JP3744689B2 - Co-generation system - Google Patents

Co-generation system Download PDF

Info

Publication number
JP3744689B2
JP3744689B2 JP16283698A JP16283698A JP3744689B2 JP 3744689 B2 JP3744689 B2 JP 3744689B2 JP 16283698 A JP16283698 A JP 16283698A JP 16283698 A JP16283698 A JP 16283698A JP 3744689 B2 JP3744689 B2 JP 3744689B2
Authority
JP
Japan
Prior art keywords
heat
medium
heat exchanger
temperature
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16283698A
Other languages
Japanese (ja)
Other versions
JPH11337211A (en
Inventor
修行 井上
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP16283698A priority Critical patent/JP3744689B2/en
Publication of JPH11337211A publication Critical patent/JPH11337211A/en
Application granted granted Critical
Publication of JP3744689B2 publication Critical patent/JP3744689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コ・ジェネレーションシステムに係り、特に、燃料電池、あるいはエンジン駆動発電機等の発電機の排熱で駆動する排熱駆動吸収冷温水装置を用いるコ・ジェネレーションシステムに関する。
【0002】
【従来の技術】
従来、発電設備の熱回収方法として、廃熱を吸収冷凍機の再生器で回収することは知られていた。
また、吸収冷凍機では、冷房運転時は、吸収器、凝縮器に冷却水を通水し、発生器に熱源となる温水(発電設備のエンジン駆動発電機や燃料電池の排出熱など)を通し、蒸発器から、冷房用の冷水を取り出す。冷房サイクルは通常の吸収冷凍サイクルで運転される。
一方、暖房の場合は、熱源となる温水と、暖房用温水とを直接、熱交換させて得ることになる。
【0003】
また、エンジン駆動発電機や燃料電池等の発電機の排出熱を熱源として運転する吸収冷凍装置では、吸収冷凍装置の役目として冷水を製造する以外に、熱源である排出熱を冷却する役目がある。
ところが、発電機で発電する電気の使用量と、吸収冷凍機で必要とする排出熱量とは、一般には一致しない。例えば、発電量が多く、冷房負荷が小さい場合、排出熱量が多く、吸収冷凍機で排出熱の冷却する役目が果せない。
このような、熱源温度が高すぎる場合には、ラジエータ(あるいは冷却器)を用いて、熱源の熱を放出するのが一般的であるが、冷却し過ぎになる等の問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、冷房負荷及び暖房負荷がなくても、発電機の冷却媒体の温度を一定に保持でき、温度制御された冷水、温水を取り出すことができるコ・ジェネレーションシステムを提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、発電機と、発電機からの排熱で駆動する吸収冷温水機とを有し、該吸収冷温水機と発電機との間に熱媒体を介して熱交換をする熱交換器を設け、該熱媒体が、前記発電機の冷却回路と該熱交換器との間を循環する熱媒体Aと、前記吸収冷温水機の再生器と該熱交換器との間を循環する熱媒体Bとからなり、前記熱媒体Aで熱媒体Bを加熱し、熱媒体A自体は冷却される構成としたコ・ジェネレーションシステムにおいて、前記熱媒体Bは、前記熱交換器で蒸発し、媒体蒸気の形で前記吸収冷温水機の再生器に導入され、再生器で凝縮して液化することにより、前記熱交換器と再生器の間を自然循環する媒体を用い、前記再生器から熱交換器に戻る媒体の液配管中に流量制御弁を設けることとしたものである。
【0006】
前記コ・ジェネレーションシステムにおいて、流量制御弁は、熱媒体Bの圧力又は飽和温度を目標値に制御するように調節するか、前記熱媒体Aの温度を目標値に制御するように調節することができる。
また、前記吸収冷温水機と熱交換器を循環する熱媒体Bの蒸気配管に、該熱媒体Bの蒸気を受入れ、水を加熱する熱交換器を設け、該熱交換器を出る熱媒体Bの液は吸収冷温水機の再生器と流量制御弁の間に戻し、また、被加熱側の水の温度制御は、被加熱水の熱交換器のバイパス量を調節することで行うことができる。
【0007】
【発明の実施の形態】
燃料電池など、コ・ジェネレーションシステムは基本的に発電が主目的であり、副次的に熱が利用できる。この熱利用の際に、電気を消費することは、極力避ける必要がある。
本発明では、発電機側の熱を吸収冷温水機の再生器に輸送するのに、顕熱ではなく、潜熱で行い、その媒体の移動をポンプではなく、熱による自然循環とし、ポンプ動力を使用しないものとしている。
本発明に使用できる熱媒体Bとしては、発生量の熱媒体として使用して液化するもの例えば、HCFC、HFC系の熱媒が利用できるが、中でもR123 が温度、圧力から適当である。
また、発電機側の冷却水の温度は、冷却して供給する必要があるが、低下させ過ぎると問題になることがあり、システム上、ある温度範囲に収めるのが一般的である。例えば、燃料電池などの様に、反応温度をこの冷却水で冷却制御している場合、冷却水温度を下げ過ぎると、反応速度が遅くなり、発電量の減少という悪い影響が出る。
【0008】
本発明では、発電機側と吸収冷温水機との間の熱交換器に供給する媒体Bの液量を調節することで、発電機側から除去する熱量、あるいは発電機側の温度を制御することができる。
また、熱媒体Bの蒸気側に熱交換器(給湯器)を設ける場合、湯温の制御は、給湯器に導く湯量とバイパス量の比率を変えることで調節することができる。
本発明のコ・ジェネレーションシステムに用いることができる発電機は、燃料電池、あるいはエンジン駆動発電機であるが、燃料電池の例としては、例えば特表平8−502855号公報に記載されている低温度の個体ポリマー燃料電池の積み重ねを用いて、ガス状の及び/又は液体状の炭化水素燃料からの化学エネルギーを、電気的エネルギーに変換する燃料電池を用いることができる。
【0009】
次に、図面を用いて本発明を詳細に説明する。
図1は、本発明のコ・ジェネレーションシステムの一例を示す概略構成図である。
図1において、吸収冷温水装置の構成要素で、Gは発生器、Aは吸収器、Eは蒸発器、Cは凝縮器、H1 は溶液熱交換器、V1 は冷媒蒸気弁、V2 は冷媒弁、V3 は冷却水弁、PIは冷却水制御ポンプ、11,12はポンプ、TH は熱源温度検出器、TC は冷水温度検出器、17は冷却塔、管1〜4は溶液通路、管5〜6は冷媒通路、管8は冷媒蒸気配管、管13,14は熱源通路、管18は冷水通路、19〜20は冷却水通路であり、また、FGは燃料電池、H2 は燃料電池FGと発生器Gを結ぶ熱交換器、21は燃料電池の冷却用熱媒体Aの循環路、V4 は熱媒体Bの蒸気弁である。
【0010】
次に、この装置を用いた冷房サイクルを説明する。
燃料電池FGを運転することにより、燃料電池が発熱し、この発熱を冷却するために冷却用の熱媒体Aが、熱交換器H2 を通って、熱媒体Bにより冷却されて循環している。固体ポリマー燃料電池の場合熱媒体Aは約80℃程度で戻し、熱媒体Bは75℃程度とすることが多い。
一方、熱交換器H2 では熱媒体Bは、熱媒体Aにより加熱されて気化し、媒体蒸気Bとして熱源通路14を通り発生器Gに入り、吸収冷温水機内を循環する希溶液を加熱し、自らは冷却されて熱媒体液Bとして通路13から熱交換器H2 に循環する。
熱媒体Bの流れをスムーズにし、逆流を起こさないようにするため、熱媒体Bは発生器Gの下部から取り出し、熱交換器H2 の下部から導入し、間には液シール(Uシール)を設けるのがよい。
【0011】
通路13には媒体液Bの流量を制御する流量制御弁V4 が設けられ、熱媒体Bの圧力又は飽和温度を目標値に制御し、また熱媒体Aの温度を目標値に制御している。即ち、熱媒体Aの温度が高い場合は弁V4 を開けて熱交換器H2 に導入される熱媒体Bの量を増大させて、より多くの熱を熱媒体B側に移動させて熱媒体Aの温度を低下させ、逆に熱媒体Aの温度が低い場合は弁V4 を閉方向に移動して、熱媒体Bに移動する熱量を減少させて、熱媒体Aの温度を維持するように調節する。
そして、吸収冷温水機では、冷媒を吸収した希溶液は吸収器Aから管1を通り、ポンプ11により熱交換器H1 の被加熱側に送られ、熱交換により加温された希溶液は管2を通り発生器Gに導入される。発生器Gでは、管14からの媒体蒸気Bにより加熱されて、吸収した冷媒蒸気を蒸発して濃縮される。濃縮された濃溶液は管3から熱交換器Hの加熱側を通って、管4から吸収器Aに導入され再び冷媒を吸収して希溶液となって管1から循環される。
【0012】
一方、発生器Gで発生した冷媒蒸気は凝縮器Cに至り、凝縮器C中の冷却水によって冷却されて凝縮し、管5から蒸発器Eに導入される。蒸発器Eでは、冷媒は冷水から熱を奪い、冷凍効果を発揮して蒸発する。蒸発した冷媒蒸気は吸収器Aで溶液に吸収される。吸収の際の吸収熱は吸収器Aを流れる管19からの冷却水により冷却される。
このような冷房サイクルにおいて、冷水温度が冷水目標温度より低い場合は、凝縮器から蒸発器に導く冷媒蒸気配管8の冷媒蒸気弁V1 の開度を調節することにより制御し、次いで、冷水温度検出器TC 及び熱源温度検出器TH により、冷水温度及び熱源温度を検出し、その検出値に基づいて、冷媒蒸気弁V1 を調節する。また、冷水温度が目標温度より高い場合は、冷媒蒸気弁V1 は全閉とする。そして、熱源温度が熱源目標温度より低い場合は、冷水温度に関係なく、吸収器及び凝縮器に通す冷却水の流量を減少させ、逆に目標温度より高い場合は冷水温度に関係なく冷却水流量を増加させる。そして、冷水温度の制御は冷媒蒸気弁で行う。
【0013】
次に、暖房サイクルについて説明する。
暖房サイクルでは、発生器Gで溶液が熱源により加熱され、発生した冷媒蒸気を凝縮器Cから冷媒蒸気弁V1 を経由して蒸発器Eに導き、蒸発器Eで凝縮させることにより温水を得る。凝縮した冷媒液は、蒸発器Eから溶液系(吸収器A又は吸収器出口配管1)に戻す。
蒸発器Eから溶液系に戻す方法としては、蒸発器Eをオーバーフローさせて吸収器Aに流すか、或いは、蒸発器Eから吸収器出口配管1に直接接続した配管の冷暖房切替弁(希釈弁)を開にして行う。
【0014】
このような暖房サイクルにおいては、次のように制御する。まず、温水温度が目標温度より高い場合は、冷媒蒸気弁は閉方向に温水温度で制御し、温水温度が目標温度より低い場合は、熱源温度によって制御方法が異る。すなわち、熱源温度が目標温度より低い場合は冷媒蒸気弁を熱源温度で制御し、熱源温度が目標より高い場合は冷媒蒸気弁を開方向に温水温度によって制御する。
一方、冷却水流量は、熱源温度が目標温度より低い場合は0とし、目標温度より高い場合は、熱源温度によって冷却水流量を調節し、熱源の熱媒体Bの流量制御弁V4 は、常に熱媒体Aの温度を目標値に制御するように調節する。
【0015】
図2に、本発明のコ・ジェネレーションシステムの他の例の概略構成図を示す。
図2においては、図1の装置の熱媒体Bの循環路13、14に温水用の熱交換器(給湯器)H3 を設けたものである。
即ち、熱交換器H2 から出る熱媒体Bの蒸気配管14に、バイパス管22を接続し、該バイパス管を給湯用の熱交換器H3 の加熱側を通し、熱媒体Bの液を熱媒体Bの液配管13の流量制御弁V4 の前に接続する。そして、熱交換器H3 の被加熱側には、被加熱水が通る流路23に3方弁V5 と、熱交換器H3 をバイパスするバイパス管24を設けており、この熱交換器H3 をバイパスする被加熱水のバイパス量を調節することにより、被加熱側の水の温度制御を行っている。
【0016】
【発明の効果】
本発明によれば、発電機側の冷却水の温度を、発電機側と吸収冷温水機との間に設けた熱交換器に供給する媒体Bの液量で調節しており、発電機側の温度を一定範囲に維持することができる。
また、吸収冷温水機側の媒体Bとして、熱交換器で気化して媒体蒸気として再生器中に導入し、再生等で凝縮して液化する媒体を用いているため、ポンプを設けることなく熱による自然循環としているのでポンプ動力を節約できる。
【図面の簡単な説明】
【図1】本発明の一例を示すコ・ジェネレーションシステムの概略構成図。
【図2】本発明の他の例を示すコ・ジェネレーションシステムの概略構成図。
【符号の説明】
G:発生器、A:吸収器、E:蒸発器、C:凝縮器、H1 :溶液熱交換器、H2 :熱源熱交換器、H3 :温水用熱交換器、V1 :冷媒蒸気弁、V2 :冷媒弁、V3 :冷却水弁、V4 :熱媒体B蒸気弁、V5 :被加熱水バイパス量制御弁、TH :熱源温度検出器、TC :温度検出器、PI:冷却水制御ポンプ
1〜4:溶液通路、5,6:冷媒通路、8:冷媒蒸気配管、11,12:ポンプ、13,14:熱媒体B通路、17:冷却塔、18:冷温水通路、19〜20:冷却水通路、21:熱媒体Aの循環路、22:熱媒体Bバイパス通路、23:被加熱水通路、24:被加熱水バイパス通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a co-generation system, and more particularly to a co-generation system using an exhaust heat driven absorption chilled / hot water device driven by exhaust heat of a generator such as a fuel cell or an engine drive generator.
[0002]
[Prior art]
Conventionally, it has been known as a heat recovery method for power generation equipment to recover waste heat with a regenerator of an absorption refrigerator.
Also, in an absorption chiller, during cooling operation, cooling water is passed through the absorber and condenser, and hot water (such as engine-driven generators for power generation facilities and exhaust heat from fuel cells) is passed through the generator as a heat source. Then, cool water for cooling is taken out from the evaporator. The cooling cycle is operated by a normal absorption refrigeration cycle.
On the other hand, in the case of heating, it is obtained by directly exchanging heat between hot water as a heat source and warm water for heating.
[0003]
In addition, in the absorption refrigeration apparatus that operates using the exhaust heat of a generator such as an engine-driven generator or a fuel cell as a heat source, in addition to producing cold water as a role of the absorption refrigeration apparatus, it serves to cool the exhaust heat that is a heat source. .
However, the amount of electricity used by the generator and the amount of heat exhausted by the absorption chiller generally do not match. For example, when the power generation amount is large and the cooling load is small, the amount of exhaust heat is large, and the role of cooling the exhaust heat by the absorption refrigerator cannot be fulfilled.
When the temperature of the heat source is too high, it is common to use a radiator (or a cooler) to release the heat from the heat source.
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to provide a cogeneration system that can maintain a constant temperature of a cooling medium of a generator and can take out temperature-controlled cold water and hot water without a cooling load and a heating load. To do.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a generator and an absorption chiller / heater driven by exhaust heat from the generator, and a heat medium is interposed between the absorption chiller / heater and the generator. heat exchanger for heat exchange Te the provided heat medium, the heat medium a circulates between the cooling circuit and the heat exchanger of the generator, regenerator and heat exchange of the absorbent chiller consists of a heat medium B which circulates between the vessels, the heat medium B is heated at the heat medium a, in co-generation systems where the structure the heat medium a itself is cooled, the heating medium B is evaporated in the heat exchanger, is introduced into the regenerator of the absorption chiller heater in the form of a vapor medium, by liquefied condensed in the regenerator, naturally circulates between regenerator and the heat exchanger Using a medium, a flow control valve was provided in the liquid piping of the medium returning from the regenerator to the heat exchanger. Than it is.
[0006]
In the co-generation system, the flow control valve may be adjusted to control the pressure or saturation temperature of the heat medium B to a target value, or to adjust the temperature of the heat medium A to a target value. it can.
Further, a heat exchanger that receives the steam of the heat medium B and heats the water is provided in the steam pipe of the heat medium B that circulates between the absorption chiller / heater and the heat exchanger, and the heat medium B that exits the heat exchanger Is returned between the regenerator of the absorption chiller / heater and the flow control valve, and the temperature control of the heated water can be performed by adjusting the bypass amount of the heat exchanger of the heated water. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Co-generation systems such as fuel cells are basically designed for power generation and can use heat as a secondary. When using this heat, it is necessary to avoid consuming electricity as much as possible.
In the present invention, the heat on the generator side is transported to the regenerator of the absorption chiller / heater using latent heat instead of sensible heat, and the movement of the medium is not a pump but natural circulation by heat, and the pump power is It is supposed not to be used.
As the heat medium B that can be used in the present invention, one that can be used as a generated heat medium and liquefied, for example, an HCFC or HFC heat medium can be used. Among them, R 123 is suitable from the viewpoint of temperature and pressure.
Further, the temperature of the cooling water on the generator side needs to be cooled and supplied, but if it is lowered too much, it may become a problem, and it is generally within a certain temperature range in the system. For example, when the reaction temperature is controlled to be cooled with this cooling water as in a fuel cell or the like, if the cooling water temperature is lowered too much, the reaction speed becomes slow, which has a bad effect of reducing the amount of power generation.
[0008]
In the present invention, the amount of heat removed from the generator side or the temperature on the generator side is controlled by adjusting the liquid amount of the medium B supplied to the heat exchanger between the generator side and the absorption chiller / heater. be able to.
Further, when a heat exchanger (water heater) is provided on the steam side of the heat medium B, the control of the hot water temperature can be adjusted by changing the ratio of the amount of hot water led to the water heater and the amount of bypass.
The generator that can be used in the cogeneration system of the present invention is a fuel cell or an engine-driven generator. As an example of the fuel cell, for example, a low power described in JP-A-8-502855 is disclosed. A fuel cell that uses temperature solid polymer fuel cell stacks to convert chemical energy from gaseous and / or liquid hydrocarbon fuels into electrical energy can be used.
[0009]
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a cogeneration system according to the present invention.
1, G is a generator, A is an absorber, E is an evaporator, C is a condenser, H 1 is a solution heat exchanger, V 1 is a refrigerant steam valve, V 2. refrigerant valves, V 3 is cooled water valve, PI cooling water control pump, 11 and 12 are pumps, T H is the heat source temperature detectors, T C chilled water temperature detector, the 17 cooling towers, tubes 1-4 Solution passage, tubes 5-6 are refrigerant passages, tube 8 is refrigerant vapor piping, tubes 13, 14 are heat source passages, tube 18 is a cold water passage, 19-20 are cooling water passages, FG is a fuel cell, H 2 is a heat exchanger connecting the fuel cell FG and the generator G, 21 is a circulation path of the cooling medium A for cooling the fuel cell, and V 4 is a steam valve for the heat medium B.
[0010]
Next, a cooling cycle using this apparatus will be described.
By operating the fuel cell FG, the fuel cell generates heat, and the cooling heat medium A is cooled by the heat medium B and circulated through the heat exchanger H 2 in order to cool the heat generation. . In the case of a solid polymer fuel cell, the heating medium A is returned at about 80 ° C., and the heating medium B is often set to about 75 ° C.
On the other hand, in the heat exchanger H 2 , the heat medium B is heated and vaporized by the heat medium A, passes through the heat source passage 14 as the medium vapor B, enters the generator G, and heats the dilute solution circulating in the absorption chiller / heater. , Itself is cooled and circulated from the passage 13 to the heat exchanger H 2 as the heat medium liquid B.
In order to make the flow of the heat medium B smooth and prevent back flow, the heat medium B is taken out from the lower part of the generator G, introduced from the lower part of the heat exchanger H 2 , and a liquid seal (U seal) in between. It is good to provide.
[0011]
The passage 13 is provided with a flow rate control valve V 4 that controls the flow rate of the medium liquid B, and controls the pressure or saturation temperature of the heat medium B to a target value, and controls the temperature of the heat medium A to a target value. . That is, when the temperature of the heat medium A is high, the valve V 4 is opened to increase the amount of the heat medium B introduced into the heat exchanger H 2 , and more heat is moved to the heat medium B side to The temperature of the medium A is decreased, and conversely, when the temperature of the heat medium A is low, the valve V 4 is moved in the closing direction, the amount of heat transferred to the heat medium B is decreased, and the temperature of the heat medium A is maintained. Adjust as follows.
Then, in the absorption chiller / heater, the diluted solution that has absorbed the refrigerant passes through the pipe 1 from the absorber A, is sent to the heated side of the heat exchanger H 1 by the pump 11, and the diluted solution heated by heat exchange is It is introduced into the generator G through the tube 2. In the generator G, the refrigerant vapor heated by the medium vapor B from the pipe 14 is evaporated and concentrated. The concentrated concentrated solution passes from the tube 3 through the heating side of the heat exchanger H, is introduced into the absorber A from the tube 4, absorbs the refrigerant again, and is circulated from the tube 1 as a diluted solution.
[0012]
On the other hand, the refrigerant vapor generated in the generator G reaches the condenser C, is cooled and condensed by the cooling water in the condenser C, and is introduced into the evaporator E from the pipe 5. In the evaporator E, the refrigerant takes heat from the cold water and evaporates with a freezing effect. The evaporated refrigerant vapor is absorbed by the absorber A into the solution. The absorbed heat at the time of absorption is cooled by cooling water from the pipe 19 flowing through the absorber A.
In such a cooling cycle, when the chilled water temperature is lower than the chilled water target temperature, the chilled water temperature is controlled by adjusting the opening degree of the refrigerant vapor valve V 1 of the refrigerant vapor pipe 8 that leads from the condenser to the evaporator. the detector T C and the heat source temperature detector T H, detects the cold water temperature and heat source temperature, based on the detected value, to adjust the refrigerant vapor valve V 1. Moreover, if the cold water temperature is higher than the target temperature, the refrigerant steam valve V 1 was fully closed. When the heat source temperature is lower than the heat source target temperature, the flow rate of the cooling water passing through the absorber and the condenser is decreased regardless of the chilled water temperature. Conversely, when the heat source temperature is higher than the target temperature, the flow rate of the cooling water regardless of the chilled water temperature. Increase. And control of cold water temperature is performed with a refrigerant vapor valve.
[0013]
Next, the heating cycle will be described.
In the heating cycle, the solution is heated by the heat source in the generator G, and the generated refrigerant vapor is led from the condenser C to the evaporator E via the refrigerant vapor valve V 1 and condensed in the evaporator E to obtain hot water. . The condensed refrigerant liquid is returned from the evaporator E to the solution system (the absorber A or the absorber outlet pipe 1).
As a method of returning from the evaporator E to the solution system, the evaporator E overflows and flows into the absorber A, or a cooling / heating switching valve (dilution valve) of a pipe directly connected from the evaporator E to the absorber outlet pipe 1 To open.
[0014]
In such a heating cycle, control is performed as follows. First, when the hot water temperature is higher than the target temperature, the refrigerant steam valve is controlled by the hot water temperature in the closing direction, and when the hot water temperature is lower than the target temperature, the control method differs depending on the heat source temperature. That is, when the heat source temperature is lower than the target temperature, the refrigerant vapor valve is controlled by the heat source temperature, and when the heat source temperature is higher than the target, the refrigerant vapor valve is controlled by the hot water temperature in the opening direction.
On the other hand, the cooling water flow rate is 0 when the heat source temperature is lower than the target temperature, and when it is higher than the target temperature, the cooling water flow rate is adjusted according to the heat source temperature, and the flow control valve V 4 of the heat medium B of the heat source is always The temperature of the heat medium A is adjusted to be controlled to a target value.
[0015]
FIG. 2 shows a schematic configuration diagram of another example of the cogeneration system of the present invention.
In FIG. 2, a heat exchanger (hot water heater) H 3 for hot water is provided in the circulation paths 13 and 14 of the heat medium B of the apparatus of FIG.
That is, the bypass pipe 22 is connected to the steam pipe 14 of the heat transfer medium B coming out of the heat exchanger H 2 , and the bypass pipe is passed through the heating side of the heat exchanger H 3 for hot water supply to heat the liquid of the heat transfer medium B. Connected in front of the flow control valve V 4 of the liquid pipe 13 of the medium B. On the heated side of the heat exchanger H 3 , a three-way valve V 5 and a bypass pipe 24 that bypasses the heat exchanger H 3 are provided in the flow path 23 through which the heated water passes. The temperature control of the heated water is performed by adjusting the bypass amount of the heated water that bypasses H 3 .
[0016]
【The invention's effect】
According to the present invention, the temperature of the cooling water on the generator side is adjusted by the liquid amount of the medium B supplied to the heat exchanger provided between the generator side and the absorption chiller / heater, Can be maintained within a certain range.
Further, as the medium B on the absorption chiller / heater side, a medium that is vaporized by a heat exchanger and introduced into a regenerator as medium vapor and condensed and liquefied by regeneration or the like is used. Because it is a natural circulation, you can save pump power.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cogeneration system showing an example of the present invention.
FIG. 2 is a schematic configuration diagram of a cogeneration system showing another example of the present invention.
[Explanation of symbols]
G: Generator, A: Absorber, E: Evaporator, C: Condenser, H 1 : Solution heat exchanger, H 2 : Heat source heat exchanger, H 3 : Hot water heat exchanger, V 1 : Refrigerant vapor Valve, V 2 : Refrigerant valve, V 3 : Cooling water valve, V 4 : Heating medium B steam valve, V 5 : Heated water bypass amount control valve, T H : Heat source temperature detector, T C : Temperature detector, PI: Cooling water control pumps 1-4: Solution passage, 5, 6: Refrigerant passage, 8: Refrigerant vapor piping, 11, 12: Pump, 13, 14: Heat medium B passage, 17: Cooling tower, 18: Cold / hot water Passage, 19-20: Cooling water passage, 21: Circulation passage of heat medium A, 22: Heat medium B bypass passage, 23: Heated water passage, 24: Heated water bypass passage

Claims (4)

発電機と、発電機からの排熱で駆動する吸収冷温水機とを有し、該吸収冷温水機と発電機との間に熱媒体を介して熱交換をする熱交換器を設け、該熱媒体が、前記発電機の冷却回路と該熱交換器との間を循環する熱媒体Aと、前記吸収冷温水機の再生器と該熱交換器との間を循環する熱媒体Bとからなり、前記熱媒体Aで熱媒体Bを加熱し、熱媒体A自体は冷却される構成としたコ・ジェネレーションシステムにおいて、前記熱媒体Bは、前記熱交換器で蒸発し、媒体蒸気の形で前記吸収冷温水機の再生器に導入され、再生器で凝縮して液化することにより、前記熱交換器と再生器の間を自然循環する媒体を用い、前記再生器から熱交換器に戻る媒体の液配管中に流量制御弁を設けたことを特徴とするコ・ジェネレーションシステム。A generator and an absorption chiller / heater driven by exhaust heat from the generator; a heat exchanger for exchanging heat via a heat medium between the absorption chiller / heater and the generator; from the heat medium, the heat medium a circulates between the cooling circuit and the heat exchanger of the generator, a heat medium B which circulates between the regenerator and the heat exchanger of the absorption chiller becomes, the heating medium B is heated at the heat medium a, in co-generation systems where the structure the heat medium a itself is cooled, the heating medium B is evaporated in the heat exchanger, the shape of the vapor medium in is introduced into the regenerator of the absorption chiller heater, by liquefied condensed in the regenerator, using a medium which naturally circulates between regenerator and the heat exchanger, the heat exchanger from the regenerator A cogeneration system, characterized in that a flow control valve is provided in the liquid piping of the returning medium. 前記流量制御弁は、熱媒体Bの圧力又は飽和温度を目標値に制御するように調節することを特徴とする請求項1記載のコ・ジェネレーションシステム。The co-generation system according to claim 1, wherein the flow control valve is adjusted so as to control the pressure or saturation temperature of the heat medium B to a target value. 前記流量制御弁は、熱媒体Aの温度を目標値に制御するように調節することを特徴とする請求項1記載のコ・ジェネレーションシステム。The co-generation system according to claim 1, wherein the flow rate control valve is adjusted so as to control the temperature of the heat medium A to a target value. 前記吸収冷温水機と熱交換器を循環する熱媒体Bの蒸気配管に、該熱媒体Bの蒸気を受入れ、水を加熱する熱交換器を設け、該熱交換器を出る熱媒体Bの液は吸収冷温水機の再生器と流量制御弁の間に戻し、また、被加熱側の水の温度制御は、被加熱水の熱交換器のバイパス量を調節することで行うことを特徴とする請求項1、2又は3記載のコ・ジェネレーションシステム。The heat medium B steam pipe that circulates through the absorption chiller / heater and the heat exchanger is provided with a heat exchanger that receives the steam of the heat medium B and heats the water, and the liquid of the heat medium B that exits the heat exchanger. Is returned between the regenerator of the absorption chiller / heater and the flow control valve, and the temperature control of the heated water is performed by adjusting the bypass amount of the heat exchanger of the heated water. The cogeneration system according to claim 1, 2 or 3.
JP16283698A 1998-05-28 1998-05-28 Co-generation system Expired - Fee Related JP3744689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16283698A JP3744689B2 (en) 1998-05-28 1998-05-28 Co-generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16283698A JP3744689B2 (en) 1998-05-28 1998-05-28 Co-generation system

Publications (2)

Publication Number Publication Date
JPH11337211A JPH11337211A (en) 1999-12-10
JP3744689B2 true JP3744689B2 (en) 2006-02-15

Family

ID=15762177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16283698A Expired - Fee Related JP3744689B2 (en) 1998-05-28 1998-05-28 Co-generation system

Country Status (1)

Country Link
JP (1) JP3744689B2 (en)

Also Published As

Publication number Publication date
JPH11337211A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP3905986B2 (en) Waste heat utilization air conditioning system
KR20120103100A (en) Hybrid absorption type air conditioning system
KR101690303B1 (en) Triple effect absorption chiller
JP3744689B2 (en) Co-generation system
KR20090102651A (en) Absorption water chiller-heater
KR20140002134A (en) High efficiency hybrid cooling/heating water apparatus with absorption type
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JP4315854B2 (en) Absorption refrigerator
JP2002061983A (en) Absorption refrigerating machine
JP4308076B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP2003343939A (en) Absorption refrigerating machine
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JP4064199B2 (en) Triple effect absorption refrigerator
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP3400699B2 (en) Absorption chiller / heater using engine exhaust heat
JP2543258B2 (en) Absorption heat source device
JP2000088391A (en) Absorption refrigerating machine
JP3858655B2 (en) Absorption refrigeration system
JP2779422B2 (en) Absorption chiller / heater
JPH0621730B2 (en) Single-double-effect absorption refrigerator
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JP2004092968A (en) Absorption type cold and hot-water machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees