧力を低圧に維持できる空冷吸収冷温水機に関す
る。
Description: TECHNICAL FIELD The present invention relates to an air-cooled absorption chiller-heater, and more particularly to an air-cooling absorption chiller-heater capable of maintaining a low pressure in the chilled-water circulation pipe.

〔従来の技術〕 従来の公知技術としては、例えば、第5図に示される、
特願昭60−179954号(特開昭62−66068号公報)に記載
のものがある。この空冷吸収冷温水機においては、循環
水ポンプ15の出口側に三方弁12が設けられ、該三方弁12
の一方の出口は蒸発器7に、他方の出口は、分離器2内
に設けられた温水器24に接続され、前記蒸発器7および
温水器24の出口に接続された循環水管は、ひとつに合流
したあと、冷温水の使用先へ接続されている。
[Prior Art] As a conventionally known art, for example, as shown in FIG.
There is one disclosed in Japanese Patent Application No. 60-179954 (Japanese Patent Laid-Open No. 62-66068). In this air-cooled absorption chiller-heater, a three-way valve 12 is provided on the outlet side of the circulating water pump 15, and the three-way valve 12
One outlet is connected to the evaporator 7, the other outlet is connected to the water heater 24 provided in the separator 2, and the circulation water pipes connected to the outlets of the evaporator 7 and the water heater 24 are one. After merging, it is connected to the destination of cold and hot water.

冷房運転時には、管路26,27に設けられた開閉弁14,15が
開かれ、前記三方弁12が循環水ポンプ15と蒸発器7を連
通する状態に操作されて、循環水ポンプ15から送出され
た循環水は、三方弁12を経て蒸発器7を通過し、該蒸発
器7の外面で蒸発する冷媒により冷却された後、冷水の
使用先に流入する。
During the cooling operation, the opening / closing valves 14 and 15 provided in the pipelines 26 and 27 are opened, the three-way valve 12 is operated to connect the circulating water pump 15 and the evaporator 7, and the circulating water pump 15 sends The circulated water that has passed through the three-way valve 12 passes through the evaporator 7, is cooled by the refrigerant that evaporates on the outer surface of the evaporator 7, and then flows into the use destination of the cold water.

暖房運転時には、前記開閉弁14、15が閉じられ、三方弁
12が、循環水ポンプ12と温水器24を連通するように操作
される。循環水ポンプ15から送出された循環水は、温水
器24で加熱された後、温水使用先へ流れる。
During heating operation, the on-off valves 14 and 15 are closed and the three-way valve
12 is operated to connect the circulating water pump 12 and the water heater 24. The circulating water sent from the circulating water pump 15 is heated by the water heater 24 and then flows to the hot water use destination.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

蒸気従来技術にあっては、冷媒蒸気と熱交換して温水を
発生する温水器が、冷房運転中にも高温の冷媒蒸気が発
生している分離器内に設けられており、温水器内は循環
水で常時満たされているとともに冷温水発生の切り換え
を、冷温水循環配管に設けられた三方弁により行う構造
となっているため、次の様な状態が生じた。
In the conventional steam technology, a water heater that exchanges heat with the refrigerant vapor to generate hot water is provided in the separator where hot refrigerant vapor is generated even during the cooling operation, and the inside of the water heater is Since the structure is such that the circulating water is constantly filled and the generation of cold / hot water is switched by the three-way valve provided in the cold / hot water circulation pipe, the following state occurs.

(1)温水器内の循環水は、冷房運転中にも冷媒蒸気に
より加熱され、冷媒蒸気の温度と循環水の圧力で定まる
温度にまで、昇温される。空冷二重効用吸収冷温水機の
分離器内における冷媒蒸気温度は、水冷吸収冷温水機の
場合より高くて150〜200℃であり、循環水の飽和沸騰温
度以上であるため、循環水が温水器内で沸騰し、熱損失
を生じる。
(1) The circulating water in the water heater is heated by the refrigerant vapor even during the cooling operation, and is heated to a temperature determined by the temperature of the refrigerant vapor and the pressure of the circulating water. The refrigerant vapor temperature in the separator of the air-cooled double-effect absorption chiller / heater is 150 to 200 ° C higher than that of the water-cooled absorption chiller / heater, which is higher than the saturated boiling temperature of the circulating water, so the circulating water is warm water. It boils in the vessel and causes heat loss.

(2)冷媒蒸気温度150℃〜200℃の時の水の飽和沸騰圧
力は、4.8〜15.85kg/cm2であり、循環水系内での沸騰を
防止しようとすると、循環水系内の圧力を高圧に保つ必
要があり、圧力容器化に伴う安全性の確保もあいまっ
て、設備コストの増大を招く。
(2) The saturated boiling pressure of water when the refrigerant vapor temperature is 150 ° C to 200 ° C is 4.8 to 15.85 kg / cm 2 , and when trying to prevent boiling in the circulating water system, the pressure in the circulating water system becomes high. It is necessary to keep it at a certain level, and the safety is also secured when the pressure vessel is used, which causes an increase in equipment cost.

(3)冷温水発生を切り換えるのに、流量の大きい循環
水の流れの切り換えを行うため、大きい三方弁を要し、
設備費の増大を招く。
(3) A large three-way valve is required to switch the flow of circulating water having a large flow rate in order to switch the generation of cold / hot water.
This leads to an increase in equipment costs.

本発明の課題は、循環水系の高圧化を招くことなく、冷
房運転中の循環水の沸騰による熱損失を低減するにあ
る。
An object of the present invention is to reduce heat loss due to boiling of circulating water during cooling operation without inducing high pressure of the circulating water system.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題は、冷媒を吸収した希溶液を加熱する高温再
生器と、該高温再生器で得られた冷媒蒸気と溶液とを分
離する分離器と、該冷媒蒸気を凝縮して液冷媒とする凝
縮器と、該液冷媒を蒸発させて循環水と熱交換させ該循
環水を冷却する蒸発器と、該蒸発器で蒸発した冷媒蒸気
を前記分離器で分離された溶液に吸収させ発生した熱を
空冷除去する吸収器と、前記分離器で得られた冷媒蒸気
を加熱源として循環水を加熱する温水器と、前記循環水
を循環させる循環水ポンプとを備えた空冷吸収冷温水機
において、前記温水器は前記分離器と離して設置され、
かつ前記温水器と前記分離器とは少なくともふたつの冷
媒流路で接続されていることと、前記冷媒流路の少なく
とも冷媒が前記温水器から分離器へ流れる流路に弁が設
けられていることと、前記循環水ポンプと前記蒸発器と
前記温水器とが直列に接続されていることとを特徴とす
る空冷吸収冷温水機により達成される。
The above-mentioned problems include a high temperature regenerator that heats a dilute solution that has absorbed a refrigerant, a separator that separates the refrigerant vapor and the solution obtained by the high temperature regenerator, and condenses the refrigerant vapor into a liquid refrigerant. A condenser, an evaporator that evaporates the liquid refrigerant to exchange heat with the circulating water to cool the circulating water, and heat generated by absorbing the refrigerant vapor evaporated in the evaporator into the solution separated in the separator. In the air-cooled absorption chiller-heater equipped with an absorber that removes air by cooling, a water heater that heats circulating water using the refrigerant vapor obtained in the separator as a heating source, and a circulating water pump that circulates the circulating water, The water heater is installed separately from the separator,
And the water heater and the separator are connected by at least two refrigerant flow paths, and at least a refrigerant in the refrigerant flow path is provided with a valve in the flow path from the water heater to the separator. And the circulating water pump, the evaporator, and the water heater are connected in series.

また、温水器が二重管式熱交換器である請求項1に記載
の空冷吸収冷温水機としてもよく、二重管式熱交換器が
水平コイル形状に形成されている空冷吸収冷温水機とし
てもよい。
Further, the water heater may be a double-pipe heat exchanger, and the air-cooled absorption cold water heater may be the air-cooled absorption cold water heater, wherein the double-pipe heat exchanger is formed in a horizontal coil shape. May be

また、温水器がプレート式熱交換器である請求項1に記
載の空冷吸収冷温水機としてもよい。
Further, the air-cooled absorption chiller-heater according to claim 1 may be a water heater which is a plate heat exchanger.

〔作用〕[Action]

暖房運転時分離器より導かれた冷媒蒸気は温水器で循環
している温水と熱交換し凝縮し冷媒液となり開閉弁29を
通って分離器にもどる。分離器にもどった冷媒液は分離
器下部に溜った溶液と混合し管路19を通り高温再生器に
導かれた後加熱され分離器にて分離され再度温水加熱に
供され以後本サイクルを形成する。次に冷房運転時には
開閉弁29は閉となる為分離器より冷媒蒸気を導き温水と
熱交換する管路と熱交換器部内は凝縮した冷媒液により
満たされ内部が満液となった後は冷媒蒸気すなわち熱の
流入はなくなり、また、循環水ポンプと、蒸発器と、温
水器とは直列に接続されているので冷房運転時にも温水
器に循環水が流れ、循環水の停滞部がなく、循環水が高
温にならない。
During the heating operation, the refrigerant vapor guided from the separator exchanges heat with the hot water circulating in the water heater, condenses into refrigerant liquid and returns to the separator through the on-off valve 29. The refrigerant liquid returned to the separator is mixed with the solution accumulated in the lower part of the separator, is guided to the high temperature regenerator through the conduit 19, is heated and separated by the separator, and is again heated by hot water to form this cycle. To do. Next, since the on-off valve 29 is closed during the cooling operation, the conduit for guiding the refrigerant vapor from the separator and exchanging heat with the hot water and the inside of the heat exchanger section are filled with the condensed refrigerant liquid, and after the inside is full, the refrigerant is filled. Inflow of steam, that is, heat, disappears, and since the circulating water pump, the evaporator, and the water heater are connected in series, the circulating water flows through the water heater even during the cooling operation, and there is no stagnant portion of the circulating water. The circulating water does not get hot.

二重管式熱交換器を温水器とすれば、冷媒部分の体積に
対して、熱交換面積が大きいので、同一熱交換面積に対
して冷媒部分の体積が小さくなる。
If the double-tube heat exchanger is a water heater, the heat exchange area is large with respect to the volume of the refrigerant portion, so the volume of the refrigerant portion is small with respect to the same heat exchange area.

二重管式熱交換器を水平コイル形状に形成したり、プレ
ート型熱交換器をプレートがほぼ水平になるようにして
温水器として用いると、鉛直方向の温水器の厚み(高
さ)を少なくすることができる。
The thickness (height) of the water heater in the vertical direction can be reduced by forming the double-tube heat exchanger in the shape of a horizontal coil, or by using the plate heat exchanger as a water heater with its plate almost horizontal. can do.

〔実施例〕〔Example〕

第1図を参照して本発明の第1の実施例を説明する。図
に示す空冷二重効用吸収冷温水機は、希溶液を加熱する
高温再生器1と、高温再生器1で加熱された希溶液か
ら、冷媒蒸気と中間濃溶液を分離する分離器2と、該中
間濃溶液と高温再生器1へ流入する前の希溶液とを熱交
換させる高温熱交換器3と、該高温熱交換器3の中間濃
溶液出口と中間濃溶液回路26で接続され、前記分離器2
で分離された冷媒蒸気と前記高温熱交換器3を通過した
中間濃溶液の間で熱交換させて新たな冷媒蒸気を発生さ
せるとともに濃溶液を生成する低温再生器4と、前記中
間濃溶液回路26に介装された弁14と、前記低温再生器4
で生成された濃溶液と前記高温熱交換器3に流入する前
の希溶液とを熱交換させる低温熱交換器5と、前記低温
再生器4の加熱媒体である冷媒蒸気出口と冷媒回路27で
接続され、流入する冷媒蒸気を凝縮して液冷媒とする凝
縮器6と、該冷媒回路27に設けられた弁15と、前記凝縮
器6に液冷媒流路で接続され、液冷媒を蒸発させる蒸発
器7を内装した蒸発室40と、該蒸発室40に連通して設け
られ、前記蒸発器7で蒸発した冷媒蒸気を低温熱交換器
5を通過した濃溶液に吸収させて希溶液を生成させる吸
収器8と、前記凝縮器6の凝縮熱および、吸収器8の吸
収熱を空冷除去する空冷ファン16と、前記吸収器8で生
成された希溶液を逆止弁18、低温熱交換器5および高温
熱交換器3を経て、高温再生器1へ送給する溶液ポンプ
9と、高温再生器1の加熱器10と、前記分離器2の液面
下部分と高温再生器1の下部とを連通する溶液バイパス
管19と、前記分離器2に冷媒管路28a,28bを介して接続
された温水器11と、該冷媒管路28bに介装された弁29
と、前記温水器11に内装されて循環水を流通させる温水
コイル41と、循環水ポンプ13と、該循環水ポンプ13と蒸
発器7と温水コイル41とを直列に接続する循環水配管42
と、を備えている。
A first embodiment of the present invention will be described with reference to FIG. The air-cooled double-effect absorption chiller-heater shown in the figure has a high temperature regenerator 1 for heating a dilute solution, a separator 2 for separating a refrigerant vapor and an intermediate concentrated solution from the dilute solution heated by the high temperature regenerator 1, The high temperature heat exchanger 3 for exchanging heat between the intermediate concentrated solution and the dilute solution before flowing into the high temperature regenerator 1, is connected to the intermediate concentrated solution outlet of the high temperature heat exchanger 3 by the intermediate concentrated solution circuit 26, and Separator 2
The low-temperature regenerator 4 that generates heat by exchanging heat between the refrigerant vapor separated in step 3 and the intermediate concentrated solution that has passed through the high-temperature heat exchanger 3 and that generates a concentrated solution, and the intermediate concentrated solution circuit. Valve 14 installed in 26 and the low temperature regenerator 4
In the low-temperature heat exchanger 5 for exchanging heat between the concentrated solution generated in 1) and the dilute solution before flowing into the high-temperature heat exchanger 3, the refrigerant vapor outlet which is a heating medium of the low-temperature regenerator 4, and the refrigerant circuit 27. A condenser 6 which is connected and condenses the inflowing refrigerant vapor into a liquid refrigerant, a valve 15 provided in the refrigerant circuit 27, and a condenser 6 are connected by a liquid refrigerant flow path to evaporate the liquid refrigerant. An evaporation chamber 40 having the evaporator 7 installed therein is provided, which is provided so as to communicate with the evaporation chamber 40, and the refrigerant vapor evaporated in the evaporator 7 is absorbed by the concentrated solution that has passed through the low temperature heat exchanger 5 to generate a dilute solution. An absorber 8 for making it cool, an air cooling fan 16 for removing the condensation heat of the condenser 6 and the absorption heat of the absorber 8 by air cooling, a diluted solution produced in the absorber 8 by a check valve 18, a low temperature heat exchanger. 5 through the high temperature heat exchanger 3 and the solution pump 9 that feeds the high temperature regenerator 1 to the high temperature regenerator 1. Heater 10, solution bypass pipe 19 that communicates the lower part of the liquid level of separator 2 with the lower part of high-temperature regenerator 1, and water heater connected to separator 2 via refrigerant lines 28a and 28b. 11 and a valve 29 installed in the refrigerant line 28b
A hot water coil 41 that is installed in the water heater 11 to circulate circulating water; a circulating water pump 13; and a circulating water pipe 42 that connects the circulating water pump 13, the evaporator 7 and the warm water coil 41 in series.
And are equipped with.

暖房運転時は、弁14、15、は閉じられ、弁29は開かれ
て、高温再生器1は加熱器10により加熱される。加熱さ
れた希溶液から分離器2内で冷媒が蒸発し、冷媒管路28
aを経て温水器11内に流入し、温水コイル41内の循環水
と熱交換した後、弁29、冷媒管路28bを経て分離器2へ
還流する。分離器2へ還流した冷媒は、分離器2底部の
溶液と混合し希溶液となって溶液バイパス管19を経て高
温再生器1へ還流する。還流した希溶液は上述のサイク
ルを繰返す。循環水は、循環水ポンプ13に駆動されて、
蒸発器7を経て温水器11へ流入し、温水コイル41で冷媒
蒸気と熱交換して加熱され、温水使用先へ流入する。弁
14、15が閉じられているので、蒸発室40への液冷媒は流
入せず、液冷媒の蒸発はないので、蒸発器7を流れる循
環水との熱交換は行われない。
During the heating operation, the valves 14 and 15 are closed, the valve 29 is opened, and the high temperature regenerator 1 is heated by the heater 10. The refrigerant evaporates in the separator 2 from the heated dilute solution, and the refrigerant line 28
It flows into the water heater 11 via a, exchanges heat with the circulating water in the hot water coil 41, and then returns to the separator 2 via the valve 29 and the refrigerant pipe line 28b. The refrigerant that has recirculated to the separator 2 is mixed with the solution at the bottom of the separator 2 to form a dilute solution, which then recirculates to the high temperature regenerator 1 via the solution bypass pipe 19. The refluxed dilute solution repeats the above cycle. The circulating water is driven by the circulating water pump 13,
After flowing through the evaporator 7, the hot water 11 flows into the hot water coil 41 where it is heated by heat exchange with the refrigerant vapor in the hot water coil 41 and flows into the hot water use destination. valve
Since 14 and 15 are closed, the liquid refrigerant does not flow into the evaporation chamber 40 and the liquid refrigerant does not evaporate, so that heat exchange with the circulating water flowing through the evaporator 7 is not performed.

冷房運転時は、弁29が閉じられ、弁14、15が開かれる。
加熱器10により、高温再生器1内の希溶液が加熱され、
冷媒蒸気と中間濃溶液が分離器2で分離され、冷媒蒸気
は低温再生器4で中間濃溶液を加熱して新たに冷媒蒸気
を発生させた後、冷媒回路27、弁15を経て凝縮器6へ流
入して、凝縮され、液冷媒となる。低温再生器4で発生
した冷媒蒸気も、凝縮器6へ流入し、凝縮されて液冷媒
となる。凝縮器6で生成された液冷媒は、蒸発室40へ供
給され、蒸発器7内を流れる循環水から蒸発熱を奪って
蒸発する。中間濃溶液は、高温熱交換器3で希溶液と熱
交換したのち弁14を経て低温再生器4へ流入し、冷媒蒸
気に加熱されて冷媒を蒸発させて濃溶液となる。この濃
溶液は低温熱交換器5で希溶液と熱交換したのち、吸収
器8へ散布され、蒸発室40で蒸発した冷媒蒸気を吸収し
て蒸発室40を所定の低圧に保持する。凝縮器6で発生す
る凝縮熱と吸収器8で発生する吸収熱は空冷ファン16で
空冷される。冷媒蒸気を吸収した濃溶液は希溶液とな
り、溶液ポンプ9により、逆止弁18、低温熱交換器5、
高温熱交換器3を経て高温再生器1へ送出される。循環
水ポンプ13から送出された循環水は、前述のように、蒸
発器7で冷却されたのち、温水器11の温水コイル41を経
て、冷水使用先へ流入する。温水器11と分離器2を接続
する冷媒管路28bに介装された弁29が閉じられているか
ら、温水コイル41内を流れる循環水と熱交換して凝縮し
た冷媒は温水器内に溜り、冷媒が温水器に一杯になった
後は冷媒蒸気の温水器への新たな流入はないので循環水
が冷媒蒸気により加熱されることはなく、熱損失の量は
なくなる。
During the cooling operation, the valve 29 is closed and the valves 14 and 15 are opened.
The heater 10 heats the dilute solution in the high temperature regenerator 1,
The refrigerant vapor and the intermediate concentrated solution are separated by the separator 2, and the refrigerant vapor heats the intermediate concentrated solution in the low temperature regenerator 4 to generate a new refrigerant vapor, and then passes through the refrigerant circuit 27 and the valve 15 to the condenser 6 Flows in, is condensed, and becomes a liquid refrigerant. The refrigerant vapor generated in the low temperature regenerator 4 also flows into the condenser 6 and is condensed to become a liquid refrigerant. The liquid refrigerant generated in the condenser 6 is supplied to the evaporation chamber 40 and takes heat of evaporation from the circulating water flowing in the evaporator 7 to be evaporated. The intermediate concentrated solution exchanges heat with the dilute solution in the high temperature heat exchanger 3, then flows into the low temperature regenerator 4 through the valve 14, and is heated by the refrigerant vapor to evaporate the refrigerant to become a concentrated solution. This concentrated solution is heat-exchanged with the dilute solution in the low temperature heat exchanger 5, and then is sprayed to the absorber 8 to absorb the refrigerant vapor evaporated in the evaporation chamber 40 and maintain the evaporation chamber 40 at a predetermined low pressure. The condensation heat generated in the condenser 6 and the absorption heat generated in the absorber 8 are air-cooled by the air cooling fan 16. The concentrated solution that has absorbed the refrigerant vapor becomes a dilute solution, and the solution pump 9 causes the check valve 18, the low temperature heat exchanger 5,
It is sent to the high temperature regenerator 1 via the high temperature heat exchanger 3. As described above, the circulating water sent from the circulating water pump 13 is cooled by the evaporator 7 and then flows through the hot water coil 41 of the water heater 11 to the cold water use destination. Since the valve 29 interposed in the refrigerant pipe 28b connecting the water heater 11 and the separator 2 is closed, the refrigerant that has exchanged heat with the circulating water flowing in the hot water coil 41 and condensed is accumulated in the water heater. Since there is no new inflow of refrigerant vapor into the water heater after the refrigerant is full in the water heater, the circulating water is not heated by the refrigerant steam and the amount of heat loss is eliminated.

上述のように、本実施例によれば、冷房運転中、温水器
内で循環水沸騰の恐れがなく、循環水配管内の圧力を高
圧に保つ必要がないので装置コストを低減でき、同時に
安全性の確保が容易である。また、冷温水運転の切り換
えは冷媒および吸収液の流れる管路に設けられた弁の開
閉で行われるため、循環水配管の大口径の三方弁を設け
る必要がない。
As described above, according to the present embodiment, during cooling operation, there is no fear of circulating water boiling in the water heater, and there is no need to keep the pressure in the circulating water pipe at a high pressure, so the device cost can be reduced and at the same time safety is ensured. It is easy to secure the sex. In addition, since switching between the hot and cold water operation is performed by opening and closing a valve provided in the pipeline through which the refrigerant and the absorbing liquid flow, it is not necessary to provide a large diameter three-way valve of the circulating water pipe.

第2図に本発明の第2の実施例を示す。本実施例は第1
図に示す実施例における温水器を二重管式熱交換器30と
したもので、凝縮した冷媒液の貯溜量が僅少であり凝縮
冷媒の貯溜による他への影響が少なく、吸収液の晶析の
恐れがなく、系全体の溶液の保有量が少くて経済的であ
り、冷暖房運転の立上りも早い。
FIG. 2 shows a second embodiment of the present invention. This embodiment is the first
The water heater in the embodiment shown in the figure is a double-tube heat exchanger 30, the amount of the condensed refrigerant liquid is very small, and the condensed refrigerant has little effect on others, and the crystallization of the absorbing liquid. It is economical, because the amount of solution held in the entire system is small, and the start-up of heating / cooling operation is quick.

第3図に本発明の第3の実施例を示す。本実施例は、第
2図に示す実施例の二重管式熱交換器を水平コイル形状
の熱交換器31としたものである。暖房運転中に凝縮した
冷媒液を弁29を通して分離器2へ還流させる駆動力は、
冷媒液の液柱高さのみであり、図に示すように、前記駆
動力となる液柱高さHが高くなるように、熱交換器高さ
H0を低くするのが効果的である。
FIG. 3 shows a third embodiment of the present invention. In this embodiment, the double-tube heat exchanger of the embodiment shown in FIG. 2 is used as a horizontal coil heat exchanger 31. The driving force for returning the refrigerant liquid condensed during the heating operation to the separator 2 through the valve 29 is
Only the liquid column height of the refrigerant liquid, and as shown in the figure, the heat exchanger height is set so that the liquid column height H serving as the driving force becomes high.
It is effective to lower H 0 .

第4図に本発明の第4の実施例を示す。本実施例は温水
器をプレート型熱交換器32とし、該熱交換器を構成する
プレートがほぼ水平となるように設置したもので、熱交
換器高さH0を小さくすることができる。
FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, the water heater is a plate-type heat exchanger 32, and the plates constituting the heat exchanger are installed so as to be substantially horizontal, so that the heat exchanger height H 0 can be reduced.

上記実施例は、空冷二重効用吸収冷温水機に本発明を提
供したものであるが、空冷一重効用吸収冷温水機にも同
様に適用して効果がある。
Although the above-mentioned embodiment provides the present invention to an air-cooled double-effect absorption chiller-heater, it can be applied to an air-cooled single-effect absorption chiller-heater similarly.

〔発明の効果〕〔The invention's effect〕

本発明によれば、温水器を分離器と別体にして設け、温
水器と分離器を接続する冷媒流路のうち、少くとも冷媒
が温水器から分離器へ流れる冷媒流路に弁を設け、かつ
蒸発器と温水器と循環水ポンプとを直列に接続したの
で、冷房運転中に温水器中の循環水が沸騰するのを、循
環水の圧力を高くすることなく防ぐことが可能となり、
装置コストを低減できる効果がある。
According to the present invention, the water heater is provided as a separate body from the separator, and of the refrigerant flow paths connecting the water heater and the separator, at least a refrigerant is provided in the refrigerant flow path from the water heater to the separator. Since the evaporator, the water heater and the circulating water pump are connected in series, it is possible to prevent the circulating water in the water heater from boiling during the cooling operation without increasing the pressure of the circulating water.
There is an effect that the device cost can be reduced.

請求項2に記載の本発明によれば、冷房運転時の温水器
の凝縮冷媒の貯溜量を少くすることができるので、吸収
液の晶析の恐れがないと共に、系全体の溶液保有量が少
いので、冷暖房運転の立上りを早くする効果がある。
According to the second aspect of the present invention, since the amount of condensed refrigerant stored in the water heater during the cooling operation can be reduced, there is no fear of crystallization of the absorbing liquid, and the amount of solution held in the entire system is reduced. Since it is small, it has the effect of speeding up the start-up of cooling and heating operation.

請求項3および4に記載の本発明によれば、温水器の高
さを小さくできるので、温水時に貯溜した液冷媒を分離
器へ還流させる駆動力を大きくすることが可能となり、
液冷媒の分離器への還流を容易にする効果がある。
According to the present invention as set forth in claims 3 and 4, since the height of the water heater can be reduced, it is possible to increase the driving force for returning the liquid refrigerant stored in the hot water to the separator.
This has the effect of facilitating the return of the liquid refrigerant to the separator.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す系統図、第2図,
第3図および第4図は本発明の第2,第3および第4の実
施例の部分を示す系統図であり、第5図は従来技術の例
を示す系統図である。 1……高温再生器、2……分離器、6……凝縮器、7…
…蒸発器、8……吸収器、11……温水器、13……循環水
ポンプ、28a,28b……冷媒流路、29……冷媒流路に設け
られる弁、30……温水器(二重式熱交換器)、31……温
水器(水平コイル形状の熱交換器)、32……温水器(プ
レート型熱交換器)。
FIG. 1 is a system diagram showing a first embodiment of the present invention, FIG.
3 and 4 are system diagrams showing parts of the second, third and fourth embodiments of the present invention, and FIG. 5 is a system diagram showing an example of the prior art. 1 ... High temperature regenerator, 2 ... Separator, 6 ... Condenser, 7 ...
… Evaporator, 8 …… Absorber, 11 …… Water heater, 13 …… Circulating water pump, 28a, 28b …… Refrigerant passage, 29 …… Valve provided in the refrigerant passage, 30 …… Water heater (two Heavy type heat exchanger), 31 ... water heater (horizontal coil shape heat exchanger), 32 ... water heater (plate type heat exchanger).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】冷媒を吸収した希溶液を加熱する高温再生
器と、該高温再生器で得られた冷媒蒸気と溶液とを分離
する分離器と、該冷媒蒸気を凝縮して液冷媒とする凝縮
器と、該液冷媒を蒸発させて循環水と熱交換させ該循環
水を冷却する蒸発器と、該蒸発器で蒸発した冷媒蒸気を
前記分離器で分離された溶液に吸収させ発生した熱を空
冷除去する吸収器と、前記分離器で得られた冷媒蒸気を
加熱源として循環水を加熱する温水器と、前記循環水を
循環させる循環水ポンプとを備えた空冷吸収冷温水機に
おいて、前記温水器は前記分離器と離して設置され、か
つ前記温水器と前記分離器とは少なくともふたつの冷媒
流路で接続されていることと、前記冷媒流路の少なくと
も冷媒が前記温水器から分離器へ流れる流路に弁が設け
られていることと、前記循環水ポンプと前記蒸発器と前
記温水器とが直列に接続されていることとを特徴とする
空冷吸収冷温水機。
1. A high temperature regenerator that heats a dilute solution that has absorbed a refrigerant, a separator that separates the refrigerant vapor and the solution obtained by the high temperature regenerator, and condenses the refrigerant vapor into a liquid refrigerant. A condenser, an evaporator that evaporates the liquid refrigerant to exchange heat with the circulating water to cool the circulating water, and heat generated by absorbing the refrigerant vapor evaporated in the evaporator into the solution separated in the separator. In the air-cooled absorption chiller-heater equipped with an absorber that removes air by cooling, a water heater that heats circulating water using the refrigerant vapor obtained in the separator as a heating source, and a circulating water pump that circulates the circulating water, The water heater is installed separately from the separator, and the water heater and the separator are connected by at least two refrigerant passages, and at least the refrigerant in the refrigerant passage is separated from the water heater. That a valve is installed in the flow path to the vessel Cooled absorption chiller that the circulating water pump and the evaporator and the water heater and in that connected in series.
【請求項2】温水器が二重管式熱交換器であることを特
徴とする請求項1に記載の空冷吸収冷温水機。
2. The air-cooled absorption chiller-heater according to claim 1, wherein the water heater is a double pipe heat exchanger.
【請求項3】二重管式熱交換器が水平コイル形状に形成
されていることを特徴とする請求項2に記載の空冷吸収
冷温水機。
3. The air-cooled absorption chiller-heater according to claim 2, wherein the double-tube heat exchanger is formed in a horizontal coil shape.
【請求項4】温水器がプレート式熱交換器であることを
特徴とする請求項1に記載の空冷吸収冷温水機。
4. The air-cooled absorption chiller-heater according to claim 1, wherein the water heater is a plate heat exchanger.
JP63197475A 1988-08-08 1988-08-08 Air-cooled absorption chiller / heater Expired - Lifetime JPH0752039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197475A JPH0752039B2 (en) 1988-08-08 1988-08-08 Air-cooled absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197475A JPH0752039B2 (en) 1988-08-08 1988-08-08 Air-cooled absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH0250057A JPH0250057A (en) 1990-02-20
JPH0752039B2 true JPH0752039B2 (en) 1995-06-05

Family

ID=16375102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197475A Expired - Lifetime JPH0752039B2 (en) 1988-08-08 1988-08-08 Air-cooled absorption chiller / heater

Country Status (1)

Country Link
JP (1) JPH0752039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157A (en) * 1990-04-13 1992-01-06 Hitachi Zosen Corp Absorption type air conditioning facility
US5344521A (en) * 1991-04-10 1994-09-06 Canon Kabushiki Kaisha Coating film separating device and coating film separation method using the device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720540A (en) * 1980-07-11 1982-02-03 Aisan Ind Co Ltd Air fuel ratio control in carbureter

Also Published As

Publication number Publication date
JPH0250057A (en) 1990-02-20

Similar Documents

Publication Publication Date Title
JP3287131B2 (en) Absorption chiller / heater
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP2829080B2 (en) Absorption heat pump
EP0354749B1 (en) Air-cooled absorption Air-conditioner
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JP4007795B2 (en) Absorption heat source equipment
KR20080094985A (en) Hot-water using absorption chiller
JP4279917B2 (en) Absorption refrigerator
JPH0552439A (en) Absorption heat pump
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP7080001B2 (en) Absorption chiller
JP2583579B2 (en) Absorption chiller with refrigerant circulation system for cooling and heating
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP3173057B2 (en) Absorption heat pump
JP3486382B2 (en) Absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JP2520975Y2 (en) Absorption cold water heater
JP2865305B2 (en) Absorption refrigerator
JP3724975B2 (en) Steam tank absorption chiller / heater
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JPH0354378Y2 (en)
JPS6119405Y2 (en)
JP3858655B2 (en) Absorption refrigeration system
JP2639991B2 (en) Absorption refrigerator