JP3724975B2 - Steam tank absorption chiller / heater - Google Patents

Steam tank absorption chiller / heater Download PDF

Info

Publication number
JP3724975B2
JP3724975B2 JP09107499A JP9107499A JP3724975B2 JP 3724975 B2 JP3724975 B2 JP 3724975B2 JP 09107499 A JP09107499 A JP 09107499A JP 9107499 A JP9107499 A JP 9107499A JP 3724975 B2 JP3724975 B2 JP 3724975B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
solution
absorber
refrigerant vapor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09107499A
Other languages
Japanese (ja)
Other versions
JP2000283589A (en
Inventor
貴洋 佐久間
聡 三宅
修一郎 内田
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP09107499A priority Critical patent/JP3724975B2/en
Publication of JP2000283589A publication Critical patent/JP2000283589A/en
Application granted granted Critical
Publication of JP3724975B2 publication Critical patent/JP3724975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、外部熱源から供給される蒸気を加熱源とする蒸気焚吸収冷温水機に係り、一部の濃溶液で全稀溶液を制御して高負荷から部分負荷域まですぐれた運転特性を得ることができ、また、外部熱源から供給された蒸気を安定して低温度に環水できる蒸気焚吸収冷温水機に関するものである。
【0002】
【従来の技術】
従来の吸収冷温水機においては、たとえば特開平10―38402号公報に記載されるように、切替弁の操作により蒸発器から冷水と温水の取出しとを可能にし、冷水もしくは温水の取出し時のいずれにおいても外部熱源から供給される蒸気を環水していた。外部熱源から供給される蒸気は、吸収器から高温再生器に送られる一部の稀溶液と熱交換されていた。
【0003】
また、特開平05―26533号公報に記載されるように、特に大がかりな装置を必要とせずに溶液循環量の制御が実現され、高負荷から部分負荷域まで運転可能なガス焚もしくは油焚の吸収冷温水機が開示されている。
【0004】
さらに、外部熱源から蒸気を供給して高温再生器を加熱する蒸気焚吸収冷温水機も知られており、その冷凍サイクルを図6で示す系統図を参照して説明する。
【0005】
1は蒸発器で、冷媒は冷媒ポンプ2によって循環して蒸発器伝熱管3の表面に散布される。冷媒は冷水と熱交換して、蒸気に変化する。発生した冷媒蒸気は吸収器4に送られ、伝熱管6の表面に散布された溶液に吸収される。冷媒蒸気を吸収した稀溶液は、溶液ポンプ5により稀溶液配管7で低温溶液熱交換器8を経て一部は稀溶液配管7bで低温再生器9へ、残りは稀溶液配管7aで高温溶液熱交換器10を経て高温再生器11へ送られる。稀溶液は、高温再生器11で蒸気配管18内を流通する蒸気によって加熱され、冷媒蒸気を稀溶液から分離する。
【0006】
また、低温再生器9においては、稀溶液は高温再生器11で発生した冷媒蒸気を加熱源として冷媒蒸気を分離する。冷媒蒸気を分離した濃溶液は、高温再生器11から濃溶液配管12aで高温溶液熱交換器10と低温溶液熱交換器8とを経て吸収器4へ送られる。低温再生器9において冷媒蒸気を分離した濃溶液は、濃溶液配管12bで低温溶液熱交換器8を経て吸収器4へ送られる。低温再生器9で発生した冷媒蒸気は凝縮器13へ送られ、吸収器伝熱管6の表面で凝縮する。凝縮した冷媒は蒸発器1へ送られる。
【0007】
一方、高温再生器11で加熱源として利用された蒸気は、吸収器4から低温再生器9へ送られるドレンクーラ19において稀溶液と熱交換して低温度で環水される。高温再生器11の加熱源の蒸気量は、温度調節装置14からの命令を受けて蒸気制御弁15により制御される。フロートバルブ16は吸収器4からの一部の稀溶液を制御するため稀溶液配管7aに設置されており、フロートボックス17は濃溶液を高温再生器11から吸収器4へ供給する濃溶液配管12aに配置されている。
【0008】
【発明が解決しようとする課題】
上記特開平10―38402号公報に記載のものは、外部熱源から供給される蒸気は吸収器から高温再生器へ送られる一部の稀溶液と熱交換して環水しているが、高温再生器から吸収器へ送られる濃溶液によって全稀溶液を制御することについては配慮されていなかった。
【0009】
また、特開平05―26533号公報に記載のものは、特に大がかりな装置を必要とせずに溶液循環量が制御され、高負荷から部分負荷域まで運転可能のものであるが、高温再生器の加熱源がガス焚もしくは油焚に限られたものであった。
【0010】
さらに、図6に示される蒸気焚吸収冷温水機においても、高温再生器から吸収器へ送られる濃溶液によって全稀溶液を制御する構成については配慮されていなかった。
【0011】
本発明は、上記従来の技術の課題を解決するためになされたもので、その目的は、加熱源が外部熱源から供給される蒸気を熱源とする蒸気焚においても装置を大形化することなく、一部の濃溶液で全稀溶液を制御することのできる蒸気焚吸収冷温水機を提供することにある。
【0012】
また、本発明の他の目的は、高負荷から部分負荷域まで外部熱源から供給される蒸気を安定して低温度で環水する蒸気焚吸収冷温水機を提供することにある。
【0016】
【課題を解決するための手段】
記目的を達成するために、本発明の蒸気焚吸収冷温水機に係る発明の構成は、外部熱源から供給される蒸気を加熱源として冷媒蒸気を溶液から分離する高温再生器と、この高温再生器で分離した冷媒蒸気を加熱源として冷媒蒸気を溶液から分離する低温再生器と、この低温再生器で分離した冷媒蒸気を液化する凝縮器と、この凝縮器で液化した冷媒を蒸気に変える蒸発器と、この蒸発器で発生した冷媒蒸気を溶液に吸収させる吸収器と、冷媒蒸気を吸収した稀溶液を吸収器から高温再生器および低温再生器に並行して送るために分岐した配管系とを備える蒸気焚吸収冷温水機において、前記高温再生器から吸収器に送られる濃溶液によって吸収器から高温再生器および低温再生器に送られる稀溶液を制御するため、前記分岐前の配管系に設けられた制御手段を前記高温再生器に取り付け、前記吸収器から低温再生器に送られる稀溶液と前記高温再生器を加熱後の蒸気とを熱交換するドレンクーラを、前記分岐後の低温再生器の配管系に設け、前記制御手段の後において稀溶液と冷媒を分離した濃溶液とをそれぞれ熱交換する低温溶液熱交換器および高温溶液熱交換器とを設けるものである。
【0017】
さらにまた、上記目的を達成するために、本発明の蒸気焚吸収冷温水機に係る発明の構成は、外部熱源から供給される蒸気を加熱源として冷媒蒸気を溶液から分離する高温再生器と、この高温再生器で分離した冷媒蒸気を加熱源として冷媒蒸気を溶液から分離する低温再生器と、この低温再生器で分離した冷媒蒸気を液化する凝縮器と、この凝縮器で液化した冷媒を蒸気に変える蒸発器と、この蒸発器で発生した冷媒蒸気を溶液に吸収させる吸収器と、冷媒蒸気を吸収した稀溶液を吸収器から高温再生器および低温再生器に並行して送るために分岐した配管系とを備える蒸気焚吸収冷温水機において、前記高温再生器から吸収器に送られる濃溶液によって吸収器から高温再生器および低温再生器に送られる稀溶液を制御するため、前記分岐前の配管系に設けられた制御手段を前記高温再生器に取り付け、前記吸収器から送られる稀溶液と前記高温再生器を加熱後の蒸気とを熱交換するドレンクーラを、前記分岐前の配管系からさらに分岐した高温再生器の配管系に設け、前記制御手段の後において稀溶液と冷媒を分離した濃溶液とをそれぞれ熱交換する低温溶液熱交換器および高温溶液熱交換器とを設けるものである。
【0018】
【発明の実施の形態】
以下、本発明の実施例を図を参照して説明する。
【0019】
[実施例1]
図1は、本発明の第1の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。
【0020】
蒸発器1は、内圧が約百分の一気圧に保たれている。冷媒である水は冷媒ポンプ2によって循環して内部に冷水が流通している蒸発器伝熱管3の表面に散布される。これにより冷媒は冷水と熱交換して、形態を水から蒸気に変化する。発生した冷媒蒸気は低圧に保たれた吸収器4に送られ、内部に冷却水が流通している吸収器伝熱管6の表面に散布された溶液(臭化リチウム水溶液)に吸収される。冷媒蒸気を吸収した稀溶液は、溶液ポンプ5により稀溶液配管7で低温溶液熱交換器8を経て一部は稀溶液配管7bで低温再生器9へ、残りは稀溶液配管7aで高温溶液熱交換器10を経て高温再生器11へ送られる。
【0021】
稀溶液は、高温再生器11では外部熱源から供給される蒸気配管18内を流通する蒸気により加熱され、冷媒蒸気を稀溶液から分離する。また、低温再生器9では、稀溶液は高温再生器11で発生した冷媒蒸気を加熱源として冷媒蒸気を稀溶液から分離する。
【0022】
冷媒蒸気を分離した濃溶液は、高温再生器11からは、濃溶液配管12aで高温溶液熱交換器10と低温溶液熱交換器8とを経て吸収器4へ送られる。低温再生器9からは、濃溶液配管12bで低温溶液熱交換器8を経て吸収器4へ送られる。低温再生器9で発生した冷媒蒸気は低圧に保たれた凝縮器13へ送られ、内部に冷却水が流通している吸収器伝熱管6の表面で凝縮する。凝縮した冷媒は蒸発器1へ送られ、サイクルを一巡する。
【0023】
一方、高温再生器11で稀溶液を加熱するため外部熱源から供給された蒸気は、吸収器4から高温再生器11及び低温再生器9へ稀溶液配管7a及び7bによって送られる前の配管に配置されたドレンクーラ19において、稀溶液と熱交換をして環水される。
【0024】
高温再生器11の加熱源である外部熱源から供給される蒸気の量は、温度調節装置14からの命令を受けて蒸気制御弁15によって制御される。フロートバルブ16は、吸収器4から送られる稀溶液配管7に設置されている。フロートボックス17は、高温再生器11から吸収器4に供給される濃溶液配管12aに設置されている。これらフロートバルブ16とフロートボックス17とによって、高温再生器11から吸収器4に供給される濃溶液によって吸収器4から送られる全稀溶液を制御する制御手段を構成している。
【0025】
上記構成により、高温再生器11から吸収器4に供給される濃溶液によって吸収器4から送られる全稀溶液を制御することができ、この全稀溶液と熱交換するために必要な蒸気量を蒸気制御弁15で制御することができ、高負荷から部分負荷域まで効率の良い運転を行うことができる。また、ドレンクーラ19において、稀溶液と熱交換して安定して低温度(約90℃)で環水することができる。
【0026】
[実施例2]
図2は、本発明の第2の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。図中、図1と同一符号のものは同等部分であるから、その説明を省略する。
【0027】
図2の実施例が、図1の実施例と異なる点は、ドレンクーラ19を低温再生器9に送られる稀溶液配管7bに設置して加熱源である外部熱源から供給される蒸気と熱交換を行うことにある。
【0028】
本実施例によれば、先の図1の実施例と同様の結果が得られる。
【0029】
[実施例3]
図3は、本発明の第3の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。図中、図1と同一符号のものは同等部分であるから、その説明を省略する。
【0030】
図3の実施例が、図1の実施例と異なる点は、ドレンクーラ19を高温再生器11に送られる稀溶液配管7aに設置して加熱源である高温の蒸気と熱交換を行うことにある。
【0031】
本実施例によれば、先の図1の各実施例と同様の結果が得られる。
【0032】
[実施例4]
図4は、本発明の第4の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。図中、図1と同一符号のものは同等部分であるから、その説明を省略する。
【0033】
図4の実施例が、図1の実施例と異なる点は、吸収器4からの全稀溶液を直接フロートバルブ16を有するフロートボックス17に送り、フロートボックス17通過後、一部稀溶液は低温溶液熱交換器8及び高温溶液熱交換器10を経て高温再生器11へ、残りは低温再生器9へ送ることにある。そして、ドレンクーラ19を低温再生器9に送られる稀溶液配管7bに設置して加熱源である外部熱源から供給される蒸気と熱交換を行うことにある。
【0034】
本実施例によれば、先の図1の各実施例と同様の結果が得られる。
【0035】
[実施例5]
図5は、本発明の第5の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。図中、図1と同一符号のものは同等部分であるから、その説明を省略する。
【0036】
図5の実施例が図1の実施例と異なる点は、まず、吸収器4からの全稀溶液を直接フロートバルブ16を有するフロートボックス17に送り、フロートボックス17通過後、一部稀溶液は直接高温再生器11へ、残りは低温溶液熱交換器8及び高温溶液熱交換器10を経て高温再生器11へ送ることにある。そして、ドレンクーラ19を高温再生器11へ送液する稀溶液配管7cに設置して加熱源である外部熱源から供給される蒸気と熱交換を行うことにある。
【0037】
本実施例によれば、先の図1の各実施例と同様の結果が得られる。
【0038】
【発明の効果】
以上、詳細に説明したように、本発明によれば、一部の濃溶液で全稀溶液を制御することによって高負荷から部分負荷域まですぐれた運転特性の得られる蒸気焚吸収冷温水機を提供することができる。
【0039】
また、外部熱源から供給された蒸気を安定して低温度(約90℃)で環水できる蒸気焚吸収冷温水機を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。
【図2】本発明の第2の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。
【図3】本発明の第3の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。
【図4】本発明の第4の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。
【図5】本発明の第5の実施例に係る蒸気焚吸収冷温水機のサイクル系統図である。
【図6】従来の一般的な蒸気焚吸収冷温水機のサイクル系統図である。
【符号の説明】
1 蒸発器
2 冷媒ポンプ
3 蒸発器伝熱管
4 吸収器
5 溶液ポンプ
6 吸収器伝熱管
7、7a、7b、7c 稀溶液配管
8 低温溶液熱交換器
9 低温再生器
10 高温溶液熱交換器
11 高温再生器
12、12a、12b 濃溶液配管
13 凝縮器
14 温度調節装置
15 蒸気制御弁
16 フロートバルブ
17 フロートボックス
18 外部熱源から供給される蒸気配管
19 ドレンクーラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam tank absorption chiller / heater that uses steam supplied from an external heat source as a heating source, and controls all dilute solutions with some concentrated solutions to provide excellent operating characteristics from high loads to partial loads. The present invention also relates to a steam tank absorption chiller / heater that can be obtained and can stably recirculate steam supplied from an external heat source to a low temperature.
[0002]
[Prior art]
In a conventional absorption chiller / hot water machine, for example, as described in Japanese Patent Application Laid-Open No. 10-38402, it is possible to take out cold water and hot water from an evaporator by operating a switching valve. In addition, the steam supplied from an external heat source was recirculated. Steam supplied from an external heat source was heat exchanged with some rare solutions sent from the absorber to the high temperature regenerator.
[0003]
Further, as described in Japanese Patent Laid-Open No. 05-26533, control of the solution circulation amount is realized without the need for a particularly large apparatus, and a gas or oil tank that can be operated from a high load to a partial load range is realized. An absorption chiller / heater is disclosed.
[0004]
Furthermore, there is also known a steam tank absorption chiller / heater that supplies steam from an external heat source to heat the high-temperature regenerator. The refrigeration cycle will be described with reference to the system diagram shown in FIG.
[0005]
Reference numeral 1 denotes an evaporator, and the refrigerant is circulated by a refrigerant pump 2 and dispersed on the surface of the evaporator heat transfer tube 3. The refrigerant exchanges heat with cold water and changes into steam. The generated refrigerant vapor is sent to the absorber 4 and absorbed by the solution sprayed on the surface of the heat transfer tube 6. The dilute solution that has absorbed the refrigerant vapor passes through the low temperature solution heat exchanger 8 in the dilute solution pipe 7 by the solution pump 5, partly goes to the low temperature regenerator 9 through the dilute solution pipe 7 b, and the rest in the dilute solution pipe 7 a. It is sent to the high temperature regenerator 11 via the exchanger 10. The dilute solution is heated by the vapor flowing through the vapor pipe 18 in the high temperature regenerator 11 to separate the refrigerant vapor from the dilute solution.
[0006]
In the low temperature regenerator 9, the dilute solution separates the refrigerant vapor using the refrigerant vapor generated in the high temperature regenerator 11 as a heating source. The concentrated solution from which the refrigerant vapor has been separated is sent from the high-temperature regenerator 11 to the absorber 4 through the high-temperature solution heat exchanger 10 and the low-temperature solution heat exchanger 8 through the concentrated solution pipe 12a. The concentrated solution from which the refrigerant vapor has been separated in the low temperature regenerator 9 is sent to the absorber 4 through the low temperature solution heat exchanger 8 through the concentrated solution pipe 12b. The refrigerant vapor generated in the low temperature regenerator 9 is sent to the condenser 13 and condensed on the surface of the absorber heat transfer tube 6. The condensed refrigerant is sent to the evaporator 1.
[0007]
On the other hand, the steam used as a heating source in the high-temperature regenerator 11 is exchanged with the rare solution in the drain cooler 19 sent from the absorber 4 to the low-temperature regenerator 9 and is recirculated at a low temperature. The steam amount of the heating source of the high temperature regenerator 11 is controlled by the steam control valve 15 in response to a command from the temperature control device 14. The float valve 16 is installed in the dilute solution pipe 7 a to control a part of the dilute solution from the absorber 4, and the float box 17 is a concentrated solution pipe 12 a that supplies the concentrated solution from the high temperature regenerator 11 to the absorber 4. Are arranged.
[0008]
[Problems to be solved by the invention]
In the above-mentioned JP-A-10-38402, steam supplied from an external heat source is heat-exchanged with a part of a rare solution sent from an absorber to a high-temperature regenerator, and is recycled. No consideration was given to controlling all dilute solutions by concentrated solution sent from the vessel to the absorber.
[0009]
Further, the one described in Japanese Patent Application Laid-Open No. 05-26533 is one that can be operated from a high load to a partial load range with the solution circulation amount controlled without requiring a particularly large-scale device. The heating source was limited to gas tank or oil tank.
[0010]
Furthermore, in the steam tank absorption chiller / heater shown in FIG. 6, the configuration for controlling all the rare solutions by the concentrated solution sent from the high-temperature regenerator to the absorber was not considered.
[0011]
The present invention has been made in order to solve the above-described problems of the prior art, and the object of the present invention is to increase the size of the apparatus even in a steam tank that uses steam supplied from an external heat source as a heat source. An object of the present invention is to provide a steam-bath-absorbing chiller / heater capable of controlling all dilute solutions with some concentrated solutions.
[0012]
Another object of the present invention is to provide a steam tank absorption chiller / heater that stably circulates steam supplied from an external heat source at a low temperature from a high load to a partial load region.
[0016]
[Means for Solving the Problems]
To achieve the above Symbol purpose, the configuration of the invention according to the steam-fired absorption chiller of the present invention, a high temperature regenerator for separating the refrigerant vapor from the solution the steam supplied from an external heat source as a heating source, the high-temperature A low-temperature regenerator that separates the refrigerant vapor from the solution using the refrigerant vapor separated by the regenerator as a heating source, a condenser that liquefies the refrigerant vapor separated by the low-temperature regenerator, and converts the refrigerant liquefied by the condenser into vapor. An evaporator, an absorber that absorbs the refrigerant vapor generated in the evaporator into the solution, and a piping system that is branched to send a rare solution that has absorbed the refrigerant vapor from the absorber to the high-temperature regenerator and the low-temperature regenerator in parallel. In order to control the rare solution sent from the absorber to the high temperature regenerator and the low temperature regenerator by the concentrated solution sent from the high temperature regenerator to the absorber, the piping system before the branching Set in The control means is attached to the high temperature regenerator, and a drain cooler for exchanging heat between the diluted solution sent from the absorber to the low temperature regenerator and the steam after heating the high temperature regenerator is provided in the low temperature regenerator after branching. A low temperature solution heat exchanger and a high temperature solution heat exchanger are provided in the piping system to exchange heat between the diluted solution and the concentrated solution from which the refrigerant is separated after the control means.
[0017]
Furthermore, in order to achieve the above object, the configuration of the invention related to the steam tank absorption chiller / heater of the present invention includes a high-temperature regenerator that separates the refrigerant vapor from the solution using the vapor supplied from the external heat source as a heating source, The low-temperature regenerator that separates the refrigerant vapor from the solution using the refrigerant vapor separated by the high-temperature regenerator as a heating source, the condenser that liquefies the refrigerant vapor separated by the low-temperature regenerator, and the refrigerant liquefied by the condenser And an evaporator that absorbs the refrigerant vapor generated by the evaporator into the solution, and a dilute solution that absorbed the refrigerant vapor is branched to be sent from the absorber to the high-temperature regenerator and the low-temperature regenerator in parallel. In the steam tank absorption chiller / heater equipped with a piping system, the dilute solution sent from the absorber to the high temperature regenerator and the low temperature regenerator is controlled by the concentrated solution sent from the high temperature regenerator to the absorber. A control means provided in a piping system is attached to the high temperature regenerator, and a drain cooler for exchanging heat between the diluted solution sent from the absorber and the steam after heating the high temperature regenerator is further provided from the piping system before branching. A low temperature solution heat exchanger and a high temperature solution heat exchanger for exchanging heat between the dilute solution and the concentrated solution from which the refrigerant has been separated after the control means are provided in the piping system of the branched high temperature regenerator.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
[Example 1]
FIG. 1 is a cycle system diagram of a steam tank absorption chiller / heater according to a first embodiment of the present invention.
[0020]
The internal pressure of the evaporator 1 is maintained at about 1/100 atm. Water, which is a refrigerant, is circulated by the refrigerant pump 2 and dispersed on the surface of the evaporator heat transfer tube 3 in which cold water is circulated. As a result, the refrigerant exchanges heat with cold water and changes its form from water to steam. The generated refrigerant vapor is sent to the absorber 4 kept at a low pressure, and is absorbed by the solution (lithium bromide aqueous solution) sprayed on the surface of the absorber heat transfer tube 6 in which cooling water flows. The dilute solution that has absorbed the refrigerant vapor passes through the low temperature solution heat exchanger 8 in the dilute solution pipe 7 by the solution pump 5, partly goes to the low temperature regenerator 9 through the dilute solution pipe 7 b, and the rest in the dilute solution pipe 7 a. It is sent to the high temperature regenerator 11 via the exchanger 10.
[0021]
In the high-temperature regenerator 11, the rare solution is heated by the vapor flowing through the vapor pipe 18 supplied from the external heat source, and the refrigerant vapor is separated from the rare solution. In the low temperature regenerator 9, the rare solution separates the refrigerant vapor from the rare solution using the refrigerant vapor generated in the high temperature regenerator 11 as a heating source.
[0022]
The concentrated solution from which the refrigerant vapor has been separated is sent from the high temperature regenerator 11 to the absorber 4 through the high temperature solution heat exchanger 10 and the low temperature solution heat exchanger 8 via the concentrated solution pipe 12a. From the low temperature regenerator 9, it is sent to the absorber 4 through the low temperature solution heat exchanger 8 by the concentrated solution pipe 12b. The refrigerant vapor generated in the low-temperature regenerator 9 is sent to the condenser 13 kept at a low pressure, and condensed on the surface of the absorber heat transfer tube 6 in which cooling water is circulated. The condensed refrigerant is sent to the evaporator 1 and goes through the cycle.
[0023]
On the other hand, the steam supplied from the external heat source for heating the rare solution in the high temperature regenerator 11 is arranged in the pipe before being sent from the absorber 4 to the high temperature regenerator 11 and the low temperature regenerator 9 by the dilute solution pipes 7a and 7b. In the drain cooler 19, the water is exchanged with the diluted solution by heat exchange.
[0024]
The amount of steam supplied from an external heat source that is a heating source of the high-temperature regenerator 11 is controlled by the steam control valve 15 in response to a command from the temperature control device 14. The float valve 16 is installed in the diluted solution pipe 7 sent from the absorber 4. The float box 17 is installed in a concentrated solution pipe 12 a supplied from the high temperature regenerator 11 to the absorber 4. The float valve 16 and the float box 17 constitute control means for controlling all the rare solutions sent from the absorber 4 by the concentrated solution supplied from the high temperature regenerator 11 to the absorber 4.
[0025]
With the above configuration, it is possible to control the total diluted solution sent from the absorber 4 by the concentrated solution supplied from the high-temperature regenerator 11 to the absorber 4, and the amount of steam necessary for heat exchange with this all diluted solution is reduced. It can be controlled by the steam control valve 15, and an efficient operation from a high load to a partial load range can be performed. Further, the drain cooler 19 can exchange heat with a dilute solution and stably circulate water at a low temperature (about 90 ° C.).
[0026]
[Example 2]
FIG. 2 is a cycle system diagram of the steam tank absorption chiller / heater according to the second embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
[0027]
The embodiment of FIG. 2 differs from the embodiment of FIG. 1 in that the drain cooler 19 is installed in the dilute solution pipe 7b sent to the low-temperature regenerator 9, and exchanges heat with steam supplied from an external heat source as a heating source. There is to do.
[0028]
According to the present embodiment, the same result as in the previous embodiment of FIG. 1 can be obtained.
[0029]
[Example 3]
FIG. 3 is a cycle system diagram of a steam tank absorption chiller / heater according to a third embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
[0030]
The embodiment of FIG. 3 differs from the embodiment of FIG. 1 in that the drain cooler 19 is installed in the dilute solution pipe 7a sent to the high-temperature regenerator 11 and performs heat exchange with high-temperature steam as a heating source. .
[0031]
According to this embodiment, the same results as those of the previous embodiments shown in FIG. 1 can be obtained.
[0032]
[Example 4]
FIG. 4 is a cycle system diagram of a steam tank absorption chiller / heater according to a fourth embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
[0033]
The embodiment of FIG. 4 is different from the embodiment of FIG. 1 in that all the dilute solution from the absorber 4 is sent directly to the float box 17 having the float valve 16, and after passing through the float box 17, some of the dilute solution has a low temperature. The solution heat exchanger 8 and the high temperature solution heat exchanger 10 are sent to the high temperature regenerator 11 and the rest is sent to the low temperature regenerator 9. The drain cooler 19 is installed in the dilute solution pipe 7b sent to the low-temperature regenerator 9 to exchange heat with steam supplied from an external heat source as a heating source.
[0034]
According to this embodiment, the same results as those of the previous embodiments shown in FIG. 1 can be obtained.
[0035]
[Example 5]
FIG. 5 is a cycle system diagram of a steam tank absorption chiller / heater according to a fifth embodiment of the present invention. In the figure, the same reference numerals as those in FIG.
[0036]
The embodiment of FIG. 5 differs from the embodiment of FIG. 1 in that first, all the dilute solution from the absorber 4 is sent directly to the float box 17 having the float valve 16, and after passing through the float box 17, some of the dilute solution is Directly to the high temperature regenerator 11, the rest is to be sent to the high temperature regenerator 11 via the low temperature solution heat exchanger 8 and the high temperature solution heat exchanger 10. The drain cooler 19 is installed in the dilute solution pipe 7c that feeds the high-temperature regenerator 11, and heat exchange is performed with steam supplied from an external heat source that is a heating source.
[0037]
According to this embodiment, the same results as those of the previous embodiments shown in FIG. 1 can be obtained.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a steam-bath absorption chiller / heater capable of obtaining excellent operating characteristics from a high load to a partial load region by controlling all dilute solutions with some concentrated solutions. Can be provided.
[0039]
Further, it is possible to provide a steam tank absorption chiller / heater that can circulate water supplied from an external heat source stably at a low temperature (about 90 ° C.).
[Brief description of the drawings]
FIG. 1 is a cycle system diagram of a steam tank absorption chiller / heater according to a first embodiment of the present invention.
FIG. 2 is a cycle system diagram of a steam tank absorption chiller / heater according to a second embodiment of the present invention.
FIG. 3 is a cycle system diagram of a steam tank absorption chiller / heater according to a third embodiment of the present invention.
FIG. 4 is a cycle system diagram of a steam tank absorption chiller / heater according to a fourth embodiment of the present invention.
FIG. 5 is a cycle system diagram of a steam tank absorption chiller / heater according to a fifth embodiment of the present invention.
FIG. 6 is a cycle system diagram of a conventional general steam tank absorption chiller / heater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Refrigerant pump 3 Evaporator heat exchanger tube 4 Absorber 5 Solution pump 6 Absorber heat exchanger tube 7, 7a, 7b, 7c Rare solution piping 8 Low temperature solution heat exchanger 9 Low temperature regenerator 10 High temperature solution heat exchanger 11 High temperature Regenerator 12, 12a, 12b Concentrated solution piping 13 Condenser 14 Temperature control device 15 Steam control valve 16 Float valve 17 Float box 18 Steam piping 19 supplied from an external heat source 19 Drain cooler

Claims (2)

外部熱源から供給される蒸気を加熱源として冷媒蒸気を溶液から分離する高温再生器と、この高温再生器で分離した冷媒蒸気を加熱源として冷媒蒸気を溶液から分離する低温再生器と、この低温再生器で分離した冷媒蒸気を液化する凝縮器と、この凝縮器で液化した冷媒を蒸気に変える蒸発器と、この蒸発器で発生した冷媒蒸気を溶液に吸収させる吸収器と、冷媒蒸気を吸収した稀溶液を吸収器から高温再生器および低温再生器に並行して送るために分岐した配管系とを備える蒸気焚吸収冷温水機において、
前記高温再生器から吸収器に送られる濃溶液によって吸収器から高温再生器および低温再生器に送られる稀溶液を制御するため、前記分岐前の配管系に設けられた制御手段を前記高温再生器に取り付け、
前記吸収器から低温再生器に送られる稀溶液と前記高温再生器を加熱後の蒸気とを熱交換するドレンクーラを、前記分岐後の低温再生器の配管系に設け、
前記制御手段の後において稀溶液と冷媒を分離した濃溶液とをそれぞれ熱交換する低温溶液熱交換器および高温溶液熱交換器とを設けることを特徴とする蒸気焚吸収冷温水機。
A high temperature regenerator that separates the refrigerant vapor from the solution using the vapor supplied from the external heat source as a heating source, a low temperature regenerator that separates the refrigerant vapor from the solution using the refrigerant vapor separated by the high temperature regenerator as a heating source, and the low temperature A condenser that liquefies the refrigerant vapor separated by the regenerator, an evaporator that converts the refrigerant liquefied by the condenser into vapor, an absorber that absorbs the refrigerant vapor generated by the evaporator into the solution, and a refrigerant vapor that is absorbed In a steam tank absorption chiller / heater equipped with a piping system branched to send the diluted solution from the absorber to the high temperature regenerator and the low temperature regenerator in parallel,
In order to control the rare solution sent from the absorber to the high-temperature regenerator and the low-temperature regenerator by the concentrated solution sent from the high-temperature regenerator to the high-temperature regenerator, the control means provided in the piping system before the branching Attached to the
A drain cooler for exchanging heat between the dilute solution sent from the absorber to the low temperature regenerator and the steam after heating the high temperature regenerator is provided in the piping system of the low temperature regenerator after the branch,
A steam tank absorption chiller / heater comprising a low-temperature solution heat exchanger and a high-temperature solution heat exchanger for exchanging heat between the diluted solution and the concentrated solution from which the refrigerant has been separated after the control means, respectively.
外部熱源から供給される蒸気を加熱源として冷媒蒸気を溶液から分離する高温再生器と、この高温再生器で分離した冷媒蒸気を加熱源として冷媒蒸気を溶液から分離する低温再生器と、この低温再生器で分離した冷媒蒸気を液化する凝縮器と、この凝縮器で液化した冷媒を蒸気に変える蒸発器と、この蒸発器で発生した冷媒蒸気を溶液に吸収させる吸収器と、冷媒蒸気を吸収した稀溶液を吸収器から高温再生器および低温再生器に並行して送るために分岐した配管系とを備える蒸気焚吸収冷温水機において、
前記高温再生器から吸収器に送られる濃溶液によって吸収器から高温再生器および低温再生器に送られる稀溶液を制御するため、前記分岐前の配管系に設けられた制御手段を前記高温再生器に取り付け、
前記吸収器から送られる稀溶液と前記高温再生器を加熱後の蒸気とを熱交換するドレンクーラを、前記分岐前の配管系からさらに分岐した高温再生器の配管系に設け、
前記制御手段の後において稀溶液と冷媒を分離した濃溶液とをそれぞれ熱交換する低温溶液熱交換器および高温溶液熱交換器とを設けることを特徴とする蒸気焚吸収冷温水機。
A high temperature regenerator that separates the refrigerant vapor from the solution using the vapor supplied from the external heat source as a heating source, a low temperature regenerator that separates the refrigerant vapor from the solution using the refrigerant vapor separated by the high temperature regenerator as a heating source, and the low temperature A condenser that liquefies the refrigerant vapor separated by the regenerator, an evaporator that converts the refrigerant liquefied by the condenser into vapor, an absorber that absorbs the refrigerant vapor generated by the evaporator into the solution, and a refrigerant vapor that is absorbed In a steam tank absorption chiller / heater equipped with a piping system branched to send the diluted solution from the absorber to the high temperature regenerator and the low temperature regenerator in parallel,
In order to control the rare solution sent from the absorber to the high-temperature regenerator and the low-temperature regenerator by the concentrated solution sent from the high-temperature regenerator to the high-temperature regenerator, the control means provided in the piping system before the branching Attached to the
A drain cooler for exchanging heat between the dilute solution sent from the absorber and the steam after heating the high temperature regenerator is provided in the piping system of the high temperature regenerator further branched from the piping system before branching,
A steam tank absorption chiller / heater comprising a low-temperature solution heat exchanger and a high-temperature solution heat exchanger for exchanging heat between the diluted solution and the concentrated solution from which the refrigerant has been separated after the control means, respectively.
JP09107499A 1999-03-31 1999-03-31 Steam tank absorption chiller / heater Expired - Lifetime JP3724975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09107499A JP3724975B2 (en) 1999-03-31 1999-03-31 Steam tank absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09107499A JP3724975B2 (en) 1999-03-31 1999-03-31 Steam tank absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2000283589A JP2000283589A (en) 2000-10-13
JP3724975B2 true JP3724975B2 (en) 2005-12-07

Family

ID=14016371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09107499A Expired - Lifetime JP3724975B2 (en) 1999-03-31 1999-03-31 Steam tank absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3724975B2 (en)

Also Published As

Publication number Publication date
JP2000283589A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
JP3287131B2 (en) Absorption chiller / heater
JP4184197B2 (en) Hybrid absorption heat pump system
JP3724975B2 (en) Steam tank absorption chiller / heater
JPH0794933B2 (en) Air-cooled absorption air conditioner
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JPS63998Y2 (en)
JPH04116352A (en) Absorption cooler/heater
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JPS6113885Y2 (en)
JP2533932B2 (en) Air-cooled absorption type water heater
JP4064199B2 (en) Triple effect absorption refrigerator
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP4596683B2 (en) Absorption refrigerator
JPH0354378Y2 (en)
JPH1038402A (en) Steam-heating absorption type water cooler/heater
JPH0443264A (en) Absorption type heat source device
JP3744689B2 (en) Co-generation system
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JP3663007B2 (en) Absorption chiller / heater
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP2865305B2 (en) Absorption refrigerator
JP2005106408A (en) Absorption type freezer
JPH0559161U (en) Hot water absorption absorption type cold water heater
JPH0559162U (en) Hot water absorption absorption type cold water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term