JP3732893B2 - Control method of absorption chiller / heater - Google Patents

Control method of absorption chiller / heater Download PDF

Info

Publication number
JP3732893B2
JP3732893B2 JP13917696A JP13917696A JP3732893B2 JP 3732893 B2 JP3732893 B2 JP 3732893B2 JP 13917696 A JP13917696 A JP 13917696A JP 13917696 A JP13917696 A JP 13917696A JP 3732893 B2 JP3732893 B2 JP 3732893B2
Authority
JP
Japan
Prior art keywords
frequency
temperature
liquid
pump
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13917696A
Other languages
Japanese (ja)
Other versions
JPH09318188A (en
Inventor
英一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13917696A priority Critical patent/JP3732893B2/en
Publication of JPH09318188A publication Critical patent/JPH09318188A/en
Application granted granted Critical
Publication of JP3732893B2 publication Critical patent/JP3732893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷温水機の制御方法に関するものであり、特に詳しくは蒸発器から取り出す熱流体の温度変動を抑えることができる制御方法に関する。
【0002】
【従来の技術】
快適な空調を行うためには、蒸発器から取り出す熱流体の温度を一定に保つ必要がある。このため、吸収器および凝縮器に供給する冷却水の温度、再生器の温度に基づいて演算算出した周波数によって吸収液ポンプの回転数を制御し、蒸発器から取り出す熱流体の温度変動を少なくすることが行われている。
【0003】
【発明が解決しようとする課題】
しかし、吸収冷温水機の容量制御をON/OFFで制御したり、HIGH/LOW/OFFで制御する場合、あるいは比例制御でも急激に燃焼量が変わる場合には、高温再生器から中間液が一時的に流れなくなり、蒸発器から取り出す熱流体の温度が大きく変動すると云った問題点がある。
【0004】
また、起動時にも液面が過渡的に上昇する現象が起こり、吸収液ポンプを一時的に停止したりして制御していた。この現象は、揚液管を持つ高温再生器で頻繁に起こると云った問題点があり、これが解決すべき課題とされていた。
【0005】
【課題を解決するための手段】
本発明は上記した従来技術の課題を解決するためになされたもので、吸収液ポンプ・冷媒ポンプなどを介して吸収器・凝縮器・再生器などと接続され、冷媒と吸収液の循環サイクルを形成する蒸発器に内蔵した熱交換器から冷/暖何れかの流体が選択的に得られるように構成すると共に、吸収液ポンプをインバータにより周波数制御する吸収冷温水機において、
【0006】
再生器に設置した燃焼加熱装置の燃焼信号を取り込み、燃焼量を30%以上急増させるときには吸収器および凝縮器に供給する冷却水の温度・再生器の温度などに基づいて演算算出した周波数を所定の演算式に基づいてそれよりは小さく、元の周波数よりは大きい周波数に補正し、燃焼量を30%以上急減させるときには前記冷却水の温度・再生器の温度などに基づいて演算算出した周波数を所定の演算式に基づいてそれよりは大きく、元の周波数よりは小さい周波数に補正し、前記補正した周波数に基づいて吸収液ポンプの回転を制御するようにした第1の構成の制御方法と、
【0008】
前記第1の構成の制御方法において、所定時間が経過するまでは、適宜演算算出する周波数を補正した周波数に基づいて吸収液ポンプの回転を制御し、所定時間経過後は演算算出したままで補正しない周波数に基づいて吸収液ポンプの回転を制御するようにした第の構成の制御方法と、
【0009】
前記第の構成の制御方法において、補正演算式の係数が漸減または漸増し、所定時間で補正量がゼロとなる補正を行うようにした第の構成の制御方法と、
を提供することにより、前記従来技術の課題を解決するものである。
【0010】
【発明の実施の形態】
本発明の実施形態を図面に基づいて説明する。図中、1はガス・灯油などの燃焼装置2を備え、吸収液の稀液を加熱することによって冷媒蒸気を発生させて中間液に濃縮する高温再生器、3はこの再生器から揚液された冷媒蒸気と中間液とを分ける気液分離器、4はこの気液分離器からの冷媒蒸気で中間液を加熱して濃液にする低温再生器、5は前記両再生器1・4からの冷媒蒸気を冷却して凝縮する凝縮器、6は冷媒散布器7Aから冷媒液を散布・滴下などして蒸発させる蒸発器7と、この蒸発器からの冷媒蒸気を前記低温再生器4からの濃液に吸収させて器内を低圧に維持する吸収器8からなる蒸発吸収器、9および10は低温および高温熱交換器、11は吸収液の「流れ」を動力として蒸発吸収器6などからガス体を引き込むためのエゼクタ、12はこのエゼクタの下方に設けられて稀液と不凝縮ガスとを分離するための気液分離室、13はこの気液分離室で分離された不凝縮ガスを貯溜し、取り付けられたパラジウムセル14から不凝縮ガスを大気に放出するための貯室であり、これらは揚液管21、中間液管22、濃液管23、吸収液ポンプP1を有する稀液管24、稀液管25・26、冷媒導管27、冷媒液管28、冷媒ポンプP2を有する冷媒液管29、冷/暖切替弁Vを有する冷/暖切替管30、抽気管31・32、不凝縮ガス上昇管34により接続されて、凝縮器5および蒸発吸収器6から貯室13への不凝縮ガスの抽気を可能にしながら、冷媒と吸収液の循環サイクルを形成し、蒸発器7の内部に設けた熱交換器41から選択的に取り出す冷水または温水の何れかを、図示しない熱負荷に循環供給できるようになっている。
【0011】
なお、35は、熱交換器41で冷却された冷水または加熱された温水を、図示しない冷/暖房などの熱負荷に循環供給するための冷温水管であり、冷温水ポンプP3が介在すると共に、蒸発器7から冷却または加熱されて吐出した冷温水の温度を検出するための温度検出器51が取り付けられている。
【0012】
また、42および43は凝縮器5および吸収器8の内部に設けられた冷却器であり、冷却水ポンプP4を有する冷却水配管36により接続されて、図示しない冷却塔と吸収器8および凝縮器5との間を冷却水が循環するように構成されている。52は、この冷却水管に取り付けられて吸収器8に流入する冷却水の温度を検出する温度検出器、53は高温再生器1に取り付けられて高温再生器内の吸収液の温度を検出する温度検出器、54は気液分離器3に取り付けられて気液分離器内の吸収液の液面レベルを検出する液面検出器であり、33は真空ポンプ(図示せず)に接続するための抽気管、37は温水供給運転時に開弁する開閉弁V2を有する均圧管、38はオーバーフロー管、55は稀液ダンパー、56は中間液ダンパー、57は冷媒液ダンパー、100はこの装置の制御器である。
【0013】
上記構成の冷/暖切替型吸収冷温水機においては、冷水を取り出して行う冷房運転時には冷媒および吸収液の循環による吸収冷凍サイクルを行うことで、蒸発器7の熱交換器41での冷媒の蒸発潜熱でこの熱交換器内の水を6〜8℃程度に冷却して供給することができ、温水を取り出して行う暖房運転時には冷却器41・43への冷却水の供給を停止する一方で、冷/暖切替弁V1を閉から開へ切り替えることで、高温の吸収液および冷媒蒸気が冷/暖切替管30を介して気液分離器3から蒸発吸収器6へ流入し、熱交換器41での冷媒の凝縮潜熱(あるいはこの熱と吸収液の顕熱)によって加熱された温水が供給される。
【0014】
上記運転において制御器100は、温度検出器51が検出する温度と予め設定した温度との差、あるいはその変化率に基づいて、所要の燃焼量を演算算出して燃焼装置2の燃焼を制御する。また、液面検出器54が検出する吸収液のレベルに基づいて吸収液ポンプP1をON/OFF制御して吸収液の液面を所定の範囲に維持すると共に、その運転中の回転数を温度検出器52・53が検出する温度に基づいて制御する。
【0015】
すなわち、吸収液ポンプP1を駆動するモータM1に供給する電力の周波数を、温度検出器52が検出する冷却水の温度と、温度検出器53が検出する高温再生器1の吸収液の温度に基づいて、例えば図2の関係式より演算算出する。
【0016】
そして、燃焼装置2の燃焼量がそれまでの燃焼量より30%以上変動するときには、それが増加する方向に変化するときには温度検出器52・53が検出した温度に基づいて図2の関係式から演算して求める周波数より減少する方向の補正を行い、燃焼量が減少する方向に変化するときには温度検出器52・53が検出した温度に基づいて図2の関係式から演算して求める周波数より増加する方向の補正を行う。
【0017】
この補正は、所定時間、例えば1分間に渡って同じように補正しても良いし、所定時間後の補正がゼロになるように補正しても良い。
【0018】
図3は、所定時間(この場合1分)に渡って所定の割合で補正するようにしたものであり、燃焼量を急減させる制御信号を燃焼装置2に出力するときには所定時間に渡って補正係数を1.2に固定し、燃焼量を急増させる制御信号を燃焼装置2に出力するときには所定時間に渡って補正係数を0.8に固定する。
【0019】
すなわち、冷/暖房負荷が急減して燃焼装置2の燃焼量を30%以上急減させる制御信号を燃焼装置2に出力するときには、所定時間(例えば、5秒)毎に温度検出器52・53が検出する温度に基づいて図2の関係式から演算して求める周波数に1.2を乗じた周波数の電力をモータM1に供給して、吸収液ポンプP1の回転数を所定時間(この場合1分)に渡って制御し、冷/暖房負荷が急増して燃焼装置2の燃焼量を30%以上急増させる制御信号を燃焼装置2に出力するときには、所定時間(例えば、5秒)毎に温度検出器52・53が検出する温度に基づいて図2の関係式から演算して求める周波数に0.8を乗じた周波数の電力をモータM1に供給して、吸収液ポンプP1の回転数を所定時間(この場合1分)に渡って制御する。
【0020】
したがって、燃焼装置2の燃焼量が急減すると、燃焼装置2で加熱されて揚液管21内を吸収液と共に上昇していた気泡が消滅または急減するので、燃焼量の急減は揚液管21内の吸収液の液面低下を招き、気液分離器3への吸収液の一時的な流入停止を引き起こし易いが、燃焼量を急減するときには吸収液ポンプP1による吸収液の循環量が所定時間だけ増やされるので、気液分離器3での吸収液の液面レベルの急激な低下が防止され、燃焼装置2の燃焼量が急増すると、燃焼装置2で加熱されて揚液管21内を上昇している吸収液で気泡が発生または急増するので、燃焼量の急増は揚液管21内の吸収液の液面上昇を招き、気液分離器3における液面高により吸収液ポンプP1の停止を引き起こし易いが、燃焼量を急増するときには吸収液ポンプP1による吸収液の循環量が所定時間だけ減らされるので、気液分離器3での吸収液の液面レベルの急激な上昇が防止される。
【0021】
すなわち、燃焼装置2の燃焼量が大きく変化するときの吸収液ポンプP1の回転数を上記のように制御することによって、吸収液循環の変動が抑制され、これにより冷凍能力の変動幅が緩和されて快適な冷/暖房が実現できる。
【0022】
また、補正係数は漸減・または漸増し、所定時間(例えば、1分)で補正量がゼロになるように、例えば図4のように変化させても良い。
【0023】
このように吸収液ポンプP1の回転数を制御することにより、吸収液循環の変動はより抑制されるため、一層快適な冷/暖房が実現できる。
【0024】
また、モータM1に供給する電力周波数の補正としては、単に定数を加減算するものであっても良い。すなわち、冷/暖房負荷が急減して燃焼装置2の燃焼量を例えば30%以上急減させるときには、所定時間毎に温度検出器52・53が検出する温度に基づいて図2の関係式から演算して求める周波数に所定数、例えば定格周波数の5%を加算した周波数の電力をモータM1に供給して、吸収液ポンプP1の回転数を所定時間に渡って制御し、冷/暖房負荷が急増して燃焼装置2の燃焼量を例えば30%以上急増させるときには、所定時間毎に温度検出器52・53が検出する温度に基づいて図2の関係式から演算して求める周波数に所定数、例えば定格周波数の5%を減算した周波数をモータM1に供給して、吸収液ポンプP1の回転数を所定時間に渡って制御するようにしても良い。
【0025】
すなわち、本発明で云う補正係数には、乗数としての係数だけでなく、加算する定数、減算する定数を含むものとする。
【0026】
そして、この加減算する定数も、漸減または漸増し、所定時間(例えば、1分)で補正量をゼロとするものであっても良い。
【0027】
なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0028】
例えば、補正係数を漸減したり、漸増させる場合に、時間の一次関数として変化さるほか、二次関数・三次関数的に変化させるものであっても良い。
【0029】
また、温度検出器51の代わりに温度検出器51Aを設け、この温度検出器51Aが検出する蒸発器7に還流する冷温水の温度と、予め設定した温度との差、あるいはその変化率に基づいて、燃焼装置2の燃焼量を制御するタイプの吸収冷温水機にも適用できる。
【0030】
また、温度検出器53が検出する高温再生器1の吸収液温度のみに基づいて、吸収液ポンプP1を駆動するモータM1に供給する電力の基本周波数は決定するタイプの吸収冷温水機にも適用できる。
【0031】
また、気液分離器3を有しない構造の吸収冷温水機であっても良いし、気液分離室12と貯室13とを一体化した吸収冷温水機にも適用できる。
【0032】
【発明の効果】
以上説明したように本発明になる制御方法によれば、吸収液循環の変動が抑制されるので、冷凍能力の変動幅が緩和されて快適な冷/暖房が実現できる。特に、補正係数を漸増減する請求項3の制御方法では、吸収液循環の変動がより抑制されるため、一層快適な冷/暖房が実現できる。
【図面の簡単な説明】
【図1】装置構成の一例を示す説明図である。
【図2】吸収液ポンプを駆動する基本周波数を求めるための関係図である。
【図3】補正係数の第1の設定要領を示す説明図である。
【図4】補正係数の第2の設定要領を示す説明図である。
【符号の説明】
1 高温再生器
2 燃焼装置
3 気液分離器
4 低温再生器
5 凝縮器
6 蒸発吸収器
7 蒸発器
7A 冷媒散布器
8 吸収器
8A 吸収液散布器
9 低温熱交換器
10 高温熱交換器
11 エゼクタ
12 気液分離室
13 貯室
14 パラジウムセル
21 揚液管
22 中間液管
23 濃液管
24 稀液管
25〜26 稀液管
27 冷媒導管
28・29 冷媒液管
30 冷/暖切替管
31〜33 抽気管
34 不凝縮ガス上昇管
35 冷温水配管
36 冷却水配管
37 均圧管
38 オーバーフロー管
41 熱交換器
42・43 冷却器
51・51A・52・53 温度検出器
54 液面検出器
55 稀液ダンパー
56 中間液ダンパー
57 冷媒液ダンパー
100 制御器
M1 モータ
P1 吸収液ポンプ
P2 冷媒ポンプ
P3 冷温水ポンプ
P4 冷却水ポンプ
P5 第2の吸収液ポンプ
V1 冷/暖切替弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for an absorption chiller / heater, and more particularly to a control method capable of suppressing temperature fluctuation of a hot fluid taken out from an evaporator.
[0002]
[Prior art]
In order to perform comfortable air conditioning, it is necessary to keep the temperature of the hot fluid taken out from the evaporator constant. For this reason, the rotational speed of the absorption liquid pump is controlled by the frequency calculated based on the temperature of the cooling water supplied to the absorber and the condenser and the temperature of the regenerator, and the temperature fluctuation of the thermal fluid taken out from the evaporator is reduced. Things have been done.
[0003]
[Problems to be solved by the invention]
However, when the capacity control of the absorption chiller / heater is controlled by ON / OFF, by HIGH / LOW / OFF, or when the combustion amount changes suddenly even by proportional control, the intermediate liquid is temporarily removed from the high-temperature regenerator. There is a problem that the temperature of the hot fluid taken out from the evaporator fluctuates greatly.
[0004]
Moreover, the phenomenon that the liquid level rises transiently at the time of start-up occurs, and the absorption liquid pump is temporarily stopped and controlled. This phenomenon has a problem that it frequently occurs in a high-temperature regenerator having a pumping pipe, and this has been a problem to be solved.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems of the prior art, and is connected to an absorber, a condenser, a regenerator, etc. via an absorption liquid pump / refrigerant pump, etc. In an absorption chiller / heater configured to selectively obtain a cold / warm fluid from a heat exchanger built in an evaporator to be formed, and to control the frequency of an absorption liquid pump by an inverter,
[0006]
When the combustion signal of the combustion heating device installed in the regenerator is captured and the combustion amount is increased by 30% or more, the frequency calculated based on the temperature of the cooling water supplied to the absorber and the condenser, the temperature of the regenerator, etc. is predetermined. The frequency calculated based on the temperature of the cooling water, the temperature of the regenerator, etc. when the combustion amount is rapidly reduced by 30% or more is corrected to a frequency smaller than that and larger than the original frequency. A control method of the first configuration in which the rotation is corrected to a frequency larger than that based on a predetermined arithmetic expression and smaller than the original frequency, and the rotation of the absorbent pump is controlled based on the corrected frequency;
[0008]
In the control method of the first configuration, the rotation of the absorbent pump is controlled based on the frequency obtained by correcting the frequency calculated and calculated appropriately until a predetermined time elapses, and the calculation is corrected after the predetermined time elapses. A control method of the second configuration in which the rotation of the absorbing liquid pump is controlled based on the frequency that is not
[0009]
In the control method of the second configuration, a control method of the third configuration in which correction is performed such that the coefficient of the correction arithmetic expression gradually decreases or gradually increases and the correction amount becomes zero in a predetermined time;
By providing the above, the problems of the prior art are solved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 is provided with a combustion device 2 such as gas / kerosene, and a high-temperature regenerator that generates a refrigerant vapor by heating a dilute liquid of an absorbing liquid to concentrate it into an intermediate liquid, and 3 is pumped from this regenerator. 4 is a low-temperature regenerator that heats the intermediate liquid with the refrigerant vapor from the gas-liquid separator to make a concentrated liquid, and 5 is from both the regenerators 1 and 4. The condenser 6 cools and condenses the refrigerant vapor, the evaporator 7 scatters and drops the refrigerant liquid from the refrigerant spreader 7A, and evaporates the refrigerant vapor from the low-temperature regenerator 4 An evaporative absorber comprising an absorber 8 that is absorbed in a concentrated liquid to maintain the inside of the vessel at a low pressure, 9 and 10 are low-temperature and high-temperature heat exchangers, 11 is an evaporative absorber 6 and the like using the “flow” of the absorbed liquid as power. An ejector 12 for drawing the gas body is provided below the ejector. A gas-liquid separation chamber 13 for separating the rare liquid and the non-condensable gas stores the non-condensable gas separated in the gas-liquid separation chamber, and discharges the non-condensable gas from the attached palladium cell 14 to the atmosphere. These are the storage chambers, and these are the pumping pipe 21, the intermediate liquid pipe 22, the concentrated liquid pipe 23, the rare liquid pipe 24 having the absorption liquid pump P1, the rare liquid pipes 25 and 26, the refrigerant pipe 27, and the refrigerant liquid pipe 28. , the refrigerant liquid pipe 29 having a refrigerant pump P2, cold / warm switching tube 30 having a cold / warm switching valve V 1, the extraction pipe 31, 32, are connected by a non-condensable gas risers 34, the condenser 5 and evaporative absorber While allowing extraction of non-condensable gas from the vessel 6 to the storage chamber 13, a circulation cycle of refrigerant and absorption liquid is formed, and cold water or hot water selectively taken out from the heat exchanger 41 provided inside the evaporator 7 Either can be circulated and supplied to a heat load (not shown) It has become the jar.
[0011]
Reference numeral 35 denotes a cold / hot water pipe for circulating and supplying cold water cooled by the heat exchanger 41 or heated hot water to a heat load (not shown) such as cooling / heating, with a cold / hot water pump P3 interposed therebetween, A temperature detector 51 for detecting the temperature of the cold / hot water discharged from the evaporator 7 after being cooled or heated is attached.
[0012]
Reference numerals 42 and 43 denote coolers provided inside the condenser 5 and the absorber 8, which are connected by a cooling water pipe 36 having a cooling water pump P 4, so that a cooling tower, the absorber 8 and the condenser (not shown) are connected. The cooling water is configured to circulate between the two. 52 is a temperature detector that is attached to the cooling water pipe and detects the temperature of the cooling water flowing into the absorber 8, and 53 is a temperature detector that is attached to the high temperature regenerator 1 and detects the temperature of the absorbing liquid in the high temperature regenerator. The detector 54 is a liquid level detector that is attached to the gas-liquid separator 3 and detects the liquid level of the absorbing liquid in the gas-liquid separator 3 and 33 is connected to a vacuum pump (not shown). Bleeding pipe, 37 is a pressure equalizing pipe having an on-off valve V2 that is opened during hot water supply operation, 38 is an overflow pipe, 55 is a rare liquid damper, 56 is an intermediate liquid damper, 57 is a refrigerant liquid damper, and 100 is a controller of this apparatus. It is.
[0013]
In the cold / warm switching type absorption chiller / heater having the above-described configuration, the refrigerant refrigeration in the heat exchanger 41 of the evaporator 7 is performed by performing an absorption refrigeration cycle by circulating the refrigerant and the absorption liquid during the cooling operation performed by taking out the chilled water. The water in the heat exchanger can be cooled to about 6-8 ° C. and supplied by latent heat of vaporization, while the supply of the cooling water to the coolers 41 and 43 is stopped during the heating operation performed by taking out the hot water. By switching the cold / warm switching valve V1 from closed to open, the high-temperature absorption liquid and the refrigerant vapor flow from the gas-liquid separator 3 to the evaporation absorber 6 via the cold / warm switching pipe 30, and the heat exchanger Hot water heated by the latent heat of condensation of the refrigerant at 41 (or this heat and the sensible heat of the absorbing liquid) is supplied.
[0014]
In the above operation, the controller 100 controls the combustion of the combustion device 2 by calculating and calculating a required combustion amount based on the difference between the temperature detected by the temperature detector 51 and a preset temperature or the rate of change thereof. . Further, the absorption liquid pump P1 is controlled to be ON / OFF based on the level of the absorption liquid detected by the liquid level detector 54 to maintain the liquid level of the absorption liquid within a predetermined range, and the rotation speed during operation is set to the temperature. Control is performed based on the temperature detected by the detectors 52 and 53.
[0015]
That is, the frequency of the electric power supplied to the motor M1 that drives the absorption liquid pump P1 is based on the temperature of the cooling water detected by the temperature detector 52 and the temperature of the absorption liquid of the high-temperature regenerator 1 detected by the temperature detector 53. For example, the calculation is performed from the relational expression in FIG.
[0016]
Then, when varying more than 30% than the combustion amount of up to Re combustion amount pixels of the combustion device 2, it is based on the temperature at which the temperature detector 52, 53 is detected when the change in the direction of increasing relation 2 From the frequency obtained by calculating from the relational expression of FIG. 2 based on the temperature detected by the temperature detectors 52 and 53 when the combustion amount changes in the direction of decreasing. Correct in the increasing direction.
[0017]
This correction may be performed in the same manner over a predetermined time, for example, 1 minute, or may be performed so that the correction after the predetermined time becomes zero.
[0018]
FIG. 3 shows a correction at a predetermined rate over a predetermined time (in this case, 1 minute). When a control signal for rapidly reducing the combustion amount is output to the combustion device 2, the correction coefficient is applied over the predetermined time. Is fixed to 1.2, and when a control signal for rapidly increasing the combustion amount is output to the combustion apparatus 2, the correction coefficient is fixed to 0.8 over a predetermined time.
[0019]
That is , when the control signal for suddenly decreasing the cooling / heating load and reducing the combustion amount of the combustion device 2 by 30% or more is output to the combustion device 2, the temperature detectors 52 and 53 are set at predetermined time intervals (for example, 5 seconds). Electric power having a frequency obtained by multiplying a frequency obtained by calculating from the relational expression of FIG. 2 based on the detected temperature by 1.2 is supplied to the motor M1, and the rotational speed of the absorbent pump P1 is set to a predetermined time (in this case, 1 minute). When the control signal for rapidly increasing the cooling / heating load and increasing the combustion amount of the combustion device 2 by 30% or more is output to the combustion device 2, the temperature is detected every predetermined time (for example, 5 seconds). 2 is supplied to the motor M1 at a frequency obtained by multiplying the frequency obtained by calculating from the relational expression of FIG. 2 based on the temperature detected by the chambers 52 and 53 to the motor M1, and the rotational speed of the absorbent pump P1 is set for a predetermined time. (In this case 1 minute) control
[0020]
Therefore, when the combustion amount of the combustion device 2 rapidly decreases, the bubbles heated by the combustion device 2 and rising in the pumped liquid pipe 21 together with the absorbing liquid disappear or rapidly decrease. However, when the amount of combustion is suddenly reduced, the amount of circulation of the absorbent by the absorbent pump P1 is limited to a predetermined time. Since the liquid level of the absorption liquid in the gas-liquid separator 3 is prevented from abruptly decreasing and the amount of combustion in the combustion device 2 increases rapidly, the combustion device 2 is heated and rises in the lift pipe 21. Since bubbles are generated or suddenly increase in the absorbed liquid, the sudden increase in the amount of combustion leads to an increase in the liquid level of the absorbent liquid in the pumping pipe 21 and the absorption liquid pump P1 is stopped due to the liquid level in the gas-liquid separator 3. It is easy to cause, but absorbs when the amount of combustion increases rapidly Since the circulation amount of the absorption liquid by the pump P1 is reduced for a predetermined time, the rapid rise of the liquid level of the absorbing liquid in the gas-liquid separator 3 is prevented.
[0021]
That is, by controlling the rotational speed of the absorbent pump P1 when the combustion amount of the combustion device 2 changes greatly as described above, fluctuations in the absorbent circulation are suppressed, thereby reducing the fluctuation range of the refrigerating capacity. And comfortable cooling / heating can be realized.
[0022]
Further, the correction coefficient may be gradually decreased or increased, and may be changed as shown in FIG. 4 so that the correction amount becomes zero in a predetermined time (for example, 1 minute).
[0023]
By controlling the rotational speed of the absorption liquid pump P1 in this way, fluctuations in the absorption liquid circulation are further suppressed, so that more comfortable cooling / heating can be realized.
[0024]
Further, as a correction of the power frequency supplied to the motor M1, a constant may be simply added or subtracted. That is, when the cooling / heating load is suddenly reduced and the combustion amount of the combustion apparatus 2 is suddenly reduced by, for example, 30% or more, the calculation is performed from the relational expression of FIG. 2 based on the temperature detected by the temperature detectors 52 and 53 every predetermined time. The motor M1 is supplied with electric power having a frequency obtained by adding a predetermined number, for example, 5% of the rated frequency, to the frequency obtained in this manner, and the number of revolutions of the absorbing liquid pump P1 is controlled over a predetermined time, thereby rapidly increasing the cooling / heating load. When the combustion amount of the combustion apparatus 2 is rapidly increased by, for example, 30% or more, a predetermined number, for example, a rated frequency is obtained by calculating from the relational expression of FIG. 2 based on the temperature detected by the temperature detectors 52 and 53 every predetermined time. A frequency obtained by subtracting 5% of the frequency may be supplied to the motor M1, and the rotational speed of the absorbing liquid pump P1 may be controlled over a predetermined time.
[0025]
That is, the correction coefficient referred to in the present invention includes not only a coefficient as a multiplier but also a constant to be added and a constant to be subtracted.
[0026]
The constant to be added or subtracted may be gradually reduced or gradually increased so that the correction amount becomes zero in a predetermined time (for example, 1 minute).
[0027]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.
[0028]
For example, when the correction coefficient is gradually decreased or gradually increased, it may be changed as a linear function or a cubic function in addition to being changed as a linear function of time.
[0029]
Further, a temperature detector 51A is provided instead of the temperature detector 51, and based on a difference between the temperature of cold / warm water returning to the evaporator 7 detected by the temperature detector 51A and a preset temperature, or a rate of change thereof. Thus, the present invention can also be applied to an absorption chiller / heater of the type that controls the combustion amount of the combustion device 2.
[0030]
Moreover, the basic frequency of the electric power supplied to the motor M1 that drives the absorbing liquid pump P1 is also applied based on only the absorbing liquid temperature of the high-temperature regenerator 1 detected by the temperature detector 53. it can.
[0031]
Moreover, an absorption chiller / heater having a structure that does not include the gas-liquid separator 3 may be used, or an absorption chiller / heater that integrates the gas-liquid separator 12 and the storage chamber 13 may be applied.
[0032]
【The invention's effect】
As described above, according to the control method of the present invention, fluctuations in the circulation of the absorbing liquid are suppressed, so that the fluctuation range of the refrigerating capacity is reduced and comfortable cooling / heating can be realized. In particular, in the control method according to claim 3 in which the correction coefficient is gradually increased or decreased, fluctuations in the absorption liquid circulation are further suppressed, so that more comfortable cooling / heating can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating an example of a device configuration.
FIG. 2 is a relational diagram for obtaining a fundamental frequency for driving an absorbing liquid pump.
FIG. 3 is an explanatory diagram showing a first setting procedure for correction coefficients;
FIG. 4 is an explanatory diagram showing a second setting procedure of correction coefficients.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Combustion apparatus 3 Gas-liquid separator 4 Low temperature regenerator 5 Condenser 6 Evaporation absorber 7 Evaporator 7A Refrigerant spreader 8 Absorber 8A Absorbent liquid spreader 9 Low temperature heat exchanger 10 High temperature heat exchanger 11 Ejector 12 Gas-liquid separation chamber 13 Storage chamber 14 Palladium cell 21 Lifting pipe 22 Intermediate liquid pipe 23 Concentrated liquid pipe 24 Diluted liquid pipe 25-26 Diluted liquid pipe 27 Refrigerant pipe 28/29 Refrigerant liquid pipe 30 Cold / warm switching pipe 31- 33 Extraction pipe 34 Non-condensable gas rise pipe 35 Cold / hot water pipe 36 Cooling water pipe 37 Pressure equalizing pipe 38 Overflow pipe 41 Heat exchanger 42/43 Cooler 51 / 51A / 52/53 Temperature detector 54 Liquid level detector 55 Diluted liquid Damper 56 Intermediate liquid damper 57 Refrigerant liquid damper 100 Controller M1 Motor P1 Absorbing liquid pump P2 Refrigerant pump P3 Cold / hot water pump P4 Cooling water pump P5 Second absorbing liquid pump V1 Cooling / warming Kawaben

Claims (3)

吸収液ポンプ・冷媒ポンプなどを介して吸収器・凝縮器・再生器などと接続され、冷媒と吸収液の循環サイクルを形成する蒸発器に内蔵した熱交換器から冷/暖何れかの流体が選択的に得られるように構成すると共に、吸収液ポンプをインバータにより周波数制御する吸収冷温水機において、再生器に設置した燃焼加熱装置の燃焼信号を取り込み、燃焼量を30%以上急増させるときには吸収器および凝縮器に供給する冷却水の温度・再生器の温度などに基づいて演算算出した周波数を所定の演算式に基づいてそれよりは小さく、元の周波数よりは大きい周波数に補正し、燃焼量を30%以上急減させるときには前記冷却水の温度・再生器の温度などに基づいて演算算出した周波数を所定の演算式に基づいてそれよりは大きく、元の周波数よりは小さい周波数に補正し、前記補正した周波数に基づいて吸収液ポンプの回転を制御することを特徴とする吸収冷温水機の制御方法。Cooling / heating fluid is connected to the absorber / condenser / regenerator etc. via the absorption liquid pump / refrigerant pump, etc., and either the cold / warm fluid from the heat exchanger built in the evaporator forming the circulation cycle of refrigerant and absorption liquid. In an absorption chiller / heater whose frequency is controlled by an inverter with an absorption liquid pump, the combustion signal of the combustion heating device installed in the regenerator is captured and absorbed when the combustion amount is rapidly increased by 30% or more. The frequency calculated based on the temperature of the cooling water supplied to the condenser and condenser, the temperature of the regenerator, etc. is corrected to a frequency that is smaller than that based on the prescribed formula and larger than the original frequency, and the amount of combustion When the frequency is rapidly decreased by 30% or more, the frequency calculated based on the cooling water temperature, the regenerator temperature, etc., is larger than that based on a predetermined arithmetic expression, and is the original frequency. Small frequency correction, the control method of the absorption chiller, characterized by controlling the rotation of the absorbent pump based on the frequency that the correction is. 所定時間が経過するまでは、適宜演算算出する周波数を補正した周波数に基づいて吸収液ポンプの回転を制御し、所定時間経過後は演算算出したままで補正しない周波数に基づいて吸収液ポンプの回転を制御することを特徴とする請求項1記載の制御方法。Until the predetermined time elapses, the rotation of the absorbent pump is controlled based on the frequency obtained by appropriately correcting the frequency calculated and calculated. After the predetermined time has elapsed, the rotation of the absorbent pump is performed based on the frequency that is calculated and not corrected. the method of claim 1 Symbol placement and controls the. 補正演算式の係数が漸減または漸増し、所定時間で補正量がゼロとなる補正を行うことを特徴とする請求項記載の制御方法。The control method according to claim 2 , wherein correction is performed such that a coefficient of the correction formula gradually decreases or gradually increases and the correction amount becomes zero in a predetermined time.
JP13917696A 1996-05-31 1996-05-31 Control method of absorption chiller / heater Expired - Fee Related JP3732893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13917696A JP3732893B2 (en) 1996-05-31 1996-05-31 Control method of absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13917696A JP3732893B2 (en) 1996-05-31 1996-05-31 Control method of absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH09318188A JPH09318188A (en) 1997-12-12
JP3732893B2 true JP3732893B2 (en) 2006-01-11

Family

ID=15239349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13917696A Expired - Fee Related JP3732893B2 (en) 1996-05-31 1996-05-31 Control method of absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3732893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900456A (en) * 2009-05-27 2010-12-01 三洋电机株式会社 Absorption cold-hot water machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313904B1 (en) * 1999-11-03 2001-11-26 구자홍 method for control of a solution pump of ammonia absorption heat pumps
JP2011094909A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Absorption chiller heater
JP5331232B2 (en) * 2012-07-25 2013-10-30 荏原冷熱システム株式会社 Regenerator and absorption refrigerator
JP6081844B2 (en) * 2013-03-29 2017-02-15 荏原冷熱システム株式会社 Absorption heat source equipment
KR102074912B1 (en) * 2019-04-16 2020-03-17 (주)월드에너지 Refrigerator for controlling pump inverter depending on loading amount

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900456A (en) * 2009-05-27 2010-12-01 三洋电机株式会社 Absorption cold-hot water machine

Also Published As

Publication number Publication date
JPH09318188A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP3732893B2 (en) Control method of absorption chiller / heater
JP4398360B2 (en) Cooling water temperature control method for absorption chiller / heater
JP2000171123A (en) Triple-effect absorption refrigerating machine
JP6871015B2 (en) Absorption refrigeration system
KR100193333B1 (en) Absorption Chiller
JP2005003312A (en) Triple effect absorption refrigerating plant
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP3245116B2 (en) Waste heat absorption chiller / heater with load fluctuation control function
JP2000274864A (en) Method for controlling absorption refrigerator
KR100188989B1 (en) Method for controlling an absorption system
KR20060045331A (en) Absorption refrigerator
JP3146373B2 (en) Solution flow control method for absorption chiller / heater
JP2003329329A (en) Triple effect absorption type refrigerating machine
JP2642048B2 (en) Heat storage type air conditioner using midnight power
JP4201418B2 (en) Control method of absorption chiller / heater
JP2695923B2 (en) Air-cooled absorption chiller / heater
JP2821724B2 (en) Single double effect absorption refrigerator
JP3663008B2 (en) Absorption chiller / heater
JP3663006B2 (en) Absorption chiller / heater
JPS6110139Y2 (en)
JP4330522B2 (en) Absorption refrigerator operation control method
JP3663007B2 (en) Absorption chiller / heater
JP2768630B2 (en) Absorption refrigerator
JP3594453B2 (en) Operating method of air conditioner
JPH07248161A (en) Absorption type cooler/heater and hot water supplying apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees