JPH10170091A - Absorbing type water cooling or heating machine - Google Patents

Absorbing type water cooling or heating machine

Info

Publication number
JPH10170091A
JPH10170091A JP8332586A JP33258696A JPH10170091A JP H10170091 A JPH10170091 A JP H10170091A JP 8332586 A JP8332586 A JP 8332586A JP 33258696 A JP33258696 A JP 33258696A JP H10170091 A JPH10170091 A JP H10170091A
Authority
JP
Japan
Prior art keywords
temperature
regenerator
solution
absorption chiller
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8332586A
Other languages
Japanese (ja)
Inventor
Shunsuke Tamura
俊介 田村
Tomihisa Ouchi
富久 大内
Kazuo Watase
一雄 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP8332586A priority Critical patent/JPH10170091A/en
Publication of JPH10170091A publication Critical patent/JPH10170091A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safe and small-sized absorbing type water cooling or water heating machine in which a liquid surface of a high temperature regenerator is detected by mans having no movable section and an appropriate solution circulating amount control can be carried out. SOLUTION: This water cooling or heating machine is constructed such that there is provided a trap 20 for forming a free liquid surface at an outlet of a high temperature regenerator 1 and there are further provided a first (temperature sensor 20-1 of sensing temperature of an upper part of the trap 20, a second temperature sensor 20-2 for sensing a temperature at a lower side of the trap and a third temperature sensor 20-3 for sensing a temperature at a liquid chase section at the most-lower end of a return pipe. Then, temperatures of the first temperature sensor 20-1 and the third temperature 20-3 are compared with temperature of the second temperature sensor 20-2 and the third temperature sensor 20-3 so as to detect presence or non-presence of the liquid surface at each of upper and lower parts of the trap. With such an arrangement as above, there is provided means for controlling a solution circulating amount of the high temperature regenerator 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷温水機に係
り、特に、高温再生器の出口部の液面位置を検出して溶
液循環量を制御するのに好適な吸収冷温水機に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater, and more particularly to an absorption chiller / heater suitable for detecting the liquid level at the outlet of a high temperature regenerator and controlling the amount of solution circulation. It is.

【0002】[0002]

【従来の技術】従来の高温再生器の出口部の液面位置を
検出する技術としては、例えば、特開平7−71837
号公報、特開平6−201211号公報に記載されてい
るように、高温再生器出口部にフロートボックス(液面
検出ボックス)を備え、フロートバルブを配置する方法
がある。図6は、従来のフロートバルブを用いた吸収冷
温水機の系統図である。
2. Description of the Related Art As a conventional technique for detecting the liquid level at the outlet of a high-temperature regenerator, for example, Japanese Patent Application Laid-Open No. 7-71837 is disclosed.
As described in JP-A-6-201211, there is a method in which a float box (liquid level detection box) is provided at the outlet of the high-temperature regenerator and a float valve is arranged. FIG. 6 is a system diagram of an absorption chiller / heater using a conventional float valve.

【0003】図6に示す吸収冷温水機は、冷媒を蒸発さ
せることにより冷水を供給する蒸発器4と、蒸発した冷
媒を吸収剤である臭化リチウム溶液(以下溶液と呼ぶ)
に吸収させる吸収器5と、冷媒を吸収して薄くなった溶
液を循環させる溶液循環ポンプ6と、薄くなった溶液を
加熱して冷媒を分離・再生する高温再生器1と、高温再
生器1で再生した冷媒の余熱により溶液を加熱して冷媒
を再生する低温再生器2と、再生した冷媒蒸気を凝縮さ
せる凝縮器3と、冷媒を分離して濃くなった溶液を吸収
器5にスプレーする溶液スプレーポンプ9と、高温再生
器溶液の戻り液面位置により高温再生器1に入る溶液の
循環量を制御するフロートバルブ10とから構成されて
いる。なお、7は低温熱交換器、8は高温熱交換器であ
る。
[0003] The absorption chiller / heater shown in FIG. 6 comprises an evaporator 4 for supplying cold water by evaporating a refrigerant, and a lithium bromide solution (hereinafter referred to as a solution) as an absorbent.
, A solution circulation pump 6 that circulates a thinned solution by absorbing the refrigerant, a high-temperature regenerator 1 that heats the thinned solution to separate and regenerate the refrigerant, and a high-temperature regenerator 1 A low-temperature regenerator 2 that regenerates the refrigerant by heating the solution with the residual heat of the regenerated refrigerant, a condenser 3 that condenses the regenerated refrigerant vapor, and sprays the solution that has separated and concentrated the refrigerant onto the absorber 5 It comprises a solution spray pump 9 and a float valve 10 for controlling the circulating amount of the solution entering the high-temperature regenerator 1 depending on the return level of the high-temperature regenerator solution. In addition, 7 is a low-temperature heat exchanger and 8 is a high-temperature heat exchanger.

【0004】フロートバルブ10は、フロート球が液面
の上昇につれて上昇するとバルブが閉まり、フロート球
が液面の下降につれて下降するとバルブが開く構成のも
のである。高温再生器1に送りこまれる溶液循環量が多
いと、高温再生器1から吸収器5への戻り液面とともに
フロート球が上昇して、高温再生器1に送りこまれる溶
液循環量を減らす。また、高温再生器1に送りこまれる
溶液循環量が少ないと、高温再生器1の前記戻り液面と
ともにフロート球が降下して、高温再生器1に送りこま
れる溶液循環量を多くする。この作用により、高温再生
器1の戻り量に応じて、高温再生器1に送りこまれる溶
液循環量を制御している。
The float valve 10 is configured such that the valve closes when the float sphere rises as the liquid level rises, and opens when the float sphere descends as the liquid level falls. If the amount of circulating solution sent to the high-temperature regenerator 1 is large, the float sphere rises together with the liquid level returning from the high-temperature regenerator 1 to the absorber 5, and the amount of circulating solution sent to the high-temperature regenerator 1 is reduced. If the amount of the solution circulated to the high-temperature regenerator 1 is small, the float sphere descends together with the return liquid level of the high-temperature regenerator 1, and the amount of the solution circulated to the high-temperature regenerator 1 increases. By this operation, the amount of solution circulation sent to the high-temperature regenerator 1 is controlled according to the return amount of the high-temperature regenerator 1.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
従来技術では、フロートバルブ10が全閉になっても弁
体越しに溶液が通過してしまい、その通過量を基準値に
抑えるための弁体の加工が難しく、高価なものとなって
いた。特に、冷凍能力の小さいものは溶液循環量も少な
いため、循環量に対する弁越し通過量の比率が高くな
り、循環量制御には不利な面があった。さらに、溶液中
のゴミの影響や経年的劣化により弁体の動きが悪化した
り、高温溶液中で変形したりすることを防止するために
は、フロート球を大きくして浮力および自重を増す必要
があり、スペース的に不利なものとなっていた。
However, in the above-mentioned prior art, the solution passes through the valve body even when the float valve 10 is fully closed, and the valve body for suppressing the passing amount to the reference value. Processing was difficult and expensive. In particular, those having a small refrigerating capacity have a small solution circulation amount, so that the ratio of the passage amount through the valve to the circulation amount is high, and there is a disadvantage in the circulation amount control. In addition, to prevent the valve body from deteriorating due to the effects of dust in the solution and aging, and deforming in a high-temperature solution, it is necessary to increase the buoyancy and the weight of the float ball by increasing the size of the float ball. There was a disadvantage in terms of space.

【0006】また、様々な原因により、溶液循環量制御
に異常をきたしてきても、その予徴を検知する方法がな
く、信頼性の高い予防保全を行うことができなかった。
Further, even if an abnormality occurs in the control of the amount of circulating solution due to various causes, there is no method for detecting a sign of the abnormality, so that highly reliable preventive maintenance cannot be performed.

【0007】本発明は、上記従来技術の問題点を解決す
るためになされたもので、高温再生器の液面を可動部の
ない手段で検知し、適正な溶液循環量制御を行いうる、
安全で小形の吸収冷温水機を提供することを目的とす
る。また、本発明の他の目的は、様々な溶液循環量制御
を採用している既納機に対して、真空を破壊することな
く簡単に後付けでき、信頼性の高い予防保全を行うこと
ができる吸収冷温水機を提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and can detect the liquid level of a high-temperature regenerator by means having no movable part, and can appropriately control the amount of solution circulation.
An object of the present invention is to provide a safe and compact absorption chiller / heater. Another object of the present invention is to provide a reliable and preventive maintenance that can be easily retrofitted to a delivered machine employing various solution circulation amount controls without breaking vacuum. An absorption chiller / heater is provided.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る吸収冷温水機の最も基本的な構成は、
希溶液を加熱して濃縮し冷媒蒸気を分離させる再生器
と、この再生器で発生した冷媒蒸気を液化させる凝縮器
と、その冷媒液を負荷側の冷温水管と熱交換させて冷媒
を蒸発させる蒸発器と、この蒸発器で生じた冷媒蒸気
を、前記再生器から送給された濃溶液に吸収させる吸収
器と、これら各機器を作動的に接続する配管系とを備え
てなる吸収冷温水機において、、前記再生器の液相部温
度と前記再生器から吸収器への戻り溶液配管の温度とを
測定して再生器戻り配管中の溶液の液面位置を検知する
手段を備えたものである。
In order to achieve the above object, the most basic structure of the absorption chiller / heater according to the present invention is as follows.
A regenerator that heats and concentrates the dilute solution to separate the refrigerant vapor, a condenser that liquefies the refrigerant vapor generated by the regenerator, and heat-exchanges the refrigerant liquid with a cold / hot water pipe on the load side to evaporate the refrigerant. Absorption cold and hot water comprising an evaporator, an absorber for absorbing the refrigerant vapor generated by the evaporator into the concentrated solution sent from the regenerator, and a piping system for operatively connecting these devices. A device for measuring a liquid phase temperature of the regenerator and a temperature of a return solution pipe from the regenerator to the absorber to detect a liquid level position of the solution in the regenerator return pipe. It is.

【0009】より詳しくは、上記吸収冷温水機におい
て、再生器戻り配管部における少なくとも2個所以上の
液面を検知したい位置にそれぞれ温度センサを設け、戻
り配管最下端の液相部に別の温度センサを設け、前記少
なくとも2個所以上のそれぞれの温度と前記液相部の温
度とを比較し、2個所以上の位置の液面の有無を検知す
ることにより再生器の溶液循環量を制御するものであ
る。
More specifically, in the absorption chiller / heater, a temperature sensor is provided at each of at least two positions in the regenerator return pipe where liquid levels are to be detected, and another temperature is provided at the liquid phase at the lowermost end of the return pipe. A sensor for controlling a solution circulation amount of a regenerator by comparing a temperature of the liquid phase part with a temperature of the liquid phase part and detecting presence or absence of a liquid surface at two or more positions. It is.

【0010】上記目的を達成するために、本発明に係る
吸収冷温水機の代表的な具体的構成は、希溶液を加熱し
て濃縮し冷媒蒸気を分離させる高温再生器および低温再
生器と、前記各再生器で発生した冷媒蒸気を液化させる
凝縮器と、その冷媒液を負荷側の冷温水管と熱交換させ
て冷媒を蒸発させる蒸発器と、この蒸発器で生じた冷媒
蒸気を、前記各再生器から送給された濃溶液に吸収させ
る吸収器と、これら各機器を作動的に接続する配管系と
を備えてなる吸収冷温水機において、前記高温再生器か
ら吸収器への溶液戻り配管部に、自由液面を形成するト
ラップを備え、このトラップの上方部温度を検出する第
1の温度センサと、トラップ下方部温度を検出する第2
の温度センサと、前記戻り配管最下端の液相部の温度を
検出する第3の温度センサを設け、前記第1の温度セン
サと前記第3の温度センサの温度、および前記第2の温
度センサと前記第3の温度センサの温度をそれぞれ比較
し、前記トラップの上方部および下方部のそれぞれの位
置の液面の有無を検知することにより、前記高温再生器
の溶液循環量を制御する手段を備えたものである。
[0010] In order to achieve the above object, a typical specific configuration of an absorption chiller / heater according to the present invention includes a high-temperature regenerator and a low-temperature regenerator for heating a dilute solution and concentrating the same to separate refrigerant vapor, A condenser for liquefying the refrigerant vapor generated in each of the regenerators, an evaporator for evaporating the refrigerant by exchanging the refrigerant liquid with a cold / hot water pipe on the load side, and a refrigerant vapor generated in the evaporator, In an absorption chiller / heater comprising an absorber for absorbing the concentrated solution sent from the regenerator and a piping system for operatively connecting these devices, a solution return pipe from the high-temperature regenerator to the absorber A trap for forming a free liquid level, a first temperature sensor for detecting a temperature above the trap, and a second temperature sensor for detecting a temperature below the trap.
And a third temperature sensor for detecting the temperature of the liquid phase portion at the lowermost end of the return pipe, wherein the temperature of the first temperature sensor and the temperature of the third temperature sensor, and the temperature of the second temperature sensor are provided. Means for controlling the solution circulation amount of the high-temperature regenerator by comparing the temperature of the high-temperature regenerator with the temperature of the third temperature sensor and detecting the presence or absence of a liquid level at each of the upper and lower portions of the trap. It is provided.

【0011】なお、付記すると、本発明の吸収冷温水機
は、次のような特徴がある。コントローラーで溶液循環
ポンプの制御を行うことにより溶液循環量の制御を行う
ことができる。また、本発明の吸収冷温水機は、高温再
生器に対する往き溶液配管中に電磁弁等を設け、コント
ローラーで電磁弁等を開閉することにより溶液循環量の
制御を行うことができる。
It should be noted that the absorption chiller / heater of the present invention has the following features. By controlling the solution circulation pump by the controller, the solution circulation amount can be controlled. Further, the absorption chiller / heater of the present invention can control the amount of solution circulation by providing an electromagnetic valve or the like in the outgoing solution pipe for the high-temperature regenerator and opening and closing the electromagnetic valve or the like by the controller.

【0012】また、本発明の吸収冷温水機は、トラップ
および配管の外側の表面に温度センサーを取り付けるた
め、検出部に吸収冷温水機の真空保持のためのシール部
を必要としないものである。さらに、本発明の吸収冷温
水機は、温度センサにより検知されたデータを監視、記
録したり、液面が正常な制御パターンから外れたとき
に、警報を発することができるものである。
Further, in the absorption chiller / heater of the present invention, since a temperature sensor is attached to the outer surface of the trap and the piping, the detection section does not require a seal portion for maintaining the vacuum of the absorption chiller / heater. . Further, the absorption chiller / heater of the present invention can monitor and record data detected by the temperature sensor, and can issue an alarm when the liquid level deviates from a normal control pattern.

【0013】上記技術的手段による働きは下記のとうり
である。高温再生器から吸収器への戻り溶液循環量(以
下単に高温再生器戻り溶液循環量という)は、高温再生
器の圧力変化に応じて変化するものであり、吸収冷温水
機の運転状態に伴い変化する。高温再生器戻り溶液循環
量よりも、吸収器から高温再生器への往き溶液循環量
(以下単に高温再生器往き溶液循環量という)が大きく
なると、高温再生器内に吸収器へ戻りきれない分の溶液
が溜りだし、高温再生器内の液面が上昇する。
The function of the above technical means is as follows. The amount of circulating solution returned from the high-temperature regenerator to the absorber (hereinafter simply referred to as the amount of circulating solution returned to the high-temperature regenerator) changes according to the pressure change of the high-temperature regenerator. Change. If the amount of solution circulating from the absorber to the high-temperature regenerator (hereinafter simply referred to as the high-temperature regenerator going solution circulation amount) is larger than the high-temperature regenerator return solution circulation amount, the amount of the solution that cannot be returned to the absorber in the high-temperature regenerator is increased. Solution starts to collect, and the liquid level in the high-temperature regenerator rises.

【0014】高温再生器内の液面が上昇しすぎると、吸
収器内の溶液が減り、吸収器出口の溶液循環ポンプがキ
ャビテーションにより故障したり、高温再生器の沸騰液
面が上昇して冷媒蒸気に溶液が混じり、冷房能力が低下
したりする不具合が起きる。逆に、高温再生器戻り溶液
循環量よりも高温再生器往き溶液循環量が小さくなる
と、高温再生器が煮詰まり、空焚による金属破壊や不凝
縮ガスの発生が起きたり、溶液の結晶などの故障を起こ
す怖れがある。
If the liquid level in the high-temperature regenerator rises too much, the solution in the absorber will decrease, the solution circulation pump at the absorber outlet will fail due to cavitation, or the boiling liquid level in the high-temperature regenerator will rise and the refrigerant will rise. There is a problem that the solution is mixed with the steam and the cooling capacity is reduced. Conversely, if the amount of circulation of the solution going to the high-temperature regenerator is smaller than the amount of circulation of the solution returning to the high-temperature regenerator, the high-temperature regenerator will boil down, causing metal destruction or non-condensable gas generation due to empty heating, and failures such as solution crystals There is a fear of causing.

【0015】そこで、高温再生器溶液の戻り配管部に、
自由液面をつくるトラップを設け、このトラップの上方
部温度を検出する第1の温度センサと、トラップの下方
部温度を検出する第2の温度センサと、戻り配管最下端
の液相部の温度を検出する第3の温度センサを設け、前
記第1の温度センサと第3の温度センサの温度、および
第2の温度センサと第3の温度センサの温度をそれぞれ
比較する。センサの示す温度はそれぞれ、センサの内部
が気相部のときは低くなり、液相部のときはほぼ同じ温
度となる。
Therefore, in the return pipe section of the high temperature regenerator solution,
A trap for forming a free liquid level is provided, a first temperature sensor for detecting the temperature of an upper portion of the trap, a second temperature sensor for detecting a temperature of a lower portion of the trap, and a temperature of a liquid phase at the lowermost end of the return pipe. Is provided, and the temperatures of the first and third temperature sensors and the temperatures of the second and third temperature sensors are compared. The temperature indicated by the sensor is lower when the inside of the sensor is in the gas phase, and is substantially the same when the sensor is in the liquid phase.

【0016】高温再生器戻り溶液循環量よりも高温再生
器往き溶液循環量が大きくなると、高温再生器液面より
も先にトラップ内の液面が上昇する。第1の温度センサ
部が気相部のときは第1の温度センサの温度は第3の温
度センサの温度より低い値を示すが、第1の温度センサ
部まで液面が上昇すると、第1の温度センサの温度は第
3の温度センサの温度とほぼ等しくなる。したがって、
第1の温度センサの温度と第3の温度センサの温度とが
ほぼ等しくなったら、高温再生器往き溶液循環量が大き
すぎると判断して、往き溶液循環量を減らすか戻り溶液
循環量を増やすことにより、高温再生器内の液面の上昇
を防ぐことができる。
If the circulation amount of the solution going out of the high-temperature regenerator becomes larger than the circulation amount of the returning solution in the high-temperature regenerator, the liquid level in the trap rises before the liquid level in the high-temperature regenerator. When the first temperature sensor section is a gas phase section, the temperature of the first temperature sensor indicates a value lower than the temperature of the third temperature sensor, but when the liquid level rises to the first temperature sensor section, Is substantially equal to the temperature of the third temperature sensor. Therefore,
When the temperature of the first temperature sensor is substantially equal to the temperature of the third temperature sensor, it is determined that the outgoing solution circulation amount is too large, and the outgoing solution circulation amount is reduced or the returning solution circulation amount is increased. This can prevent the liquid level in the high-temperature regenerator from rising.

【0017】逆に、高温再生器戻り溶液循環量よりも高
温再生器往き溶液循環量が小さくなると、高温再生器液
面よりも先にトラップ内の液面が下降する。前述と同様
に、第2の温度センサ部が液相部のときは、第2の温度
センサの温度は第3の温度センサの温度とほぼ等しい値
を示すが、第2の温度センサ部まで液面が降下すると、
第2の温度センサの温度は第3の温度センサの温度より
低い値を示す。したがって、第2の温度センサの温度が
第3の温度センサの温度より低くなったら、高温再生器
往き溶液循環量が小さすぎると判断して、往き溶液循環
量を増やすか戻り溶液循環量を減らすことにより、高温
再生器内の液面の低下を防ぐことができる。
Conversely, when the circulation amount of the solution going out of the high-temperature regenerator is smaller than the circulation amount of the returning solution in the high-temperature regenerator, the liquid level in the trap falls before the liquid level in the high-temperature regenerator. As described above, when the second temperature sensor section is a liquid phase section, the temperature of the second temperature sensor indicates a value substantially equal to the temperature of the third temperature sensor, but the liquid temperature reaches the second temperature sensor section. When the surface descends,
The temperature of the second temperature sensor indicates a value lower than the temperature of the third temperature sensor. Therefore, when the temperature of the second temperature sensor becomes lower than the temperature of the third temperature sensor, it is determined that the outgoing solution circulation amount is too small, and the outgoing solution circulation amount is increased or the returning solution circulation amount is reduced. This can prevent the liquid level in the high-temperature regenerator from lowering.

【0018】また、温度センサにより検知されたデータ
を監視、記録したり、液面が正常な制御パターンから外
れたときに、警報を発することにより、予防保全を行う
ことができる。
Further, preventive maintenance can be performed by monitoring and recording data detected by the temperature sensor, and by issuing an alarm when the liquid level deviates from a normal control pattern.

【0019】[0019]

【発明の実施の形態】以下、本発明の各実施の形態を図
1ないし図5を参照して説明する。 〔実施の形態 1〕まず、図1および図3を参照して本
発明の最も代表的な実施形態を説明する。図1は、本発
明の一実施の形態に係る吸収冷温水機の冷房サイクルの
系統図、図2は、本発明の一実施の形態に係るコントロ
ーラによる電磁弁開閉動作のフローチャート、図3は、
図1の吸収冷温水機における予防保全システムを示す要
部系統図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. [Embodiment 1] First, the most typical embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a system diagram of a cooling cycle of an absorption chiller / heater according to an embodiment of the present invention, FIG. 2 is a flowchart of an electromagnetic valve opening / closing operation by a controller according to an embodiment of the present invention, and FIG.
FIG. 2 is a main part system diagram showing a preventive maintenance system in the absorption chiller / heater of FIG. 1.

【0020】図1において、1は高温再生器、2は低温
再生器、3は凝縮器、4は蒸発器、5は吸収器、6は溶
液循環ポンプ、7は低温熱交換器、8は高温熱交換器、
9は溶液スプレーポンプである。また、本発明に係る要
素として、20は、高温再生器1の出口に設置したトラ
ップ、20−1はトラップ上部に取り付けた第1の温度
センサー、20−2はトラップ下部に取り付けた第2の
温度センサー、20−3はトラップ出口の戻り溶液配管
(濃溶液配管12)に取り付けた第3の温度センサー、
21は、前記各温度センサーから受けた信号により電磁
弁24の開閉を行うコントローラ、22,23は、高温
再生器往き溶液循環量を調整するオリフィスで、オリフ
ィスの抵抗で溶液循環量を制御する。24は、希溶液配
管11系に備えた電磁弁である。
In FIG. 1, 1 is a high temperature regenerator, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a solution circulation pump, 7 is a low temperature heat exchanger, and 8 is a high temperature regenerator. Heat exchanger,
9 is a solution spray pump. In addition, as elements according to the present invention, 20 is a trap installed at the outlet of the high-temperature regenerator 1, 20-1 is a first temperature sensor attached to the upper part of the trap, and 20-2 is a second temperature sensor attached to the lower part of the trap. A temperature sensor, 20-3 is a third temperature sensor attached to the return solution pipe (concentrated solution pipe 12) at the trap outlet,
Reference numeral 21 denotes a controller that opens and closes the electromagnetic valve 24 based on signals received from the temperature sensors. Reference numerals 22 and 23 denote orifices that adjust the amount of solution circulated to the high-temperature regenerator, and controls the amount of solution circulated by the resistance of the orifice. Reference numeral 24 denotes an electromagnetic valve provided in the diluted solution piping 11 system.

【0021】まず、図1を参照して冷房サイクルのフロ
ーを説明する。吸収器5内の溶液は、溶液循環ポンプ6
により希溶液配管11,11aを経て高温再生器1,低
温再生器2へ送られる。高温再生器1内では、送られて
来た溶液を加熱源1aにより加熱し、高温高圧の冷媒蒸
気と濃溶液とに分離する。濃溶液は圧力差により濃溶液
配管12を通って後述する低温再生器2からの戻り濃溶
液と合流し溶液スプレーポンプ9により吸収器5へ戻さ
れる。
First, the flow of the cooling cycle will be described with reference to FIG. The solution in the absorber 5 is supplied to a solution circulation pump 6
Is sent to the high-temperature regenerator 1 and the low-temperature regenerator 2 through the dilute solution pipes 11 and 11a. In the high-temperature regenerator 1, the sent solution is heated by the heating source 1a and separated into a high-temperature and high-pressure refrigerant vapor and a concentrated solution. The concentrated solution passes through the concentrated solution pipe 12 due to the pressure difference, merges with the concentrated solution returned from the low-temperature regenerator 2 described later, and is returned to the absorber 5 by the solution spray pump 9.

【0022】一方、高温再生器1で発生した冷媒蒸気
は、冷媒蒸気配管13を経て低温再生器2に送られ、低
温再生器2内で、溶液循環ポンプ6により希溶液配管1
1aを経て送られて来た溶液を加熱して冷媒蒸気と濃溶
液に分離させ、自らは液冷媒となり配管13を通り凝縮
器3に送られる。低温再生器2で分離された濃溶液は濃
溶液配管12aを通り、高温再生器1からの戻り濃溶液
と合流し吸収器5へ戻される。また、低温再生器2で発
生した冷媒蒸気は流路14を経て凝縮器3に送られる。
On the other hand, the refrigerant vapor generated in the high-temperature regenerator 1 is sent to the low-temperature regenerator 2 through the refrigerant vapor pipe 13, and in the low-temperature regenerator 2, the dilute solution pipe 1 is supplied by the solution circulation pump 6.
The solution sent through 1a is heated and separated into a refrigerant vapor and a concentrated solution. The solution itself becomes a liquid refrigerant and is sent to the condenser 3 through the pipe 13. The concentrated solution separated by the low-temperature regenerator 2 passes through the concentrated solution pipe 12 a, merges with the concentrated solution returned from the high-temperature regenerator 1, and is returned to the absorber 5. Further, the refrigerant vapor generated in the low-temperature regenerator 2 is sent to the condenser 3 via the flow path 14.

【0023】凝縮器3では、低温再生器2で発生した冷
媒蒸気と高温再生器1で発生した冷媒が冷却水系15の
熱交換部3aで冷却され、液冷媒となり蒸発器4に供給
される。蒸発器4では液冷媒が冷水系16の熱交換部4
aと熱交換して蒸発し、気化することにより冷水を需用
先へ供給する。蒸発器4で発生した冷媒蒸気は流路17
で吸収器5に入り溶液に吸収される。
In the condenser 3, the refrigerant vapor generated in the low-temperature regenerator 2 and the refrigerant generated in the high-temperature regenerator 1 are cooled in the heat exchange unit 3 a of the cooling water system 15, become liquid refrigerant, and supplied to the evaporator 4. In the evaporator 4, the liquid refrigerant is supplied to the heat exchange section 4 of the cold water system 16.
Cold water is supplied to the customer by evaporating and evaporating by exchanging heat with a. The refrigerant vapor generated in the evaporator 4 is supplied to the flow path 17.
Enters the absorber 5 and is absorbed by the solution.

【0024】次に本発明の実施形態における具体的な動
作を説明する。濃溶液配管12の高温再生器戻り溶液循
環量と希溶液配管11の高温再生器往き溶液循環量のバ
ランスが崩れると高温再生器1内の液面が上昇してミス
トアップを起こしたり、高温再生器1の液面が低下して
煮詰まったりして不具合を起こす。
Next, a specific operation in the embodiment of the present invention will be described. When the balance between the high-temperature regenerator return solution circulation amount of the concentrated solution pipe 12 and the high-temperature regenerator solution circulation amount of the dilute solution pipe 11 is out of balance, the liquid level in the high-temperature regenerator 1 rises to cause mist up or high-temperature regeneration. The liquid level of the vessel 1 may drop and become clogged, causing problems.

【0025】そこで、温度センサ20−1の指示する温
度をT1、温度センサ20−2の指示する温度をT2、
温度センサ20−3の指示する温度をT3とし、しきい
値としてa、bを設定し、図2に示すフローチャートに
従つて電磁弁を制御する。すなわち、T3−T1<aの
ときは、電磁弁24を閉じて高温再生器往きの希溶液配
管11の溶液循環量を減らす。T3−T2>bのとき
は、電磁弁24を開けて高温再生器往きの溶液循環量を
増やす。このようにして、電磁弁開閉の状態を保つこと
により、高温再生器戻り溶液循環量と高温再生器往き溶
液循環量のバランスを保つことができ、また、溶液循環
量の変化に対応できる。なおここで、電磁弁24が開く
と、オリフィス22,23の両方に溶液が流れ溶液循環
量が増えるものである。
Therefore, the temperature indicated by the temperature sensor 20-1 is T1, the temperature indicated by the temperature sensor 20-2 is T2,
The temperature indicated by the temperature sensor 20-3 is T3, a and b are set as thresholds, and the solenoid valve is controlled according to the flowchart shown in FIG. That is, when T3−T1 <a, the electromagnetic valve 24 is closed to reduce the amount of solution circulation in the dilute solution pipe 11 going to the high-temperature regenerator. When T3−T2> b, the electromagnetic valve 24 is opened to increase the amount of solution circulated to the high-temperature regenerator. In this manner, by maintaining the state of opening and closing the solenoid valve, the balance between the amount of solution circulation returned to the high-temperature regenerator and the amount of solution circulation going to the high-temperature regenerator can be maintained, and the change in the amount of solution circulation can be coped with. Here, when the electromagnetic valve 24 is opened, the solution flows to both the orifices 22 and 23, and the solution circulation amount increases.

【0026】本実施の形態において、第3の温度センサ
20−3の位置は高温再生器1本体の液相部の温度に替
えても成立するが、戻り配管すなわち濃溶液配管12中
に確実な液相部が存在するならば、戻り配管中の液相部
の温度の方が第1の温度センサ20−1、第2の温度セ
ンサ20−2の温度変化に対する追随性に優れているこ
とが実験的に確認されている。
In the present embodiment, the position of the third temperature sensor 20-3 is established even when the temperature of the liquid phase portion of the high temperature regenerator 1 is changed. If a liquid phase exists, the temperature of the liquid phase in the return pipe is superior to the temperature change of the first temperature sensor 20-1 and the second temperature sensor 20-2. Confirmed experimentally.

【0027】本実施の形態における吸収冷温水機は、ト
ラップ20および濃溶液配管12の外側の表面に温度セ
ンサーを取り付けるので、検出部において吸収冷温水機
の真空保持に対する信頼性を損なうことが無く、また温
度センサー自体が溶液に触れることがないため、長期に
わたり信頼性の高い制御を行うことができる。なお、本
実施の形態の吸収冷温水機では、温度センサーを増や
し、より細かい液面検知を行うこと、および電磁弁の数
を増やしより細かい循環量制御を行うことも可能であ
る。また、従来からのフロート弁と本発明の溶液循環ポ
ンプ回転数制御を併用することにより、信頼性の高い循
環量制御を行うことができる。
In the absorption chiller / heater of this embodiment, since the temperature sensor is attached to the outer surface of the trap 20 and the concentrated solution pipe 12, the reliability of the absorption chiller / heater with respect to the vacuum holding in the detection unit is not impaired. In addition, since the temperature sensor itself does not come into contact with the solution, highly reliable control can be performed for a long time. In the absorption chiller / heater of the present embodiment, it is also possible to increase the number of temperature sensors to perform finer liquid level detection and to increase the number of solenoid valves to perform finer circulation amount control. Also, by using the conventional float valve and the solution circulation pump rotation speed control of the present invention together, highly reliable circulation amount control can be performed.

【0028】本実施の形態の吸収冷温水機における制御
方法として、図3に示すように、表示兼制御装置D、N
TTの通信手段を利用したサービスステーションSを備
え、制御装置、制御回路を設定することによって、次の
システムが実現できる。 (1)T3−T1<aの状態が一定時間より長く続いた
ときに警告を発する、あるいは表示をするシステム。 (2)T3−T2>bの状態が一定時間より長く続いた
ときに警告を発する、あるいは表示をするシステム。
As a control method in the absorption chiller / heater of the present embodiment, as shown in FIG.
The following system can be realized by providing a service station S using TT communication means and setting a control device and a control circuit. (1) A system that issues a warning or displays a warning when the state of T3−T1 <a continues for longer than a predetermined time. (2) A system for issuing a warning or displaying when the state of T3−T2> b continues for longer than a predetermined time.

【0029】(3)温度センサの数を増やし、トラップ
のさらに上部または下部の液面を検知したときに警告を
発する、あるいは表示をするシステム。 (4)上記(1)(2)(3)の回数が設定した回数よ
りも多くなったとき、警告を発する、あるいは表示をす
るシステム。 (5)上記(1)(2)(3)(4)が発生したことを
記録、保持する機能を持つシステム。 (6)上記(1)(2)(3)(4)が発生したとき
に、故障と判断し、重大故障に至る前に運転を停止させ
るシステム。
(3) A system in which the number of temperature sensors is increased and a warning is issued or displayed when the liquid level at the upper or lower part of the trap is detected. (4) A system for issuing a warning or displaying when the number of times (1), (2), and (3) exceeds the set number. (5) A system having a function of recording and holding the occurrence of the above (1), (2), (3), and (4). (6) A system in which when the above (1), (2), (3), and (4) occur, it is determined that a failure has occurred, and the operation is stopped before a serious failure occurs.

【0030】(7)上記(2)のときに、高温再生器の
入熱量を減らし、運転を継続させる機能を持つシステ
ム。 (8)計測した温度あるいは検知した液面を運転状況デ
ータとして表示したり、データの送発信により遠隔にて
運転状況を把握するシステム。 (9)電磁弁の開閉回数をカウントする機能を持つシス
テム。 (10)上記(9)の回数が一定時間内に設定した回数
よりも多くなったとき、警告を発する、あるいは表示を
するシステム。
(7) A system having a function of reducing the heat input to the high-temperature regenerator and continuing the operation in the case of the above (2). (8) A system that displays the measured temperature or the detected liquid level as operation status data, and remotely recognizes the operation status by transmitting and transmitting data. (9) A system that counts the number of times the solenoid valve is opened and closed. (10) A system for issuing a warning or displaying when the number of times in the above (9) becomes larger than a set number within a predetermined time.

【0031】上記(1)から(8)の警報、表示、監視
システムは、設置にあたり吸収冷温水機の真空破壊を必
要としないばかりか、他の溶液循環量制御の診断にも適
応できるため、既納機に対しても容易に取り付けて予防
保全を行うことができる。なお、図3に示す予防保全シ
ステムは、以下に説明する図4,図5の各吸収冷温水機
にも同様に適用できることは云うまでもない。
The alarm, display and monitoring system of the above (1) to (8) does not require vacuum breakage of the absorption chiller / heater at the time of installation, and is applicable to diagnosis of other solution circulation amount control. Preventive maintenance can be performed easily by attaching to already delivered machines. It goes without saying that the preventive maintenance system shown in FIG. 3 can be similarly applied to each absorption chiller / heater of FIGS. 4 and 5 described below.

【0032】〔実施の形態 2〕次に、図4は、本発明
の他の実施の形態に係る吸収冷温水機の冷房サイクルの
系統図である。図中、図1と同一符号のものは先の実施
の形態と同等部であるから、その説明を省略する。図4
の実施の形態が図1の実施の形態と相違するところは、
溶液循環ポンプ6をコントローラ21に接続したことに
ある。
[Embodiment 2] FIG. 4 is a system diagram of a cooling cycle of an absorption chiller / heater according to another embodiment of the present invention. In the figure, components having the same reference numerals as those in FIG. 1 are the same as those in the previous embodiment, and the description thereof will be omitted. FIG.
Is different from the embodiment of FIG. 1 in that
That is, the solution circulation pump 6 is connected to the controller 21.

【0033】図4に示す吸収冷温水機では、(1)T3
−T1<aのときは、溶液循環ポンプ6をインバータ等
で制御して高温再生器往きの溶液循環量を減らす、
(2)T3−T2>bのときは、溶液循環ポンプ6をイ
ンバータ等で制御して高温再生器往きの溶液循環量を増
やす、ことにより、高温再生器戻り溶液循環量と高温再
生器往き溶液循環量のバランスを保つようにした。溶液
循環ポンプ6をインバータで制御する際は、温度センサ
ーの数を増やすと、よりスムーズな溶液循環量制御が可
能となる。
In the absorption chiller / heater shown in FIG. 4, (1) T3
When −T1 <a, the solution circulation pump 6 is controlled by an inverter or the like to reduce the amount of solution circulation going to the high-temperature regenerator.
(2) When T3−T2> b, the solution circulation pump 6 is controlled by an inverter or the like to increase the amount of solution circulation going to the high-temperature regenerator, thereby increasing the amount of solution circulation returned to the high-temperature regenerator and the amount of solution going to the high-temperature regenerator. The balance of the amount of circulation was maintained. When controlling the solution circulation pump 6 with an inverter, increasing the number of temperature sensors allows smoother solution circulation amount control.

【0034】〔実施の形態 3〕次に、図5は、本発明
のさらに他の実施の形態に係る吸収冷温水機の冷房サイ
クルの系統図である。図中、図1と同一符号のものは先
の実施の形態と同等部であるから、その説明を省略す
る。図5の実施の形態が図1の実施の形態と相違すると
ころは、コントローラ21に接続する電磁弁27を、高
温再生器戻りの溶液循環系である濃溶液配管12に設け
たものである。25,26は、高温再生器戻り溶液循環
量を調整するオリフィスである。
[Embodiment 3] FIG. 5 is a system diagram of a cooling cycle of an absorption chiller / heater according to still another embodiment of the present invention. In the figure, components having the same reference numerals as those in FIG. 1 are the same as those in the previous embodiment, and the description thereof will be omitted. The embodiment of FIG. 5 differs from the embodiment of FIG. 1 in that an electromagnetic valve 27 connected to a controller 21 is provided in a concentrated solution pipe 12 which is a solution circulation system for returning to a high-temperature regenerator. Reference numerals 25 and 26 denote orifices for adjusting the circulation amount of the solution returned to the high-temperature regenerator.

【0035】図5に示す吸収冷温水機では、(1)T3
−T1<aのときは、電磁弁27を開けて高温再生器戻
りの溶液循環量を増やす、(2)T3−T2>bのとき
は、電磁弁27を閉めて高温再生器戻りの溶液循環量を
減らす、ことにより、高温再生器戻り溶液循環量と高温
再生器往き溶液循環量のバランスを保つようにしたもの
である。
In the absorption chiller / heater shown in FIG. 5, (1) T3
When −T1 <a, the electromagnetic valve 27 is opened to increase the amount of solution circulation returning to the high-temperature regenerator. (2) When T3−T2> b, the electromagnetic valve 27 is closed to allow solution circulation to return to the high-temperature regenerator. By reducing the amount, the balance of the circulation amount of the solution returned to the high-temperature regenerator and the circulation amount of the solution going to the high-temperature regenerator is maintained.

【0036】本実施の形態では、高温再生器戻りの溶液
循環量を増減できるため、稀釈停止時に高温再生器戻り
の溶液循環量を増加させることにより、稀釈時間が短く
できる点が特徴的である。
The present embodiment is characterized in that the amount of circulating solution returned to the high-temperature regenerator can be increased or decreased, and the dilution time can be shortened by increasing the amount of circulating solution returned to the high-temperature regenerator when the dilution is stopped. .

【0037】上記の各実施形態によれば、高温再生器1
の出口に設置したトラップ20、トラップ20の上部,
下部,およびトラップ20の出口配管に取り付けた第
1,第2,第3の温度センサー20−1,20−2,2
0−3により、高温再生器往き溶液循環量、戻り溶液循
環量のバランスをトラップ内の液面位置として検知し、
電磁弁24,27の開閉等により高温再生器往きまたは
戻り溶液循環量の調節を行うことにより、高温再生器の
液面上昇や液面低下による不具合を回避することが可能
な吸収冷温水機を提供することができる。
According to each of the above embodiments, the high-temperature regenerator 1
Trap 20 installed at the exit of the upper part of the trap 20,
First, second, and third temperature sensors 20-1, 20-2, and 2 attached to the lower portion and the outlet pipe of the trap 20.
By 0-3, the balance between the circulation amount of the solution going out of the high-temperature regenerator and the circulation amount of the returning solution is detected as the liquid surface position in the trap,
An absorption chiller / heater capable of avoiding problems caused by rising or lowering of the liquid level of the high-temperature regenerator by adjusting the circulation amount of the solution going to or from the high-temperature regenerator by opening / closing the solenoid valves 24 and 27 or the like. Can be provided.

【0038】これにより、従来使用していたフロートバ
ルブより小形で固体差が少なくかつ信頼性の高い制御が
可能となる。また、吸収冷温水機運転中に、連続的に溶
液循環量のバランスを検知できるため、平常運転時の運
転監視をしたり、故障に至る前に警告を発してメンテナ
ンスをしたりすることにより、重大故障を回避できるの
みならず、吸収冷温水機の寿命を長く保つことができ
る。
This makes it possible to control the float valve with a smaller size and less differences in solids than the conventionally used float valve, and with high reliability. In addition, during the operation of the absorption chiller / heater, the balance of the circulation amount of the solution can be continuously detected, so that the operation can be monitored during normal operation or a warning can be issued before a failure occurs to perform maintenance. Not only can a serious failure be avoided, but also the life of the absorption chiller / heater can be extended.

【0039】さらに、溶液循環量のバランスを記録でき
るため、故障時に故障前の運転状況を把握することによ
り、故障原因の究明が短時間に正確に行なえるので、復
旧作業に要する時間と労力が軽減される。また、上記の
監視、警報、記録システムは、設置にあたり吸収冷温水
機の真空破壊を必要とせず、他の循環量制御を行ってい
る既納機に対しても有効なため、既納機に対しても容易
に取り付けることができ予防保全効果を発揮できる。
Furthermore, since the balance of the circulation amount of the solution can be recorded, the operating condition before the failure can be grasped at the time of the failure, so that the cause of the failure can be accurately investigated in a short time. It is reduced. In addition, the above monitoring, alarm, and recording system does not require vacuum breakage of the absorption chiller / heater at the time of installation, and is effective for other machines that have other circulation volume controls. It can be easily installed, and can exhibit a preventive maintenance effect.

【0040】[0040]

【発明の効果】以上詳細に説明したように、本発明によ
れば、高温再生器の液面を可動部のない手段で検知し、
適正な溶液循環量制御を行いうる、安全で小形の吸収冷
温水機を提供することができる。また、本発明によれ
ば、様々な溶液循環量制御を採用している既納機に対し
て、真空を破壊することなく簡単に取り付けでき、信頼
性の高い予防保全を行うことの可能な吸収冷温水機を提
供することができる。
As described in detail above, according to the present invention, the liquid level of the high-temperature regenerator is detected by means having no movable part,
It is possible to provide a safe and compact absorption chiller / heater capable of performing appropriate solution circulation amount control. In addition, according to the present invention, an absorption device that can be easily attached to a delivered machine employing various solution circulation volume controls without breaking vacuum and that can perform highly reliable preventive maintenance. A hot and cold water machine can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る吸収冷温水機の冷
房サイクルの系統図である。
FIG. 1 is a system diagram of a cooling cycle of an absorption chiller / heater according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係るコントローラによ
る電磁弁開閉動作のフローチャートである。
FIG. 2 is a flowchart of an electromagnetic valve opening / closing operation by a controller according to one embodiment of the present invention.

【図3】図1の吸収冷温水機における予防保全システム
を示す要部系統図である。
FIG. 3 is a main part system diagram showing a preventive maintenance system in the absorption chiller / heater of FIG. 1;

【図4】本発明の他の実施の形態に係る吸収冷温水機の
冷房サイクルの系統図である。
FIG. 4 is a system diagram of a cooling cycle of an absorption chiller / heater according to another embodiment of the present invention.

【図5】本発明のさらに他の実施の形態に係る吸収冷温
水機の冷房サイクルの系統図である。
FIG. 5 is a system diagram of a cooling cycle of an absorption chiller / heater according to still another embodiment of the present invention.

【図6】従来のフロートバルブを用いた吸収冷温水機の
系統図である。
FIG. 6 is a system diagram of a conventional absorption chiller / heater using a float valve.

【符号の説明】[Explanation of symbols]

1…高温再生機、2…低温再生器、3…凝縮器、4…蒸
発器、5…吸収器、6…溶液循環ポンプ、7…低温熱交
換器、8…高温熱交換器、9…溶液スプレーポンプ、2
0…トラップ、20−1…第1の温度センサ、20−2
…第2の温度センサ、20−3…第3の温度センサ、2
1…コントローラ、24,27…電磁弁、22,23,
25,26…オリフィス。
DESCRIPTION OF SYMBOLS 1 ... High temperature regenerator, 2 ... Low temperature regenerator, 3 ... Condenser, 4 ... Evaporator, 5 ... Absorber, 6 ... Solution circulation pump, 7 ... Low temperature heat exchanger, 8 ... High temperature heat exchanger, 9 ... Solution Spray pump, 2
0: trap, 20-1: first temperature sensor, 20-2
... 2nd temperature sensor, 20-3 ... 3rd temperature sensor, 2
1 ... controller, 24, 27 ... solenoid valve, 22, 23,
25, 26 ... orifice.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 富久 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 渡瀬 一雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomihisa 603, Kandamachi, Tsuchiura-shi, Ibaraki Pref. Inside the Tsuchiura Plant, Hitachi Ltd. Inside the Tsuchiura Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 希溶液を加熱して濃縮し冷媒蒸気を分離
させる再生器と、この再生器で発生した冷媒蒸気を液化
させる凝縮器と、その冷媒液を負荷側の冷温水管と熱交
換させて冷媒を蒸発させる蒸発器と、この蒸発器で生じ
た冷媒蒸気を、前記再生器から送給された濃溶液に吸収
させる吸収器と、これら各機器を作動的に接続する配管
系とを備えてなる吸収冷温水機において、 前記再生器の液相部温度と前記再生器から吸収器への戻
り溶液配管の温度とを測定して再生器戻り配管中の溶液
の液面位置を検知する手段を備えたことを特徴とする吸
収冷温水機。
1. A regenerator for heating and condensing a dilute solution to separate refrigerant vapor, a condenser for liquefying refrigerant vapor generated by the regenerator, and heat-exchanging the refrigerant liquid with a cold / hot water pipe on a load side. An evaporator for evaporating the refrigerant, an absorber for absorbing the refrigerant vapor generated in the evaporator into the concentrated solution sent from the regenerator, and a piping system for operatively connecting these devices. Means for measuring the liquid phase temperature of the regenerator and the temperature of the return solution pipe from the regenerator to the absorber to detect the liquid level of the solution in the regenerator return pipe. An absorption chiller / heater comprising:
【請求項2】 請求項1記載の吸収冷温水機において、
再生器戻り配管部における少なくとも2個所以上の液面
を検知したい位置にそれぞれ温度センサを設け、戻り配
管最下端の液相部に別の温度センサを設け、前記少なく
とも2個所以上のそれぞれの温度と前記液相部の温度と
を比較し、2個所以上の位置の液面の有無を検知するこ
とにより再生器の溶液循環量を制御することを特徴とす
る吸収冷温水機。
2. The absorption chiller / heater according to claim 1,
Temperature sensors are provided at positions where at least two or more liquid levels are to be detected in the regenerator return pipe portion, and another temperature sensor is provided in a liquid phase portion at the lowermost end of the return pipe. An absorption chiller / heater for controlling the amount of solution circulation of a regenerator by comparing the temperature of the liquid phase part and detecting the presence or absence of a liquid surface at two or more positions.
【請求項3】 請求項1記載の吸収冷温水機において、
再生器戻り溶液の液面位置に応じて、再生器往きの溶液
循環量を調節する機能を備えたことを特徴とする吸収冷
温水機。
3. The absorption chiller / heater according to claim 1,
An absorption chiller / heater having a function of adjusting the amount of solution circulating in and out of the regenerator according to the level of the solution returned to the regenerator.
【請求項4】 請求項1記載の吸収冷温水機において、
再生器戻り溶液の液面位置に応じて、再生器戻りの溶液
循環量を調節する機能を備えたことを特徴とする吸収冷
温水機。
4. The absorption chiller / heater according to claim 1,
An absorption chiller / heater having a function of adjusting a solution circulation amount of a regenerator return according to a liquid level position of a regenerator return solution.
【請求項5】 希溶液を加熱して濃縮し冷媒蒸気を分離
させる高温再生器および低温再生器と、前記各再生器で
発生した冷媒蒸気を液化させる凝縮器と、その冷媒液を
負荷側の冷温水管と熱交換させて冷媒を蒸発させる蒸発
器と、この蒸発器で生じた冷媒蒸気を、前記各再生器か
ら送給された濃溶液に吸収させる吸収器と、これら各機
器を作動的に接続する配管系とを備えてなる吸収冷温水
機において、 前記高温再生器から吸収器への溶液戻り配管部に、自由
液面を形成するトラップを備え、 このトラップの上方部温度を検出する第1の温度センサ
と、トラップ下方部温度を検出する第2の温度センサ
と、前記戻り配管最下端の液相部の温度を検出する第3
の温度センサを設け、 前記第1の温度センサと前記第3の温度センサの温度、
および前記第2の温度センサと前記第3の温度センサの
温度をそれぞれ比較し、前記トラップの上方部および下
方部のそれぞれの位置の液面の有無を検知することによ
り、前記高温再生器の溶液循環量を制御する手段を備え
たことを特徴とする吸収冷温水機。
5. A high-temperature regenerator and a low-temperature regenerator for heating and concentrating a dilute solution to separate refrigerant vapor, a condenser for liquefying refrigerant vapor generated in each of the regenerators, and a refrigerant liquid on the load side. An evaporator that evaporates the refrigerant by exchanging heat with the hot and cold water pipes, an absorber that absorbs the refrigerant vapor generated by the evaporator into the concentrated solution sent from each of the regenerators, and operatively operates these devices. An absorption chiller / heater comprising a piping system to be connected, wherein a trap for forming a free liquid surface is provided in a solution return piping section from the high-temperature regenerator to the absorber, and the temperature of an upper portion of the trap is detected. A second temperature sensor for detecting the temperature of the lower portion of the trap, and a third temperature sensor for detecting the temperature of the liquid phase at the lowermost end of the return pipe.
A temperature sensor of the first temperature sensor and the temperature of the third temperature sensor,
And comparing the temperature of the second temperature sensor with the temperature of the third temperature sensor, and detecting the presence or absence of a liquid level at each of the upper part and the lower part of the trap. An absorption chiller / heater comprising means for controlling a circulation amount.
【請求項6】 請求項1または5記載のいずれかの吸収
冷温水機において、再生器戻りの溶液面が正常な制御パ
ターンから外れたときに警報を発する故障予知あるいは
故障診断手段を備えたことを特徴とする吸収冷温水機。
6. The absorption chiller / heater according to claim 1, further comprising a failure prediction or failure diagnosis means for issuing an alarm when a solution level returned from the regenerator deviates from a normal control pattern. An absorption chiller / heater.
【請求項7】 請求項1または5記載のいずれかの吸収
冷温水機において、計測した温度あるいは検知した液面
を運転状況データとして表示する手段と、データの送発
信により遠隔にて運転状況を把握する手段とを備えたこ
とを特徴とする吸収冷温水機。
7. The absorption chiller / heater according to claim 1, wherein the measured temperature or the detected liquid level is displayed as operation status data, and the operation status is remotely transmitted and transmitted by transmitting and receiving the data. An absorption chiller / heater comprising: a grasping means.
【請求項8】 請求項5記載の吸収冷温水機において、
高温再生器加熱手段を停止したときに、高温再生器から
吸収器に戻る流路途中に設けた流量制御電磁弁を開き、
高温再生器循環量を増大させたことを特徴とする吸収冷
温水機。
8. The absorption chiller / heater according to claim 5,
When the high temperature regenerator heating means is stopped, open the flow control solenoid valve provided in the middle of the flow path returning from the high temperature regenerator to the absorber,
An absorption chiller / heater characterized by increasing the circulation amount of a high-temperature regenerator.
JP8332586A 1996-12-13 1996-12-13 Absorbing type water cooling or heating machine Pending JPH10170091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8332586A JPH10170091A (en) 1996-12-13 1996-12-13 Absorbing type water cooling or heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8332586A JPH10170091A (en) 1996-12-13 1996-12-13 Absorbing type water cooling or heating machine

Publications (1)

Publication Number Publication Date
JPH10170091A true JPH10170091A (en) 1998-06-26

Family

ID=18256598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8332586A Pending JPH10170091A (en) 1996-12-13 1996-12-13 Absorbing type water cooling or heating machine

Country Status (1)

Country Link
JP (1) JPH10170091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method
JP2008106983A (en) * 2006-10-25 2008-05-08 Hitachi Appliances Inc Absorption type heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method
JP2008106983A (en) * 2006-10-25 2008-05-08 Hitachi Appliances Inc Absorption type heat pump

Similar Documents

Publication Publication Date Title
JPH10170091A (en) Absorbing type water cooling or heating machine
US3550391A (en) Absorption refrigeration system having compensated dilution control
US5813241A (en) Crytallization detection and recovery for two-stage absorption refrigeration machine
CN1150237A (en) Absorption refrigerator
JP4251878B2 (en) Diagnostic method and apparatus for absorption chiller / heater
EP1205718B1 (en) Absorption chiller/absorption chiller-heater having safety device
JP3585890B2 (en) Heating operation control method of triple effect absorption chiller / heater
JP3280085B2 (en) Operation control method in absorption refrigerator
JP2006250427A (en) Absorption refrigerating machine
JP6437354B2 (en) Absorption refrigerator
JP3081472B2 (en) Control method of absorption refrigerator
JP2675379B2 (en) Absorption refrigerator
JPH0447226B2 (en)
JP3279029B2 (en) Absorption refrigerator
JPS62213669A (en) Method of controlling operation of air conditioner
JP2900608B2 (en) Absorption refrigerator
JP2001012831A (en) Absorption refrigerating machine/hot and chilled water generator with safety device
JP2639969B2 (en) Absorption refrigerator
JP3383898B2 (en) Absorption type cold heat generator
JPH0275865A (en) Controlling method for absorption refrigerator
JP2940787B2 (en) Double effect absorption refrigerator
JPH05312430A (en) Absorption refrigerator
JPH0448455Y2 (en)
JPH05113267A (en) Controller of absorption refrigerating machine
JP3182233B2 (en) Operation control method in absorption refrigerator