JP2004092968A - Absorption type cold and hot-water machine - Google Patents

Absorption type cold and hot-water machine Download PDF

Info

Publication number
JP2004092968A
JP2004092968A JP2002252780A JP2002252780A JP2004092968A JP 2004092968 A JP2004092968 A JP 2004092968A JP 2002252780 A JP2002252780 A JP 2002252780A JP 2002252780 A JP2002252780 A JP 2002252780A JP 2004092968 A JP2004092968 A JP 2004092968A
Authority
JP
Japan
Prior art keywords
temperature regenerator
refrigerant
flow path
absorption
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002252780A
Other languages
Japanese (ja)
Inventor
Tomoyuki Uchimura
内村 知行
Tetsuya Endo
遠藤 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002252780A priority Critical patent/JP2004092968A/en
Publication of JP2004092968A publication Critical patent/JP2004092968A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type cold and hot-water machine capable of generating the same effect as single or double effect cold and hot-water machine without providing an auxiliary regenerator and having a simple structure. <P>SOLUTION: This absorption type cold and hot-water machine is provided with a high temperature regenerator 5, a low temperature regenerator 4, a condenser 3, an absorber 2, an evaporator 1, a solution heat exchanger, and a solution flow passage and a refrigerant flow passage connecting these equipment and seals refrigerant and absorption solution. It has a vapor generator 7 heating refrigerant liquid using heat source fluid 13 used in a heat source of the high temperature regenerator 5 as the heat source. It is provided with a flow passage using generated refrigerant vapor as the heat source of the low temperature regenerator 4. A flow passage of generated vapor of the vapor generator 7 is connected with the refrigerant flow passage using the refrigerant vapor generated by the high temperature regenerator 5 as the heat source of the low temperature regenerator 4. The high temperature regenerator 5 and the vapor generator 7 can be constituted as one unit 14. A hot-water heat exchanger is provided in the generated vapor flow passage of the vapor generator 7. A turbine provided with a power generator is provided in the vapor flow passage of the vapor generator 7 and the high temperature regenerator 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷温水機に係り、特に、熱源流体を有効利用することができる温水熱交換器を設けた吸収式冷温水機に関する。
【0002】
【従来の技術】
吸収式冷温水機で、例えば、エンジン排ガスなどの比熱量の小さな流体を熱媒として運転しようとする場合、熱媒の温度の低下が大きいために熱エネルギーを有効に利用するのが難しい。また、直焚きの吸収式冷温水機であれば、排気ガスのもつ熱量を、有効に活用することが難しい。
これを解決しようとすると、例えば、一二重効用冷温水機の使用などが検討されるが、一二重効用の吸収式冷温水機は、高温再生器、低温再生器のほかにさらに再生器(補助再生器と称する)が必要になり、補助再生器に供給する溶液配管や蒸気管などの配管も多くなり、装置が大きくなって高価となることと、液面制御など、制御に困難が伴う。
【0003】
さらに、熱需要として温水などを併給する、いわゆる冷暖房併用型の一二重効用の吸収式冷温水機は、原理的には製作可能であるが、装置が非常に複雑となるため高価になる。また、温熱需要が多くなると、効率が大きく低下するという問題がある。
また、熱需要は季節変動や時間変動が激しく、排熱の熱量と熱需要とが合致しないとエネルギーが無駄になる。このため、余ったエネルギーを電力など融通しやすいエネルギーに変換することも検討されている。
従来の吸収式冷温水機を図面を用いて説明すると、図6は、従来の二重効用の冷温水機であり、いわゆる分岐フローと呼ばれるものである。
例えば、熱源流体13としてガスエンジンの排気ガス等を用いた場合、熱源流体の供給温度は280℃程度である。ここで、二重効用の吸収式冷温水機であれば、高温再生器5を通過した熱源流体の温度は、200℃以上あり、高温再生器5で利用できた熱は、排気ガスのもつ有効エネルギーの30%程度に過ぎない。
【0004】
図7は、従来の一二重効用の吸収式冷温水機であり、この例では、高温再生器5を通過した熱源流体で溶液を加熱し、再生する補助再生器6を用いている。このとき、補助再生器6を出る熱源流体の温度は120℃前後となるが、この場合、吸収式冷温水機で利用される熱量は、排気ガスのもつ有効エネルギーの60%程度になる。この結果、入熱量に対する冷凍能力(いわゆる成績係数)は、二重効用の装置よりは低下するものの、全体としてのエネルギー利用効率は二重効用の装置を上回る。
しかしながら、この場合、補助再生器6とそれを連絡する配管が必要であり、装置が複雑となることや、これらの液面等を制御する制御方式など、装置が複雑となる欠点がある。特に、補助再生器6で発生する冷媒蒸気は、低圧であるために比容積が大きいため、補助再生器6から凝縮器3への流路34の冷媒蒸気配管は、圧損等を考慮すると非常に大きくなり、補助再生器と凝縮器の配置等にも制限が出てくる。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、高温再生器を加熱して温度の低下した熱源流体で冷媒を加熱し、発生した蒸気を低温再生器の加熱に用いることで、補助再生器を設けずして単純な構造で一二重効用冷温水機と同等の効果を生むことができ、制御を容易にし、かつ、従来の冷温水機と部品の共通化を容易にすることができる吸収式冷温水機を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明では、高温再生器、低温再生器、凝縮器、吸収器、蒸発器、溶液熱交換器及びこれらの機器を接続する溶液流路と冷媒流路とを備え、冷媒と吸収溶液とを封入した吸収式冷温水機であって、前記高温再生器の加熱源に用いた熱源流体を加熱源とし、冷媒液を加熱して蒸発させる蒸気発生器を有し、該発生した冷媒蒸気を前記低温再生器の加熱源に用いる流路を設けたことを特徴とする吸収式冷温水機としたものである。
前記吸収式冷温水機において、蒸気発生器の発生蒸気を低温再生器の加熱源に用いる流路を、前記高温再生器で発生した冷媒蒸気を低温再生器の加熱源に用いる冷媒流路に接続すると共に、高温再生器と蒸気発生器とを一つのユニットとして構成することができ、前記蒸気発生器の発生蒸気を低温再生器の加熱源に用いる流路に、該蒸気で温水を加熱する温水熱交換器を設けることができ、また、前記蒸気発生器で発生した冷媒蒸気の流路と、前記高温再生器で発生した冷媒蒸気の冷媒流路に、双方もしくは一方の蒸気を用いて駆動するタービンを設け、該タービンには、発電機を配備してもよく、前記高温再生器の加熱源に用いる熱源流体としては、熱機関の排気ガスが使用でき、さらに、前記冷媒発生器の発生蒸気と高温再生器の冷媒蒸気の流路には、両方もしくは一方の蒸気を蒸発器に導く冷暖切替弁を有する流路を接続することができる。
【0007】
【発明の実施の形態】
本発明は、高温再生器を加熱して温度の低下した熱源流体で冷媒を加熱し、発生した蒸気を低温再生器の加熱に用いることで、補助再生器を設けずして単純な構造で一二重効用冷温水機と同等の効果を生むことができる吸収式冷温水機である。
また、温水熱交換器を該蒸気発生器と共に設けることで、従来の温水熱交換器を設けた一二重効用の吸収式冷温水機に比べて効率的に熱供給を行うことができる。
さらに、蒸気タービンと、発電機を組み合わせることで、余剰のエネルギーを電力に転換し、エネルギーを有効に利用することができる。
【0008】
次に、図面を用いて本発明を詳細に説明する。
図1〜図5は、本発明の吸収式冷温水機の種々の例を示すフロー構成図である。
図において、1は蒸発器、2は吸収器、3は凝縮器、4は低温再生器、5は高温再生器、7は蒸気発生器、8は温水熱交換器、9はタービン、10は発電機、11は低温熱交換器、12は高温熱交換器、13は熱源流体、14は高温側ユニット、15は冷水、16は冷温水、17は冷却水、18は温水、21は溶液ポンプ、22は冷媒ポンプ、23は冷媒給液ポンプ、24は希釈弁、25は温水熱交換器制御弁、26は蒸気制御弁、27は冷媒液制御弁、28は発電制御弁、29は冷暖切替弁、31〜33は溶液流路、34〜38は冷媒蒸気流路、39〜44は冷媒液流路である。
【0009】
図1について説明すると、高温再生器5を通過した熱源流体13を用いて流路40からの冷媒を加熱、蒸発させる蒸気発生器7を設け、発生した蒸気を流路36、35を通し低温再生器4の加熱源とした。
このとき、蒸気発生器7と高温再生器5の発生蒸気とを合流させ、共用の蒸気配管35で低温再生器4に導くことができる。
図1では、低温再生器4で凝縮した冷媒液の一部が、流路40から蒸気発生器7へ送られ、加熱されて冷媒蒸気となる。ここで、必要であれば冷媒液を蒸気発生器7へ送る冷媒給液ポンプ23を設けてもよい。発生した冷媒蒸気は、高温再生器5で発生した冷媒蒸気の流路35と合流し、低温再生器4へ導かれ、溶液の再生に用いられる。これにより、一二重効用の吸収式冷温水機と同等の効果を、より単純な装置で達成できる。
【0010】
冷媒蒸気及び冷媒液は、流路37と流路39から凝縮器3へ導入されて冷却水17により冷却され、凝縮された冷媒液は、流路41から蒸発器1に導入され、冷水15から熱を奪い蒸発して流路38から吸収器2へ導入される。吸収溶液は、流路31から弱吸収溶液が高温再生器5及び低温再生器4に導入されて、加熱、濃縮された強吸収溶液となり、流路32から吸収器2に導入されて、蒸発器1からの冷媒蒸気を吸収し、弱吸収溶液となって流路31から循環される。
この場合、高温再生器5と蒸気発生器7とを一つのユニットとして高温側ユニット14とし、その他の部分を低温側ユニットとして構成すると、低温側ユニットは、従来の二重効用の吸収式冷温水機の低温側ユニットと同様の構成とすることができる。この場合、高温側ユニットと低温側ユニットとを連絡する配管は、低圧の冷媒蒸気の配管がなく、両者のレイアウトは比較的随意に行うことができる。すなわち、生産上共通部品を用いることが容易となり、装置の低廉化に寄与する。また、従来の一二重効用の吸収式冷温水機と比較した場合、補助再生器のように溶液を加熱する装置がないため、腐食等の問題を生じにくく、信頼性の向上にも寄与する。
【0011】
図2は、本発明の吸収式冷温水機で蒸気発生器7に温水熱交換器8を付与した例である。
図2では、蒸気発生器7で発生した蒸気が、流路36から直接温水熱交換器8に供給されるように接続されており、温水熱交換器8で凝縮した冷媒液は、制御弁25を介して流路42から蒸気発生器7へ還流している。制御弁25は、熱需要の増減に応じて開閉し、これに応じて温水熱交換器8内の液位が変化して、伝熱面積が変わることにより給湯能力を制御する。
この場合、熱需要が無から徐々に増加した場合を考えると、熱需要が無い場合、蒸気発生器7で発生した冷媒蒸気は、弁25を閉とすることで、流路35からすべて低温再生器4の加熱に用いられ、図1と同様の効果を生ずる。熱需要が生じ、給湯負荷が生じると、弁25を開として行くことで、蒸気発生器7の発生蒸気は、温水熱交換器8に流入され、低温再生器4の加熱量は減少する。
【0012】
しかしながら、このときの各部分の温度は、伝熱量の変化による変化はあるものの大きくは変わらず、高温再生器5の過熱量はあまり変わらない。このため、入熱量に対する冷凍能力はむしろ向上する。
すなわち、本発明の吸収式冷温水機は、高温再生器5を通過して利用価値(エクセルギー)の低下した熱を給湯などに優先的に利用し、エネルギーの質に応じた運転を行う機構が備わっていることになる。さらに、給湯による熱需要が増加した場合、弁25を全開として高温再生器5の発生蒸気を流路35から温水熱交換器8に導くことで、熱需要を補うこともできる。この場合、温熱需要と冷熱需要のバランスを制御するために、流路35の蒸気管に制御弁26を設けても良い。なお、この場合、温水熱交換器8で凝縮した冷媒は、流路42から流路40の冷媒給液管を逆に通って流路39に還流される。
【0013】
図3は、本発明の吸収式冷温水機の冷媒蒸気流路35に、タービン9を付与した例である。
図3では、高温再生器5及び蒸気発生器7で発生した蒸気の一部を、流路35から発電制御弁28でタービン9に導くこととした。ここでタービン9に発電機10などを接続することで、冷熱需要が低下した場合、発生した蒸気を用いて発電を行い、余剰のエネルギーを有効に利用することができる。
図4は、図3の例に発電制御弁28を追加した例であり、この場合、蒸気発生器7と高温再生器5との発生蒸気を運転条件に合わせて、流路35と36及び流路35’と36’に切替えて適切に制御することができる。
【0014】
図5は、本発明の吸収式冷温水機の冷媒蒸気流路35の分岐流路35’に冷暖切替弁29を付加した例である。
本例で、冷暖切替弁29を開とすると、蒸気発生器7及び高温再生器5で発生した蒸気が流路35’から蒸発器1に導かれ、蒸発器1で凝縮する。これにより、蒸発器1を流れる冷温水16を加熱し、暖房を行うことが可能となる。
従来の吸収式冷温水機では、熱源により溶液を加熱し、発生した冷媒蒸気を用いて暖房を行っている。このため、必要な温水温度に対して、相当に高い温度まで溶液を加熱する必要があり、熱源流体からの回収熱量が低くなってしまう問題があった。
従来は、これを解決しようとすれば、たとえば溶液を直接蒸発器に導いて加熱する方法などがとられている。しかし、このような方法は、暖房から冷房へ切り替えた後の冷媒の汚染の問題や、蒸発器の腐食、冷媒ポンプの大型化など、好ましくない影響がある。
しかし、本発明によれば、蒸気の蒸発温度は温水の温度と差が小さいため、回収熱量を大きく取り効率を大幅に向上することができるのみならず、冷媒の汚染といった悪影響は原理的に無く、高効率かつ信頼性の高い冷温水機を提供できる。
【0015】
【発明の効果】
本発明によれば、次のような効果を奏することができる。
(1)単純な構成の装置で、従来の一二重効用吸収式冷温水機と同等の効果を得ることができる。
(2)従来の吸収式冷温水機と多くの要素を共有することができ、装置の低廉化に寄与する。
(3)吸収式冷温水機において、温水と冷水を併給し、従来技術に比べて総合的な効率を向上させることができる。
(4)熱源流体の入力が過剰である場合に、余剰のエネルギーを用いて、効率的に発電を行うことができる。
(5)本発明の効能を特に発揮し、エネルギー利用効率の高い吸収式冷温水機を提供できる。
(6)従来の冷温水機と同様に冷暖房共に利用でき、熱源流体のエネルギーを効率よく用いることができる。
【図面の簡単な説明】
【図1】本発明の吸収式冷温水機の一例を示すフロー構成図。
【図2】本発明の吸収式冷温水機の他の例を示すフロー構成図。
【図3】本発明の吸収式冷温水機の他の例を示すフロー構成図。
【図4】本発明の吸収式冷温水機の他の例を示すフロー構成図。
【図5】本発明の吸収式冷温水機の他の例を示すフロー構成図。
【図6】従来の吸収式冷温水機の一例を示すフロー構成図。
【図7】従来の吸収式冷温水機の他の例を示すフロー構成図。
【符号の説明】
1:蒸発器、2:吸収器、3:凝縮器、4:低温再生器、5:高温再生器、6:補助再生器、7:蒸気発生器、8:温水熱交換器、9:タービン、10:発電機、11:低温熱交換器、12:高温熱交換器、13:熱源流体、14:高温側ユニット、15:冷水、16:冷温水、17:冷却水、18:温水、21:溶液ポンプ、22:冷媒ポンプ、23:冷媒給液ポンプ、24:希釈弁、25:温水熱交換器制御弁、26:蒸気制御弁、27:冷媒液制御弁、28:発電制御弁、29:冷暖切替弁、31〜33:溶液流路、34〜38:冷媒蒸気流路、39〜44:冷媒液流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption chiller / heater, and more particularly to an absorption chiller / heater provided with a hot water heat exchanger that can effectively use a heat source fluid.
[0002]
[Prior art]
In an absorption type chiller / heater, for example, when an operation is performed using a fluid having a small specific heat amount such as engine exhaust gas as a heat medium, it is difficult to effectively use heat energy because the temperature of the heat medium is greatly reduced. In addition, in the case of a direct-fired absorption chiller / heater, it is difficult to effectively use the heat of exhaust gas.
In an attempt to solve this, for example, the use of a single-effect chiller / heater is considered.However, a single-effect absorption chiller / heater is not only a high-temperature regenerator and low-temperature regenerator but also a regenerator. (Referred to as “auxiliary regenerator”), the number of pipes such as solution pipes and vapor pipes to be supplied to the auxiliary regenerator increases, and the equipment becomes large and expensive, and it is difficult to control such as liquid level control. Accompany.
[0003]
Furthermore, a so-called combined use cooling / heating type single-effect absorption chiller / heater that supplies hot water or the like as heat demand can be manufactured in principle, but is expensive because the device becomes very complicated. In addition, there is a problem that the efficiency is greatly reduced when the heat demand increases.
Further, the heat demand is greatly fluctuated in season and time, and if the amount of heat of the exhaust heat does not match the heat demand, energy is wasted. For this reason, conversion of surplus energy into energy that is easily accessible, such as electric power, is also being studied.
A conventional absorption-type chiller / heater will be described with reference to the drawings. FIG. 6 shows a conventional double-effect chiller / heater, which is a so-called branch flow.
For example, when the exhaust gas of a gas engine or the like is used as the heat source fluid 13, the supply temperature of the heat source fluid is about 280 ° C. Here, in the case of a double-effect absorption chiller / heater, the temperature of the heat source fluid passing through the high-temperature regenerator 5 is 200 ° C. or more, and the heat available in the high-temperature regenerator 5 is the effective heat of the exhaust gas. Only about 30% of the energy.
[0004]
FIG. 7 shows a conventional single-effect absorption chiller / heater, in which an auxiliary regenerator 6 for heating and regenerating a solution with a heat source fluid passed through a high temperature regenerator 5 is used. At this time, the temperature of the heat source fluid exiting the auxiliary regenerator 6 is about 120 ° C. In this case, the amount of heat used in the absorption chiller / heater is about 60% of the effective energy of the exhaust gas. As a result, the refrigeration capacity (so-called coefficient of performance) with respect to the heat input is lower than that of the double effect device, but the overall energy utilization efficiency is higher than that of the double effect device.
However, in this case, the auxiliary regenerator 6 and a pipe for communicating the auxiliary regenerator 6 are required, and there are disadvantages in that the apparatus becomes complicated, and the apparatus becomes complicated such as a control method for controlling the liquid level and the like. In particular, since the refrigerant vapor generated in the auxiliary regenerator 6 has a low specific pressure and a large specific volume, the refrigerant vapor piping of the flow path 34 from the auxiliary regenerator 6 to the condenser 3 is extremely low in consideration of pressure loss and the like. As a result, the arrangement of the auxiliary regenerator and the condenser is limited.
[0005]
[Problems to be solved by the invention]
In view of the above prior art, the present invention heats a high-temperature regenerator to heat a refrigerant with a heat source fluid having a reduced temperature, and uses generated steam for heating a low-temperature regenerator, thereby eliminating the need for an auxiliary regenerator. Absorption type chilled and heated water that can produce the same effect as a single-effect chilled and heated water heater with a simple and simple structure, facilitates control, and facilitates common use of parts with conventional chilled and heated water heaters. It is an object to provide a machine.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a high-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator, a solution heat exchanger, and a solution flow path and a refrigerant flow path connecting these devices. An absorption chiller / heater enclosing a refrigerant and an absorbing solution, wherein the heat source fluid used as a heating source of the high-temperature regenerator is used as a heating source, and a steam generator that heats and evaporates the refrigerant liquid, A flow path for using the generated refrigerant vapor as a heating source of the low-temperature regenerator is provided as an absorption type chiller / heater.
In the absorption type chiller / heater, a flow path that uses steam generated by a steam generator as a heating source of a low-temperature regenerator is connected to a refrigerant flow path that uses refrigerant steam generated by the high-temperature regenerator as a heating source of a low-temperature regenerator. In addition, the high-temperature regenerator and the steam generator can be configured as one unit, and the steam generated by the steam generator is supplied to a flow path used as a heating source of the low-temperature regenerator by hot water for heating hot water with the steam. A heat exchanger may be provided, and the refrigerant flow path of the refrigerant vapor generated by the steam generator and the refrigerant flow path of the refrigerant vapor generated by the high-temperature regenerator are driven using both or one of the vapors. A turbine may be provided, and a generator may be provided in the turbine.Exhaust gas of a heat engine can be used as a heat source fluid used as a heating source of the high-temperature regenerator, and further, steam generated by the refrigerant generator And high temperature regenerator refrigerant steam The flow channel can be connected to a flow path having a heating and cooling switching valve for guiding the both or one of the steam in the evaporator.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention heats a high-temperature regenerator to heat a refrigerant with a heat source fluid having a lowered temperature, and uses the generated steam for heating a low-temperature regenerator, thereby providing a simple structure without an auxiliary regenerator. It is an absorption chiller / heater that can produce the same effect as a double effect chiller / heater.
Further, by providing the hot water heat exchanger together with the steam generator, heat can be supplied more efficiently as compared with a single-effect absorption chiller / heater provided with a conventional hot water heat exchanger.
Furthermore, by combining a steam turbine and a generator, surplus energy can be converted to electric power, and the energy can be used effectively.
[0008]
Next, the present invention will be described in detail with reference to the drawings.
1 to 5 are flow configuration diagrams showing various examples of the absorption-type hot and cold water machine of the present invention.
In the figure, 1 is an evaporator, 2 is an absorber, 3 is a condenser, 4 is a low temperature regenerator, 5 is a high temperature regenerator, 7 is a steam generator, 8 is a hot water heat exchanger, 9 is a turbine, and 10 is power generation. , 11 is a low-temperature heat exchanger, 12 is a high-temperature heat exchanger, 13 is a heat source fluid, 14 is a high-temperature side unit, 15 is cold water, 16 is cold and hot water, 17 is cooling water, 18 is hot water, 21 is a solution pump, 22 is a refrigerant pump, 23 is a refrigerant supply pump, 24 is a dilution valve, 25 is a hot water heat exchanger control valve, 26 is a steam control valve, 27 is a refrigerant liquid control valve, 28 is a power generation control valve, and 29 is a cooling / heating switching valve. Reference numerals 31 to 33 denote solution flow paths, 34 to 38 denote refrigerant vapor flow paths, and 39 to 44 denote refrigerant liquid flow paths.
[0009]
Referring to FIG. 1, a steam generator 7 for heating and evaporating the refrigerant from the flow path 40 using the heat source fluid 13 passed through the high temperature regenerator 5 is provided, and the generated steam is regenerated at low temperature through the flow paths 36 and 35. The heating source of the vessel 4 was used.
At this time, the steam generated by the steam generator 7 and the high-temperature regenerator 5 can be merged and guided to the low-temperature regenerator 4 by a common steam pipe 35.
In FIG. 1, a part of the refrigerant liquid condensed in the low-temperature regenerator 4 is sent from the flow path 40 to the steam generator 7 and is heated to be a refrigerant vapor. Here, if necessary, a refrigerant supply pump 23 that sends the refrigerant liquid to the steam generator 7 may be provided. The generated refrigerant vapor merges with the flow path 35 of the refrigerant vapor generated in the high-temperature regenerator 5, is guided to the low-temperature regenerator 4, and is used for regenerating the solution. As a result, an effect equivalent to that of a single-effect absorption chiller / heater can be achieved with a simpler device.
[0010]
The refrigerant vapor and the refrigerant liquid are introduced into the condenser 3 from the flow path 37 and the flow path 39 and are cooled by the cooling water 17, and the condensed refrigerant liquid is introduced into the evaporator 1 from the flow path 41, The heat is removed to evaporate and is introduced into the absorber 2 from the flow path 38. As for the absorbing solution, the weakly absorbing solution is introduced into the high-temperature regenerator 5 and the low-temperature regenerator 4 from the flow channel 31 to become a heated and concentrated strong absorbing solution. 1 and is circulated from the channel 31 as a weakly absorbing solution.
In this case, if the high-temperature regenerator 5 and the steam generator 7 are configured as one unit to be the high-temperature unit 14 and the other parts are configured to be the low-temperature units, the low-temperature unit is a conventional double-effect absorption-type cold and hot water. The configuration can be the same as the low-temperature side unit of the machine. In this case, the piping connecting the high-temperature side unit and the low-temperature side unit does not have a low-pressure refrigerant vapor pipe, and the layout of both can be relatively arbitrarily performed. That is, it becomes easy to use common parts in production, which contributes to a reduction in the cost of the apparatus. Further, when compared with the conventional single-effect absorption chiller / heater, there is no device for heating the solution like an auxiliary regenerator, so that problems such as corrosion hardly occur, which also contributes to improvement of reliability. .
[0011]
FIG. 2 shows an example in which a hot water heat exchanger 8 is provided to a steam generator 7 in the absorption type chiller / heater of the present invention.
In FIG. 2, the steam generated by the steam generator 7 is connected so as to be supplied directly from the flow path 36 to the hot water heat exchanger 8, and the refrigerant liquid condensed in the hot water heat exchanger 8 is supplied to the control valve 25. Circulates from the flow path 42 to the steam generator 7. The control valve 25 opens and closes in response to an increase or decrease in heat demand, and accordingly changes the liquid level in the hot water heat exchanger 8 and changes the heat transfer area to control the hot water supply capacity.
In this case, considering the case where the heat demand gradually increases from nothing, when there is no heat demand, all the refrigerant vapor generated in the steam generator 7 is regenerated at a low temperature from the flow path 35 by closing the valve 25. It is used for heating the vessel 4 and produces the same effect as in FIG. When heat demand is generated and hot water supply load is generated, the steam generated by the steam generator 7 flows into the hot water heat exchanger 8 by opening the valve 25, and the heating amount of the low temperature regenerator 4 is reduced.
[0012]
However, the temperature of each part at this time does not change much, although there is a change due to the change in the amount of heat transfer, and the amount of overheating of the high-temperature regenerator 5 does not change much. For this reason, the refrigeration capacity with respect to the heat input is rather improved.
In other words, the absorption chiller / heater of the present invention preferentially uses heat whose utility value (exergy) has decreased through the high-temperature regenerator 5 for hot water supply or the like, and performs an operation according to the quality of energy. Will be provided. Further, when the heat demand due to the hot water supply increases, the heat demand can be supplemented by fully opening the valve 25 and guiding the generated steam of the high temperature regenerator 5 from the flow path 35 to the hot water heat exchanger 8. In this case, a control valve 26 may be provided in the steam pipe of the flow path 35 in order to control the balance between the heat demand and the cold heat demand. In this case, the refrigerant condensed in the hot water heat exchanger 8 is returned to the flow path 39 from the flow path 42 through the refrigerant supply pipe of the flow path 40 in reverse.
[0013]
FIG. 3 shows an example in which a turbine 9 is provided in the refrigerant vapor flow path 35 of the absorption chiller / heater of the present invention.
In FIG. 3, a part of the steam generated by the high-temperature regenerator 5 and the steam generator 7 is guided from the passage 35 to the turbine 9 by the power generation control valve 28. Here, by connecting the generator 10 and the like to the turbine 9, when the demand for cold heat is reduced, the generated steam is used to generate power, and the surplus energy can be used effectively.
FIG. 4 shows an example in which a power generation control valve 28 is added to the example of FIG. 3. In this case, the steam generated by the steam generator 7 and the high-temperature regenerator 5 is adjusted according to the operating conditions, and the flow paths 35 and 36 and the flow It is possible to switch to the paths 35 'and 36' to control appropriately.
[0014]
FIG. 5 shows an example in which a cooling / heating switching valve 29 is added to a branch flow path 35 ′ of a refrigerant vapor flow path 35 of the absorption type chiller / heater of the present invention.
In this example, when the cooling / heating switching valve 29 is opened, the steam generated by the steam generator 7 and the high-temperature regenerator 5 is guided to the evaporator 1 from the flow path 35 'and condensed in the evaporator 1. Thereby, it becomes possible to heat the cold and hot water 16 flowing through the evaporator 1 to perform heating.
In a conventional absorption chiller / heater, a solution is heated by a heat source, and heating is performed using generated refrigerant vapor. For this reason, it is necessary to heat the solution to a temperature considerably higher than the required hot water temperature, and there has been a problem that the amount of heat recovered from the heat source fluid is reduced.
Conventionally, to solve this problem, for example, a method has been adopted in which a solution is directly introduced into an evaporator and heated. However, such a method has undesirable effects such as a problem of refrigerant contamination after switching from heating to cooling, corrosion of the evaporator, and an increase in the size of the refrigerant pump.
However, according to the present invention, since the vaporization temperature of the vapor is small in difference from the temperature of the hot water, not only can the amount of recovered heat be increased to greatly improve the efficiency, but also there is no adverse effect such as contamination of the refrigerant in principle. It is possible to provide a highly efficient and highly reliable water heater / heater.
[0015]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) With a device having a simple configuration, an effect equivalent to that of a conventional single-effect absorption chiller / heater can be obtained.
(2) Many elements can be shared with a conventional absorption chiller / heater, which contributes to a reduction in the cost of the apparatus.
(3) In an absorption-type chiller / heater, hot water and cold water are supplied together, so that the overall efficiency can be improved as compared with the related art.
(4) When the input of the heat source fluid is excessive, it is possible to efficiently generate power using excess energy.
(5) It is possible to provide an absorption-type water heater / heater that exhibits the effects of the present invention and has high energy use efficiency.
(6) Like the conventional water heater / cooler, it can be used for both cooling and heating, and the energy of the heat source fluid can be used efficiently.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of an absorption type chiller / heater of the present invention.
FIG. 2 is a flow diagram showing another example of the absorption type water heater / heater of the present invention.
FIG. 3 is a flow configuration diagram showing another example of the absorption type chiller / heater of the present invention.
FIG. 4 is a flow configuration diagram showing another example of the absorption type chiller / heater of the present invention.
FIG. 5 is a flow configuration diagram showing another example of the absorption type chiller / heater of the present invention.
FIG. 6 is a flowchart showing an example of a conventional absorption chiller / heater.
FIG. 7 is a flow configuration diagram showing another example of a conventional absorption chiller / heater.
[Explanation of symbols]
1: evaporator, 2: absorber, 3: condenser, 4: low temperature regenerator, 5: high temperature regenerator, 6: auxiliary regenerator, 7: steam generator, 8: hot water heat exchanger, 9: turbine, 10: generator, 11: low temperature heat exchanger, 12: high temperature heat exchanger, 13: heat source fluid, 14: high temperature unit, 15: cold water, 16: cold and hot water, 17: cooling water, 18: hot water, 21: Solution pump, 22: refrigerant pump, 23: refrigerant supply pump, 24: dilution valve, 25: hot water heat exchanger control valve, 26: steam control valve, 27: refrigerant liquid control valve, 28: power generation control valve, 29: Cooling / heating switching valve, 31-33: solution flow path, 34-38: refrigerant vapor flow path, 39-44: refrigerant liquid flow path

Claims (6)

高温再生器、低温再生器、凝縮器、吸収器、蒸発器、溶液熱交換器及びこれらの機器を接続する溶液流路と冷媒流路とを備え、冷媒と吸収溶液とを封入した吸収式冷温水機であって、前記高温再生器の加熱源に用いた熱源流体を加熱源とし、冷媒液を加熱して蒸発させる蒸気発生器を有し、該発生した冷媒蒸気を前記低温再生器の加熱源に用いる流路を設けたことを特徴とする吸収式冷温水機。An absorption-type cold / heater that includes a high-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator, a solution heat exchanger, and a solution flow path and a refrigerant flow path connecting these devices, and in which a refrigerant and an absorption solution are sealed. A water machine, comprising a steam generator that uses a heat source fluid used as a heating source of the high-temperature regenerator as a heating source, heats and evaporates a refrigerant liquid, and heats the generated refrigerant vapor to the low-temperature regenerator. An absorption chiller / heater provided with a flow path used as a source. 前記蒸気発生器の発生蒸気を低温再生器の加熱源に用いる流路を、前記高温再生器で発生した冷媒蒸気を低温再生器の加熱源に用いる冷媒流路に接続すると共に、高温再生器と蒸気発生器とを一つのユニットとして構成することを特徴とする請求項1記載の吸収式冷温水機。A flow path that uses the generated steam of the steam generator as a heating source of the low-temperature regenerator is connected to a refrigerant flow path that uses the refrigerant vapor generated by the high-temperature regenerator as a heating source of the low-temperature regenerator. 2. The absorption chiller / heater according to claim 1, wherein the steam generator and the steam generator are configured as one unit. 前記蒸気発生器の発生蒸気を低温再生器の加熱源に用いる流路に、該蒸気で温水を加熱する温水熱交換器を設けたことを特徴とする請求項1又は2記載の吸収式冷温水機。The absorption-type cold / hot water according to claim 1 or 2, wherein a hot water heat exchanger for heating hot water with the steam is provided in a flow path that uses the steam generated by the steam generator as a heating source of a low-temperature regenerator. Machine. 前記蒸気発生器で発生した冷媒蒸気の流路と、前記高温再生器で発生した冷媒蒸気の冷媒流路に、双方もしくは一方の蒸気を用いて駆動するタービンを設け、該タービンには、発電機を配備したことを特徴とする請求項1、2又は3記載の吸収式冷温水機。A turbine driven by using both or one of the steams is provided in a flow path of the refrigerant vapor generated by the steam generator and a refrigerant flow path of the refrigerant vapor generated by the high-temperature regenerator. The absorption-type water chiller / heater according to claim 1, 2, or 3, further comprising: 前記高温再生器の加熱源に用いる熱源流体は、熱機関の排気ガスであることを特徴とする請求項1〜4のいずれか1項記載の吸収式冷温水機。The absorption type chiller / heater according to any one of claims 1 to 4, wherein a heat source fluid used as a heating source of the high temperature regenerator is an exhaust gas of a heat engine. 前記冷媒発生器の発生蒸気と高温再生器の冷媒蒸気の流路には、両方もしくは一方の蒸気を蒸発器に導く冷暖切替弁を有する流路を接続したことを特徴とする請求項1〜5のいずれか1項記載の吸収式冷温水機。6. A flow path having a cooling / heating switching valve for guiding both or one of the vapors to the evaporator is connected to a flow path of the generated steam of the refrigerant generator and the refrigerant vapor of the high temperature regenerator. The absorption-type hot and cold water machine according to any one of the above items.
JP2002252780A 2002-08-30 2002-08-30 Absorption type cold and hot-water machine Pending JP2004092968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252780A JP2004092968A (en) 2002-08-30 2002-08-30 Absorption type cold and hot-water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252780A JP2004092968A (en) 2002-08-30 2002-08-30 Absorption type cold and hot-water machine

Publications (1)

Publication Number Publication Date
JP2004092968A true JP2004092968A (en) 2004-03-25

Family

ID=32058969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252780A Pending JP2004092968A (en) 2002-08-30 2002-08-30 Absorption type cold and hot-water machine

Country Status (1)

Country Link
JP (1) JP2004092968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524139A (en) * 2010-03-26 2013-06-17 エクソンモービル リサーチ アンド エンジニアリング カンパニー System and method for generating power and cooling using unused heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524139A (en) * 2010-03-26 2013-06-17 エクソンモービル リサーチ アンド エンジニアリング カンパニー System and method for generating power and cooling using unused heat

Similar Documents

Publication Publication Date Title
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
KR101690303B1 (en) Triple effect absorption chiller
JP3851764B2 (en) Absorption refrigerator
JP2004092968A (en) Absorption type cold and hot-water machine
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3830141B2 (en) Power generation and absorption cold / hot water equipment
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JPH05256535A (en) Sorption heat pump system
JP3986633B2 (en) Heat utilization system
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JP3744689B2 (en) Co-generation system
JP3862631B2 (en) Power generation and absorption cold / hot water equipment
JP4064199B2 (en) Triple effect absorption refrigerator
JP3830140B2 (en) Power generation and absorption cold / hot water equipment
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP2004011928A (en) Absorption refrigerator
JP2892519B2 (en) Absorption heat pump equipment
JP2543258B2 (en) Absorption heat source device
JPS6113550B2 (en)
JP2005106408A (en) Absorption type freezer
JP3724975B2 (en) Steam tank absorption chiller / heater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921