JP2017146015A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2017146015A
JP2017146015A JP2016027885A JP2016027885A JP2017146015A JP 2017146015 A JP2017146015 A JP 2017146015A JP 2016027885 A JP2016027885 A JP 2016027885A JP 2016027885 A JP2016027885 A JP 2016027885A JP 2017146015 A JP2017146015 A JP 2017146015A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
expansion mechanism
pipe
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016027885A
Other languages
Japanese (ja)
Other versions
JP6643630B2 (en
Inventor
一善 友近
Kazuyoshi Tomochika
一善 友近
立慈 川端
Tatsuji Kawabata
立慈 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016027885A priority Critical patent/JP6643630B2/en
Publication of JP2017146015A publication Critical patent/JP2017146015A/en
Application granted granted Critical
Publication of JP6643630B2 publication Critical patent/JP6643630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of improving performance of cooling and heating while suppressing rise in a discharge refrigerant temperature.SOLUTION: In a cooling operation, a refrigerant discharged from a compressor 101 flows in a four-way valve 103, an outdoor heat exchanger 104, an outdoor expansion mechanism 106, a receiver tank 105, a supercooling heat exchanger 109, indoor expansion mechanisms 301a, 301b and indoor heat exchangers 302a, 302b in this order. In a heating operation, the refrigerant discharged from the compressor 101 flows in the four-way valve 103, the indoor heat exchangers 302a, 302b, the indoor expansion mechanisms 301a, 301b, the supercooling heat exchanger 109, the receiver tank 105, the outdoor expansion mechanism 106 and the outdoor heat exchanger 104 in this order. An air conditioner includes a by-pass pipe 145 for allowing the gas refrigerant in the receiver tank 105 to pass a supercooling expansion mechanism 110 and the supercooling heat exchanger 109 in this order and returning it to a suction port side of the compressor 101.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和装置に関する。   The present invention relates to an air conditioner.

1台もしくは複数台の室外ユニットと複数台の室内ユニットを備え、複数台の前記室内ユニットを冷房もしくは暖房のいずれか一方で運転可能な空気調和装置では、圧縮機、四方弁、及び、室外熱交換器を備えた室外ユニットと、室内熱交換器を備えた複数台の室内ユニットとがユニット間配管であるガス管及び液管により接続されている(例えば、特許文献1参照)。そして、暖房運転時は上記圧縮機の冷媒吐出管は上記四方弁を介して上記ガス管と接続され、上記室内熱交換器、上記液管、上記室外熱交換器の順に接続され、四方弁を介して上記圧縮機の冷媒吸入管と接続される。冷房運転時は上記圧縮機の冷媒吐出管は上記四方弁を介して上記室外熱交換器と接続され、上記液管、上記室内熱交換器、及び、上記ガス管の順に接続され、四方弁を介して上記圧縮機の冷媒吸入管と接続される。このような空気調和装置では、四方弁を切り替えることで、冷房運転もしくは暖房運転を実施可能に構成されている。
従来の構成において、冷媒として、R32、もしくはR32を含む混合冷媒を用いた場合、R32はR410Aに比べて潜熱が大きいため冷媒循環量を低減でき、冷媒側圧力損失が小さくなるという冷媒の特性を活かすことができる。この場合、熱交換器の細径化が期待できる。しかし、室外熱交換器の容積が室内熱交換器の容積以下となった場合、冷房運転時に余剰冷媒が発生してしまうという課題があった。
上記課題を解決するため、特許文献1では、図3に示すように、室外ユニット500の室外熱交換器504と室外膨張機構506との間にレシーバタンク505を設け、余剰冷媒をレシーバタンク505に収容し、レシーバタンク505内の冷媒ガス成分を圧縮機501もしくは吸入管に戻すためのバイパス管520と流量調整機構515を設け、流量調整機構515を、暖房運転時に開状態、冷房運転時に閉状態とする構成が提案されている。なお、図3では、冷房運転時の冷媒の流れが矢印で示されている。また、図3で、符号502はオイルセパレータ、符号503は四方弁、符号531a,531bは室内膨張機構である。
流量調整機構515を暖房運転時に開状態とすることにより、蒸発に寄与しないガス成分が室外熱交換器504をバイパスするため、室外熱交換器504を流れる冷媒の流量が減少し、室外熱交換器504での冷媒側圧力損失を抑制することができる。
また、流量調整機構515を冷房運転時に閉状態とすることにより、室外熱交換器504の容積が室内熱交換器532a,532bの容積以下となることにより発生する余剰冷媒がレシーバタンク505に収容されるため、冷媒の制御に支障をきたすことを防止することができる。
In an air conditioner that includes one or a plurality of outdoor units and a plurality of indoor units, and that can operate the plurality of indoor units by either cooling or heating, a compressor, a four-way valve, and outdoor heat An outdoor unit provided with an exchanger and a plurality of indoor units provided with an indoor heat exchanger are connected by a gas pipe and a liquid pipe which are pipes between the units (for example, see Patent Document 1). During the heating operation, the refrigerant discharge pipe of the compressor is connected to the gas pipe via the four-way valve, and is connected in the order of the indoor heat exchanger, the liquid pipe, and the outdoor heat exchanger. And is connected to the refrigerant suction pipe of the compressor. During cooling operation, the refrigerant discharge pipe of the compressor is connected to the outdoor heat exchanger via the four-way valve, and is connected in the order of the liquid pipe, the indoor heat exchanger, and the gas pipe. And is connected to the refrigerant suction pipe of the compressor. Such an air conditioner is configured to perform a cooling operation or a heating operation by switching the four-way valve.
In the conventional configuration, when R32 or a mixed refrigerant containing R32 is used as the refrigerant, R32 has a larger latent heat than R410A, so that the refrigerant circulation amount can be reduced and the refrigerant side pressure loss is reduced. You can make use of it. In this case, a reduction in the diameter of the heat exchanger can be expected. However, when the volume of the outdoor heat exchanger is equal to or less than the volume of the indoor heat exchanger, there is a problem that surplus refrigerant is generated during the cooling operation.
In order to solve the above problem, in Patent Document 1, as shown in FIG. 3, a receiver tank 505 is provided between the outdoor heat exchanger 504 and the outdoor expansion mechanism 506 of the outdoor unit 500, and excess refrigerant is supplied to the receiver tank 505. A bypass pipe 520 and a flow rate adjusting mechanism 515 are provided for storing and returning the refrigerant gas component in the receiver tank 505 to the compressor 501 or the suction pipe, and the flow rate adjusting mechanism 515 is opened during heating operation and closed during cooling operation A configuration is proposed. In FIG. 3, the flow of the refrigerant during the cooling operation is indicated by arrows. In FIG. 3, reference numeral 502 is an oil separator, reference numeral 503 is a four-way valve, and reference numerals 531a and 531b are indoor expansion mechanisms.
By opening the flow rate adjustment mechanism 515 during heating operation, gas components that do not contribute to evaporation bypass the outdoor heat exchanger 504, so that the flow rate of the refrigerant flowing through the outdoor heat exchanger 504 decreases, and the outdoor heat exchanger The refrigerant side pressure loss at 504 can be suppressed.
Further, by closing the flow rate adjusting mechanism 515 during the cooling operation, surplus refrigerant generated when the volume of the outdoor heat exchanger 504 becomes less than or equal to the volume of the indoor heat exchangers 532a and 532b is accommodated in the receiver tank 505. Therefore, it is possible to prevent the refrigerant from being hindered.

特開2013−204922号公報JP 2013-204922 A

しかしながら、従来技術では、冷房運転時には室外熱交換器504で凝縮した冷媒がレシーバタンク505へと流入し、レシーバタンク505内の冷媒液成分が室外膨張機構506へと送られるが、例えば室外熱交換器504を通過後の冷媒の過冷却度が小さい場合や気液二相状態の場合は、室外膨張機構506の圧力損失により冷媒がフラッシュしてしまい、液管の冷媒側圧力損失が大きくなり性能が低下してしまうという課題があった。
また、暖房運転時には流量調整機構515が開状態となり低温高圧の冷媒が圧縮機501の吸込側に戻るため、吐出冷媒温度を低減する効果が得られる。しかし、冷房運転時には流量調整機構515が閉状態となり、吐出冷媒温度を低減する効果は得られない。このため、例えば、室内機530a,530bの設置台数が多く、長配管で接続されるようなシステムで冷媒にR32を用いた場合、冷媒側の配管圧損により吸込圧力が低下してしまうため圧力比が大きくなってしまうが、流量調整機構515を流れる冷媒で冷却できないため、冷房運転時に吐出冷媒温度が高くなってしまうという課題があった。
本発明は、上記課題を解決するものであり、空気調和装置において、吐出冷媒温度の上昇を抑制しながら、冷房及び暖房の性能を向上できるようにすることを目的とする。
However, in the prior art, during the cooling operation, the refrigerant condensed in the outdoor heat exchanger 504 flows into the receiver tank 505 and the refrigerant liquid component in the receiver tank 505 is sent to the outdoor expansion mechanism 506. For example, outdoor heat exchange When the degree of supercooling of the refrigerant after passing through the vessel 504 is small or in a gas-liquid two-phase state, the refrigerant flashes due to the pressure loss of the outdoor expansion mechanism 506, and the pressure loss on the refrigerant side of the liquid pipe increases, resulting in performance. There was a problem that would decrease.
Further, during the heating operation, the flow rate adjusting mechanism 515 is opened and the low-temperature and high-pressure refrigerant returns to the suction side of the compressor 501, so that the effect of reducing the discharged refrigerant temperature is obtained. However, during the cooling operation, the flow rate adjusting mechanism 515 is closed, and the effect of reducing the discharged refrigerant temperature cannot be obtained. For this reason, for example, when the number of indoor units 530a and 530b is large and R32 is used as a refrigerant in a system that is connected by a long pipe, the suction pressure decreases due to pipe pressure loss on the refrigerant side, so the pressure ratio However, since the refrigerant flowing through the flow rate adjusting mechanism 515 cannot be cooled, there has been a problem that the discharged refrigerant temperature becomes high during the cooling operation.
The present invention solves the above-described problems, and an object of the present invention is to improve cooling and heating performance in an air-conditioning apparatus while suppressing an increase in discharged refrigerant temperature.

上記目的を達成するため、本発明は、1台もしくは複数台の室外ユニットと複数台の室内ユニットとを備え、前記室外ユニットは、圧縮機、四方弁、室外熱交換器、室外膨張機構、及び、レシーバタンクを有し、前記室内ユニットは、室内膨張機構及び室内熱交換器を有し、前記室外ユニットと前記室内ユニットとはガス管及び液管で接続されており、冷房運転もしくは暖房運転のいずれか一方で運転可能な空気調和装置において、前記室外ユニットは、前記室外ユニットを流れる冷媒と熱交換する過冷却熱交換器、及び、過冷却膨張機構を備え、冷房運転時において前記圧縮機から吐出された冷媒は、前記四方弁、前記室外熱交換器、前記室外膨張機構、前記レシーバタンク、前記過冷却熱交換器、前記室内膨張機構、及び、前記室内熱交換器の順に流れ、暖房運転時において前記圧縮機から吐出された冷媒は、前記四方弁、前記室内熱交換器、前記室内膨張機構、前記過冷却熱交換器、前記レシーバタンク、前記室外膨張機構、及び、前記室外熱交換器の順に流れ、前記レシーバタンクは冷媒を気液分離する構造を備え、前記レシーバタンク内のガス冷媒を、前記過冷却膨張機構及び前記過冷却熱交換器の順に通過させて前記圧縮機の吸込口側に戻すバイパス回路を備えたことを特徴とする。   To achieve the above object, the present invention comprises one or a plurality of outdoor units and a plurality of indoor units, the outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion mechanism, and A receiver tank, the indoor unit has an indoor expansion mechanism and an indoor heat exchanger, and the outdoor unit and the indoor unit are connected to each other by a gas pipe and a liquid pipe. In any one of the air conditioners that can be operated, the outdoor unit includes a supercooling heat exchanger that exchanges heat with the refrigerant flowing through the outdoor unit, and a supercooling expansion mechanism. The discharged refrigerant includes the four-way valve, the outdoor heat exchanger, the outdoor expansion mechanism, the receiver tank, the supercooling heat exchanger, the indoor expansion mechanism, and the indoor heat exchange. The refrigerant discharged from the compressor during heating operation is the four-way valve, the indoor heat exchanger, the indoor expansion mechanism, the supercooling heat exchanger, the receiver tank, the outdoor expansion mechanism, The receiver tank has a structure for separating the refrigerant into a gas and liquid, and the gas refrigerant in the receiver tank is passed in the order of the supercooling expansion mechanism and the supercooling heat exchanger. And a bypass circuit for returning to the suction port side of the compressor.

また、本発明は、前記バイパス回路における前記過冷却膨張機構の上流側と、前記過冷却熱交換器と前記室内膨張機構とを繋ぐ配管と、を繋ぐ分岐管を備えることを特徴とする。
また、本発明は、前記バイパス回路が前記吸込口と前記四方弁との間に合流する合流部と前記四方弁との間に第1の温度センサが設けられ、前記レシーバタンクと前記過冷却熱交換器との間に第2の温度センサが設けられ、前記合流部と前記圧縮機の前記吸込口との間に第3の温度センサが設けられ、前記第1の温度センサ及び前記第2の温度センサの検出値を用いて前記第3の温度センサの検出値が所定の値となるように前記過冷却膨張機構の開度を調整することを特徴とする。
さらに、本発明は、前記バイパス回路における前記レシーバタンクと前記過冷却膨張機構とを接続する配管の径が、前記分岐管の径よりも大きいことを特徴とする。
また、本発明は、前記冷媒は、R32、もしくは、R32を含む混合冷媒であることを特徴とする。
In addition, the present invention includes a branch pipe that connects the upstream side of the supercooling expansion mechanism in the bypass circuit and a pipe that connects the supercooling heat exchanger and the indoor expansion mechanism.
In the present invention, a first temperature sensor is provided between the four-way valve and a junction where the bypass circuit merges between the suction port and the four-way valve, and the receiver tank and the supercooling heat A second temperature sensor is provided between the exchanger and a third temperature sensor is provided between the junction and the suction port of the compressor, and the first temperature sensor and the second temperature sensor are provided. The opening degree of the supercooling expansion mechanism is adjusted so that the detection value of the third temperature sensor becomes a predetermined value using the detection value of the temperature sensor.
Furthermore, the present invention is characterized in that a diameter of a pipe connecting the receiver tank and the supercooling expansion mechanism in the bypass circuit is larger than a diameter of the branch pipe.
In addition, the present invention is characterized in that the refrigerant is R32 or a mixed refrigerant containing R32.

本発明の空気調和装置によれば、冷房運転時には、レシーバタンクで分離されたガス冷媒が、バイパス回路を過冷却膨張機構及び過冷却熱交換器の順に通過し、過冷却膨張機構で冷却されてから圧縮機の吸込口に戻るため、圧縮機の吸込冷媒温度を低下させることができ、冷房運転時における圧縮機の吐出冷媒温度を低下させることができる。さらに、冷房運転時に、レシーバタンクから室内熱交換器側に流れる液冷媒は、バイパス回路の冷媒が流れる過冷却熱交換器で冷却されて過冷却度が増加する。このため、室内熱交換器に流入する気液二相状態の冷媒において蒸発に寄与する液冷媒の割合を増加させることができ、冷房の性能を向上できる。また、暖房運転時には、室内ユニット側からレシーバタンクに戻った冷媒のガス冷媒が、バイパス回路の過冷却膨張機構を通って圧縮機の吸込口に戻るため、暖房運転時の圧縮機の吐出冷媒温度を低下させることができる。その上、暖房運転時には、蒸発に寄与しないガス冷媒がバイパス回路を通って室外熱交換器をバイパスするため、室外熱交換器の冷媒循環量を小さくでき、冷媒の圧力損失を低減できる。このため、冷房運転時及び暖房運転時において、吐出冷媒温度の上昇を抑制しながら性能向上を図ることができる。   According to the air conditioner of the present invention, during cooling operation, the gas refrigerant separated in the receiver tank passes through the bypass circuit in the order of the supercooling expansion mechanism and the supercooling heat exchanger, and is cooled by the supercooling expansion mechanism. , The suction refrigerant temperature of the compressor can be lowered, and the discharge refrigerant temperature of the compressor during the cooling operation can be lowered. Further, during the cooling operation, the liquid refrigerant flowing from the receiver tank to the indoor heat exchanger side is cooled by the supercooling heat exchanger through which the refrigerant in the bypass circuit flows, and the degree of supercooling increases. For this reason, the ratio of the liquid refrigerant which contributes to evaporation in the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger can be increased, and the cooling performance can be improved. In addition, during the heating operation, the refrigerant gas refrigerant that has returned from the indoor unit side to the receiver tank returns to the compressor suction port through the subcooling expansion mechanism of the bypass circuit. Can be reduced. Moreover, since the gas refrigerant that does not contribute to evaporation passes through the bypass circuit and bypasses the outdoor heat exchanger during heating operation, the refrigerant circulation amount of the outdoor heat exchanger can be reduced, and the pressure loss of the refrigerant can be reduced. For this reason, performance improvement can be aimed at suppressing the raise of discharge refrigerant temperature at the time of air_conditionaing | cooling operation and heating operation.

本発明の実施の形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning an embodiment of the invention. 暖房運転時における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device at the time of heating operation. 従来の空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the conventional air conditioning apparatus.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の実施の形態に係る空気調和装置の冷媒回路図である。ここで、図1では、冷房運転時の状態が図示されている。
図1の空気調和装置10は、室外ユニット1台に複数台の室内ユニットが接続された構成となっている。なお、冷凍サイクルの構成については、図1に示したものに限定されない。例えば、室外ユニットは2台以上を並列に接続可能である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. Here, FIG. 1 illustrates a state during the cooling operation.
The air conditioner 10 in FIG. 1 has a configuration in which a plurality of indoor units are connected to one outdoor unit. The configuration of the refrigeration cycle is not limited to that shown in FIG. For example, two or more outdoor units can be connected in parallel.

空気調和装置10は、室外ユニット100と、複数の室内ユニット300a,300bとを備え、室外ユニット100と室内ユニット300a,300bとは、冷媒が流通するユニット間配管で連結されている。このユニット間配管は、液管210と、ガス管220とを備える。室内ユニット300a,300bは、上記ユニット間配管に対して並列に接続される。ここで、空気調和装置10を流れる冷媒は、R32、もしくは、R32を一部に含む混合冷媒である。   The air conditioner 10 includes an outdoor unit 100 and a plurality of indoor units 300a and 300b, and the outdoor unit 100 and the indoor units 300a and 300b are connected by inter-unit piping through which a refrigerant flows. This inter-unit pipe includes a liquid pipe 210 and a gas pipe 220. The indoor units 300a and 300b are connected in parallel to the inter-unit pipe. Here, the refrigerant flowing through the air conditioner 10 is R32 or a mixed refrigerant partially including R32.

室内ユニット300a,300bは、室内膨張機構301a,301b、及び、図示しない送風機により室内を暖房・冷房する室内熱交換器302a,302bを備える。
室内膨張機構301a,301bが設けられる側である室内ユニット300a,300bの一端は、分配管303,303によって液管210にそれぞれ接続される。室内ユニット300a,300bの他端は、分配管304,304によってガス管220にそれぞれ接続される。
The indoor units 300a and 300b include indoor expansion mechanisms 301a and 301b and indoor heat exchangers 302a and 302b that heat and cool the room by a blower (not shown).
One ends of the indoor units 300a and 300b on the side where the indoor expansion mechanisms 301a and 301b are provided are connected to the liquid pipe 210 by distribution pipes 303 and 303, respectively. The other ends of the indoor units 300a and 300b are connected to the gas pipe 220 by distribution pipes 304 and 304, respectively.

室外ユニット100は、圧縮機101と、圧縮機101から吐出された冷媒に含まれる冷凍機油を分離して圧縮機101へ戻すオイルセパレータ102と、冷房運転及び暖房運転の運転状態により冷媒回路を切り替える四方弁103と、図示しない送風機により室外に放熱・吸熱する室外熱交換器104と、冷媒を収容することが可能で、ガス冷媒と液冷媒とを分離する機能を有するレシーバタンク105と、室外膨張機構106と、電磁弁108と、過冷却熱交換器109と、過冷却熱交換器109に流入する冷媒温度を調整するための過冷却膨張機構110と、逆止弁107,111と、制御部150とを備える。
また、室外ユニット100は、液管210の室外ユニット100側の端が接続される液管接続口116と、ガス管220の室外ユニット100側の端が接続されるガス管接続口117とを備える。
The outdoor unit 100 switches the refrigerant circuit according to the operating state of the cooling operation and the heating operation, the compressor 101, the oil separator 102 that separates the refrigeration oil contained in the refrigerant discharged from the compressor 101, and returns the oil to the compressor 101. A four-way valve 103, an outdoor heat exchanger 104 that radiates and absorbs heat by a blower (not shown), a receiver tank 105 that can store refrigerant and separates gas refrigerant and liquid refrigerant, and outdoor expansion Mechanism 106, electromagnetic valve 108, supercooling heat exchanger 109, supercooling expansion mechanism 110 for adjusting the temperature of the refrigerant flowing into supercooling heat exchanger 109, check valves 107 and 111, and control unit 150.
The outdoor unit 100 includes a liquid pipe connection port 116 to which an end of the liquid pipe 210 on the outdoor unit 100 side is connected, and a gas pipe connection port 117 to which an end of the gas pipe 220 on the outdoor unit 100 side is connected. .

室外ユニット100は、圧縮機101の冷媒の吐出口と室外熱交換器104の一端とを接続する冷媒吐出管140と、室外熱交換器104の他端と液管接続口116とを接続する冷媒配管141と、ガス管接続口117と四方弁103とを接続する冷媒配管142と、四方弁103と圧縮機101の冷媒の吸込口とを接続する冷媒吸入管143とを備える。
冷媒吐出管140には、圧縮機101側から順に、オイルセパレータ102及び四方弁103が設けられている。
冷媒配管141には、冷房運転時の冷媒の流れの上流側から順に、室外膨張機構106、レシーバタンク105、及び、過冷却熱交換器109が設けられている。
The outdoor unit 100 includes a refrigerant discharge pipe 140 that connects the refrigerant discharge port of the compressor 101 and one end of the outdoor heat exchanger 104, and a refrigerant that connects the other end of the outdoor heat exchanger 104 and the liquid pipe connection port 116. A pipe 141, a refrigerant pipe 142 connecting the gas pipe connection port 117 and the four-way valve 103, and a refrigerant suction pipe 143 connecting the four-way valve 103 and the refrigerant suction port of the compressor 101 are provided.
The refrigerant discharge pipe 140 is provided with an oil separator 102 and a four-way valve 103 in order from the compressor 101 side.
In the refrigerant pipe 141, an outdoor expansion mechanism 106, a receiver tank 105, and a supercooling heat exchanger 109 are provided in order from the upstream side of the refrigerant flow during the cooling operation.

また、室外ユニット100は、レシーバタンク105のガス冷媒の出口105aと冷媒吐出管140とを接続する冷媒戻し管144と、レシーバタンク105の出口105aと冷媒吸入管143とを接続するバイパス管145(バイパス回路)と、冷媒配管141とバイパス管145とを接続する分岐管146とを備える。
詳細には、冷媒戻し管144の端は、冷媒吐出管140においてオイルセパレータ102と四方弁103との間に接続されている。また、冷媒戻し管144には電磁弁108が設けられ、冷媒戻し管144の冷媒の流量は電磁弁108によって制御される。
The outdoor unit 100 also includes a refrigerant return pipe 144 that connects the gas refrigerant outlet 105 a of the receiver tank 105 and the refrigerant discharge pipe 140, and a bypass pipe 145 that connects the outlet 105 a of the receiver tank 105 and the refrigerant suction pipe 143 ( A bypass circuit) and a branch pipe 146 connecting the refrigerant pipe 141 and the bypass pipe 145.
Specifically, the end of the refrigerant return pipe 144 is connected between the oil separator 102 and the four-way valve 103 in the refrigerant discharge pipe 140. The refrigerant return pipe 144 is provided with an electromagnetic valve 108, and the flow rate of the refrigerant in the refrigerant return pipe 144 is controlled by the electromagnetic valve 108.

また、バイパス管145には、上流側から順に、逆止弁107、過冷却膨張機構110、及び、過冷却熱交換器109が接続されている。逆止弁107は、レシーバタンク105から過冷却膨張機構110側への流れのみを許容する逆止弁である。過冷却熱交換器109では、バイパス管145の冷媒と冷媒配管141の冷媒とが熱交換される。
分岐管146の一端は、冷媒配管141において過冷却熱交換器109と液管接続口116との間の区間を構成する配管141aに接続されている。ここで、配管141aは、過冷却熱交換器109と室内膨張機構301a,301bとを繋ぐ配管の一部を構成している。
分岐管146の他端は、バイパス管145において過冷却膨張機構110の上流の部分、すなわち、逆止弁107と過冷却膨張機構110との間に接続されている。分岐管146には、逆止弁111が設けられている。逆止弁111は、配管141aからバイパス管145側への流れのみを許容する逆止弁である。
バイパス管145において、少なくとも過冷却膨張機構110の上流側の部分の配管145aの径は、分岐管146の径よりも大径に形成されている。
In addition, a check valve 107, a supercooling expansion mechanism 110, and a supercooling heat exchanger 109 are connected to the bypass pipe 145 in order from the upstream side. The check valve 107 is a check valve that allows only the flow from the receiver tank 105 to the supercooling expansion mechanism 110 side. In the supercooling heat exchanger 109, heat is exchanged between the refrigerant in the bypass pipe 145 and the refrigerant in the refrigerant pipe 141.
One end of the branch pipe 146 is connected to a pipe 141 a that forms a section between the supercooling heat exchanger 109 and the liquid pipe connection port 116 in the refrigerant pipe 141. Here, the pipe 141a constitutes a part of the pipe connecting the supercooling heat exchanger 109 and the indoor expansion mechanisms 301a and 301b.
The other end of the branch pipe 146 is connected to a portion of the bypass pipe 145 upstream of the supercooling expansion mechanism 110, that is, between the check valve 107 and the supercooling expansion mechanism 110. A check valve 111 is provided in the branch pipe 146. The check valve 111 is a check valve that allows only a flow from the pipe 141a to the bypass pipe 145 side.
In the bypass pipe 145, at least the diameter of the pipe 145 a on the upstream side of the subcooling expansion mechanism 110 is formed larger than the diameter of the branch pipe 146.

室外ユニット100は、冷媒吸入管143において、バイパス管145が冷媒吸入管143に合流する合流部145bと四方弁103との間に、第1の温度センサ114を備える。
また、室外ユニット100は、レシーバタンク105と過冷却熱交換器109との間に、第2の温度センサ112を備える。
さらに、室外ユニット100は、冷媒吸入管143において、合流部145bと圧縮機101の吸込口との間に、第3の温度センサ113を備える。
すなわち、冷媒吸入管143においてバイパス管145が合流する前の冷媒の温度が第1の温度センサ114によって検出され、冷媒吸入管143においてバイパス管145が合流した後の冷媒の温度が第3の温度センサ113によって検出される。また、レシーバタンク105を出て過冷却熱交換器109に流入する前の冷媒の温度が第2の温度センサ112によって検出される。
The outdoor unit 100 includes a first temperature sensor 114 in the refrigerant suction pipe 143 between the junction portion 145 b where the bypass pipe 145 merges with the refrigerant suction pipe 143 and the four-way valve 103.
The outdoor unit 100 includes a second temperature sensor 112 between the receiver tank 105 and the supercooling heat exchanger 109.
Furthermore, the outdoor unit 100 includes a third temperature sensor 113 in the refrigerant suction pipe 143 between the junction 145 b and the suction port of the compressor 101.
That is, the temperature of the refrigerant before the bypass pipe 145 merges in the refrigerant suction pipe 143 is detected by the first temperature sensor 114, and the temperature of the refrigerant after the bypass pipe 145 merges in the refrigerant suction pipe 143 is the third temperature. It is detected by the sensor 113. Further, the temperature of the refrigerant before leaving the receiver tank 105 and flowing into the supercooling heat exchanger 109 is detected by the second temperature sensor 112.

制御部150は、圧縮機101、四方弁103、室外膨張機構106、電磁弁108、及び、過冷却膨張機構110の動作を制御する。また、制御部150は、第1の温度センサ114、第2の温度センサ112、及び、第3の温度センサ113の検出値を取得する。   The control unit 150 controls operations of the compressor 101, the four-way valve 103, the outdoor expansion mechanism 106, the electromagnetic valve 108, and the supercooling expansion mechanism 110. In addition, the control unit 150 acquires detection values of the first temperature sensor 114, the second temperature sensor 112, and the third temperature sensor 113.

次に、室外ユニット100及び室内ユニット300a,300bの動作を説明する。
図1では、冷房運転時の冷媒の流れが矢印で示されている。
図1に示すように、冷房運転時には、圧縮機101から冷媒吐出管140に吐出された高温高圧のガス冷媒は、オイルセパレータ102により冷凍機油が分離された後、四方弁103を通過して室外熱交換器104へ流入する。室外熱交換器104により外気に放熱して凝縮した高圧液冷媒は、室外膨張機構106を通過した後、冷媒配管141を通ってレシーバタンク105に流入する。この時、室外膨張機構106は室外熱交換器104の出口の冷媒の過冷却度が所定の値となるように制御される。
レシーバタンク105に流入した冷媒はガス冷媒と液冷媒とに分離され、液冷媒のみが冷媒配管141を通って過冷却熱交換器109に導かれる。冷媒配管141を通って過冷却熱交換器109に流入する冷媒は、バイパス管145を通って過冷却熱交換器109に流入した冷媒と熱交換する。この熱交換については後述する。
Next, operations of the outdoor unit 100 and the indoor units 300a and 300b will be described.
In FIG. 1, the flow of the refrigerant during the cooling operation is indicated by arrows.
As shown in FIG. 1, during the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 to the refrigerant discharge pipe 140 is separated from the refrigeration oil by the oil separator 102 and then passes through the four-way valve 103 to the outdoor. It flows into the heat exchanger 104. The high-pressure liquid refrigerant that has radiated heat to the outside air and condensed by the outdoor heat exchanger 104 passes through the outdoor expansion mechanism 106 and then flows into the receiver tank 105 through the refrigerant pipe 141. At this time, the outdoor expansion mechanism 106 is controlled so that the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger 104 becomes a predetermined value.
The refrigerant flowing into the receiver tank 105 is separated into a gas refrigerant and a liquid refrigerant, and only the liquid refrigerant is led to the supercooling heat exchanger 109 through the refrigerant pipe 141. The refrigerant flowing into the supercooling heat exchanger 109 through the refrigerant pipe 141 exchanges heat with the refrigerant flowing into the supercooling heat exchanger 109 through the bypass pipe 145. This heat exchange will be described later.

過冷却熱交換器109を通過した冷媒の本流は、液管210及び分配管303,303を通って室内ユニット300a,300bに導かれる。液管210から室内ユニット300a,300bに流入した液冷媒は、室内膨張機構301a,301bによって減圧されて気液二相状態となり、室内熱交換器302a,302bで室内を冷房した後、分配管304,304を通ってガス管220へ導かれる。ガス管220を通過した冷媒は室外ユニット100に戻り、冷媒配管142、四方弁103、及び、冷媒吸入管143を順に通って圧縮機101に吸込まれる。   The main flow of the refrigerant that has passed through the supercooling heat exchanger 109 is guided to the indoor units 300a and 300b through the liquid pipe 210 and the distribution pipes 303 and 303. The liquid refrigerant flowing into the indoor units 300a and 300b from the liquid pipe 210 is decompressed by the indoor expansion mechanisms 301a and 301b to be in a gas-liquid two-phase state, and after cooling the room with the indoor heat exchangers 302a and 302b, the distribution pipe 304 , 304 through the gas pipe 220. The refrigerant that has passed through the gas pipe 220 returns to the outdoor unit 100, and is sucked into the compressor 101 through the refrigerant pipe 142, the four-way valve 103, and the refrigerant suction pipe 143 in order.

レシーバタンク105で分離されたガス冷媒は、冷媒戻し管144とバイパス管145とに分岐して流れる。
レシーバタンク105から冷媒戻し管144に流入した冷媒は、冷媒吐出管140においてオイルセパレータ102と四方弁103との間に流入し、その後、四方弁103を通って室外熱交換器104に流れる。
詳細には、制御部150は、センサ等(不図示)によって冷媒不足を検知した場合に、電磁弁108を開状態とし、これにより、レシーバタンク105内に溜っている液冷媒は、高圧ガス冷媒により押し出され、冷媒戻し管144を通って冷媒吐出管140に流入する。これにより、冷媒吐出管140側の冷媒不足が解消される。また、制御部150は、冷媒不足が検知されない場合は、電磁弁108を閉状態にする。
The gas refrigerant separated in the receiver tank 105 branches and flows into the refrigerant return pipe 144 and the bypass pipe 145.
The refrigerant that flows into the refrigerant return pipe 144 from the receiver tank 105 flows between the oil separator 102 and the four-way valve 103 in the refrigerant discharge pipe 140, and then flows to the outdoor heat exchanger 104 through the four-way valve 103.
Specifically, the control unit 150 opens the electromagnetic valve 108 when detecting a refrigerant shortage by a sensor or the like (not shown), whereby the liquid refrigerant stored in the receiver tank 105 is a high-pressure gas refrigerant. And flows into the refrigerant discharge pipe 140 through the refrigerant return pipe 144. Thereby, the refrigerant shortage on the refrigerant discharge pipe 140 side is solved. Moreover, the control part 150 makes the solenoid valve 108 a closed state, when lack of a refrigerant | coolant is not detected.

レシーバタンク105からバイパス管145に流入した冷媒は、逆止弁107を経て過冷却膨張機構110に流れる。さらに、冷媒配管141から過冷却熱交換器109に流入して配管141aを流れる冷媒の一部は、分岐して分岐管146に流れ、逆止弁111を通り、バイパス管145における過冷却膨張機構110の上流側に合流し、その後、過冷却膨張機構110に流れる。   The refrigerant flowing into the bypass pipe 145 from the receiver tank 105 flows into the supercooling expansion mechanism 110 through the check valve 107. Further, a part of the refrigerant flowing into the supercooling heat exchanger 109 from the refrigerant pipe 141 and flowing through the pipe 141a branches and flows to the branch pipe 146, passes through the check valve 111, and is a supercooling expansion mechanism in the bypass pipe 145. 110 and then flows to the supercooling expansion mechanism 110.

過冷却膨張機構110に流入した冷媒は、過冷却膨張機構110によって減圧され低温となり、過冷却熱交換器109に流入する。過冷却膨張機構110を通って過冷却熱交換器109に流入した低温の冷媒は、冷媒配管141から過冷却熱交換器109に流入した冷媒と熱交換し、冷媒配管141から過冷却熱交換器109に流入した冷媒が冷却される。これにより、過冷却熱交換器109から室内ユニット300a,300bに流れる冷媒の過冷却度が増加するため、効率良く冷房することができる。
上述のように、バイパス管145において、少なくとも過冷却膨張機構110の上流側の部分の配管145aの径は、分岐管146の径よりも大径に形成されている。これにより、バイパス管145の冷媒の圧力損失が小さくなるとともに、分岐管146の冷媒の圧力損失が大きくなり、分岐管146に流れる冷媒量が過剰になることを防止できる。
The refrigerant that has flowed into the supercooling expansion mechanism 110 is decompressed by the supercooling expansion mechanism 110 to become a low temperature, and flows into the supercooling heat exchanger 109. The low-temperature refrigerant that has flowed into the supercooling heat exchanger 109 through the supercooling expansion mechanism 110 exchanges heat with the refrigerant that has flowed into the supercooling heat exchanger 109 from the refrigerant pipe 141, and the supercooling heat exchanger from the refrigerant pipe 141. The refrigerant flowing into 109 is cooled. Thereby, since the supercooling degree of the refrigerant | coolant which flows into the indoor unit 300a, 300b from the supercooling heat exchanger 109 increases, it can cool efficiently.
As described above, in the bypass pipe 145, at least the diameter of the pipe 145 a on the upstream side of the subcooling expansion mechanism 110 is formed larger than the diameter of the branch pipe 146. Thereby, while the pressure loss of the refrigerant | coolant of the bypass pipe 145 becomes small, the pressure loss of the refrigerant | coolant of the branch pipe 146 becomes large, and it can prevent that the refrigerant | coolant amount which flows into the branch pipe 146 becomes excess.

過冷却膨張機構110から過冷却熱交換器109に流入して熱交換した冷媒は、バイパス管145をさらに流れ、合流部145bで冷媒吸入管143に合流し、冷媒吸入管143を通って圧縮機101に吸込まれる。すなわち、本実施の形態では、過冷却膨張機構110を通過して低温となった冷媒が圧縮機101に戻り、圧縮機101の吸込冷媒温度が低下するため、圧縮機101の吐出冷媒温度を低下させることができる。   The refrigerant that flows into the supercooling heat exchanger 109 from the supercooling expansion mechanism 110 and exchanges heat further flows through the bypass pipe 145, merges with the refrigerant suction pipe 143 at the junction 145b, passes through the refrigerant suction pipe 143, and is compressed by the compressor. 101 is inhaled. That is, in the present embodiment, the refrigerant that has passed through the supercooling expansion mechanism 110 and has reached a low temperature returns to the compressor 101, and the suction refrigerant temperature of the compressor 101 decreases, so the discharge refrigerant temperature of the compressor 101 decreases. Can be made.

詳細には、制御部150は、第1の温度センサ114により検知した吸込冷媒温度T1(不図示)と、第2の温度センサ112により検知したレシーバタンク105の出口側の冷媒温度T2(不図示)とを比較する。吸込冷媒温度T1<冷媒温度T2の場合、制御部150は、過冷却膨張機構110を全閉状態とする。これにより、吸込冷媒温度T1よりも高温なレシーバタンク105の出口側の冷媒がバイパス管145を通って圧縮機101の吸込口に戻ることを防止でき、圧縮機101の吐出冷媒温度の上昇を抑制できる。   Specifically, the control unit 150 detects the suction refrigerant temperature T1 (not shown) detected by the first temperature sensor 114 and the refrigerant temperature T2 (not shown) on the outlet side of the receiver tank 105 detected by the second temperature sensor 112. ). When the suction refrigerant temperature T1 <the refrigerant temperature T2, the control unit 150 causes the supercooling expansion mechanism 110 to be fully closed. As a result, it is possible to prevent the refrigerant on the outlet side of the receiver tank 105 having a temperature higher than the suction refrigerant temperature T1 from returning to the suction port of the compressor 101 through the bypass pipe 145, and to suppress an increase in the discharge refrigerant temperature of the compressor 101. it can.

また、制御部150は、吸込冷媒温度T1>冷媒温度T2の場合、過冷却膨張機構110の開度を増加させる。これにより、過冷却膨張機構110を通過して低温となった冷媒が圧縮機101に戻るため、圧縮機101の吸込冷媒温度を低下させることができる。
さらに、制御部150は、吸込冷媒温度T1>冷媒温度T2の状態で過冷却膨張機構110の開度を調節する際、第3の温度センサ113により検知される圧縮機101の吸込口側の冷媒温度T3(不図示)が所定の値となるように過冷却膨張機構110を制御する。ここで、冷媒温度T3の所定の値は、冷媒がバイパス管145を通って過剰に圧縮機101に戻らないように設定される。このため、冷媒が過剰に戻ることによる性能低下を抑制できる。
Moreover, the control part 150 increases the opening degree of the subcooling expansion mechanism 110, when the suction refrigerant temperature T1> refrigerant temperature T2. Thereby, since the refrigerant | coolant which passed the supercooling expansion mechanism 110 and became low temperature returns to the compressor 101, the suction | inhalation refrigerant | coolant temperature of the compressor 101 can be reduced.
Further, the control unit 150 adjusts the opening degree of the subcooling expansion mechanism 110 in a state where the suction refrigerant temperature T1> the refrigerant temperature T2, and the refrigerant on the suction port side of the compressor 101 detected by the third temperature sensor 113. The supercooling expansion mechanism 110 is controlled so that the temperature T3 (not shown) becomes a predetermined value. Here, the predetermined value of the refrigerant temperature T3 is set so that the refrigerant does not excessively return to the compressor 101 through the bypass pipe 145. For this reason, the performance fall by a refrigerant | coolant returning excessively can be suppressed.

図2は、暖房運転時における空気調和装置10の冷媒回路図である。図2では、暖房運転時の冷媒の流れが矢印で示されている。
図2に示すように、暖房運転時には、圧縮機101から冷媒吐出管140に吐出された高温高圧のガス冷媒は、オイルセパレータ102により冷凍機油が分離された後、四方弁103を通過して冷媒配管142に流れる。冷媒配管142に流れた冷媒は、ガス管220及び分配管304,304を通って室内ユニット300a,300bに導かれる。
室内ユニット300a,300bに導かれた冷媒は、室内熱交換器302a,302bで凝縮することにより室内を暖房する。この時、室内膨張機構301a,301bは、室内熱交換器302a,302bの出口における冷媒の過冷却度が設定値になるよう制御される。
FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus 10 during heating operation. In FIG. 2, the flow of the refrigerant during the heating operation is indicated by arrows.
As shown in FIG. 2, during heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 to the refrigerant discharge pipe 140 passes through the four-way valve 103 after the refrigeration oil is separated by the oil separator 102. It flows into the pipe 142. The refrigerant that has flowed into the refrigerant pipe 142 is led to the indoor units 300a and 300b through the gas pipe 220 and the distribution pipes 304 and 304.
The refrigerant led to the indoor units 300a and 300b condenses in the indoor heat exchangers 302a and 302b to heat the room. At this time, the indoor expansion mechanisms 301a and 301b are controlled so that the degree of supercooling of the refrigerant at the outlets of the indoor heat exchangers 302a and 302b becomes a set value.

室内ユニット300a,300bを通過した高圧液冷媒は、液管210を通過した後、室外ユニット100へ流入する。室外ユニット100に流入した高圧液冷媒は、配管141aを通り、過冷却熱交換器109の側へ向かう流れと、分岐管146を通る流れとに分岐する。
配管141aから過冷却熱交換器109を通過した冷媒は、レシーバタンク105へと導かれ、レシーバタンク105で液冷媒とガス冷媒とに分離される。
レシーバタンク105で分離された液冷媒は、冷媒配管141を流れ、室外膨張機構106で低圧低温の気液二相状態となり、その後、室外熱交換器104で外気から吸熱して蒸発し、低圧ガス冷媒となる。この冷媒は、四方弁103を経て冷媒吸入管143に流れ、圧縮機101に吸込まれる。このように、暖房運転時は、ガス冷媒が室外熱交換器104の上流のレシーバタンク105で分離され、暖房運転時に蒸発に寄与しないガス冷媒が室外熱交換器104に流れることが抑制される。これにより、室外熱交換器104の冷媒循環量を小さくして冷媒の圧力損失を低減できるため、暖房性能を向上できる。
The high-pressure liquid refrigerant that has passed through the indoor units 300 a and 300 b passes through the liquid pipe 210 and then flows into the outdoor unit 100. The high-pressure liquid refrigerant that has flowed into the outdoor unit 100 passes through the pipe 141 a and branches into a flow toward the supercooling heat exchanger 109 and a flow through the branch pipe 146.
The refrigerant that has passed through the supercooling heat exchanger 109 from the pipe 141 a is guided to the receiver tank 105, and is separated into liquid refrigerant and gas refrigerant in the receiver tank 105.
The liquid refrigerant separated in the receiver tank 105 flows through the refrigerant pipe 141, becomes a low-pressure and low-temperature gas-liquid two-phase state by the outdoor expansion mechanism 106, and then absorbs heat from the outside air and evaporates in the outdoor heat exchanger 104, and the low-pressure gas Becomes a refrigerant. This refrigerant flows into the refrigerant suction pipe 143 through the four-way valve 103 and is sucked into the compressor 101. Thus, during the heating operation, the gas refrigerant is separated by the receiver tank 105 upstream of the outdoor heat exchanger 104, and the gas refrigerant that does not contribute to evaporation during the heating operation is suppressed from flowing into the outdoor heat exchanger 104. Thereby, since the refrigerant | coolant circulation amount of the outdoor heat exchanger 104 can be made small and the pressure loss of a refrigerant | coolant can be reduced, heating performance can be improved.

レシーバタンク105で分離されたガス冷媒は、冷媒戻し管144とバイパス管145とに分岐して流れる。
レシーバタンク105から冷媒戻し管144に流入した冷媒は、冷媒吐出管140においてオイルセパレータ102と四方弁103との間に流入し、その後、四方弁103を通って室外熱交換器104に流れる。
詳細には、制御部150は、センサ等(不図示)によって冷媒不足を検知した場合に、電磁弁108を開状態とし、これにより、レシーバタンク105内に溜っている液冷媒は、高圧ガス冷媒により押し出され、冷媒戻し管144を通って冷媒吐出管140に流入する。これにより、冷媒吐出管140側の冷媒不足が解消される。また、制御部150は、冷媒不足が検知されない場合は、電磁弁108を閉状態にする。
The gas refrigerant separated in the receiver tank 105 branches and flows into the refrigerant return pipe 144 and the bypass pipe 145.
The refrigerant that flows into the refrigerant return pipe 144 from the receiver tank 105 flows between the oil separator 102 and the four-way valve 103 in the refrigerant discharge pipe 140, and then flows to the outdoor heat exchanger 104 through the four-way valve 103.
Specifically, the control unit 150 opens the electromagnetic valve 108 when detecting a refrigerant shortage by a sensor or the like (not shown), whereby the liquid refrigerant stored in the receiver tank 105 is a high-pressure gas refrigerant. And flows into the refrigerant discharge pipe 140 through the refrigerant return pipe 144. Thereby, the refrigerant shortage on the refrigerant discharge pipe 140 side is solved. Moreover, the control part 150 makes the solenoid valve 108 a closed state, when lack of a refrigerant | coolant is not detected.

レシーバタンク105からバイパス管145に流入した冷媒は、逆止弁107を経て過冷却膨張機構110に流れる。さらに、配管141aから分岐管146に流れる冷媒は、逆止弁111を通り、バイパス管145における過冷却膨張機構110の上流側に合流し、その後、過冷却膨張機構110に流れる。   The refrigerant flowing into the bypass pipe 145 from the receiver tank 105 flows into the supercooling expansion mechanism 110 through the check valve 107. Further, the refrigerant flowing from the pipe 141 a to the branch pipe 146 passes through the check valve 111, joins the upstream side of the supercooling expansion mechanism 110 in the bypass pipe 145, and then flows to the supercooling expansion mechanism 110.

過冷却膨張機構110に流入した冷媒は、過冷却膨張機構110によって減圧され低温となり、過冷却熱交換器109に流入する。過冷却膨張機構110を通って過冷却熱交換器109に流入した低温の冷媒は、冷媒配管141から過冷却熱交換器109に流入した冷媒と熱交換し、温度が上昇する。   The refrigerant that has flowed into the supercooling expansion mechanism 110 is decompressed by the supercooling expansion mechanism 110 to become a low temperature, and flows into the supercooling heat exchanger 109. The low-temperature refrigerant that has flowed into the supercooling heat exchanger 109 through the supercooling expansion mechanism 110 exchanges heat with the refrigerant that has flowed into the supercooling heat exchanger 109 from the refrigerant pipe 141, and the temperature rises.

過冷却膨張機構110から過冷却熱交換器109に流入して熱交換した冷媒は、バイパス管145をさらに流れ、合流部145bで冷媒吸入管143に合流し、冷媒吸入管143を通って圧縮機101に吸込まれる。すなわち、本実施の形態では、過冷却膨張機構110を通過して低温となった冷媒が圧縮機101に戻り、圧縮機101の吸込冷媒温度が低下するため、圧縮機101の吐出冷媒温度を低下させることができる。
本実施の形態では、過冷却膨張機構110を通って過冷却熱交換器109に流入した低温の冷媒は、過冷却熱交換器109で熱交換して温度が上昇してから圧縮機101に戻る。これにより、バイパス管145の流量を多くした場合であっても、冷媒吸入管143側の冷媒を冷やし過ぎることを防止でき、圧縮機101への液バックを防止できる。このため、レシーバタンク105で分離したガス冷媒をバイパス管145に多く流すことができ、暖房運転時に蒸発に寄与しないガス冷媒を効率良く室外熱交換器104に対してバイパスさせることができ、暖房性能を向上できる。
The refrigerant that flows into the supercooling heat exchanger 109 from the supercooling expansion mechanism 110 and exchanges heat further flows through the bypass pipe 145, merges with the refrigerant suction pipe 143 at the junction 145b, passes through the refrigerant suction pipe 143, and is compressed by the compressor. 101 is inhaled. That is, in the present embodiment, the refrigerant that has passed through the supercooling expansion mechanism 110 and has reached a low temperature returns to the compressor 101, and the suction refrigerant temperature of the compressor 101 decreases, so the discharge refrigerant temperature of the compressor 101 decreases. Can be made.
In the present embodiment, the low-temperature refrigerant that has flowed into the supercooling heat exchanger 109 through the supercooling expansion mechanism 110 exchanges heat with the supercooling heat exchanger 109 and then returns to the compressor 101 after the temperature rises. . Thereby, even when the flow rate of the bypass pipe 145 is increased, it is possible to prevent the refrigerant on the refrigerant suction pipe 143 side from being overcooled and to prevent liquid back to the compressor 101. Therefore, a large amount of the gas refrigerant separated in the receiver tank 105 can be caused to flow to the bypass pipe 145, and the gas refrigerant that does not contribute to evaporation during heating operation can be efficiently bypassed to the outdoor heat exchanger 104. Can be improved.

詳細には、制御部150は、センサ(不図示)により検出される圧縮機101の吐出冷媒温度が所定の値より低い時は、過冷却膨張機構110を閉状態とし、バイパス管145から圧縮機101の冷媒が流れないようにする。これにより、吐出冷媒温度が低い状態で冷媒が過剰にバイパスして圧縮機101に戻ることが防止される。   Specifically, when the discharge refrigerant temperature of the compressor 101 detected by a sensor (not shown) is lower than a predetermined value, the control unit 150 closes the supercooling expansion mechanism 110 and connects the compressor from the bypass pipe 145 to the compressor. The refrigerant 101 is prevented from flowing. This prevents the refrigerant from bypassing excessively and returning to the compressor 101 in a state where the discharged refrigerant temperature is low.

また、制御部150は、センサ(不図示)により検出される圧縮機101の吐出冷媒温度が所定の値以上の時は、過冷却膨張機構110の開度を増加させる。これにより、過冷却膨張機構110を通過して低温となった冷媒が圧縮機101に戻るため、圧縮機101の吸込冷媒温度を低下させることができる。
さらに、制御部150は、吐出冷媒温度が所定の値以上の時において過冷却膨張機構110の開度を調節する際、第3の温度センサ113により検知される圧縮機101の吸込口側の冷媒温度T3(不図示)が所定の値となるように過冷却膨張機構110を制御する。ここで、冷媒温度T3の所定の値は、冷媒がバイパス管145を通って過剰に圧縮機101に戻らないように設定される。
Further, the control unit 150 increases the opening degree of the supercooling expansion mechanism 110 when the discharge refrigerant temperature of the compressor 101 detected by a sensor (not shown) is equal to or higher than a predetermined value. Thereby, since the refrigerant | coolant which passed the supercooling expansion mechanism 110 and became low temperature returns to the compressor 101, the suction | inhalation refrigerant | coolant temperature of the compressor 101 can be reduced.
Furthermore, when the controller 150 adjusts the opening degree of the supercooling expansion mechanism 110 when the discharged refrigerant temperature is equal to or higher than a predetermined value, the refrigerant on the inlet side of the compressor 101 detected by the third temperature sensor 113 is used. The supercooling expansion mechanism 110 is controlled so that the temperature T3 (not shown) becomes a predetermined value. Here, the predetermined value of the refrigerant temperature T3 is set so that the refrigerant does not excessively return to the compressor 101 through the bypass pipe 145.

以上説明したように、本発明の実施の形態によれば、空気調和装置10は、室外ユニット100と複数台の室内ユニット300a,300bとを備え、室外ユニット100は、圧縮機101、四方弁103、室外熱交換器104、室外膨張機構106、及び、レシーバタンク105を有し、室内ユニット300a,300bは、室内膨張機構301a,301b及び室内熱交換器302a,302bを有し、室外ユニット100と室内ユニット300a,300bとはガス管220及び液管210で接続されており、冷房運転もしくは暖房運転のいずれか一方で運転可能であり、室外ユニット100は、室外ユニット100を流れる冷媒と熱交換する過冷却熱交換器109、及び、過冷却膨張機構110を備え、冷房運転時において圧縮機101から吐出された冷媒は、四方弁103、室外熱交換器104、室外膨張機構106、レシーバタンク105、過冷却熱交換器109、室内膨張機構301a,301b、及び、室内熱交換器302a,302bの順に流れ、暖房運転時において圧縮機101から吐出された冷媒は、四方弁103、室内熱交換器302a,302b、室内膨張機構301a,301b、過冷却膨張機構110、レシーバタンク105、室外膨張機構106、及び、室外熱交換器104の順に流れ、レシーバタンク105は冷媒を気液分離する構造を備え、レシーバタンク105内のガス冷媒を、過冷却膨張機構110及び過冷却熱交換器109の順に通過させて圧縮機101の吸込口側に戻すバイパス管145を備える。
これにより、冷房運転時には、レシーバタンク105で分離されたガス冷媒が、バイパス管145を過冷却膨張機構110及び過冷却熱交換器109の順に通過し、過冷却膨張機構110で冷却されてから圧縮機101の吸込口に戻るため、圧縮機101の吸込冷媒温度を低下させることができ、冷房運転時における圧縮機101の吐出冷媒温度を低下させることができる。さらに、冷房運転時に、レシーバタンク105から室内熱交換器302a,302b側に流れる液冷媒は、バイパス管145の冷媒が流れる過冷却熱交換器109で冷却されて過冷却度が増加する。このため、室内熱交換器302a,302bに流入する気液二相状態の冷媒において蒸発に寄与する液冷媒の割合を増加させることができ、冷房の性能を向上できる。さらに、冷房運転時には、室外膨張機構106を全開にした場合であっても、室外膨張機構106のオリフィス部で圧力損失が発生し、冷媒がフラッシュ(気泡が発生)する傾向にあるが、室外膨張機構106を通過した冷媒はレシーバタンク105でガス冷媒が分離されて液管210側に流れるため、液管210側で冷媒がフラッシュすることを抑制でき、冷房性能を向上できる。また、室外ユニット100の近くに熱源がある場合、室外熱交換器104のフィンが目詰まりしている場合、及び、室外ユニット100が風通しの悪い場所に設置される場合等、は周囲温度の上昇によりフラッシュが発生し易くなるが、この場合であっても同様に、レシーバタンク105によってフラッシュの発生を抑制できる。
また、暖房運転時には、室内ユニット300a,300b側からレシーバタンク105に戻った冷媒のガス冷媒が、バイパス管145の過冷却膨張機構110を通って圧縮機101の吸込口に戻るため、暖房運転時の圧縮機の吐出冷媒温度を低下させることができる。その上、暖房運転時には、蒸発に寄与しないガス冷媒がバイパス管145を通って室外熱交換器104をバイパスするため、室外熱交換器104の冷媒循環量を小さくでき、冷媒の圧力損失を低減できる。このため、冷房運転時及び暖房運転時において、吐出冷媒温度の上昇を抑制しながら性能向上を図ることができる。
As described above, according to the embodiment of the present invention, the air conditioner 10 includes the outdoor unit 100 and the plurality of indoor units 300a and 300b. The outdoor unit 100 includes the compressor 101 and the four-way valve 103. The outdoor heat exchanger 104, the outdoor expansion mechanism 106, and the receiver tank 105. The indoor units 300a and 300b include indoor expansion mechanisms 301a and 301b and indoor heat exchangers 302a and 302b. The indoor units 300a and 300b are connected by a gas pipe 220 and a liquid pipe 210 and can be operated in either a cooling operation or a heating operation. The outdoor unit 100 exchanges heat with the refrigerant flowing in the outdoor unit 100. A supercooling heat exchanger 109 and a supercooling expansion mechanism 110 are provided, and the compressor 1 is used during cooling operation. The refrigerant discharged from 1 includes a four-way valve 103, an outdoor heat exchanger 104, an outdoor expansion mechanism 106, a receiver tank 105, a supercooling heat exchanger 109, indoor expansion mechanisms 301a and 301b, and indoor heat exchangers 302a and 302b. The refrigerant discharged from the compressor 101 during the heating operation is the four-way valve 103, the indoor heat exchangers 302a and 302b, the indoor expansion mechanisms 301a and 301b, the supercooling expansion mechanism 110, the receiver tank 105, and the outdoor expansion mechanism. 106 and the outdoor heat exchanger 104, the receiver tank 105 has a structure for separating the refrigerant into gas and liquid, and the gas refrigerant in the receiver tank 105 is separated into the supercooling expansion mechanism 110 and the supercooling heat exchanger 109 in this order. A bypass pipe 145 that passes through and returns to the suction port side of the compressor 101 is provided.
Thus, during the cooling operation, the gas refrigerant separated in the receiver tank 105 passes through the bypass pipe 145 in the order of the supercooling expansion mechanism 110 and the supercooling heat exchanger 109, and is compressed after being cooled by the supercooling expansion mechanism 110. Since it returns to the suction port of the machine 101, the suction refrigerant temperature of the compressor 101 can be lowered, and the discharge refrigerant temperature of the compressor 101 during the cooling operation can be lowered. Further, during the cooling operation, the liquid refrigerant flowing from the receiver tank 105 toward the indoor heat exchangers 302a and 302b is cooled by the supercooling heat exchanger 109 through which the refrigerant in the bypass pipe 145 flows, and the degree of supercooling increases. For this reason, the ratio of the liquid refrigerant which contributes to evaporation in the refrigerant in the gas-liquid two-phase state flowing into the indoor heat exchangers 302a and 302b can be increased, and the cooling performance can be improved. Further, during the cooling operation, even when the outdoor expansion mechanism 106 is fully opened, pressure loss occurs at the orifice portion of the outdoor expansion mechanism 106 and the refrigerant tends to flush (bubbles are generated). Since the refrigerant that has passed through the mechanism 106 is separated from the gas refrigerant in the receiver tank 105 and flows to the liquid pipe 210 side, the refrigerant can be prevented from flashing on the liquid pipe 210 side, and the cooling performance can be improved. Also, when there is a heat source near the outdoor unit 100, when the fins of the outdoor heat exchanger 104 are clogged, or when the outdoor unit 100 is installed in a place with poor ventilation, the ambient temperature rises. However, even in this case, the receiver tank 105 can similarly suppress the occurrence of flash.
Further, during the heating operation, the refrigerant gas refrigerant that has returned to the receiver tank 105 from the indoor units 300a and 300b side returns to the suction port of the compressor 101 through the supercooling expansion mechanism 110 of the bypass pipe 145. The discharge refrigerant temperature of the compressor can be lowered. In addition, during heating operation, the gas refrigerant that does not contribute to evaporation passes through the bypass pipe 145 and bypasses the outdoor heat exchanger 104. Therefore, the refrigerant circulation amount of the outdoor heat exchanger 104 can be reduced, and the pressure loss of the refrigerant can be reduced. . For this reason, performance improvement can be aimed at suppressing the raise of discharge refrigerant temperature at the time of air_conditionaing | cooling operation and heating operation.

また、空気調和装置10は、バイパス管145における過冷却膨張機構110の上流側と、過冷却熱交換器109と室内膨張機構301a,301bとを繋ぐ配管と、を繋ぐ分岐管146を備える。これにより、冷房運転時には、レシーバタンク105から過冷却熱交換器109に流れた液冷媒の一部を、分岐管146を介して過冷却膨張機構110及び過冷却熱交換器109に流し、この冷媒を圧縮機101の吸込口に戻して吐出冷媒温度の低下を図ることができる。また、暖房運転時には、室内膨張機構301a,301bを通って室外ユニット100に戻った冷媒の一部を、分岐管146を介して過冷却膨張機構110及び過冷却熱交換器109に流し、この冷媒を圧縮機101の吸込口に戻して吐出冷媒温度の低下を図ることができる。   In addition, the air conditioner 10 includes a branch pipe 146 that connects the upstream side of the subcooling expansion mechanism 110 in the bypass pipe 145 and a pipe that connects the subcooling heat exchanger 109 and the indoor expansion mechanisms 301a and 301b. Thereby, at the time of cooling operation, a part of the liquid refrigerant flowing from the receiver tank 105 to the supercooling heat exchanger 109 is caused to flow to the supercooling expansion mechanism 110 and the supercooling heat exchanger 109 via the branch pipe 146. Can be returned to the suction port of the compressor 101 to lower the discharge refrigerant temperature. Further, during the heating operation, a part of the refrigerant that has returned to the outdoor unit 100 through the indoor expansion mechanisms 301a and 301b is caused to flow to the supercooling expansion mechanism 110 and the supercooling heat exchanger 109 via the branch pipe 146. Can be returned to the suction port of the compressor 101 to lower the discharge refrigerant temperature.

また、バイパス管145が圧縮機101の吸込口と四方弁103との間に合流する合流部145bと四方弁103との間に第1の温度センサ114が設けられ、レシーバタンク105と過冷却熱交換器109との間に第2の温度センサ112が設けられ、合流部145bと圧縮機101の吸込口との間に第3の温度センサ113が設けられ、第1の温度センサ114及び第2の温度センサ112の検出値を用いて第3の温度センサ113の検出値が所定の値となるように過冷却膨張機構110の開度を調整する。これにより、第1の温度センサ114によって、バイパス管145が合流する前の吸込側の冷媒温度を検知でき、第2の温度センサ112によって、レシーバタンク105の出口側の冷媒温度を検知でき、第3の温度センサ113によって合流部145bの下流で吸込口の近くの冷媒温度を検知できるため、バイパス管145を通って圧縮機101の吸込口に戻る冷媒の量を適切に制御でき、圧縮機101の吐出冷媒温度を効果的に低下させることができる。   In addition, a first temperature sensor 114 is provided between the merging portion 145 b where the bypass pipe 145 merges between the suction port of the compressor 101 and the four-way valve 103 and the four-way valve 103, and the receiver tank 105 and the supercooling heat A second temperature sensor 112 is provided between the exchanger 109 and a third temperature sensor 113 is provided between the merging portion 145b and the suction port of the compressor 101, and the first temperature sensor 114 and the second temperature sensor 114 are provided. The opening degree of the supercooling expansion mechanism 110 is adjusted using the detected value of the temperature sensor 112 so that the detected value of the third temperature sensor 113 becomes a predetermined value. Thereby, the refrigerant temperature on the suction side before the bypass pipe 145 joins can be detected by the first temperature sensor 114, the refrigerant temperature on the outlet side of the receiver tank 105 can be detected by the second temperature sensor 112, 3, the temperature of the refrigerant near the suction port can be detected downstream of the merge portion 145 b, so that the amount of the refrigerant returning to the suction port of the compressor 101 through the bypass pipe 145 can be appropriately controlled. The discharged refrigerant temperature can be effectively reduced.

さらに、バイパス管145におけるレシーバタンク105と過冷却膨張機構110とを接続する配管の径が、分岐管146の径よりも大きい。レシーバタンク105からバイパス管145を流れるガス冷媒の方が、分岐管146からバイパス管145に合流する液冷媒もしくは気液二相冷媒よりも密度が小さいため、バイパス管145の配管の径を大きくすることで、バイパス管145の冷媒の圧力損失が小さくなる。また、液冷媒もしくは気液二相冷媒が流れる分岐管146の径を小さくすることで、分岐管146の冷媒の圧力損失が大きくなる。このため、冷媒が分岐管146に偏って流れてバイパス管145の冷媒量が少なくなることを抑制できる。これにより、バイパス管145のガス冷媒と分岐管146の液冷媒もしくは気液二相冷媒とが合流してから過冷却熱交換器109に流れる場合に、冷媒の分流不良による性能低下を抑制できる。
また、冷媒は、R32、もしくは、R32を含む混合冷媒であるため、R410A冷媒よりも地球温暖化係数(GWP)が小さくなる。このため、R32、もしくは、R32を含む混合冷媒を用いた場合に、吐出冷媒温度の上昇を抑制しながら、環境に対する影響を低減できる。
Further, the diameter of the pipe connecting the receiver tank 105 and the subcooling expansion mechanism 110 in the bypass pipe 145 is larger than the diameter of the branch pipe 146. Since the gas refrigerant flowing from the receiver tank 105 through the bypass pipe 145 has a lower density than the liquid refrigerant or the gas-liquid two-phase refrigerant that merges from the branch pipe 146 to the bypass pipe 145, the diameter of the pipe of the bypass pipe 145 is increased. As a result, the pressure loss of the refrigerant in the bypass pipe 145 is reduced. Further, by reducing the diameter of the branch pipe 146 through which the liquid refrigerant or the gas-liquid two-phase refrigerant flows, the pressure loss of the refrigerant in the branch pipe 146 increases. For this reason, it can suppress that a refrigerant | coolant flows biased to the branch pipe 146 and the refrigerant | coolant amount of the bypass pipe 145 decreases. Thereby, when the gas refrigerant of the bypass pipe 145 and the liquid refrigerant or the gas-liquid two-phase refrigerant of the branch pipe 146 flow together and then flow into the supercooling heat exchanger 109, it is possible to suppress performance degradation due to poor refrigerant distribution.
Further, since the refrigerant is R32 or a mixed refrigerant containing R32, the global warming potential (GWP) is smaller than that of the R410A refrigerant. For this reason, when R32 or a mixed refrigerant containing R32 is used, the influence on the environment can be reduced while suppressing an increase in the discharge refrigerant temperature.

なお、上記実施の形態は本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されるものではない。
上記実施の形態では、過冷却膨張機構110から過冷却熱交換器109に流入して熱交換した冷媒は、バイパス管145をさらに流れ、合流部145bで冷媒吸入管143に合流し、冷媒吸入管143を通って圧縮機101に吸込まれるものとして説明したが、本発明はこれに限定されるものではない。バイパス管145の冷媒は圧縮機101の吸込側に戻れば良く、例えば、低圧側の圧縮室と高圧側圧縮室とが直列に接続された多段圧縮型の圧縮機において、低圧側の圧縮室と高圧側圧縮室との間の中間圧の部分にバイパス管145の冷媒を戻す構成としても良い。
In addition, the said embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said embodiment.
In the above-described embodiment, the refrigerant that has flowed into the supercooling heat exchanger 109 from the supercooling expansion mechanism 110 and exchanged heat further flows through the bypass pipe 145, and merges with the refrigerant suction pipe 143 at the junction 145b. Although described as what is sucked into the compressor 101 through 143, the present invention is not limited to this. The refrigerant in the bypass pipe 145 may be returned to the suction side of the compressor 101. For example, in a multistage compression compressor in which a low pressure side compression chamber and a high pressure side compression chamber are connected in series, It is good also as a structure which returns the refrigerant | coolant of the bypass pipe 145 to the part of the intermediate pressure between high pressure side compression chambers.

10 空気調和装置
100 室外ユニット
101 圧縮機
103 四方弁
104 室外熱交換器
105 レシーバタンク
106 室外膨張機構
109 冷却熱交換器
110 冷却膨張機構
112 第2の温度センサ
113 第3の温度センサ
114 第1の温度センサ
145 バイパス管(バイパス回路)
146 分岐管
210 液管
220 ガス管
300a,300b 室内ユニット
301a,301b 室内膨張機構
302a,302b 室内熱交換器
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 100 Outdoor unit 101 Compressor 103 Four way valve 104 Outdoor heat exchanger 105 Receiver tank 106 Outdoor expansion mechanism 109 Cooling heat exchanger 110 Cooling expansion mechanism 112 2nd temperature sensor 113 3rd temperature sensor 114 1st temperature sensor Temperature sensor 145 Bypass pipe (bypass circuit)
146 Branch pipe 210 Liquid pipe 220 Gas pipe 300a, 300b Indoor unit 301a, 301b Indoor expansion mechanism 302a, 302b Indoor heat exchanger

Claims (5)

1台もしくは複数台の室外ユニットと複数台の室内ユニットとを備え、前記室外ユニットは、圧縮機、四方弁、室外熱交換器、室外膨張機構、及び、レシーバタンクを有し、前記室内ユニットは、室内膨張機構及び室内熱交換器を有し、前記室外ユニットと前記室内ユニットとはガス管及び液管で接続されており、冷房運転もしくは暖房運転のいずれか一方で運転可能な空気調和装置において、
前記室外ユニットは、前記室外ユニットを流れる冷媒と熱交換する過冷却熱交換器、及び、過冷却膨張機構を備え、
冷房運転時において前記圧縮機から吐出された冷媒は、前記四方弁、前記室外熱交換器、前記室外膨張機構、前記レシーバタンク、前記過冷却熱交換器、前記室内膨張機構、及び、前記室内熱交換器の順に流れ、
暖房運転時において前記圧縮機から吐出された冷媒は、前記四方弁、前記室内熱交換器、前記室内膨張機構、前記過冷却熱交換器、前記レシーバタンク、前記室外膨張機構、及び、前記室外熱交換器の順に流れ、
前記レシーバタンクは冷媒を気液分離する構造を備え、
前記レシーバタンク内のガス冷媒を、前記過冷却膨張機構及び前記過冷却熱交換器の順に通過させて前記圧縮機の吸込口側に戻すバイパス回路を備えたことを特徴とする空気調和装置。
One or a plurality of outdoor units and a plurality of indoor units, the outdoor unit includes a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion mechanism, and a receiver tank, the indoor unit is An air conditioner having an indoor expansion mechanism and an indoor heat exchanger, wherein the outdoor unit and the indoor unit are connected by a gas pipe and a liquid pipe, and can be operated in either a cooling operation or a heating operation. ,
The outdoor unit includes a supercooling heat exchanger that exchanges heat with the refrigerant flowing through the outdoor unit, and a supercooling expansion mechanism,
The refrigerant discharged from the compressor during the cooling operation includes the four-way valve, the outdoor heat exchanger, the outdoor expansion mechanism, the receiver tank, the supercooling heat exchanger, the indoor expansion mechanism, and the indoor heat. Flows in the order of the exchanger,
The refrigerant discharged from the compressor during the heating operation includes the four-way valve, the indoor heat exchanger, the indoor expansion mechanism, the supercooling heat exchanger, the receiver tank, the outdoor expansion mechanism, and the outdoor heat. Flows in the order of the exchanger,
The receiver tank has a structure for separating the refrigerant into gas and liquid,
An air conditioner comprising a bypass circuit that passes the gas refrigerant in the receiver tank in the order of the supercooling expansion mechanism and the supercooling heat exchanger and returns the refrigerant to the suction port side of the compressor.
前記バイパス回路における前記過冷却膨張機構の上流側と、前記過冷却熱交換器と前記室内膨張機構とを繋ぐ配管と、を繋ぐ分岐管を備えることを特徴とする請求項1記載の空気調和装置。   The air conditioner according to claim 1, further comprising a branch pipe that connects an upstream side of the subcooling expansion mechanism in the bypass circuit and a pipe that connects the supercooling heat exchanger and the indoor expansion mechanism. . 前記バイパス回路が前記吸込口と前記四方弁との間に合流する合流部と前記四方弁との間に第1の温度センサが設けられ、
前記レシーバタンクと前記過冷却熱交換器との間に第2の温度センサが設けられ、
前記合流部と前記圧縮機の前記吸込口との間に第3の温度センサが設けられ、
前記第1の温度センサ及び前記第2の温度センサの検出値を用いて前記第3の温度センサの検出値が所定の値となるように前記過冷却膨張機構の開度を調整することを特徴とする請求項2記載の空気調和装置。
A first temperature sensor is provided between the merge portion and the four-way valve where the bypass circuit merges between the suction port and the four-way valve;
A second temperature sensor is provided between the receiver tank and the supercooling heat exchanger;
A third temperature sensor is provided between the junction and the suction port of the compressor;
Using the detection values of the first temperature sensor and the second temperature sensor, the opening degree of the supercooling expansion mechanism is adjusted so that the detection value of the third temperature sensor becomes a predetermined value. The air conditioning apparatus according to claim 2.
前記バイパス回路における前記レシーバタンクと前記過冷却膨張機構とを接続する配管の径が、前記分岐管の径よりも大きいことを特徴とする請求項2記載の空気調和装置。   The air conditioning apparatus according to claim 2, wherein a diameter of a pipe connecting the receiver tank and the supercooling expansion mechanism in the bypass circuit is larger than a diameter of the branch pipe. 前記冷媒は、R32、もしくは、R32を含む混合冷媒であることを特徴とする請求項1から4のいずれかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 4, wherein the refrigerant is R32 or a mixed refrigerant containing R32.
JP2016027885A 2016-02-17 2016-02-17 Air conditioner Active JP6643630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027885A JP6643630B2 (en) 2016-02-17 2016-02-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027885A JP6643630B2 (en) 2016-02-17 2016-02-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2017146015A true JP2017146015A (en) 2017-08-24
JP6643630B2 JP6643630B2 (en) 2020-02-12

Family

ID=59682101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027885A Active JP6643630B2 (en) 2016-02-17 2016-02-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP6643630B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397825A (en) * 2017-02-06 2018-08-14 松下知识产权经营株式会社 Conditioner
JP2019066133A (en) * 2017-10-04 2019-04-25 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2021509945A (en) * 2017-12-29 2021-04-08 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
JP2008096093A (en) * 2006-09-11 2008-04-24 Daikin Ind Ltd Refrigerating device
JP2011122767A (en) * 2009-12-10 2011-06-23 Mitsubishi Heavy Ind Ltd Air conditioner and method for detecting refrigerant content of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
JP2008096093A (en) * 2006-09-11 2008-04-24 Daikin Ind Ltd Refrigerating device
JP2011122767A (en) * 2009-12-10 2011-06-23 Mitsubishi Heavy Ind Ltd Air conditioner and method for detecting refrigerant content of air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397825A (en) * 2017-02-06 2018-08-14 松下知识产权经营株式会社 Conditioner
JP2019066133A (en) * 2017-10-04 2019-04-25 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2021175937A (en) * 2017-10-04 2021-11-04 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP7122507B2 (en) 2017-10-04 2022-08-22 パナソニックIpマネジメント株式会社 refrigeration cycle equipment
JP2021509945A (en) * 2017-12-29 2021-04-08 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system
JP7175985B2 (en) 2017-12-29 2022-11-21 青島海尓空調器有限総公司 air conditioner system

Also Published As

Publication number Publication date
JP6643630B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
US10976085B2 (en) Air-conditioning apparatus
JP6644154B2 (en) Air conditioner
WO2013145006A1 (en) Air conditioning device
JP6698862B2 (en) Air conditioner
KR101146460B1 (en) A refrigerant system
JP6540904B2 (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP6493460B2 (en) Refrigeration equipment
JP2017161193A (en) Air conditioner
JP2017161182A (en) Heat pump device
JP6436196B1 (en) Refrigeration equipment
JP6643630B2 (en) Air conditioner
JP2010048506A (en) Multi-air conditioner
JP2010078164A (en) Refrigeration and air conditioning device
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
JP2008267653A (en) Refrigerating device
JP2010078165A (en) Refrigeration and air conditioning device
JP6081283B2 (en) Air conditioner
JP2011127785A (en) Refrigerating device
JP5537906B2 (en) Air conditioner
JP2009293887A (en) Refrigerating device
JP2019020089A (en) Freezing unit
JP2017142027A (en) Air conditioning device
JP2010127504A (en) Air conditioning device
WO2017138243A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R151 Written notification of patent or utility model registration

Ref document number: 6643630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151