JP5457163B2 - Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system - Google Patents

Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system Download PDF

Info

Publication number
JP5457163B2
JP5457163B2 JP2009288569A JP2009288569A JP5457163B2 JP 5457163 B2 JP5457163 B2 JP 5457163B2 JP 2009288569 A JP2009288569 A JP 2009288569A JP 2009288569 A JP2009288569 A JP 2009288569A JP 5457163 B2 JP5457163 B2 JP 5457163B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
solution
heater
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009288569A
Other languages
Japanese (ja)
Other versions
JP2011127857A (en
Inventor
進 篠原
耕一 染矢
真二 佐々木
昌広 櫻井
健次 中田
立 本間
尚樹 刑部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd, Tokyo Gas Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2009288569A priority Critical patent/JP5457163B2/en
Publication of JP2011127857A publication Critical patent/JP2011127857A/en
Application granted granted Critical
Publication of JP5457163B2 publication Critical patent/JP5457163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、分散型発電システムの排ガスを利用する吸収冷温水機の制御方法及び装置に関する。詳しくは、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液熱交換器、排温水熱交換器などを有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用する排ガス・排温水投入型吸収冷温水機において、希釈運転終了後の溶液ポンプ空転、及び排ガスダンパの動作不良・シール性悪化等に起因する排ガスの漏れ込みにより生じる希釈運転不可、溶液結晶化、排ガス熱交換器の異常過熱の不具合を解決し、故障の発生率を減少させるとともに、保守安全性を向上させるようにした方法及び装置に関する。   The present invention relates to a control method and apparatus for an absorption chiller / heater using exhaust gas from a distributed power generation system. Specifically, an exhaust gas heat exchanger and an exhaust gas damper are added to an exhaust hot water charging type absorption chiller / heater having an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution heat exchanger, a waste heat water heat exchanger, and the like. In a flue gas / waste water injection type absorption chiller / heater that uses the exhaust heat exhausted from the distributed power generation system more sophisticatedly, the solution pump idles after the dilution operation ends, and the exhaust gas damper malfunctions and seals deteriorate Method of solving the problems of dilution operation impossible due to leakage of exhaust gas caused by, etc., solution crystallization, abnormal overheating of exhaust gas heat exchanger, reducing the occurrence rate of failure and improving maintenance safety And an apparatus.

分散型発電システム(装置)は、顧客の売電事業およびESCO事業、緊急停電時の予備電源として使用されるケースが多く、万が一異常停止した場合、被る損失は甚大なことが多いため、可能な限りこれを回避することが望まれる。そのためには、排ガスの漏れ込みがある場合においても、吸収冷温水機として安定した品質を維持しなければならず、その対策を講じる必要がある。
従来では、排ガス漏れ込み時の抜本的な対策はなされておらず、最終的には吸収冷温水機の損傷あるいは分散型発電装置の停止を余儀なくされるケースが想定される。
Distributed power generation systems (devices) are often used as customer power sales and ESCO businesses, and as a standby power source for emergency power outages. It is desirable to avoid this as far as possible. For that purpose, even when there is a leak of exhaust gas, stable quality as an absorption chiller / heater must be maintained, and measures must be taken.
Conventionally, no drastic countermeasures have been taken when exhaust gas leaks, and it is assumed that the absorption chiller / heater may eventually be damaged or the distributed power generator must be stopped.

従来、吸収冷温水機として、図3に例示したようなものが知られている。この吸収冷温水機は、吸収液(例えば、臭化リチウム水溶液)が吸収器10から低温再生器14を経て高温再生器18に流されるというリバースサイクルを構成している。この吸収冷温水機における吸収サイクルを説明すると、まず、吸収器10で多量の冷媒蒸気を吸収して濃度が薄められた吸収液(希吸収液)が吸収器10から低温熱交換器12に送給され、この低温熱交換器12により加熱された後に低温再生器14に送給される。前記希吸収液は、この低温再生器14において低温再生され、吸収している冷媒の一部を放出し濃度がその分高くなって中間濃度の吸収液(中間吸収液)となる。つぎに、この中間吸収液は、低温再生器14から高温熱交換器16に送給され、この高温熱交換器16により加熱された後に高温再生器18に送給される。   Conventionally, an absorption chiller / heater as illustrated in FIG. 3 is known. This absorption chiller / heater constitutes a reverse cycle in which an absorbing liquid (for example, an aqueous solution of lithium bromide) flows from the absorber 10 through the low temperature regenerator 14 to the high temperature regenerator 18. The absorption cycle in this absorption chiller / heater will be explained. First, an absorption liquid (dilute absorption liquid) whose concentration has been reduced by absorbing a large amount of refrigerant vapor in the absorber 10 is sent from the absorber 10 to the low-temperature heat exchanger 12. After being heated by the low temperature heat exchanger 12, it is fed to the low temperature regenerator 14. The dilute absorption liquid is regenerated at a low temperature in the low temperature regenerator 14, and a part of the absorbed refrigerant is released, and the concentration is increased by that amount to become an intermediate concentration absorption liquid (intermediate absorption liquid). Next, the intermediate absorbent is fed from the low temperature regenerator 14 to the high temperature heat exchanger 16, heated by the high temperature heat exchanger 16, and then fed to the high temperature regenerator 18.

前記中間吸収液は、この高温再生器18において高温再生され、吸収している冷媒(例えば、水蒸気)の一部を放出し濃度がさらに高くなって高濃度の吸収液(濃吸収液)となる。そして、この濃吸収液が前記高温熱交換器16の加熱側に前記中間吸収液を加熱する加熱源として戻され、さらに、低温熱交換器12の加熱側に前記希吸収液を加熱する加熱源として戻された後、前記吸収器10に帰還する。この帰還した濃吸収液は吸収器10において伝熱管上に散布され、冷却水により冷却されながら再び冷媒蒸気を吸収して前記希吸収液となる。32は吸収液ポンプ、34は吸収液ポンプ(溶液ポンプ)、36は冷媒ポンプ、38は冷却水ポンプ、40は冷温水ポンプ、42は冷暖切替弁である。   The intermediate absorbing liquid is regenerated at a high temperature in the high temperature regenerator 18, and a part of the refrigerant (for example, water vapor) absorbed is discharged to further increase the concentration to become a high concentration absorbing liquid (concentrated absorbing liquid). . The concentrated absorbent is returned to the heating side of the high temperature heat exchanger 16 as a heating source for heating the intermediate absorbent, and further, the heating source for heating the rare absorbent on the heating side of the low temperature heat exchanger 12. Is returned to the absorber 10. The returned concentrated absorbing liquid is sprayed on the heat transfer pipe in the absorber 10 and again absorbs the refrigerant vapor while being cooled by the cooling water to become the diluted absorbing liquid. 32 is an absorption liquid pump, 34 is an absorption liquid pump (solution pump), 36 is a refrigerant pump, 38 is a cooling water pump, 40 is a cold / hot water pump, and 42 is a cooling / heating switching valve.

このような吸収冷温水機においては、前記高温再生器18に燃焼部20が設けられており、中間吸収液が加熱されて吸収していた冷媒が放出され、この放出された冷媒蒸気は、低温再生器14に送給され、この低温再生器14での加熱源として利用された後、凝縮器22に戻されて凝縮する。例えば冷水運転の場合には、凝縮器22からの冷媒液(例えば、水)は蒸発器24に入り、この凝縮した冷媒液が冷媒ポンプ36により蒸発器24の伝熱管(水が流通している)に散布され蒸発潜熱により冷却されて冷水が得られる。なお、高温再生器に燃焼部を設ける代りに、ボイラーから発生した水蒸気(スチーム)又は温水を高温再生器に導入するように構成されることもある。低温再生器14からの吸収液配管26と、高温熱交換器16と低温熱交換器12との間の加熱側の吸収液配管28とを接続するバイパス管30が設けられ、低温再生器14を出て高温再生器18へ供給される中間濃縮吸収液の一部を、吸収器10へ戻る濃吸収液配管にバイパスさせるように構成されている。このように、従来の吸収冷温水機の一例として、図3に示すものが知られている(例えば、特許文献1参照)。   In such an absorption chiller / heater, the high-temperature regenerator 18 is provided with a combustion unit 20, and the refrigerant absorbed by the heating of the intermediate absorption liquid is released. After being fed to the regenerator 14 and used as a heating source in the low temperature regenerator 14, it is returned to the condenser 22 and condensed. For example, in the case of cold water operation, the refrigerant liquid (for example, water) from the condenser 22 enters the evaporator 24, and the condensed refrigerant liquid is circulated by the refrigerant pump 36 through the heat transfer tube (water flows through the evaporator 24). ) And cooled by latent heat of evaporation to obtain cold water. Instead of providing the combustion section in the high temperature regenerator, steam (steam) or hot water generated from the boiler may be introduced into the high temperature regenerator. A bypass pipe 30 is provided to connect the absorption liquid pipe 26 from the low temperature regenerator 14 and the heating side absorption liquid pipe 28 between the high temperature heat exchanger 16 and the low temperature heat exchanger 12. A part of the intermediate concentrated absorbent that comes out and is supplied to the high-temperature regenerator 18 is bypassed to the concentrated absorbent pipe that returns to the absorber 10. Thus, what is shown in FIG. 3 is known as an example of the conventional absorption cold / hot water machine (for example, refer patent document 1).

特開2002−39643号公報(第4頁、図2)JP 2002-39643 A (page 4, FIG. 2)

解決しようとする問題点は、排ガス、排温水投入型吸収冷温水機において、希釈運転終了後の溶液ポンプ空転、及び排ガスダンパの動作不良・シール性悪化等に起因する排ガスの漏れ込みにより生じる希釈運転不可、溶液結晶化、排ガス熱交換器の異常加熱の不具合が発生する点にある。   The problem to be solved is the dilution caused by the exhaust of the exhaust gas due to the idling of the solution pump after the completion of the dilution operation, the malfunction of the exhaust gas damper, the deterioration of the sealing property, etc. It is in the point which the malfunction of abnormal heating of an operation impossible, solution crystallization, and an exhaust gas heat exchanger generate | occur | produces.

本発明は、排ガスの漏れ込み時の故障リスクを回避するために、排ガス熱交換器を低温再生器のオーバーフロー管より高い位置に設置して、停止時に溶液が全量吸収器に戻る液循環サイクルの構造とすることにより、排ガス漏れ込み時の溶液の結晶化を回避するようにしたことを最も主要な特徴とする。
本発明は、排ガス熱交換器を溶液配管により接続される一次側、二次側の装置の溶液液面に対し、上部に設置した吸収冷温水機、吸収液ポンプ停止中に、排ガス熱回収器に溜まった溶液が位置ヘッドにより、溶液配管を通じて接続される一次側、二次側の装置に全量流れ落ちるようにした吸収冷温水機、及びこれらにおいて、吸収液ポンプ停止中に、排ガス熱回収器に溜まった溶液が位置ヘッドにより、全量流れ落ちる構造である排ガス熱回収器を有する吸収冷温水機を提供せんとするものである。
In the present invention, in order to avoid a failure risk when exhaust gas leaks, the exhaust gas heat exchanger is installed at a position higher than the overflow pipe of the low-temperature regenerator, and the liquid circulation cycle in which the solution returns to the total amount absorber when stopped. The most important feature is that the structure avoids crystallization of the solution when the exhaust gas leaks.
The present invention relates to an absorption chiller / heater installed on the upper side with respect to the solution liquid level of the primary and secondary devices connected to the exhaust gas heat exchanger by solution piping, and the exhaust gas heat recovery device while the absorption liquid pump is stopped. Absorption chiller / heater in which the total amount of the solution accumulated in the liquid flows down to the primary and secondary devices connected through the solution pipe by the position head, and in these cases, the absorption liquid pump is stopped while the absorption liquid pump is stopped. It is an object of the present invention to provide an absorption chiller / heater having an exhaust gas heat recovery device having a structure in which the accumulated solution flows down by the position head.

本発明の制御方法は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、低温再生器の溶液のオーバーフロー管より高い位置に排ガス熱交換器を設け、冷温水機の停止時に排ガス熱交換器内の溶液を全量吸収器に戻して、排ガス熱交換器における排ガス漏れ込み時の溶液の結晶化を回避することを特徴としている。   The control method of the present invention includes an evaporator, an absorber, a condenser, a low-temperature regenerator, a high-temperature regenerator, a solution low-temperature heat exchanger, a solution high-temperature heat exchanger, and a waste hot water heat-absorbing type absorption cold temperature Install the exhaust gas heat exchanger and the exhaust gas damper on the water machine, and introduce the exhaust gas from the distributed power generation system into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. Control method for an absorption chiller / heater charged with exhaust gas / waste water, provided with an exhaust gas heat exchanger at a position higher than the overflow pipe of the solution in the low temperature regenerator, and the solution in the exhaust gas heat exchanger when the chiller / heater is stopped The total amount of the gas is returned to the absorber to avoid crystallization of the solution when the exhaust gas leaks in the exhaust gas heat exchanger.

また、本発明の制御方法は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、希釈運転後の高温再生器と吸収器との圧力差に起因する冷媒蒸気逆流による高温熱交換器導入用の溶液ポンプの空転を防止するため、高温再生器の冷媒蒸気の飽和温度が所定値以下に低下するまで希釈運転を継続するとともに、希釈運転の時間を短縮するために、希釈運転が終了するまで、冷温水ポンプ及び冷却水ポンプを運転することを特徴としている。   Further, the control method of the present invention includes an exhaust hot water charging type having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste water heat exchanger. The absorption chiller / heater is equipped with an exhaust gas heat exchanger and an exhaust gas damper, and the exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. A control method for an absorption chiller / heater charged with exhaust gas / waste hot water, and a solution pump for introducing a high-temperature heat exchanger by reverse flow of refrigerant vapor caused by a pressure difference between the high-temperature regenerator and the absorber after the dilution operation In order to prevent idling of the high-temperature regenerator, the dilution operation is continued until the saturation temperature of the refrigerant vapor in the high-temperature regenerator falls below a predetermined value, and in order to reduce the time for the dilution operation, Pump and It is characterized by operating the 却水 pump.

また、本発明の制御方法は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、希釈運転時に排ガスの漏れ込みがある場合に、排ガスダンパのリミットスイッチ及び排ガス温度センサーの少なくともいずれかにより、排ガスの漏れ込みがあることを感知し、蒸発器の冷媒タンクから冷媒ブロー配管に設けた自動弁を制御することで溶液に冷媒を混ぜ、溶液濃度を強制的に低下させて希釈制御することを特徴としている。   Further, the control method of the present invention includes an exhaust hot water charging type having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste water heat exchanger. The absorption chiller / heater is equipped with an exhaust gas heat exchanger and an exhaust gas damper, and the exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. The exhaust gas / exhaust hot water input type absorption chiller / heater control method is as described above, and when there is an exhaust gas leak during dilution operation, the exhaust gas leak is detected by at least one of the limit switch of the exhaust gas damper and the exhaust gas temperature sensor. The refrigerant is mixed with the solution by controlling the automatic valve provided in the refrigerant blow pipe from the refrigerant tank of the evaporator, and the concentration of the solution is forcibly lowered to control the dilution. It is characterized in that.

また、本発明の制御方法は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、排ガス熱交換器の異常過熱を防御するために、吸収冷温水機の停止中に排ガス温度センサーが排ガス熱交換器の設計温度以上を検知した場合、低温熱交換器導入用の吸収液ポンプ及び高温熱交換器導入用の溶液ポンプを起動させて排ガス熱交換器を液冷するとともに、冷温水ポンプ及び冷却水ポンプを起動し、冷却水に放熱することを特徴としている。   Further, the control method of the present invention includes an exhaust hot water charging type having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste water heat exchanger. The absorption chiller / heater is equipped with an exhaust gas heat exchanger and an exhaust gas damper, and the exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. In order to prevent abnormal overheating of the exhaust gas heat exchanger, the exhaust gas temperature sensor is connected to the exhaust gas heat exchanger while the absorption chiller water heater is stopped. When a temperature above the design temperature is detected, the absorption liquid pump for introducing the low-temperature heat exchanger and the solution pump for introducing the high-temperature heat exchanger are started to cool the exhaust gas heat exchanger, and the cold / hot water pump and cooling water pump are Start Is characterized in that the heat dissipation to the cooling water.

さらに、本発明の制御方法は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、商用電源が停電時に分散型発電システムから排ガスダンパに電源を供給し、排ガスダンパを閉に制御することを特徴としている。   Further, the control method of the present invention includes an exhaust hot water charging type having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste water heat exchanger. The absorption chiller / heater is equipped with an exhaust gas heat exchanger and an exhaust gas damper, and the exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. A control method for an absorption / cooling hot / cold water heater with exhaust gas / waste water added in such a manner that a commercial power supply supplies power to the exhaust gas damper from a distributed power generation system in the event of a power failure, and the exhaust gas damper is controlled to be closed .

本発明の制御装置は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機において、低温再生器の溶液のオーバーフロー管の上端より高い位置に排ガス熱交換器の底面が位置するように排ガス熱交換器を設け、冷温水機の停止時に排ガス熱交換器内の溶液を全量吸収器に戻すように、前記オーバーフロー管と吸収器とを溶液戻し配管にて接続して、排ガス熱交換器における排ガス漏れ込み時の溶液の結晶化を回避するようにしたことを特徴としている。   The control device of the present invention comprises an evaporator, an absorber, a condenser, a low-temperature regenerator, a high-temperature regenerator, a solution low-temperature heat exchanger, a solution high-temperature heat exchanger, and a waste hot water heat exchanger. Install the exhaust gas heat exchanger and the exhaust gas damper on the water machine, and introduce the exhaust gas from the distributed power generation system into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. In the exhaust gas / waste water charging type absorption chiller / heater, the exhaust gas heat exchanger is installed so that the bottom of the exhaust gas heat exchanger is located above the upper end of the overflow pipe of the solution of the low temperature regenerator, and the chiller / heater is stopped. In some cases, the overflow pipe and the absorber are connected by a solution return pipe so that the total amount of the solution in the exhaust gas heat exchanger is returned to the absorber, and the crystallization of the solution when the exhaust gas leaks in the exhaust gas heat exchanger is performed. Is characterized in that the the to.

また、本発明の制御装置は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機において、排ガスの漏れ込みを感知するためのリミットスイッチを排ガスダンパに設け、希釈運転時に排ガスの漏れ込みがある場合に、排ガスダンパのリミットスイッチ及び排ガス温度センサーの少なくともいずれかにより、排ガスの漏れ込みがあることを感知するようにし、蒸発器の冷媒タンクと吸収器とを冷媒ブロー自動弁を備えた冷媒ブロー配管で接続し、前記リミットスイッチにより排ガスの漏れ込みを感知すると、蒸発器の冷媒タンクから冷媒ブロー配管に設けた自動弁を制御することで溶液に冷媒を混ぜ、溶液濃度を強制的に低下させて希釈制御することを特徴としている。   Further, the control device of the present invention is an exhaust hot water charging type having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste water heat exchanger. The absorption chiller / heater is equipped with an exhaust gas heat exchanger and an exhaust gas damper, and the exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to make more advanced use of the exhaust heat discharged from the distributed power generation system. In the exhaust gas / exhaust hot water charging type absorption chiller / heater, the exhaust gas damper is provided with a limit switch for detecting the exhaust gas leakage, and if there is an exhaust gas leak during dilution operation, the exhaust gas damper limit switch and At least one of the exhaust gas temperature sensors detects that exhaust gas is leaking, and connects the refrigerant tank and absorber of the evaporator with the automatic refrigerant blow valve. When the exhaust gas leakage is detected by the limit switch, the refrigerant is mixed with the solution by controlling the automatic valve provided in the refrigerant blow piping from the refrigerant tank of the evaporator, and the solution concentration is forced. It is characterized in that the dilution is controlled by lowering to a low level.

本発明は次のような効果を奏する。
(1)排ガス熱交換器の設置位置を低温再生器のオーバーフロー管より高い位置とし、停止時に溶液が全量吸収器に戻る構造としたことにより、排ガス漏れ込み時の溶液の結晶化を回避することができる。
(2)希釈運転後の高温再生器と吸収器との圧力差に起因する冷媒蒸気逆流による溶液ポンプの空転を防止するため、高温再生器の圧力が所定圧力に低下するまで希釈運転を継続し、また、その時間を短縮するため希釈運転が終了するまで、冷水ポンプ及び冷却水ポンプを運転するので希釈運転終了後の溶液ポンプの空転を確実に制御することができる。
(3)希釈運転時に排ガスの漏れ込みがある場合に、排ガスダンパのリミットスイッチ及び排ガス温度センサーの少なくともいずれかにより、排ガスの漏れ込みがあることを感知し、冷媒タンクから冷媒ブロー配管に設けた自動弁を制御することで溶液に冷媒を混ぜ、溶液濃度を強制的に低下させることができる。
(4)吸収冷温水機停止中、排ガス温度センサーが設計温度以上を検知した場合、溶液ポンプを起動させ排ガス熱交換器を液冷し、また、同時に冷温水ポンプ及び冷却水ポンプを起動し、冷却水に放熱するので、排ガス熱交換器の異常過熱を有効に防御することができる。
(5)商用電源が停電時に分散型発電装置から排ガスダンパに電源を供給し、排ガスダンパを閉めることにより、安全となり、かつ故障リスクを回避することができる。
The present invention has the following effects.
(1) Avoid the crystallization of the solution when the exhaust gas leaks by installing the exhaust gas heat exchanger at a position higher than the overflow pipe of the low temperature regenerator and returning the total amount of the solution to the absorber when stopped. Can do.
(2) In order to prevent idling of the solution pump due to the reverse flow of the refrigerant vapor due to the pressure difference between the high temperature regenerator and the absorber after the dilution operation, the dilution operation is continued until the pressure of the high temperature regenerator drops to a predetermined pressure. Moreover, since the cold water pump and the cooling water pump are operated until the dilution operation is completed in order to shorten the time, the idling of the solution pump after the dilution operation can be reliably controlled.
(3) When exhaust gas leaks during the dilution operation, the exhaust gas damper limit switch and exhaust gas temperature sensor detect at least one of the exhaust gas leaks, and the refrigerant tank is installed in the refrigerant blow pipe. By controlling the automatic valve, the refrigerant can be mixed with the solution to forcibly reduce the solution concentration.
(4) When the absorption chiller / heater is stopped, if the exhaust gas temperature sensor detects the design temperature or higher, the solution pump is started to cool the exhaust gas heat exchanger, and at the same time, the chill / hot water pump and the cooling water pump are started. Since heat is radiated to the cooling water, it is possible to effectively prevent abnormal overheating of the exhaust gas heat exchanger.
(5) When the commercial power supply supplies power from the distributed power generator to the exhaust gas damper at the time of a power failure and closes the exhaust gas damper, it becomes safe and the risk of failure can be avoided.

図1は、本発明の実施の第1形態による分散型発電システムの排ガスを利用する吸収冷温水機の制御装置のフローシートである。FIG. 1 is a flow sheet of a control device for an absorption chiller / heater using exhaust gas of a distributed power generation system according to a first embodiment of the present invention. 図2は、図1に示す制御装置の要部の説明を理解し易くするための構成説明図である。FIG. 2 is a configuration explanatory diagram for facilitating understanding of the description of the main part of the control device shown in FIG. 図3は、従来の吸収冷温水機の一例を示す系統的概略構成図である。FIG. 3 is a systematic schematic configuration diagram showing an example of a conventional absorption chiller / heater.

排ガス・排温水投入型吸収冷温水機における希釈運転終了後の溶液ポンプ空転、及び排ガスダンパの動作不良・シール性悪化等に起因する排ガスの漏れ込みにより生じる希釈運転不可、溶液結晶化、排ガス熱交換器の異常過熱の不具合を解決し、故障の発生率を減少させるとともに、保守安全性を向上させるという目的を、新しい液循環サイクル及びその制御により実現した。   Dilution operation is not possible due to exhaust of the exhaust gas due to malfunction of the exhaust gas damper and deterioration of sealing performance, etc. due to solution pump idling after completion of dilution operation in exhaust gas / exhaust hot water absorption type absorption chiller / hot water machine, solution crystallization, exhaust gas heat The purpose of solving the problem of abnormal overheating of the exchanger, reducing the failure rate, and improving maintenance safety was realized by a new liquid circulation cycle and its control.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施できるものである。図1は、本発明の実施の第1形態による分散型発電システムの排ガスを利用する吸収冷温水機の制御装置のフローシート、図2は本発明の制御装置の要部の説明を理解し易くするための構成説明図である。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 is a flow sheet of a control device for an absorption chiller / heater using exhaust gas of a distributed power generation system according to a first embodiment of the present invention, and FIG. 2 is an easy-to-understand explanation of the main part of the control device of the present invention. FIG.

図1に示すように、本発明の装置における吸収冷温水機は、一例として、吸収液(例えば、臭化リチウム水溶液)が吸収器50から低温再生器54を経て高温再生器58に流されるというリバースサイクルを構成している。この吸収冷温水機における吸収サイクルを説明すると、まず、吸収器50で多量の冷媒蒸気を吸収して濃度が薄められた吸収液(希吸収液)が吸収器50から低温熱交換器(溶液低温熱交換器)52に送給され、この低温熱交換器52により加熱された後、排温水熱交換器53に送給され、さらに加熱されて低温再生器54に送給される。前記希吸収液は、この低温再生器54において低温再生され、吸収している冷媒の一部を放出し濃度がその分高くなって中間濃度の吸収液(中間吸収液)となる。つぎに、この中間吸収液は、低温再生器54から高温熱交換器(溶液高温熱交換器)56に送給され、この高温熱交換器56により加熱された後、分散型発電システムから排出される排熱(排ガス)を熱源とする排ガス熱交換器57に送給されさらに加熱されて高温再生器58に送給される。この排ガス熱交換器57からの冷媒蒸気は、冷媒蒸気配管59を通って高温再生器58に送られる。   As shown in FIG. 1, the absorption chiller / heater in the apparatus of the present invention, for example, has an absorption liquid (for example, an aqueous solution of lithium bromide) flowing from the absorber 50 to the high temperature regenerator 58 via the low temperature regenerator 54. The reverse cycle is configured. The absorption cycle in this absorption chiller / heater will be described. First, an absorption liquid (diluted absorption liquid) whose concentration has been reduced by absorbing a large amount of refrigerant vapor in the absorber 50 is transferred from the absorber 50 to a low-temperature heat exchanger (solution low temperature). After being heated by this low-temperature heat exchanger 52, it is sent to the exhaust hot water heat exchanger 53, further heated and sent to the low-temperature regenerator 54. The dilute absorbent is regenerated at a low temperature in the low-temperature regenerator 54, and a part of the absorbed refrigerant is released, and the concentration is increased by that amount to become an intermediate-concentrated absorbent (intermediate absorbent). Next, the intermediate absorbent is fed from the low temperature regenerator 54 to a high temperature heat exchanger (solution high temperature heat exchanger) 56, heated by the high temperature heat exchanger 56, and then discharged from the distributed power generation system. The exhaust heat (exhaust gas) is supplied to the exhaust gas heat exchanger 57 using the exhaust heat (exhaust gas) as a heat source, further heated and supplied to the high temperature regenerator 58. The refrigerant vapor from the exhaust gas heat exchanger 57 is sent to the high temperature regenerator 58 through the refrigerant vapor pipe 59.

前記中間吸収液は、この高温再生器58において高温再生され、吸収している冷媒(例えば、水蒸気)の一部を放出し濃度がさらに高くなって高濃度の吸収液(濃吸収液)となる。そして、この濃吸収液が前記高温熱交換器56の加熱側に前記中間吸収液を加熱する加熱源として戻され、さらに、低温熱交換器52の加熱側に前記希吸収液を加熱する加熱源として戻された後、前記吸収器50に帰還する。この帰還した濃吸収液は吸収器50において伝熱管上に散布され、冷却水により冷却されながら再び冷媒蒸気を吸収して前記希吸収液となる。51は凝縮器、55は蒸発器、62は吸収液ポンプ、64は溶液ポンプ、66は冷媒ポンプ、68は冷却水ポンプ、70は冷温水ポンプ、72は冷暖切替弁、76は暖房用排温水熱回収器である。   The intermediate absorbent is regenerated at a high temperature in the high-temperature regenerator 58, and a part of the absorbed refrigerant (for example, water vapor) is released to further increase the concentration to become a high-concentration absorbent (concentrated absorbent). . The concentrated absorbent is returned to the heating side of the high-temperature heat exchanger 56 as a heating source for heating the intermediate absorbent, and further, the heating source for heating the diluted absorbent to the heating side of the low-temperature heat exchanger 52. And then returned to the absorber 50. The returned concentrated absorbing liquid is sprayed on the heat transfer tube in the absorber 50, and again absorbs the refrigerant vapor while being cooled by the cooling water to become the diluted absorbing liquid. 51 is a condenser, 55 is an evaporator, 62 is an absorption liquid pump, 64 is a solution pump, 66 is a refrigerant pump, 68 is a cooling water pump, 70 is a cold / hot water pump, 72 is a cooling / heating switching valve, and 76 is waste water for heating. It is a heat recovery unit.

排温水熱交換器53の伝熱管には分散型発電システム、その他系外からの排温水が導入され、低温熱交換器52から送られ散布される吸収液を加熱する。74、75は冷暖切換弁、78は排温水三方弁である。排温水の入口ライン及び出口ラインは分岐して、暖房用排温水熱回収器6に接続されている。   The heat transfer pipe of the waste heat water heat exchanger 53 is introduced with a distributed power generation system and other waste heat water from outside the system, and heats the absorbing liquid sent from the low temperature heat exchanger 52 and sprayed. 74 and 75 are cooling / heating switching valves, and 78 is an exhaust hot water three-way valve. The inlet line and the outlet line of the waste water are branched and connected to the waste heat water heat recovery unit 6 for heating.

排ガス熱交換器57には分散型発電システムからの排ガスが導入され、高温熱交換器56から送られる吸収液を加熱し、加熱された吸収液は高温再生器58に送られる。80は排ガス入口側ダクトの排ガス三方ダンパ、82は排ガス出口側ダクトの排ガス二方ダンパである。83は排ガス温度センサーで、吸収液ポンプ62及び溶液ポンプ64に接続されている。なお、排ガスダンパ80、82には、図示していないが、リミットスイッチが接続されている。   Exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger 57, the absorption liquid sent from the high temperature heat exchanger 56 is heated, and the heated absorption liquid is sent to the high temperature regenerator 58. 80 is an exhaust gas three-way damper of the exhaust gas inlet side duct, and 82 is an exhaust gas two-way damper of the exhaust gas outlet side duct. An exhaust gas temperature sensor 83 is connected to the absorption liquid pump 62 and the solution pump 64. Although not shown, limit switches are connected to the exhaust gas dampers 80 and 82.

蒸発器55の下部には冷媒溜め86が設けられており、この冷媒溜め86に冷媒タンク88が連設されている。この冷媒タンク88と吸収器50とが、冷媒ブロー自動弁90(例えば、電磁弁)を備えた冷媒ブロー配管92で接続されている。94は低温再生器オーバーフロー管で、この管94は略U字型を形成する溶液戻し配管96を介して吸収管50の上部に接続されている。そして、低温再生器オーバーフロー管94の上端より、吸収管50の上部の接続部の方が低くなっている。   A refrigerant reservoir 86 is provided below the evaporator 55, and a refrigerant tank 88 is connected to the refrigerant reservoir 86. The refrigerant tank 88 and the absorber 50 are connected by a refrigerant blow pipe 92 having a refrigerant blow automatic valve 90 (for example, an electromagnetic valve). 94 is a low temperature regenerator overflow pipe, and this pipe 94 is connected to the upper part of the absorption pipe 50 through a solution return pipe 96 forming a substantially U-shape. And the connection part of the upper part of the absorption pipe 50 is lower than the upper end of the low temperature regenerator overflow pipe 94.

さらに、低温再生器54の溶液のオーバーフロー管94の上端より高い位置に、排ガス熱交換器57の底面が位置するように排ガス熱交換器57が設けられている。冷温水機の停止時に排ガス熱交換器57内の溶液を全量吸収器50に戻すように、前記オーバーフロー管94と吸収器50とを溶液戻し配管96にて接続され、排ガス熱交換器57における排ガス漏れ込み時の溶液の結晶化を回避するように構成されている。   Further, the exhaust gas heat exchanger 57 is provided so that the bottom surface of the exhaust gas heat exchanger 57 is positioned at a position higher than the upper end of the solution overflow pipe 94 of the low temperature regenerator 54. The overflow pipe 94 and the absorber 50 are connected by a solution return pipe 96 so that the total amount of the solution in the exhaust gas heat exchanger 57 is returned to the absorber 50 when the chiller / heater is stopped, and the exhaust gas in the exhaust gas heat exchanger 57 is connected. It is configured to avoid crystallization of the solution at the time of leakage.

本発明における液循環サイクル及び制御について、以下、説明する。図1に示すように、排ガス・排温水投入型吸収冷温水機は、分散型発電システムの排ガスと中間液を排ガス熱交換器57にて熱交換させ、排ガスの熱量を中間液の加熱に利用することで、排温水投入型吸収冷温水機に比べ、さらなる燃料の削減を実現している。また、排ガス熱交換器57は、高温熱交換器56と高温再生器58間に直列に配置し、排ガス熱交換器57で発生した冷媒蒸気は、冷媒蒸気配管59を通じて高温再生器58のエリミネータ直下に投入し、気液分離を行っている。なお、この配管59は、排ガス熱交換器57と高温再生器58の均圧管の役割も担っている。   The liquid circulation cycle and control in the present invention will be described below. As shown in FIG. 1, the absorption chiller / heater with exhaust gas / waste hot water is used to heat-exchange the exhaust gas and intermediate liquid of the distributed power generation system in the exhaust gas heat exchanger 57 and use the heat quantity of the exhaust gas for heating the intermediate liquid. As a result, the fuel consumption has been further reduced compared to the drained hot water absorption type absorption chiller / heater. Further, the exhaust gas heat exchanger 57 is arranged in series between the high temperature heat exchanger 56 and the high temperature regenerator 58, and the refrigerant vapor generated in the exhaust gas heat exchanger 57 is directly below the eliminator of the high temperature regenerator 58 through the refrigerant vapor pipe 59. Gas-liquid separation. The pipe 59 also serves as a pressure equalizing pipe for the exhaust gas heat exchanger 57 and the high temperature regenerator 58.

この配置において、排ガス熱交換器57における排ガスの漏れ込みに対して考慮すべき点は下記に4点であり、対策方法を示す。
(1)停止中の排ガス漏れ込み
(2)希釈運転時の排ガス漏れ込み
(3)設計温度を超える排ガス漏れ込み
(4)商用電源が停電時に、分散型発電装置の運転が継続される場合の排ガスダンパの制御
In this arrangement, there are four points to be considered with respect to the leakage of exhaust gas in the exhaust gas heat exchanger 57 as follows.
(1) Exhaust gas leakage during shutdown (2) Exhaust gas leakage during dilution operation (3) Exhaust gas leakage exceeding the design temperature (4) When the operation of the distributed generator is continued during a power failure Control of exhaust gas damper

(1)停止中の排ガス漏れ込み
従来では、排ガス熱交換器57は本体の横に設置される場合があるが、この場合、停止中は排ガス熱交換器内に溶液が残留する。この状態で排ガスの漏れ込みが発生すると、残留した溶液は熱せられ結晶化し、再起動不能に陥る可能性がある。また、排気ファンを設置し、漏れ込んだ排ガスを掃気するシステムも存在するが、排ガスの漏れ込みが多い場合には十分な対策にはなり得ない。
そこで、本排ガス・排温水投入型吸収冷温水機では、図2の(a)部、(b)部、(c)部に示すように、停止時に排ガス熱交換器57内に溶液が残留しないよう、低温再生器54のオーバーフロー管94より高い位置に排ガス熱交換器57を設置し、かつ、溶液の供給管は排ガス熱交換器の最下部に接続することで、停止中には、溶液が全量吸収器50に戻る構造としている。そのため、停止中に排ガスの漏れ込みがあっても溶液の結晶化は起こらず、品質上問題がない。
(1) Exhaust gas leakage while stopped Conventionally, the exhaust gas heat exchanger 57 may be installed beside the main body. In this case, the solution remains in the exhaust gas heat exchanger during the stop. If exhaust gas leaks in this state, the remaining solution may be heated and crystallized, making it impossible to restart. There is also a system that installs an exhaust fan to scavenge the exhaust gas that has leaked, but it cannot be a sufficient measure if the exhaust gas leaks frequently.
Therefore, in the exhaust gas / waste hot water charging type absorption chiller / heater, as shown in FIGS. 2A, 2B, and 2C, no solution remains in the exhaust gas heat exchanger 57 when stopped. As described above , the exhaust gas heat exchanger 57 is installed at a position higher than the overflow pipe 94 of the low-temperature regenerator 54, and the solution supply pipe is connected to the lowermost part of the exhaust gas heat exchanger. Is configured to return to the total amount absorber 50. Therefore, crystallization of the solution does not occur even if the exhaust gas leaks during the stop, and there is no problem in quality.

しかしながら、この配置を採用することにより希釈運転終了後に、排ガス熱交換器57内の溶液がすべて吸収器50に戻った後、高温再生器58内の圧力の高い冷媒蒸気が排ガス熱交換器57の冷媒蒸気配管59を通じて吸収器50に逆流する。その際、その冷媒蒸気流により溶液ポンプ64が空転を起こし、溶液ポンプ64の焼き付きが発生する恐れがある(図2の(c)部参照)。その対策として、高温再生器58の圧力が所定値に低下するまで、希釈運転を継続する。また、高温再生器の圧力を効率的に低下させるため冷温水ポンプ70、冷却水ポンプ68を運転し、機内の熱を冷却水に放熱する。これにより通常希釈運転時間内で高温再生器58の圧力は所定値に低下させることができる。   However, by adopting this arrangement, after completion of the dilution operation, after all the solution in the exhaust gas heat exchanger 57 has returned to the absorber 50, the high-pressure refrigerant vapor in the high-temperature regenerator 58 is discharged from the exhaust gas heat exchanger 57. The refrigerant flows back to the absorber 50 through the refrigerant vapor pipe 59. At that time, the solution pump 64 may idle due to the refrigerant vapor flow, and the solution pump 64 may be seized (see part (c) of FIG. 2). As a countermeasure, the dilution operation is continued until the pressure of the high-temperature regenerator 58 decreases to a predetermined value. Further, in order to efficiently reduce the pressure of the high-temperature regenerator, the cold / hot water pump 70 and the cooling water pump 68 are operated to dissipate the heat in the machine to the cooling water. Thereby, the pressure of the high temperature regenerator 58 can be reduced to a predetermined value within the normal dilution operation time.

(2)希釈運転時の排ガス漏れ込み
希釈運転は運転停止前に濃度を低下させておく運転であるが、排ガスの漏れ込みにより入熱がある場合、冷媒が再生されるため濃度が低下しにくい。したがって、所定時間希釈運転が実施されても濃度が所定値以下に低下していない可能性があり、停止中に溶液が結晶化する恐れがある。
そこで、図2の(d)部に示すように、吸収冷温水機停止動作時、排ガスダンパ80、82の動作不良あるいはシール性不良等により排ガス熱交換器57への排ガスの漏れ込みが不可避な場合、これを排ガスダンパのリミットスイッチにより感知し、蒸発器の冷媒タンク88と吸収器50とを接続するブロー配管92に設けた自動弁(例えば、電磁弁)90を開けることで蒸発器55の冷媒をすべて溶液に混ぜ強制的に溶液濃度を低下させる。
(2) Exhaust gas leakage during dilution operation Dilution operation is an operation in which the concentration is lowered before the operation is stopped, but if there is heat input due to the leakage of exhaust gas, the refrigerant is regenerated and the concentration is unlikely to decrease. . Therefore, even if the dilution operation is performed for a predetermined time, the concentration may not be lowered to a predetermined value or less, and the solution may crystallize during the stop.
Therefore, as shown in FIG. 2 (d), when the absorption chiller / heater is stopped, exhaust gas leaks into the exhaust gas heat exchanger 57 due to malfunction of the exhaust gas dampers 80, 82 or poor sealing performance. In this case, this is detected by the limit switch of the exhaust gas damper, and the automatic valve (for example, electromagnetic valve) 90 provided in the blow pipe 92 connecting the refrigerant tank 88 and the absorber 50 of the evaporator is opened to open the evaporator 55. Mix all the refrigerant in the solution to forcibly reduce the solution concentration.

なお、排ガスダンパのリミットスイッチを用いる代わりに、排ガス温度センサー83を用いて、排ガスの漏れ込みを感知するように構成することもできる。また、排ガスダンパのリミットスイッチと排ガス温度センサー83の両方を用いる場合もある。   Instead of using the limit switch of the exhaust gas damper, the exhaust gas temperature sensor 83 can be used to detect the leakage of the exhaust gas. In some cases, both the limit switch of the exhaust gas damper and the exhaust gas temperature sensor 83 are used.

(3)設計温度を超える排ガス漏れ込み
分散型発電システムの運転状態によって、排ガス熱交換器57の設計温度(例えば400℃)より排ガスが高温となることがある。排ガスダンパ80、82の動作不良あるいはシール性不良等によりこのような高温排ガスの排ガス熱交換器57への漏れ込みがある場合、吸収冷温水機が運転中であれば排ガス熱交換器57は溶液により液冷されているため問題とならないが、停止中の場合は、前述の通り、排ガス熱交換器57内に溶液が存在しないため、使用材料の耐熱温度を上回り損傷する恐れがある。
そこで、排ガス温度センサー83により感知し、設計温度以上の排ガスが流入した場合には溶液ポンプ64及び吸収液ポンプ62を起動させ排ガス熱交換器57を液冷する。また、排ガスからの入熱により溶液濃度が上昇し、機内圧力が上昇することを防ぐため冷温水ポンプ70、冷却水ポンプ68を起動させ、冷却水に放熱させる。
(3) Exhaust gas leakage exceeding the design temperature Depending on the operating state of the distributed power generation system, the exhaust gas may be hotter than the design temperature of the exhaust gas heat exchanger 57 (for example, 400 ° C.). When such high temperature exhaust gas leaks into the exhaust gas heat exchanger 57 due to malfunction of the exhaust gas dampers 80, 82 or poor sealing performance, the exhaust gas heat exchanger 57 is not a solution if the absorption chiller / heater is in operation. This is not a problem because it is cooled by the liquid. However, when it is stopped, as described above, there is no solution in the exhaust gas heat exchanger 57, so there is a risk that the heat-resistant temperature of the material used will be exceeded.
Therefore, when the exhaust gas temperature sensor 83 senses and exhaust gas at the design temperature or higher flows, the solution pump 64 and the absorption liquid pump 62 are activated to cool the exhaust gas heat exchanger 57. In addition, the cold / hot water pump 70 and the cooling water pump 68 are activated to prevent the cooling water from radiating heat in order to prevent the solution concentration from rising due to heat input from the exhaust gas and the pressure inside the apparatus from rising.

(4)商用電源が停電時に分散型発電装置が運転可能である場合の排ガスダンパの制御
商用電源が停電時に、分散型発電装置のみ稼働し続ける場合、吸収冷温水機は排ガスダンパ80、82が停電発生時の状態のまま動作不可となり排ガスの流入は不可避となる。この場合、排ガス温度を検知する手段がないため、設計温度以上の排ガスが漏れ込んだ場合、排ガス熱交換器57は損傷する恐れがある。これを回避するために、分散型発電装置から排ガスダンパ80、82に電源を供給し排ガスダンパ80、82を閉じる。
(4) Control of the exhaust gas damper when the distributed power generator can be operated when the commercial power supply is interrupted If the distributed power generator continues to operate only when the commercial power supply is interrupted, the absorption chiller / heater has the exhaust gas dampers 80 and 82 It becomes impossible to operate in the state at the time of power failure, and inflow of exhaust gas is inevitable. In this case, since there is no means for detecting the exhaust gas temperature, the exhaust gas heat exchanger 57 may be damaged if the exhaust gas having a temperature higher than the design temperature leaks. In order to avoid this, power is supplied to the exhaust gas dampers 80 and 82 from the distributed power generator, and the exhaust gas dampers 80 and 82 are closed.

分散型発電システムの排ガスを利用する吸収冷温水機の排ガス熱交換器における、排ガス漏れ込み時の溶液の結晶化による故障を防止することができる。   In the exhaust gas heat exchanger of the absorption chiller / heater using the exhaust gas of the distributed power generation system, failure due to crystallization of the solution when the exhaust gas leaks can be prevented.

10 吸収器
12 低温熱交換器
14 低温再生器
16 高温熱交換器
18 高温再生器
20 燃焼部
22 凝縮器
24 蒸発器
26、28 吸収液配管
30 バイパス管
32 吸収液ポンプ
34 吸収液ポンプ(溶液ポンプ)
36 冷媒ポンプ
38 冷却水ポンプ
40 冷温水ポンプ
42 冷暖切換弁
50 吸収器
51 凝縮器
52 低温熱交換器
53 排温水熱交換器
54 低温再生器
55 蒸発器
56 高温熱交換器
57 排ガス熱交換器
58 高温再生器
59 冷媒蒸気配管
62 吸収液ポンプ
64 溶液ポンプ
66 冷媒ポンプ
68 冷却水ポンプ
70 冷温水ポンプ
72、74、75 冷暖切換弁
76 暖房用排温水熱回収器
78 排温水三方弁
80 排ガス三方ダンパ
82 排ガス二方ダンパ
83 排ガス温度センサー
86 冷媒溜め
88 冷媒タンク
90 冷媒ブロー自動弁
92 冷媒ブロー配管
94 低温再生器オーバーフロー管
96 溶液戻し配管
DESCRIPTION OF SYMBOLS 10 Absorber 12 Low temperature heat exchanger 14 Low temperature regenerator 16 High temperature heat exchanger 18 High temperature regenerator 20 Combustion part 22 Condenser 24 Evaporator 26, 28 Absorption liquid piping 30 Bypass pipe 32 Absorption liquid pump 34 Absorption liquid pump (solution pump) )
36 Refrigerant pump 38 Cooling water pump 40 Cold / hot water pump 42 Cooling / heating switching valve 50 Absorber 51 Condenser 52 Low temperature heat exchanger 53 Waste hot water heat exchanger 54 Low temperature regenerator 55 Evaporator 56 High temperature heat exchanger 57 Exhaust gas heat exchanger 58 High temperature regenerator 59 Refrigerant vapor piping 62 Absorption liquid pump 64 Solution pump 66 Refrigerant pump 68 Cooling water pump 70 Chilled / warm water pump 72, 74, 75 Cooling / heating switching valve 76 Heating wastewater water heat recovery device 78 Wastewater three-way valve 80 Exhaust gas three-way damper 82 Exhaust gas two-way damper 83 Exhaust gas temperature sensor 86 Refrigerant reservoir 88 Refrigerant tank 90 Refrigerant blow automatic valve 92 Refrigerant blow pipe 94 Low temperature regenerator overflow pipe 96 Solution return pipe

Claims (3)

蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、停止時に排ガス熱交換器内に溶液が残留しないように、低温再生器の溶液のオーバーフロー管より高い位置に排ガス熱交換器を設け、冷温水機の停止時に排ガス熱交換器内の溶液を全量吸収器に戻して、排ガス熱交換器における排ガス漏れ込み時の溶液の結晶化を回避することを特徴とする分散型発電システムの排ガスを利用する吸収冷温水機の制御方法。   Exhaust gas heat exchange to an exhaust hot water input type absorption chiller / heater having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste heat water heat exchanger Exhaust gas / heated hot water input type in which exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to improve the exhaust heat exhausted from the distributed power generation system by using a heat sink and exhaust gas damper An absorption chiller / heater control method, in which an exhaust gas heat exchanger is installed at a position higher than the overflow pipe of the solution in the low-temperature regenerator so that no solution remains in the exhaust gas heat exchanger when the chiller / heater is stopped. Sometimes the total amount of the solution in the exhaust gas heat exchanger is returned to the absorber to avoid crystallization of the solution when the exhaust gas leaks in the exhaust gas heat exchanger. Method of controlling the water machine. 蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機の制御方法であって、希釈運転後の高温再生器と吸収器との圧力差に起因する冷媒蒸気逆流による高温熱交換器導入用の溶液ポンプの空転を防止し、溶液ポンプの焼き付きの発生を回避するため、高温再生器の冷媒蒸気の飽和温度が所定値以下に低下するまで希釈運転を継続するとともに、希釈運転の時間を短縮するために、希釈運転が終了するまで、冷温水ポンプ及び冷却水ポンプを運転することを特徴とする分散型発電システムの排ガスを利用する吸収冷温水機の制御方法 Exhaust gas heat exchange to an exhaust hot water input type absorption chiller / heater having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste heat water heat exchanger Exhaust gas / heated hot water input type in which exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to improve the exhaust heat exhausted from the distributed power generation system by using a heat sink and exhaust gas damper This is a control method for an absorption chiller / heater that prevents idling of a solution pump for introducing a high-temperature heat exchanger due to a reverse flow of refrigerant vapor caused by a pressure difference between a high-temperature regenerator and an absorber after dilution operation. In order to avoid the occurrence of seizure, the dilution operation is continued until the saturation temperature of the refrigerant vapor in the high-temperature regenerator falls below a predetermined value, and in order to reduce the time for the dilution operation, water The method of the absorption chiller utilizing exhaust gas of distributed generation system characterized by operating the pump and the cooling water pump. 蒸発器、吸収器、凝縮器、低温再生器、高温再生器、溶液低温熱交換器、溶液高温熱交換器、排温水熱交換器を少なくとも有する排温水投入型吸収冷温水機に、排ガス熱交換器及び排ガスダンパを設け、分散型発電システムから排出される排熱をより高度化利用するために、分散型発電システムからの排ガスを排ガス熱交換器に導入するようにした排ガス・排温水投入型吸収冷温水機において、停止時に排ガス熱交換器内に溶液が残留しないように、低温再生器の溶液のオーバーフロー管の上端より高い位置に排ガス熱交換器の底面が位置するように排ガス熱交換器を設け、冷温水機の停止時に排ガス熱交換器内の溶液を全量吸収器に戻すように、前記オーバーフロー管と吸収器とを溶液戻し配管にて接続して、排ガス熱交換器における排ガス漏れ込み時の溶液の結晶化を回避するようにしたことを特徴とする分散型発電システムの排ガスを利用する吸収冷温水機の制御装置 Exhaust gas heat exchange to an exhaust hot water input type absorption chiller / heater having at least an evaporator, an absorber, a condenser, a low temperature regenerator, a high temperature regenerator, a solution low temperature heat exchanger, a solution high temperature heat exchanger, and a waste heat water heat exchanger Exhaust gas / heated hot water input type in which exhaust gas from the distributed power generation system is introduced into the exhaust gas heat exchanger in order to improve the exhaust heat exhausted from the distributed power generation system by using a heat sink and exhaust gas damper In an absorption chiller / heater, the bottom of the exhaust gas heat exchanger is positioned higher than the upper end of the overflow pipe of the solution in the low temperature regenerator so that no solution remains in the exhaust gas heat exchanger when stopped. And connecting the overflow pipe and the absorber with a solution return pipe so that the total amount of the solution in the exhaust gas heat exchanger is returned to the absorber when the chiller / heater is stopped. The solution of the control device of the absorption chiller utilizing exhaust gas of a distributed power generation system is characterized in that so as to avoid crystallization when leakage.
JP2009288569A 2009-12-21 2009-12-21 Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system Active JP5457163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288569A JP5457163B2 (en) 2009-12-21 2009-12-21 Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288569A JP5457163B2 (en) 2009-12-21 2009-12-21 Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system

Publications (2)

Publication Number Publication Date
JP2011127857A JP2011127857A (en) 2011-06-30
JP5457163B2 true JP5457163B2 (en) 2014-04-02

Family

ID=44290624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288569A Active JP5457163B2 (en) 2009-12-21 2009-12-21 Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system

Country Status (1)

Country Link
JP (1) JP5457163B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287961B (en) * 2011-04-29 2013-09-18 李华玉 Three-generating-three-absorbing system and third-kind absorption-type heat pump
CN102589185B (en) * 2012-02-19 2014-07-30 李华玉 Third type absorption heat pump with regenerative cooling end
CN102679615B (en) * 2012-05-04 2014-09-03 李华玉 Sectional heat return third-class absorption heat pump
CN103868126B (en) * 2014-03-01 2016-07-06 双良节能系统股份有限公司 The fuel supplementing type suction-type lithium bromide heat-exchange system of two-way hot water is provided simultaneously
CN103868129B (en) * 2014-03-01 2016-06-29 双良节能系统股份有限公司 The suction-type lithium bromide heat-exchange system of two-way hot water is provided simultaneously

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079002Y2 (en) * 1988-07-02 1995-03-06 日立造船株式会社 Absorption refrigerator
JP3167491B2 (en) * 1993-02-26 2001-05-21 三洋電機株式会社 Absorption refrigerator
JP3186392B2 (en) * 1993-12-27 2001-07-11 ダイキン工業株式会社 Absorption refrigerator
JPH09243204A (en) * 1996-03-11 1997-09-19 Tac:Kk Absorption type air conditioning system using turbine power generator
JP3731132B2 (en) * 1996-03-21 2006-01-05 矢崎総業株式会社 Absorption refrigerator crystallization prevention method
JP2003021425A (en) * 2001-07-04 2003-01-24 Mitsubishi Heavy Ind Ltd Cogeneration type absorption refrigerating machine and its operating method
JP2003121026A (en) * 2001-10-16 2003-04-23 Japan Steel Works Ltd:The Hydrogen absorbing alloy refrigerating system
JP2004239445A (en) * 2003-02-03 2004-08-26 Yazaki Corp Absorption water cooler/heater
US6983616B2 (en) * 2003-12-15 2006-01-10 Utc Power, Llc Control logic for maintaining proper solution concentration in an absorption chiller in co-generation applications
CN101663473B (en) * 2007-03-07 2014-09-03 新奥尔良大学研究与技术基金会 Integrated cooling, heating, and power systems

Also Published As

Publication number Publication date
JP2011127857A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP4972421B2 (en) Heat pump steam / hot water generator
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP5457163B2 (en) Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system
EA011442B1 (en) Boiler condensation module
JP2010007950A (en) Cogeneration system
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
KR101210968B1 (en) Hybrid absorption type air conditioning system
JP5384072B2 (en) Absorption type water heater
JP4247521B2 (en) Absorption type water heater
JP4283633B2 (en) Double-effect absorption chiller / heater with exhaust heat recovery unit
KR101059514B1 (en) Ammonia Water Absorption Cooling System Using Exhaust Gas Residual Heat
JP2009243706A (en) Absorption heat pump
KR101660706B1 (en) Apparatus for Heat Recovery of Exhaust Gas in High Efficiency Absorption Chiller-Heater
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
JP2011257130A (en) Apparatus for recovering exhaust heat
JP3920619B2 (en) Absorption chiller / heater and control method thereof
KR100512827B1 (en) Absorption type refrigerator
JP4315854B2 (en) Absorption refrigerator
CN104197764B (en) The recovery system of flue residue heat
JP7390186B2 (en) Vacuum water heater
JP2004233024A (en) Absorption water heater/cooler
JP6765056B2 (en) Absorption chiller
JP2005300069A (en) Absorption refrigerating machine
JP3969527B2 (en) Safety method for flue gas charging type absorption chiller / heater
JP6653444B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Ref document number: 5457163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350