JP6218659B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP6218659B2
JP6218659B2 JP2014068336A JP2014068336A JP6218659B2 JP 6218659 B2 JP6218659 B2 JP 6218659B2 JP 2014068336 A JP2014068336 A JP 2014068336A JP 2014068336 A JP2014068336 A JP 2014068336A JP 6218659 B2 JP6218659 B2 JP 6218659B2
Authority
JP
Japan
Prior art keywords
evaporator
air
condensed water
heat exchanger
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014068336A
Other languages
Japanese (ja)
Other versions
JP2015190694A (en
Inventor
貴司 久保
貴司 久保
慎一 浅井
慎一 浅井
光史 新海
光史 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014068336A priority Critical patent/JP6218659B2/en
Priority to CN201420358108.3U priority patent/CN204043171U/en
Publication of JP2015190694A publication Critical patent/JP2015190694A/en
Application granted granted Critical
Publication of JP6218659B2 publication Critical patent/JP6218659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner.

圧縮機、凝縮器、膨張弁、蒸発器を環状に接続した冷凍サイクルを有する冷凍空調装置では、外気をファンにより蒸発器に送風させて蒸発器内部の冷媒と熱交換させた後、空調用途に供給している。また、蒸発器では、外気が通過した際に外気に含まれる水分が凝縮し、蒸発器の表面に水滴(ドレン水)が発生する。   In a refrigeration air conditioner having a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in an annular shape, outside air is blown to the evaporator by a fan to exchange heat with the refrigerant inside the evaporator, and then used for air conditioning. Supply. Further, in the evaporator, when the outside air passes, moisture contained in the outside air is condensed, and water droplets (drain water) are generated on the surface of the evaporator.

このように蒸発器にて発生した凝縮水は、そのまま排水される(例えば、特許文献1参照)か、再利用される(例えば、特許文献2参照)。凝縮水を再利用する特許文献2では、凝縮水を凝縮器に直接滴下し、凝縮器における冷媒を凝縮水の蒸発潜熱による熱交換により冷却するようにしている。このように、凝縮器における冷媒を凝縮器冷却用空気との熱交換に加えて更に凝縮水と熱交換することで、凝縮器の熱交換効率の改善を図っている。   Thus, the condensed water generated in the evaporator is drained as it is (for example, refer to Patent Document 1) or reused (for example, refer to Patent Document 2). In Patent Document 2 in which condensed water is reused, condensed water is dropped directly onto the condenser, and the refrigerant in the condenser is cooled by heat exchange by the latent heat of vaporization of the condensed water. Thus, the heat exchange efficiency of the condenser is improved by exchanging the refrigerant in the condenser with the condensed water in addition to the heat exchange with the condenser cooling air.

特開2008−39208号公報(第7頁、図1)Japanese Patent Laying-Open No. 2008-39208 (page 7, FIG. 1) 特開2010−175171号公報(第7頁、図2)JP 2010-175171 A (7th page, FIG. 2)

夏場の外気温度が高い高負荷時での運転時は、冷凍空調装置から空調用途に供給する空気を目標温度まで下げるために必要となる冷凍能力が大きくなる。この必要能力を補うためには冷凍サイクル内で圧縮機容量を大きくする必要があり、結果的にユニット全体動力が過大となる。そこで、蒸発器で発生した凝縮水を再利用する方法が考えられるが、特許文献1ではそもそも凝縮水の再利用については示されていない。また、特許文献2では、凝縮水の再利用について示されているものの、冷凍サイクルの必要冷却能力を低減させる方法は示されていない。   During operation at high loads during summertime when the outdoor air temperature is high, the refrigerating capacity required to lower the air supplied from the refrigerating and air-conditioning apparatus to the air conditioning application to the target temperature increases. In order to make up for this necessary capacity, it is necessary to increase the compressor capacity in the refrigeration cycle, resulting in excessive overall unit power. Then, although the method of reusing the condensed water which generate | occur | produced with the evaporator can be considered, patent document 1 does not show about reuse of condensed water in the first place. Moreover, in patent document 2, although shown about reuse of condensed water, the method of reducing the required cooling capacity of a refrigerating cycle is not shown.

本発明はこのような点に鑑みなされたもので、凝縮水の再利用により冷凍サイクルの必要冷却能力を低減することが可能な冷凍空調装置を得ることを目的とする。   This invention is made | formed in view of such a point, and it aims at obtaining the refrigerating air-conditioning apparatus which can reduce the required cooling capacity of a refrigerating cycle by reuse of condensed water.

本発明に係る冷凍空調装置は、圧縮機、凝縮器、減圧装置及び蒸発器を有し、冷媒が循環する冷凍サイクルと、蒸発器に空気を送風する送風装置と、蒸発器の空気上流側に配置され、蒸発器で発生した凝縮水が溜められるタンクで構成され、送風装置によって送風される空気とが相互に混合しない独立した流路を通過して互いに熱交換する熱交換装置とを備えたものである。 The refrigerating and air-conditioning apparatus according to the present invention includes a compressor, a condenser, a decompression device, and an evaporator. And a heat exchange device that is configured by a tank in which condensed water generated by the evaporator is stored, and that exchanges heat with each other through independent channels that do not mix with the air blown by the blower. Is.

本発明によれば、凝縮水の再利用により必要冷却能力を低減することが可能である。   According to the present invention, the required cooling capacity can be reduced by reusing condensed water.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の凝縮水用熱交換器の作用説明図である。It is action | operation explanatory drawing of the heat exchanger for condensed water of the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置の凝縮水タンクを含む要部の構成を示す図である。It is a figure which shows the structure of the principal part containing the condensed water tank of the refrigeration air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の凝縮水用熱交換器を含む要部の構成を示す図である。It is a figure which shows the structure of the principal part containing the heat exchanger for condensed water of the refrigeration air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍空調装置の作用説明図である。It is effect | action explanatory drawing of the refrigerating air conditioning apparatus which concerns on Embodiment 3 of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。また、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, what attached | subjected the same code | symbol in each figure is the same or it corresponds, and this is common in the whole text of a specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions. Further, the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state, operation, etc. of the system, apparatus, etc.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置の冷媒回路を示す図である。
冷凍空調装置は、圧縮機1と、凝縮器2と、減圧装置である膨張弁3と、蒸発器4とを有し、これらが冷媒配管で接続された冷凍サイクルを備えている。冷凍空調装置は更に、蒸発器4に送風する送風装置であるファン5と、凝縮水用熱交換器6とを有する。
Embodiment 1 FIG.
1 is a diagram showing a refrigerant circuit of a refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention.
The refrigeration air conditioner includes a compressor 1, a condenser 2, an expansion valve 3 that is a decompression device, and an evaporator 4, and includes a refrigeration cycle that is connected by refrigerant piping. The refrigerating and air-conditioning apparatus further includes a fan 5 that is a blower that blows air to the evaporator 4 and a heat exchanger 6 for condensed water.

本発明は、蒸発器4で発生する凝縮水を再利用して、蒸発器4の空気上流側で、蒸発器4に流入する空気中の水分量が変わらない方法で、凝縮水と蒸発器4に流入する空気とを熱交換させることを特徴としており、その熱交換装置として凝縮水用熱交換器6を蒸発器4の空気上流側に配置している。なお、凝縮水を再利用して空気と熱交換する方法としては、例えば、多孔質板に凝縮水を供給し、この多孔質板に空気を通過させる方法で熱交換する方法もある。しかし、この方法では、凝縮水の水分が空気に加わることになる。本発明では、このような方法は採用せず、以下で改めて説明するが蒸発器4に流入する空気中の水分量が変わらない方法で、凝縮水と蒸発器4に流入する空気とを熱交換させる。   In the present invention, the condensed water generated in the evaporator 4 is reused so that the amount of moisture in the air flowing into the evaporator 4 is not changed on the upstream side of the evaporator 4, and the condensed water and the evaporator 4 are changed. Heat is exchanged with the air flowing into the air, and a heat exchanger 6 for condensed water is arranged on the upstream side of the evaporator 4 as a heat exchange device. In addition, as a method of reusing condensed water for heat exchange with air, for example, there is a method of supplying heat to the porous plate and exchanging heat by passing air through the porous plate. However, in this method, moisture of condensed water is added to the air. In the present invention, such a method is not adopted, and a heat exchange is performed between the condensed water and the air flowing into the evaporator 4 by a method that does not change the amount of moisture in the air flowing into the evaporator 4 as will be described later. Let

凝縮水用熱交換器6は、伝熱管とフィンとを有するフィンチューブ型熱交換器で構成され、伝熱管内を凝縮水が通過するように構成される。凝縮水用熱交換器6は、言い換えれば、蒸発器4で発生した凝縮水と、ファン5によって送風される空気とがそれぞれ相互に混合しない独立した流路を通過して互いに熱交換する構成となっている。この構成により、上述したように蒸発器4に流入する空気中の水分量が変わらない方法で凝縮水と熱交換する。   The heat exchanger 6 for condensed water is comprised by the fin tube type heat exchanger which has a heat exchanger tube and a fin, and is comprised so that condensed water may pass the inside of a heat exchanger tube. In other words, the condensed water heat exchanger 6 exchanges heat with each other through independent channels in which the condensed water generated in the evaporator 4 and the air blown by the fan 5 are not mixed with each other. It has become. With this configuration, as described above, heat exchange with condensed water is performed by a method in which the amount of moisture in the air flowing into the evaporator 4 does not change.

また、蒸発器4もフィンチューブ型熱交換器で構成される。凝縮器2は、冷媒と外部からの熱源として供給される熱媒体とが熱交換し、熱媒体に放熱する熱交換器であればよく、フィンチューブ型熱交換器としてもよいし、プレート型熱交換器としてもよい。   Moreover, the evaporator 4 is also comprised with a fin tube type heat exchanger. The condenser 2 may be any heat exchanger that exchanges heat between the refrigerant and the heat medium supplied as an external heat source and dissipates heat to the heat medium, and may be a finned tube heat exchanger or a plate-type heat exchanger. It is good also as an exchanger.

以上のように構成された冷凍空調装置における動作について説明する。
冷凍サイクルでは、圧縮機1から吐出された冷媒が凝縮器2に流入し、凝縮器2を通過する例えば空気等の熱媒体と熱交換して高圧液冷媒となって流出する。凝縮器2を流出した高圧液冷媒は膨張弁3で減圧されて低圧二相冷媒となり、蒸発器4に流入する。蒸発器4に流入した低圧二相冷媒は、ファン5により蒸発器4を通過する空気と熱交換して低圧ガス冷媒となり、再び圧縮機1に吸入される。
The operation of the refrigeration air conditioner configured as described above will be described.
In the refrigeration cycle, the refrigerant discharged from the compressor 1 flows into the condenser 2, exchanges heat with a heat medium such as air passing through the condenser 2, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 2 is decompressed by the expansion valve 3 to become a low-pressure two-phase refrigerant, and flows into the evaporator 4. The low-pressure two-phase refrigerant that has flowed into the evaporator 4 exchanges heat with the air passing through the evaporator 4 by the fan 5 to become a low-pressure gas refrigerant, and is sucked into the compressor 1 again.

一方、ファン5によって蒸発器4を通過する空気は、蒸発器4内の冷媒と熱交換して冷却され、空調用途に供給空気として供給される。ここで、蒸発器4を通過する空気中の水分は、蒸発器4のフィンの表面で凝縮する。この凝縮水は、蒸発器4の空気上流側に設けられた凝縮水用熱交換器6に導かれる。   On the other hand, the air passing through the evaporator 4 by the fan 5 is cooled by exchanging heat with the refrigerant in the evaporator 4 and supplied to the air conditioning application as supply air. Here, moisture in the air passing through the evaporator 4 is condensed on the surface of the fins of the evaporator 4. This condensed water is guided to a heat exchanger 6 for condensed water provided on the air upstream side of the evaporator 4.

ファン5により凝縮水用熱交換器6に流入した空気は、凝縮水用熱交換器6にて凝縮水と熱交換して冷却される。凝縮水用熱交換器6は上述したようにフィンチューブ型熱交換器で構成されており、ファン5から凝縮水用熱交換器6に供給された空気は凝縮水の水分が加わることなく凝縮水と熱交換して冷却され、蒸発器4に供給される。蒸発器4に流入した空気は、蒸発器4における冷媒と熱交換して更に冷却されて空調用途に供給される。なお、凝縮水用熱交換器6においてファン5からの空気と熱交換した後の凝縮水は、外部に排出される。   The air flowing into the condensed water heat exchanger 6 by the fan 5 is cooled by exchanging heat with condensed water in the condensed water heat exchanger 6. As described above, the condensed water heat exchanger 6 is composed of a finned tube heat exchanger, and the air supplied from the fan 5 to the condensed water heat exchanger 6 is condensed water without adding condensed water. It is cooled by exchanging heat with it and supplied to the evaporator 4. The air flowing into the evaporator 4 is further cooled by exchanging heat with the refrigerant in the evaporator 4 and supplied to the air conditioning application. The condensed water after heat exchange with the air from the fan 5 in the condensed water heat exchanger 6 is discharged to the outside.

図2は、本発明の実施の形態1に係る冷凍空調装置の凝縮水用熱交換器の作用説明図で、空気線図を示している。横軸が乾球温度[℃]、縦軸が絶対湿度[kg/kg(DA)]である。なお、図2には、夏場の外気温度が高い高負荷運転時において、ファン5から凝縮水用熱交換器6に吐出される空気の温度が42℃、空調用途に供給する供給空気の供給温度(目標温度)が13℃の場合の例を示している。また、図2において点B及び点Cを通る曲線は、凝縮水用熱交換器6を備えた本実施の形態1の空気線図、点A、点B及び点Cを通る曲線は凝縮水用熱交換器6を備えない比較例の空気線図を示している。なお、ここで示した各温度の具体的数値は一例を示したに過ぎず、実使用条件等に応じて変わる。   FIG. 2 is an operation explanatory diagram of the heat exchanger for condensed water of the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention, and shows an air diagram. The horizontal axis is the dry bulb temperature [° C.], and the vertical axis is the absolute humidity [kg / kg (DA)]. In FIG. 2, the temperature of the air discharged from the fan 5 to the heat exchanger 6 for condensed water is 42 ° C. and the supply temperature of the supply air supplied to the air-conditioning application during high load operation where the outdoor air temperature is high in summer. The example in case (target temperature) is 13 degreeC is shown. Further, in FIG. 2, the curve passing through the points B and C is an air diagram of the first embodiment provided with the heat exchanger 6 for condensed water, and the curves passing through the points A, B and C are for condensed water. The air diagram of the comparative example which is not provided with the heat exchanger 6 is shown. In addition, the specific numerical value of each temperature shown here is only an example, and changes according to actual use conditions.

ファン5から凝縮水用熱交換器6に吐出された約42℃のファン空気(点A)は、凝縮水用熱交換器6での凝縮水との熱交換により、絶対湿度が変わらないまま約40℃まで冷却される(点B)。凝縮水用熱交換器6にて冷却された空気は、その後、蒸発器4に供給され、蒸発器4の冷媒と熱交換して温度が供給温度まで低下すると共に、空気中の水分が凝縮することにより絶対湿度が下がる(点C)。   About 42 ° C. fan air (point A) discharged from the fan 5 to the condensed water heat exchanger 6 is heated by the condensed water in the condensed water heat exchanger 6 and the absolute humidity remains unchanged. Cool to 40 ° C. (point B). The air cooled in the condensed water heat exchanger 6 is then supplied to the evaporator 4, and heat exchange with the refrigerant in the evaporator 4 causes the temperature to drop to the supply temperature, and moisture in the air condenses. This reduces the absolute humidity (point C).

ここで、本実施の形態1と比較例とを比較すると、凝縮水の再利用による熱交換効果により、蒸発器4に流入する空気の状態を、絶対湿度を変えずに乾球温度42℃から約40℃まで下げることができる。よって、蒸発器4に流入する空気を供給温度まで低下させるにあたり、本実施の形態1で必要となる蒸発器4の入口側と出口側との比エンタルピ差(Δ比エンタルピ)がΔh1となり、比較例の比エンタルピ差Δh2に比べて下げることが可能となる。   Here, when this Embodiment 1 is compared with a comparative example, the state of the air flowing into the evaporator 4 is changed from the dry bulb temperature of 42 ° C. without changing the absolute humidity due to the heat exchange effect by the reuse of the condensed water. It can be lowered to about 40 ° C. Therefore, in reducing the air flowing into the evaporator 4 to the supply temperature, the specific enthalpy difference (Δ specific enthalpy) between the inlet side and the outlet side of the evaporator 4 required in the first embodiment becomes Δh1, It is possible to lower the specific enthalpy difference Δh2 of the example.

冷却能力は、風量とΔ比エンタルピとの乗算で求められる。ここでは風量は同じであるとすると、凝縮水用熱交換器6にて凝縮水を再利用することにより、上述したようにΔ比エンタルピが少なくなるため、蒸発器4で必要な冷却能力を抑えることができる。なお、除湿量は、風量と絶対湿度差(Δ絶対湿度)との乗算で求められる。   The cooling capacity is obtained by multiplying the air volume and the Δ ratio enthalpy. Here, assuming that the air flow is the same, the condensed water is reused in the heat exchanger 6 for condensed water, so that the Δ ratio enthalpy is reduced as described above. be able to. The dehumidification amount is obtained by multiplying the air volume and the absolute humidity difference (Δ absolute humidity).

以上説明したように、本実施の形態1によれば、凝縮水の再利用により蒸発器4における必要冷却能力を抑制することができるため、冷凍サイクル内の圧縮機1容量を減少させることが可能となり、ユニット全体の動力を小さくすることができる。例えば、60馬力の一般的な冷凍空調装置では、ファン5から送り出された約42℃のファン空気(点A)を供給温度(目標温度)13℃まで冷却する場合、本実施の形態1で必要となる蒸発器4の入口側と出口側との比エンタルピ差(Δ比エンタルピ)がΔh1=50kg/kJ、比較例の比エンタルピ差Δh2=53kg/kJとなり約6%程度、ユニット全体の必要冷却能力を低減させることができる。よって、ユニット全体動力を抑えつつも、夏場の外気温度が高い高負荷時にも対応可能な冷凍空調装置を構成できる。   As described above, according to the first embodiment, the required cooling capacity in the evaporator 4 can be suppressed by reusing condensed water, so that the capacity of the compressor 1 in the refrigeration cycle can be reduced. Thus, the power of the entire unit can be reduced. For example, in a general refrigeration air conditioner of 60 horsepower, it is necessary in the first embodiment when cooling the fan air (point A) of about 42 ° C. sent from the fan 5 to the supply temperature (target temperature) 13 ° C. The specific enthalpy difference (Δ specific enthalpy) between the inlet side and the outlet side of the evaporator 4 becomes Δh1 = 50 kg / kJ, and the specific enthalpy difference Δh2 = 53 kg / kJ of the comparative example is about 6%. Capability can be reduced. Therefore, it is possible to configure a refrigerating and air-conditioning apparatus that can cope with a high load when the outdoor air temperature is high in summer while suppressing the overall power of the unit.

なお、凝縮水用熱交換器6の設置位置は、蒸発器4よりも上流側であれば良いため、ファン5の上流側、下流側は問わない。   In addition, since the installation position of the heat exchanger 6 for condensed water should just be an upstream from the evaporator 4, the upstream of the fan 5 and a downstream are not ask | required.

実施の形態2.
実施の形態1では、熱交換装置として凝縮水用熱交換器6を用いていたが、実施の形態2では凝縮水タンクを用いるようにしたものである。
Embodiment 2. FIG.
In the first embodiment, the heat exchanger 6 for condensed water is used as the heat exchange device, but in the second embodiment, a condensed water tank is used.

図3は、本発明の実施の形態2に係る冷凍空調装置の凝縮水タンクを含む要部の構成を示す図である。冷凍空調装置における他の構成は図1と同様である。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。   FIG. 3 is a diagram illustrating a configuration of a main part including a condensed water tank of the refrigeration air-conditioning apparatus according to Embodiment 2 of the present invention. Other configurations of the refrigeration air conditioner are the same as those in FIG. In the following, the second embodiment will be described focusing on the differences from the first embodiment.

凝縮水タンク7は、凝縮水用熱交換器6と同様、蒸発器4の空気上流側に配置される。そして、蒸発器4で発生した凝縮水を溜め、ファン5から送り出された圧縮空気を蒸発器4に流入させる前に凝縮水と熱交換するようにする。この凝縮水タンク7は、ファン5から蒸発器4に至る流路を塞がない大きさに構成され、ファン5からの空気と凝縮水タンク7内の凝縮水との熱交換を行う。凝縮水タンク7もまた、凝縮水用熱交換器6と同様、凝縮水の水分が加わることなく空気と熱交換する構成となっている。   The condensed water tank 7 is arranged on the air upstream side of the evaporator 4 in the same manner as the condensed water heat exchanger 6. Then, the condensed water generated in the evaporator 4 is accumulated, and the compressed air sent out from the fan 5 is exchanged with the condensed water before flowing into the evaporator 4. The condensed water tank 7 is configured to have a size that does not block the flow path from the fan 5 to the evaporator 4, and performs heat exchange between the air from the fan 5 and the condensed water in the condensed water tank 7. The condensed water tank 7 is also configured to exchange heat with air without adding condensed water, like the condensed water heat exchanger 6.

凝縮水用熱交換器6においてファン5からの空気と熱交換後の凝縮水は、外部に排出される。凝縮水タンク7を設けたことによる作用効果は実施の形態1と同様である。凝縮水タンク7の設置位置は、実施の形態1と同様、蒸発器4よりも上流側であれば良いため、ファン5の上流側、下流側は問わない。   In the heat exchanger 6 for condensed water, the condensed water after heat exchange with the air from the fan 5 is discharged outside. The effect of providing the condensed water tank 7 is the same as that of the first embodiment. The installation position of the condensed water tank 7 may be on the upstream side of the evaporator 4 as in the first embodiment, so that the upstream side and the downstream side of the fan 5 are not limited.

以上説明したように、本実施の形態2によれば、実施の形態1と同様の作用効果を得ることができる。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained.

実施の形態3.
上記実施の形態1、2では、蒸発器4が1つのいわば一段冷却であったが、実施の形態3は、蒸発器4を複数備えた多段冷却としたものである。
Embodiment 3 FIG.
In the first and second embodiments, the evaporator 4 is a single-stage cooling, but the third embodiment is a multi-stage cooling including a plurality of evaporators 4.

図4は、本発明の実施の形態3に係る冷凍空調装置の凝縮水用熱交換器を含む要部の構成を示す図である。冷凍空調装置における他の構成は図1と同様である。以下、実施の形態3が実施の形態1と異なる部分を中心に説明する。   FIG. 4 is a diagram showing a configuration of a main part including a heat exchanger for condensed water of the refrigeration air conditioner according to Embodiment 3 of the present invention. Other configurations of the refrigeration air conditioner are the same as those in FIG. In the following, the third embodiment will be described focusing on the differences from the first embodiment.

実施の形態1、2では、冷凍サイクルが1つであったが、実施の形態3の冷凍空調装置では、独立した複数の冷凍サイクルを備えている。ここでは、圧縮機1A、凝縮器2A、膨張弁3A及び蒸発器4Aを有する冷凍サイクルと、圧縮機1B、凝縮器2B、膨張弁3B及び蒸発器4Bを有する冷凍サイクルとの2つの冷凍サイクルを備えている。そして、各冷凍サイクルの蒸発器4A、4Bで蒸発器群40が構成されている。ここでは、空気上流側を蒸発器4A、空気下流側を蒸発器4Bとしている。   In the first and second embodiments, there is one refrigeration cycle, but the refrigeration air-conditioning apparatus of the third embodiment includes a plurality of independent refrigeration cycles. Here, two refrigeration cycles, a refrigeration cycle having a compressor 1A, a condenser 2A, an expansion valve 3A and an evaporator 4A, and a refrigeration cycle having a compressor 1B, a condenser 2B, an expansion valve 3B and an evaporator 4B are performed. I have. And the evaporator group 40 is comprised by evaporator 4A, 4B of each refrigeration cycle. Here, the air upstream side is the evaporator 4A, and the air downstream side is the evaporator 4B.

そして、実施の形態3の冷凍空調装置は、実施の形態1と同様、蒸発器群40の空気上流に凝縮水用熱交換器6を備えている。ここでは、ファン5の上流に凝縮水用熱交換器6を配置した例を示しているが、凝縮水用熱交換器6は、蒸発器群40の空気上流であれば良く、ファン5の上流側、下流側は問わない。また、凝縮水用熱交換器6に代えて、実施の形態2の凝縮水タンク7としてもよい。   And the refrigerating air-conditioning apparatus of Embodiment 3 is provided with the heat exchanger 6 for condensed water in the air upstream of the evaporator group 40 similarly to Embodiment 1. FIG. Here, an example in which the condensed water heat exchanger 6 is arranged upstream of the fan 5 is shown, but the condensed water heat exchanger 6 may be upstream of the evaporator group 40 and upstream of the fan 5. The side and the downstream side are not important. Moreover, it is good also as the condensed water tank 7 of Embodiment 2 instead of the heat exchanger 6 for condensed water.

図5は、本発明の実施の形態3に係る冷凍空調装置の作用説明図で、空気線図を示している。横軸が乾球温度[℃]、縦軸が絶対湿度[kg/kg(DA)]である。なお、図5には、夏場の外気温度が高い高負荷運転時において、ファン5により凝縮水用熱交換器6に流入する空気の温度が42℃、空調用途に供給する供給空気の供給温度(目標温度)が0℃の場合の例を示している。また、図5において点B及び点Cを通る曲線は、凝縮水用熱交換器6を備えた本実施の形態3の空気線図、点A、点B及び点Cを通る曲線は凝縮水用熱交換器6を備えない比較例の空気線図を示している。なお、ここで示した各温度の具体的数値は一例を示したに過ぎず、実使用条件等に応じて変わる。   FIG. 5 is an operation explanatory diagram of the refrigeration air-conditioning apparatus according to Embodiment 3 of the present invention, and shows an air diagram. The horizontal axis is the dry bulb temperature [° C.], and the vertical axis is the absolute humidity [kg / kg (DA)]. FIG. 5 shows that the temperature of the air flowing into the condensed water heat exchanger 6 by the fan 5 is 42 ° C. during the high load operation when the outdoor air temperature is high in summer, and the supply temperature of the supply air supplied to the air conditioning application ( An example in which the target temperature is 0 ° C. is shown. Further, in FIG. 5, the curve passing through the points B and C is an air diagram of the third embodiment provided with the heat exchanger 6 for condensed water, and the curves passing through the points A, B and C are for condensed water. The air diagram of the comparative example which is not provided with the heat exchanger 6 is shown. In addition, the specific numerical value of each temperature shown here is only an example, and changes according to actual use conditions.

ファン5の回転により、約42℃のファン空気(点A)は凝縮水用熱交換器6に流入し、凝縮水との熱交換により、絶対湿度が変わらないまま約40℃まで冷却される(点B)。凝縮水用熱交換器6にて冷却された空気は、その後、蒸発器4Aに供給され、蒸発器4Aの冷媒と熱交換して温度が約12℃まで低下すると共に、空気中の水分が凝縮することにより絶対湿度が下がる(点D)。蒸発器4Aを通過後の空気は、蒸発器4Bに供給され、蒸発器4Bの冷媒と熱交換して温度が約0℃まで低下すると共に、空気中の水分が凝縮することにより絶対湿度が更に下がる(点E)。   As the fan 5 rotates, the fan air (point A) at about 42 ° C. flows into the heat exchanger 6 for condensed water, and is cooled to about 40 ° C. without changing the absolute humidity by heat exchange with the condensed water ( Point B). The air cooled by the heat exchanger 6 for condensed water is then supplied to the evaporator 4A, where heat is exchanged with the refrigerant of the evaporator 4A, the temperature is lowered to about 12 ° C., and moisture in the air is condensed. By doing so, the absolute humidity decreases (point D). The air after passing through the evaporator 4A is supplied to the evaporator 4B, exchanges heat with the refrigerant of the evaporator 4B, the temperature decreases to about 0 ° C., and the moisture in the air condenses to further reduce the absolute humidity. Lower (point E).

ここでは、凝縮水用熱交換器6を設けた場合と、設けない場合とで、空気上流側の蒸発器4Aでの冷却能力を同じとして考えた場合、つまり、2つの蒸発器4A、4Bと凝縮水用熱交換器6とを備えた図4の構成において、蒸発器4Aの比エンタルピ差Δh11を、凝縮水用熱交換器6を設けずに点Cまで一つの蒸発器で空気を冷却する場合の比エンタルピ差Δh21と同じとする場合、蒸発器4Aの上流側での凝縮水による熱交換により、本来、蒸発器4全体として必要であった冷却能力に有余ができる。つまり、この余った冷却能力(=風量×Δh3)を用いて、蒸発器4Bに供給する空気を、その空気上流側の蒸発器4Aにて更に冷却してから蒸発器4Bに供給することで、蒸発器4Bにおける冷却能力、除湿量を、凝縮水用熱交換器6を設けない場合に比べて抑えることができる。   Here, the case where the heat exchanger 6 for condensed water is provided and the case where the heat exchanger 6 is not provided are considered to have the same cooling capacity in the evaporator 4A on the upstream side of the air, that is, two evaporators 4A and 4B. In the configuration of FIG. 4 provided with the heat exchanger 6 for condensed water, the specific enthalpy difference Δh11 of the evaporator 4A is cooled to the point C without providing the heat exchanger 6 for condensed water, and the air is cooled by one evaporator. In the case where the specific enthalpy difference Δh21 is the same as that in the case, the cooling capacity originally necessary for the evaporator 4 as a whole can be spared by heat exchange with the condensed water on the upstream side of the evaporator 4A. That is, by using this surplus cooling capacity (= air volume × Δh3), the air supplied to the evaporator 4B is further cooled by the evaporator 4A on the upstream side of the air and then supplied to the evaporator 4B. The cooling capacity and the dehumidification amount in the evaporator 4B can be suppressed as compared with the case where the heat exchanger 6 for condensed water is not provided.

図5の例では、蒸発器4Bの入口側と出口側との比エンタルピ差(Δ比エンタルピ)が、凝縮水用熱交換器6を用いることで、凝縮水用熱交換器6を設けない場合の比エンタルピ差Δh22が比エンタルピ差Δh12に下がり、冷却能力を「風量×Δh3」分、抑えることができる。また、除湿量については、「風量×ΔSH」分、抑えることができる。つまり、ファン空気を供給温度まで低下させるにあたり、蒸発器群40全体で必要な比エンタルピ差が、凝縮水用熱交換器6を設けたことによってΔh3分少なくなるため、この比エンタルピ差Δh3分、蒸発器群40のうちの空気下流側の蒸発器4Bで必要とする比エンタルピを下げることが可能となり、蒸発器4Bにおける冷却能力を抑えることができる。   In the example of FIG. 5, the specific enthalpy difference (Δ specific enthalpy) between the inlet side and the outlet side of the evaporator 4 </ b> B is such that the condensed water heat exchanger 6 is not provided by using the condensed water heat exchanger 6. The specific enthalpy difference Δh22 is reduced to the specific enthalpy difference Δh12, and the cooling capacity can be suppressed by “air volume × Δh3”. Further, the dehumidifying amount can be suppressed by “air volume × ΔSH”. That is, in reducing the fan air to the supply temperature, the specific enthalpy difference required for the entire evaporator group 40 is reduced by Δh3 by providing the heat exchanger 6 for condensed water, so this specific enthalpy difference Δh3 min. The specific enthalpy required for the evaporator 4B on the downstream side of the air in the evaporator group 40 can be lowered, and the cooling capacity in the evaporator 4B can be suppressed.

以上説明したように、実施の形態3によれば、実施の形態1と同様のユニット動力低減効果が得られることに加え、空気の流れ方向の下流側の蒸発器4Bにおける除湿量を低減できるため、蒸発器群40全体としての着霜量も抑制することが可能となる。例えば120馬力の一般的な冷凍空調装置では、ファン5から送り出された約42℃のファン空気(点A)を供給温度(目標温度)0℃まで冷却する場合に、本実施の形態3において空気上流側の冷凍サイクル(蒸発器4A)での冷却能力を同じとして考えると、蒸発器4Bで発生する除湿量=54L/h、比較例の除湿量=61L/hとなり、空気下流側の蒸発器4Bにて発生する除湿量を約11%程度低減させることができる。これにより蒸発器4Bの着霜量を低減させることができる。   As described above, according to the third embodiment, in addition to obtaining the same unit power reduction effect as in the first embodiment, the dehumidification amount in the evaporator 4B on the downstream side in the air flow direction can be reduced. Moreover, it becomes possible to suppress the amount of frost formation as the whole evaporator group 40. FIG. For example, in a general refrigerating and air-conditioning apparatus having 120 horsepower, when the fan air (point A) of about 42 ° C. sent from the fan 5 is cooled to the supply temperature (target temperature) 0 ° C., the air in Embodiment 3 is used. Assuming that the cooling capacity in the upstream refrigeration cycle (evaporator 4A) is the same, the dehumidification amount generated in the evaporator 4B = 54 L / h, the dehumidification amount in the comparative example = 61 L / h, and the downstream evaporator The amount of dehumidification generated in 4B can be reduced by about 11%. Thereby, the amount of frost formation of the evaporator 4B can be reduced.

なお、ここでは、二段冷却の場合を例示して説明したが、二段よりも多い多段冷却方法でも同様の効果が得られる。   Here, the case of two-stage cooling has been described as an example, but the same effect can be obtained even with a multi-stage cooling method having more than two stages.

1、1A、1B 圧縮機、2、2A、2B 凝縮器、3、3A、3B 膨張弁、4、4A、4B 蒸発器、5 ファン、6 凝縮水用熱交換器、7 凝縮水タンク、40 蒸発器群。   1, 1A, 1B compressor, 2, 2A, 2B condenser, 3, 3A, 3B expansion valve, 4, 4A, 4B evaporator, 5 fan, 6 heat exchanger for condensed water, 7 condensed water tank, 40 evaporation Instrument group.

Claims (3)

圧縮機、凝縮器、減圧装置及び蒸発器を有し、冷媒が循環する冷凍サイクルと、
前記蒸発器に空気を送風する送風装置と、
前記蒸発器の空気上流側に配置され、前記蒸発器で発生した凝縮水が溜められるタンクで構成され、前記送風装置によって送風される空気とが相互に混合しない独立した流路を通過して互いに熱交換する熱交換装置と
を備えたことを特徴とする冷凍空調装置。
A refrigeration cycle having a compressor, a condenser, a decompression device and an evaporator, in which the refrigerant circulates;
A blower for blowing air to the evaporator;
It is arranged on the air upstream side of the evaporator and is composed of a tank in which condensed water generated in the evaporator is stored, and passes through independent flow paths that do not mix with the air blown by the blower. A refrigeration air conditioner comprising a heat exchange device for heat exchange.
圧縮機、凝縮器、減圧装置及び蒸発器を有し、冷媒が循環する複数の冷凍サイクルと、
前記複数の冷凍サイクルの複数の前記蒸発器で構成される蒸発器群に空気を送風する送風装置と、
前記蒸発器群の空気上流側に配置され、前記蒸発器群で発生した凝縮水が溜められるタンクで構成され、前記送風装置によって送風される空気とが相互に混合しない独立した流路を通過して互いに熱交換する熱交換装置と
を備えたことを特徴とする冷凍空調装置。
A plurality of refrigeration cycles having a compressor, a condenser, a pressure reducing device, and an evaporator, in which refrigerant circulates;
A blower for blowing air to an evaporator group composed of a plurality of the evaporators of the plurality of refrigeration cycles;
It is arranged on the air upstream side of the evaporator group, and is composed of a tank in which condensed water generated in the evaporator group is stored, and passes through an independent flow path that does not mix with the air blown by the blower. A refrigerating and air-conditioning apparatus, comprising:
前記熱交換装置によって得られる冷却能力分、前記複数の蒸発器のうち空気下流側の蒸発器の冷却能力を減らした構成とした
ことを特徴とする請求項2記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to claim 2, wherein the cooling capacity of the evaporator on the downstream side of the plurality of evaporators is reduced by the cooling capacity obtained by the heat exchange device.
JP2014068336A 2014-03-28 2014-03-28 Refrigeration air conditioner Expired - Fee Related JP6218659B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014068336A JP6218659B2 (en) 2014-03-28 2014-03-28 Refrigeration air conditioner
CN201420358108.3U CN204043171U (en) 2014-03-28 2014-06-30 refrigerating air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014068336A JP6218659B2 (en) 2014-03-28 2014-03-28 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2015190694A JP2015190694A (en) 2015-11-02
JP6218659B2 true JP6218659B2 (en) 2017-10-25

Family

ID=52243827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068336A Expired - Fee Related JP6218659B2 (en) 2014-03-28 2014-03-28 Refrigeration air conditioner

Country Status (2)

Country Link
JP (1) JP6218659B2 (en)
CN (1) CN204043171U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412638A (en) * 2020-03-19 2020-07-14 宁波奥克斯电气股份有限公司 Waste heat recovery system of air conditioner and air conditioner
CN111412639A (en) * 2020-03-19 2020-07-14 宁波奥克斯电气股份有限公司 Cold recovery system of air conditioner and air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539475B (en) * 2015-11-23 2018-02-13 惠州学院 High-speed track train air conditioner system
CN105313912A (en) * 2015-11-30 2016-02-10 惠州学院 Rail air conditioner system
CN105783128B (en) * 2016-04-08 2019-05-31 广东美的制冷设备有限公司 Window air conditioner and its control method
CN109340920A (en) * 2018-11-28 2019-02-15 青岛海尔空调电子有限公司 Air conditioner indoor unit and air-conditioning
KR102565503B1 (en) * 2019-01-29 2023-08-11 삼성전자주식회사 Air conditioner
CN110966747A (en) * 2020-01-13 2020-04-07 山东建筑大学 Air conditioner condensate water two-stage utilization device
JP7468124B2 (en) * 2020-05-01 2024-04-16 株式会社デンソー Vehicle air conditioning system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127757A (en) * 1981-01-30 1982-08-09 Hitachi Ltd Refrigerating plant
US4934451A (en) * 1989-05-01 1990-06-19 Colvin James R Apparatus and method for conditioning air
JPH06221594A (en) * 1993-01-21 1994-08-09 Fujita Corp Outside recooling air conditioning system utilizing condensed water of air conditioner
JPH08240324A (en) * 1995-03-06 1996-09-17 Sony Corp Air conditioner
US7654307B2 (en) * 2006-01-18 2010-02-02 Delphi Technologies, Inc. Evaporative cooler assisted automotive air conditioning system
JP4824498B2 (en) * 2006-08-01 2011-11-30 株式会社前川製作所 Cooling air supply equipment for parking
JP5426887B2 (en) * 2009-01-21 2014-02-26 株式会社前川製作所 Cooling air supply method and supply equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412638A (en) * 2020-03-19 2020-07-14 宁波奥克斯电气股份有限公司 Waste heat recovery system of air conditioner and air conditioner
CN111412639A (en) * 2020-03-19 2020-07-14 宁波奥克斯电气股份有限公司 Cold recovery system of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2015190694A (en) 2015-11-02
CN204043171U (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6218659B2 (en) Refrigeration air conditioner
JP6058219B2 (en) Air conditioner
JP2007046806A (en) Ejector type cycle
JP4712910B1 (en) Precision air conditioner
JP2010088971A (en) Refrigeration air dryer
JP6042026B2 (en) Refrigeration cycle equipment
JP2008064435A (en) Refrigerating device
US11499756B2 (en) Modular waterside economizer for air-cooled chillers
JPWO2017110220A1 (en) air compressor
WO2013190830A1 (en) Heat exchanger and air conditioner
WO2017221351A1 (en) Dehumidifier
KR102211113B1 (en) Dehumidifier
JP6368205B2 (en) Heat pump system
JP2017146015A (en) Air conditioner
CN104344595A (en) Air conditioning system
KR20060100795A (en) Over cooling structure for heat pump type air conditioner
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2008267731A (en) Air-conditioning device
JP6257645B2 (en) Air conditioner
JP5311734B2 (en) Air conditioner
KR100613502B1 (en) Heat pump type air conditioner
JP2007155203A (en) Air conditioner
JP7450807B2 (en) air conditioner
JP2019007694A (en) Air conditioner
JPH09310925A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees