JP6257645B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6257645B2
JP6257645B2 JP2015548891A JP2015548891A JP6257645B2 JP 6257645 B2 JP6257645 B2 JP 6257645B2 JP 2015548891 A JP2015548891 A JP 2015548891A JP 2015548891 A JP2015548891 A JP 2015548891A JP 6257645 B2 JP6257645 B2 JP 6257645B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
expansion valve
state
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015548891A
Other languages
Japanese (ja)
Other versions
JPWO2015075760A1 (en
Inventor
慎太郎 穴井
慎太郎 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015075760A1 publication Critical patent/JPWO2015075760A1/en
Application granted granted Critical
Publication of JP6257645B2 publication Critical patent/JP6257645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Description

この発明は、省エネルギー運転(以下、省エネ運転と略称する)を実現しつつ除湿量の低下を抑制する空気調和機に関するものである。   The present invention relates to an air conditioner that suppresses a decrease in dehumidification amount while realizing energy saving operation (hereinafter abbreviated as energy saving operation).

従来の空気調和機は、図7に示すように、冷媒を圧縮して吐出する圧縮機1と、外部空気との熱交換により冷媒を液化させる凝縮器2と、凝縮器2からの冷媒を減圧する膨張弁3と、膨張弁3からの冷媒を気化させて利用側空気を冷却する蒸発器8とを備えており、これらの構成要素が冷媒配管11,12,13A,16で連結されることにより、一般的な冷媒回路を構成している。この冷媒回路では、圧縮機1が冷媒を圧縮し高温・高圧のガス状態にして凝縮器2に送り、凝縮器2は冷媒を凝縮して高圧の液状態にする。凝縮器2からの冷媒は膨張弁3に送られ、膨張弁3にて減圧されることにより膨張し、低圧で気液二相の状態となって蒸発器8に送られる。蒸発器8にて蒸発し低圧でガス状態となった冷媒が再び圧縮機1に戻されるという冷凍サイクル動作が行なわれる。このような冷凍サイクル動作を利用して、室内の空気温度を調整している。例えば、冷房運転の場合は、蒸発器8によって室内が冷却される。このとき、蒸発器8における冷媒の温度すなわち蒸発温度が室内空気の露点温度を下回っていれば、蒸発器8において室内空気が潜熱処理すなわち除湿処理がなされるのである。   As shown in FIG. 7, a conventional air conditioner compresses and discharges a refrigerant, a condenser 2 that liquefies the refrigerant by heat exchange with external air, and depressurizes the refrigerant from the condenser 2. And an evaporator 8 that evaporates the refrigerant from the expansion valve 3 and cools the use-side air. These components are connected by refrigerant pipes 11, 12, 13A, and 16. Thus, a general refrigerant circuit is configured. In this refrigerant circuit, the compressor 1 compresses the refrigerant into a high-temperature and high-pressure gas state and sends it to the condenser 2, and the condenser 2 condenses the refrigerant into a high-pressure liquid state. The refrigerant from the condenser 2 is sent to the expansion valve 3, expanded by being depressurized by the expansion valve 3, and sent to the evaporator 8 in a gas-liquid two-phase state at a low pressure. A refrigeration cycle operation is performed in which the refrigerant evaporated in the evaporator 8 and turned into a gas state at low pressure is returned to the compressor 1 again. The indoor air temperature is adjusted using such a refrigeration cycle operation. For example, in the cooling operation, the interior of the room is cooled by the evaporator 8. At this time, if the temperature of the refrigerant in the evaporator 8, that is, the evaporation temperature is lower than the dew point temperature of the room air, the room air is subjected to a latent heat treatment, that is, a dehumidification process in the evaporator 8.

このときの除湿量は、冷媒蒸発温度と空気露点温度との差が大きいほど増加する。従来は、この性質を利用して蒸発器8での冷媒の蒸発温度を下げることにより除湿量を確保していた。しかし、この方法では蒸発温度に相関する低圧側圧力を下げることになるため、圧縮機1に吸入される冷媒密度が低下して蒸発能力が低くなる。そこで、蒸発能力を維持するためには、圧縮機1の運転周波数の増加または押しのけ容積の増加が必要となる。これにより、圧縮機1への入力が増大して省エネ運転を実現できなくなるという問題があった。 The amount of dehumidification at this time increases as the difference between the refrigerant evaporation temperature and the air dew point temperature increases. Conventionally, the amount of dehumidification has been secured by lowering the evaporation temperature of the refrigerant in the evaporator 8 using this property. However, in this method, since the low-pressure side pressure correlated with the evaporation temperature is lowered, the density of the refrigerant sucked into the compressor 1 is lowered and the evaporation capacity is lowered. Therefore, in order to maintain the evaporation capacity, it is necessary to increase the operating frequency of the compressor 1 or increase the displacement volume. As a result, there is a problem that the input to the compressor 1 increases and energy saving operation cannot be realized.

前記した従来の空気調和機による冷媒の状態変化を図8のP−h線図に示す。図8において、全て実線で示した状態(a)〜状態(b)〜状態(c)〜状態(i)は省エネ運転時の冷凍サイクル動作を表わし、一部破線で示した状態(a)〜状態(b')〜状態(c')〜状態(i)は通常運転時の冷凍サイクル動作を表わしている。ここで、冷媒循環量をGr=600kg/hとすると、上記の冷凍サイクル動作では蒸発能力がQe=26.8kWになる。ここで、状態(c)と状態(c')とを比較すると、状態(c)の方が圧力が高いために冷媒密度が高い。従って、状態(c')を経由する冷凍サイクル動作と比べ、状態(c)を経由する冷凍サイクル動作は、圧縮機1の運転周波数を下げられるために、省エネ運転となっている。尚、図8中に、実験で得られた、冷媒回路内の冷媒圧力とエンタルピの各数値を、参考のために示しておく。 The change in the state of the refrigerant by the conventional air conditioner described above is shown in the Ph diagram of FIG. In FIG. 8, states (a) to (b) to (c) to (i) all indicated by solid lines represent refrigeration cycle operations during energy-saving operation, and are partially indicated by broken lines (a) to (a) to (i). State (b ′) to state (c ′) to state (i) represent the refrigeration cycle operation during normal operation. Here, if the refrigerant circulation rate is Gr = 600 kg / h, the evaporation capacity is Qe = 26.8 kW in the above-described refrigeration cycle operation. Here, when the state (c) is compared with the state (c ′), since the pressure is higher in the state (c), the refrigerant density is higher. Therefore, compared with the refrigeration cycle operation via the state (c ′), the refrigeration cycle operation via the state (c) is an energy saving operation because the operating frequency of the compressor 1 can be lowered. In FIG. 8, the numerical values of the refrigerant pressure and the enthalpy in the refrigerant circuit, which are obtained by experiments, are shown for reference.

次に、前記した従来の空気調和機による空気の状態変化を図9に示す。図9に示した空気線図において、実線で示した座標A〜Bは省エネ運転時の空気の状態変化を表わし、破線で示した座標A〜B'は通常運転時の空気の状態変化を表わしている。ここで、座標A〜B、座標A〜B'の傾きはSHF(顕熱比)を表わしており、蒸発温度により決定される。風量をV=90m3/minとすると、通常運転時の座標A〜B'では除湿量がL=10.4kg/minとなる。一方、省エネ運転時の座標A〜Bでは除湿量がL'=5.9kg/minとなり、通常運転時と比べて除湿量の大幅な低下を招くという不具合がある。尚、図9中に、実験で得られた、乾球温度、絶対湿度、エンタルピの各数値を、参考のために示しておく。 Next, FIG. 9 shows changes in the air state caused by the above-described conventional air conditioner. In the air diagram shown in FIG. 9, coordinates A to B indicated by solid lines represent changes in the air state during energy-saving operation, and coordinates A to B ′ indicated by broken lines represent changes in the air state during normal operation. ing. Here, the slopes of the coordinates A to B and the coordinates A to B ′ represent SHF (sensible heat ratio) and are determined by the evaporation temperature. When the air volume is V = 90 m 3 / min, the dehumidification amount is L = 10.4 kg / min at coordinates A to B ′ during normal operation. On the other hand, at coordinates A to B during energy saving operation, the dehumidification amount is L ′ = 5.9 kg / min, which causes a problem that the dehumidification amount is significantly reduced as compared with that during normal operation. In FIG. 9, the numerical values of dry bulb temperature, absolute humidity, and enthalpy obtained in the experiment are shown for reference.

一方、図7に示した空気調和機と同様構成の空気調和機が特許文献1に記載されている。この特許文献1記載の空気調和機では、蒸発器8に流入する前の空気を吸湿装置により予め潜熱処理すなわち除湿処理をすることにより蒸発器8における潜熱処理負荷を低減し、蒸発温度すなわち低圧側圧力の低下を抑えることにより除湿量を維持しつつ省エネ運転を実現するようにしている。   On the other hand, Patent Document 1 discloses an air conditioner having the same configuration as the air conditioner shown in FIG. In the air conditioner described in Patent Document 1, the latent heat treatment, that is, the dehumidification treatment is performed on the air before flowing into the evaporator 8 in advance by a moisture absorption device, thereby reducing the latent heat treatment load in the evaporator 8 and the evaporation temperature, that is, the low pressure side. Energy saving operation is realized while maintaining the dehumidification amount by suppressing the pressure drop.

特開2006−308229号公報JP 2006-308229 A

しかしながら、前記した特許文献1に記載の空気調和機は、吸湿装置を用いているために、システム構成が複雑になること、吸湿装置に使用される吸湿材が劣化するので適時取り替える必要があること、メンテナンス負荷およびランニングコストが増加することなどの問題が懸念される。 However, since the air conditioner described in Patent Document 1 uses a hygroscopic device, the system configuration is complicated, and the hygroscopic material used in the hygroscopic device is deteriorated, so it is necessary to replace it in a timely manner. There are concerns about problems such as increased maintenance load and running cost.

この発明は、上記のような課題を解決するためになされたものであり、構成が簡素でメンテナンス負荷が小さく、省エネ運転を実現しつつ除湿量の低下を抑制することのできる空気調和機を得ることを目的としている。   The present invention has been made to solve the above-described problems, and provides an air conditioner having a simple configuration, a small maintenance load, and capable of suppressing a decrease in the dehumidification amount while realizing an energy saving operation. The purpose is that.

この発明に係る空気調和機は、冷媒を圧縮して吐出する圧縮機と、前記圧縮機から吐出された冷媒と熱源側流体との熱交換を行なう凝縮器と、前記凝縮器からの冷媒を減圧して飽和液状態にする膨張弁と、前記膨張弁からの冷媒との熱交換によって利用側空気に顕熱除去処理を行なう第1蒸発器と、がそれぞれ冷媒配管を介して環状に連結され、更に、前記膨張弁と前記第1蒸発器の間の冷媒配管に配備されていて、前記膨張弁からの冷媒を昇圧して前記第1蒸発器へ送り出す昇圧機構と、前記膨張弁と前記昇圧機構の間の冷媒配管に設けられ、前記膨張弁によって飽和液状態に減圧された冷媒を分岐する分岐部と、前記分岐部と前記昇圧機構の合流部とをつなぐバイパス配管と、前記バイパス配管に配備されていて、前記分岐部からの飽和液状態に減圧された冷媒を更に減圧する調整用膨張弁と、前記調整用膨張弁の冷媒流通方向下流側のバイパス配管に配備されていて、前記調整用膨張弁からの冷媒との熱交換によって前記第1蒸発器からの利用側空気に潜熱除去処理を行なう第2蒸発器と、を備え、前記膨張弁で飽和液状態に減圧された冷媒は、前記分岐部から前記バイパス配管に流通して前記調整用膨張弁で更に減圧された冷媒の状態と、前記分岐部から前記冷媒配管に流入して前記昇圧機構に飽和液状態のまま送り出された冷媒の状態と、のエンタルピ差を大きくし、前記昇圧機構で冷媒の加速幅を増幅させることを特徴とするものである。 An air conditioner according to the present invention includes a compressor that compresses and discharges a refrigerant, a condenser that performs heat exchange between the refrigerant discharged from the compressor and a heat source side fluid, and decompresses the refrigerant from the condenser. And a first evaporator that performs a sensible heat removal process on the use side air by heat exchange with the refrigerant from the expansion valve, and is connected in an annular manner via a refrigerant pipe, Furthermore, a booster mechanism that is disposed in a refrigerant pipe between the expansion valve and the first evaporator, boosts the refrigerant from the expansion valve, and sends it to the first evaporator; the expansion valve and the booster mechanism Provided in the refrigerant pipe between, a branch part for branching the refrigerant decompressed to a saturated liquid state by the expansion valve , a bypass pipe connecting the branch part and the junction part of the pressure increasing mechanism, and provided in the bypass pipe have been saturated from the branch portion And adjusting the expansion valve further depressurizing the refrigerant decompressed by the state, have been deployed in the bypass pipe of the refrigerant flow direction downstream side of the regulating expansion valve, wherein the heat exchange with the refrigerant from the adjustment expansion valve A second evaporator that performs a latent heat removal process on the use-side air from the first evaporator, and the refrigerant decompressed to a saturated liquid state by the expansion valve flows from the branch portion to the bypass pipe and passes through the bypass pipe. Enlarging the enthalpy difference between the state of the refrigerant further depressurized by the adjustment expansion valve and the state of the refrigerant flowing into the refrigerant pipe from the branch portion and being sent out to the pressure increasing mechanism in a saturated liquid state , The acceleration mechanism amplifies the acceleration width of the refrigerant.

この発明の空気調和機は、凝縮器にて凝縮された冷媒を膨張弁で飽和液状態まで減圧し、この冷媒を分岐部にて分流させたのち、冷媒の一部を昇圧機構で昇圧させる。冷媒の残りは調整用膨張弁で減圧されたのちに潜熱処理を重視する第2蒸発器に流入させ、更に先述の分岐部からの冷媒と昇圧機構で合流させたのちに、顕熱処理を重視する第1蒸発器に流入させるように構成したので、圧縮機に吸入される冷媒密度を低下させることなく、すなわち省エネ運転を実現しつつ除湿量の過度の低下を抑えることができるという効果を奏する。しかも、構成が簡素でメンテナンス負荷が小さな空気調和機を提供できる。 In the air conditioner of the present invention, the refrigerant condensed in the condenser is decompressed to the saturated liquid state by the expansion valve, and after the refrigerant is diverted at the branching portion, a part of the refrigerant is pressurized by the pressure increasing mechanism. The remainder of the refrigerant is decompressed by the expansion valve for adjustment, and then flows into the second evaporator where importance is placed on latent heat treatment. After the refrigerant is combined with the refrigerant from the aforementioned branching portion by the pressure-increasing mechanism, importance is placed on sensible heat treatment. Since it is configured to flow into the first evaporator, there is an effect that an excessive decrease in the dehumidification amount can be suppressed without reducing the density of the refrigerant sucked into the compressor, that is, while realizing the energy saving operation. In addition, an air conditioner having a simple configuration and a small maintenance load can be provided.

この発明の実施の形態1における空気調和機の冷媒回路を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit of the air conditioner in Embodiment 1 of this invention. 前記空気調和機で使用されるエジェクタを示す図であって、(a)は概略側断面図、(b)はエジェクタの長尺方向の距離と圧力との関係を示すグラフの図である。It is a figure which shows the ejector used with the said air conditioner, Comprising: (a) is a schematic sectional side view, (b) is a figure of the graph which shows the relationship of the distance of the length direction of an ejector, and a pressure. 前記空気調和機における冷媒の状態変化を説明するためのP−h線図である。It is a Ph diagram for demonstrating the state change of the refrigerant | coolant in the said air conditioner. 前記空気調和機における空気の状態変化を説明するための空気線図である。It is an air line figure for demonstrating the state change of the air in the said air conditioner. 前記空気調和機の第1蒸発器と第2蒸発器の配置の違いによるエジェクタの昇圧と合計蒸発能力および合計除湿量との関係を示したテーブルの図である。It is the figure which showed the relationship between the pressure | voltage rise of an ejector by the difference in arrangement | positioning of the 1st evaporator of the said air conditioner, and a 2nd evaporator, total evaporation capability, and total dehumidification amount. 前記空気調和機のエジェクタによる冷媒圧力の昇圧と合計除湿量との関係を示したグラフの図である。It is the figure which showed the relationship between pressure increase of the refrigerant | coolant pressure by the ejector of the said air conditioner, and total dehumidification amount. 従来の空気調和機の冷媒回路を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit of the conventional air conditioner. 従来の空気調和機における冷媒の状態変化を説明するためのP−h線図である。It is a Ph diagram for demonstrating the state change of the refrigerant | coolant in the conventional air conditioner. 従来の空気調和機における空気の状態変化を説明するための空気線図である。It is an air line figure for demonstrating the state change of the air in the conventional air conditioner.

実施の形態1.
以下、実施の形態1について説明する。尚、本文中に出てくる数値などは動作の説明のために便宜的に仮定したものであることをここで宣言しておく。
図1は実施の形態1に係る空気調和機の冷媒回路を示す概略構成図である。
図において、この実施形態1に係る空気調和機は、冷媒を圧縮して吐出する圧縮機1と、圧縮機1から吐出された冷媒を熱源側流体(例えば室外空気)との熱交換により液化させる凝縮器2と、凝縮器2からの冷媒を減圧して飽和液状態にする膨張弁3と、膨張弁3からの冷媒との熱交換によって利用側空気に顕熱除去処理を行なって冷却する第1蒸発器6と、を備えている。第1蒸発器6と圧縮機1との間は冷媒配管16で連結され、圧縮機1と凝縮器2との間は冷媒配管11で連結され、凝縮器2と膨張弁3との間は冷媒配管12で連結されている。膨張弁3の冷媒出側には、冷媒配管13が接続されている。冷媒配管13の先端は分岐部10となっており、この分岐部10に冷媒配管14,17が分岐して接続されている。冷媒配管14の先端は、エジェクタ5(昇圧機構の例)のノズル部5Dの接続管部5Eと接続されている。エジェクタ5のディフューザ部5Cの出側は冷媒配管15を介して第1蒸発器6と接続されている。第1蒸発器6の出側は冷媒配管16を介して圧縮機1の吸込み側と接続されている。一方、分岐部10から分岐したバイパス配管17は調整用膨張弁4と接続され、調整用膨張弁4はバイパス配管18を介して第2蒸発器7と接続されている。更に、第2蒸発器7はバイパス配管19を介して合流部5Aの接続管部5Fと接続されている。
Embodiment 1 FIG.
The first embodiment will be described below. It should be noted that the numerical values and the like appearing in the text are assumed here for convenience of explanation of the operation.
1 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to Embodiment 1. FIG.
In the figure, the air conditioner according to the first embodiment liquefies the compressor 1 that compresses and discharges the refrigerant and heat exchange between the refrigerant discharged from the compressor 1 and the heat source side fluid (for example, outdoor air). The sensible heat removal process is performed on the use side air by the heat exchange between the condenser 2, the expansion valve 3 that depressurizes the refrigerant from the condenser 2 to bring it into a saturated liquid state, and the refrigerant from the expansion valve 3, and cools it. 1 evaporator 6. The first evaporator 6 and the compressor 1 are connected by a refrigerant pipe 16, the compressor 1 and the condenser 2 are connected by a refrigerant pipe 11, and the condenser 2 and the expansion valve 3 are connected by a refrigerant. The pipes 12 are connected. A refrigerant pipe 13 is connected to the refrigerant outlet side of the expansion valve 3. The front end of the refrigerant pipe 13 is a branch portion 10, and refrigerant pipes 14 and 17 are branched and connected to the branch portion 10. The front end of the refrigerant pipe 14 is connected to the connecting pipe part 5E of the nozzle part 5D of the ejector 5 (an example of a pressure increasing mechanism). The outlet side of the diffuser portion 5C of the ejector 5 is connected to the first evaporator 6 via the refrigerant pipe 15. The outlet side of the first evaporator 6 is connected to the suction side of the compressor 1 through a refrigerant pipe 16. On the other hand, the bypass pipe 17 branched from the branch section 10 is connected to the adjustment expansion valve 4, and the adjustment expansion valve 4 is connected to the second evaporator 7 via the bypass pipe 18. Further, the second evaporator 7 is connected to the connecting pipe portion 5F of the merging portion 5A through the bypass pipe 19.

この実施形態1において、第1蒸発器6および第2蒸発器7は一体に構成されている。すなわち、前面開口と背面開口を有する一体のケーシング(図示省略)内で前側に冷媒配管15,16間の配管が配置され、この配管の後側にバイパス配管18,19間の配管が配置されている。各配管は左右方向に延在して複数回折り返された往復配置にされている。これらの配管は左右方向に離間配置された多数のフィン(図示省略)により支持されている。これらのフィンは、図1中の矢印Wで示す方向に空気を通風できるように配置されている。このような一体構成の第1蒸発器6および第2蒸発器7は、風路ケーシング9の通風路9A内に配備され、送風機20の駆動により通風されるようになっている。 In this Embodiment 1, the 1st evaporator 6 and the 2nd evaporator 7 are comprised integrally. That is, a pipe between the refrigerant pipes 15 and 16 is arranged on the front side in an integral casing (not shown) having a front opening and a rear opening, and a pipe between the bypass pipes 18 and 19 is arranged on the rear side of this pipe. Yes. Each pipe extends in the left-right direction and has a reciprocating arrangement in which a plurality of lines are folded back. These pipes are supported by a number of fins (not shown) spaced apart in the left-right direction. These fins are arranged so that air can be ventilated in the direction indicated by the arrow W in FIG. The first evaporator 6 and the second evaporator 7 having such an integrated structure are arranged in the air passage 9 </ b> A of the air passage casing 9 and are ventilated by driving the blower 20.

エジェクタ5は、図2(a)に示すように、第2熱交換器7からのバイパス配管19とつながる接続管部5Fを有する筒箱状の合流部5Aと、合流部5A内に貫通配備されていて分岐部10からの冷媒配管14とつながる接続管部5Eを有するノズル部5Dと、合流部5A内で先細状に形成された吸引部5Gと、合流部5Aの先端からつながる細径の混合部5Bと、混合部5Bの先端からつながる末広がり状のディフューザ部5Cとから構成されている。このエジェクタ5は、図2(b)に示すように、ノズル部5D出口近傍の吸引部5Gにおいて、冷媒が十分に低い圧力Psに達するので、第2熱交換器7から合流部5Aに流入した冷媒を吸引可能であり、ノズル部5Dから噴き出された冷媒と混合することができる。 As shown in FIG. 2 (a), the ejector 5 is provided in a tubular box-like joining portion 5A having a connecting pipe portion 5F connected to the bypass pipe 19 from the second heat exchanger 7, and is provided through the joining portion 5A. In addition, a nozzle portion 5D having a connecting pipe portion 5E connected to the refrigerant pipe 14 from the branch portion 10, a suction portion 5G formed in a tapered shape in the merging portion 5A, and a small diameter mixture connected from the tip of the merging portion 5A It is comprised from the part 5B and the diverging diffuser part 5C connected from the front-end | tip of the mixing part 5B. As shown in FIG. 2B, the ejector 5 flows from the second heat exchanger 7 into the merging portion 5A because the refrigerant reaches a sufficiently low pressure Ps in the suction portion 5G near the outlet of the nozzle portion 5D. The refrigerant can be sucked and can be mixed with the refrigerant ejected from the nozzle portion 5D.

以下、各構成要素について個々に付帯説明をする。
圧縮機1は、低圧でガス状態の冷媒を吸入して圧縮し高圧でガス状態の冷媒にする。ここで、圧縮機1としては、インバータ制御により運転周波数を任意に変更可能、すなわち吐出容量可変なものでもよいし、一定速のものでも構わない。
Each component will be individually described below.
The compressor 1 sucks and compresses a refrigerant in a gas state at a low pressure to form a refrigerant in a gas state at a high pressure. Here, as the compressor 1, the operation frequency can be arbitrarily changed by inverter control, that is, the discharge capacity may be variable, or the compressor 1 may be constant speed.

凝縮器2は、高圧でガス状態の冷媒を熱源側の外部流体と熱交換させることで、高圧で液状態の冷媒へと凝縮させる。ここで、熱交換に用いられる外部流体は空気などの気体でもよいし、水などの液体でも構わない。   The condenser 2 condenses the refrigerant in a gas state at a high pressure to a refrigerant in a liquid state at a high pressure by exchanging heat with the external fluid on the heat source side. Here, the external fluid used for heat exchange may be a gas such as air or a liquid such as water.

膨張弁3は、高圧で液状態の冷媒を膨張させて減圧する。実施の形態1では、エジェクタ5のノズル部5Dに流入させる冷媒を飽和液状態に調整するために設けられており、同様の効果が得られるものがあれば、代替できることは言うまでもない。例えば、電子膨張弁でもよいし、キャピラリーチューブでも構わない。   The expansion valve 3 expands and decompresses the refrigerant in a liquid state at a high pressure. In Embodiment 1, it is provided in order to adjust the refrigerant flowing into the nozzle portion 5D of the ejector 5 to a saturated liquid state, and it goes without saying that any similar one can be obtained. For example, an electronic expansion valve or a capillary tube may be used.

調整用膨張弁4は、第2蒸発器7へ流入する冷媒量および蒸発温度を調整するために設けており、同様の効果が得られるものがあれば代替できることは言うまでもない。例えば、電子膨張弁でもよいしキャピラリーチューブでも構わない。   Needless to say, the adjustment expansion valve 4 is provided for adjusting the amount of refrigerant flowing into the second evaporator 7 and the evaporation temperature, and can be substituted if there is a similar effect. For example, an electronic expansion valve or a capillary tube may be used.

エジェクタ5は、第1蒸発器6の蒸発温度の調整、および第2蒸発器7で蒸発させた冷媒を吸引して昇圧するために設けられており、同様の効果が得られるものがあれば代替できることは言うまでもない。例えば、容量可変エジェクタでもよいし、容量固定エジェクタでも構わない。   The ejector 5 is provided for adjusting the evaporation temperature of the first evaporator 6 and for sucking and increasing the pressure of the refrigerant evaporated by the second evaporator 7, and replaces the one that has the same effect. Needless to say, you can. For example, a variable capacity ejector or a fixed capacity ejector may be used.

第1蒸発器6は、エジェクタ5から流入する低圧で気液二相状態の冷媒を空気と熱交換させることにより蒸発させ、低圧でガス状態の冷媒にして圧縮機1に返す。実施の形態1では、顕熱処理することを重視させるために、第1蒸発器6は第2蒸発器7よりも冷媒の蒸発温度が高く設定されている。   The first evaporator 6 evaporates the low-pressure gas-liquid two-phase refrigerant flowing from the ejector 5 by exchanging heat with air, and returns the refrigerant to the compressor 1 as a low-pressure gas refrigerant. In the first embodiment, the first evaporator 6 is set to have a higher evaporation temperature of the refrigerant than the second evaporator 7 in order to emphasize the sensible heat treatment.

第2蒸発器7は、調整用膨張弁4から流入する低圧で気液二相状態の冷媒を空気と熱交換させることで、低圧でガス状態の冷媒へと蒸発させる。第2蒸発器7で低圧のガス状態にされた冷媒は、エジェクタ5の混合部5Aに流入する。混合部5Aに流入した冷媒は、膨張弁3からの冷媒と合流しディフューザ部5Bから噴き出されて前部熱交換器6へ流入(実施の形態1では、エジェクタ5により吸引され昇圧)する。また、この実施の形態1の第2蒸発器7は、潜熱処理することを重視させるために、第1蒸発器6よりも冷媒の蒸発温度が低く設定されている。   The second evaporator 7 evaporates the low-pressure gas-liquid two-phase refrigerant flowing from the adjustment expansion valve 4 into the low-pressure gas refrigerant by exchanging heat with air. The refrigerant made into a low-pressure gas state by the second evaporator 7 flows into the mixing unit 5 </ b> A of the ejector 5. The refrigerant that has flowed into the mixing unit 5A merges with the refrigerant from the expansion valve 3, is ejected from the diffuser unit 5B, and flows into the front heat exchanger 6 (in the first embodiment, the refrigerant is sucked and increased in pressure by the ejector 5). Further, in the second evaporator 7 of the first embodiment, the refrigerant evaporation temperature is set lower than that of the first evaporator 6 in order to place importance on the latent heat treatment.

そして、この空気調和機の冷媒回路に用いる冷媒としては、冷凍サイクルで利用できるものであればよいことは言うまでもない。例えば、R22のような単一冷媒でもよいし、R410Aのような混合冷媒でもよいし、CO2のような天然冷媒でも構わない。   Needless to say, the refrigerant used in the refrigerant circuit of the air conditioner may be any refrigerant that can be used in the refrigeration cycle. For example, a single refrigerant such as R22, a mixed refrigerant such as R410A, or a natural refrigerant such as CO2 may be used.

また、この空気調和機は、圧縮機1、凝縮器2、膨張弁3、エジェクタ5、第1蒸発器6、調整用膨張弁4、および第2蒸発器7だけで構成されるものではない。例えば、圧縮機1を保護するための液溜め(アキュームレータ)を具備していてもよいし、冷凍機油回収のための油分離器を具備していても構わない。   Further, this air conditioner is not composed of only the compressor 1, the condenser 2, the expansion valve 3, the ejector 5, the first evaporator 6, the adjusting expansion valve 4, and the second evaporator 7. For example, a liquid reservoir (accumulator) for protecting the compressor 1 may be provided, or an oil separator for collecting refrigeration machine oil may be provided.

次に、この実施の形態1に係る空気調和機の動作について説明する。図3は実施の形態1に係る空気調和機の動作を説明するP−h線図を示している。図1〜図3において、膨張弁3に流入する冷媒の状態を(a)、膨張弁3で減圧されて分岐部10を流れる冷媒の状態を(d)、冷媒配管14からエジェクタ5に流入する冷媒の状態を(h)、エジェクタ5の混合部5Bにおける冷媒の状態を(f)、エジェクタ5から流出して第1蒸発器6に流入手前の冷媒の状態を(g)、調整用膨張弁4から流出して第2蒸発器7に流入する冷媒の状態を(b)、第2蒸発器7で蒸発してバイパス配管19を流れる冷媒の状態を(e)、第1蒸発器6から流出して圧縮機1に吸入される冷媒の状態を(c)、圧縮機1から吐出された冷媒の状態を(i)とする。   Next, the operation of the air conditioner according to Embodiment 1 will be described. FIG. 3 shows a Ph diagram illustrating the operation of the air conditioner according to Embodiment 1. 1 to 3, (a) shows the state of the refrigerant flowing into the expansion valve 3, (d) shows the state of the refrigerant that is decompressed by the expansion valve 3 and flows through the branch portion 10, and flows into the ejector 5 from the refrigerant pipe 14. The refrigerant state is (h), the refrigerant state in the mixing section 5B of the ejector 5 is (f), the refrigerant state flowing out from the ejector 5 and flowing into the first evaporator 6 is (g), and the adjusting expansion valve (B) shows the state of the refrigerant flowing out from the refrigerant flow 4 and flowing into the second evaporator 7, (e) shows the state of the refrigerant evaporating in the second evaporator 7 and flows through the bypass pipe 19, and flows out from the first evaporator 6. The state of the refrigerant sucked into the compressor 1 is (c), and the state of the refrigerant discharged from the compressor 1 is (i).

実施の形態1に係る空気調和機において、圧縮機1から吐出された状態(i)の高温・高圧の冷媒は、凝縮器2により冷却されて低温・高圧の状態(a)になる。状態(a)の冷媒は膨張弁3により減圧されて状態(d)となる。エジェクタ5の効果を高めるために、状態(d)の冷媒は飽和液状態となるように膨張弁3の弁開度が予め設定されている。このような状態(d)の冷媒は、分岐部10において、調整用膨張弁4に流入するものと、エジェクタ5に流入するものとに分けられる。バイパス配管17を経て調整用膨張弁4に流入した冷媒は減圧されて、低温・低圧で気液二相状態(状態(b))にされ、第2蒸発器7により蒸発して低温・低圧のガス状態(状態(e))となり、バイパス配管19を経てエジェクタ5の合流部5Aに流入して吸引される。一方、分岐部10から冷媒配管14を経てエジェクタ5のノズル部5Dに流入した冷媒は、ノズル部5Dから噴き出されるとともに第2蒸発器7からの冷媒と混合されて状態(f)となり、第1蒸発器6に流入する。状態(f)の冷媒はエジェクタ5の混合部5Bにより昇圧されて状態(g)となる。状態(g)の冷媒は、第1蒸発器6で室内空気と熱交換し蒸発して低温・低圧のガス状態(状態(c))となったのち、圧縮機1に吸入される。このように、蒸発温度が低い第2蒸発器7を設けたことで、除湿量の低下を抑え、かつ、冷媒の低圧側圧力を昇圧させて圧縮機1に返すことができるため、冷媒密度の低下もなくなり、省エネ運転を実現できる。   In the air conditioner according to Embodiment 1, the high-temperature / high-pressure refrigerant in the state (i) discharged from the compressor 1 is cooled by the condenser 2 to be in the low-temperature / high-pressure state (a). The refrigerant in the state (a) is decompressed by the expansion valve 3 to be in the state (d). In order to enhance the effect of the ejector 5, the opening degree of the expansion valve 3 is set in advance so that the refrigerant in the state (d) is in a saturated liquid state. The refrigerant in the state (d) is divided into one that flows into the adjusting expansion valve 4 and one that flows into the ejector 5 at the branching section 10. The refrigerant flowing into the adjustment expansion valve 4 through the bypass pipe 17 is decompressed to be in a gas-liquid two-phase state (state (b)) at a low temperature and low pressure, and is evaporated by the second evaporator 7 to have a low temperature and low pressure. It enters a gas state (state (e)), and flows into the junction 5A of the ejector 5 through the bypass pipe 19 and is sucked. On the other hand, the refrigerant flowing into the nozzle portion 5D of the ejector 5 from the branch portion 10 through the refrigerant pipe 14 is ejected from the nozzle portion 5D and mixed with the refrigerant from the second evaporator 7 to be in the state (f). 1 flows into the evaporator 6. The refrigerant in the state (f) is pressurized by the mixing unit 5B of the ejector 5 to be in the state (g). The refrigerant in the state (g) exchanges heat with room air in the first evaporator 6 and evaporates to become a low-temperature and low-pressure gas state (state (c)), and then is sucked into the compressor 1. As described above, by providing the second evaporator 7 having a low evaporation temperature, it is possible to suppress the decrease in the dehumidification amount and to increase the low pressure side pressure of the refrigerant and return it to the compressor 1. There is no decrease, and energy-saving operation can be realized.

図3のP−h線図は、この実施形態1に係る空気調和機において、エジェクタ5による冷媒の昇圧効果が0.1kgf/cm2であった場合の例を示している。図中の(a)〜(i)はこの冷媒回路内を循環して変化する冷媒の状態をそれぞれ表している。状態(a)〜状態(d)は膨張弁3、状態(d)〜状態(h)はエジェクタ5のノズル部5D、状態(h)〜状態(f)〜状態(g)はエジェクタ5の混合部5Aおよびディフーザ部5C、状態(d)〜状態(b)は調整用膨張弁4、状態(b)〜状態(e)は第2蒸発器7、状態(e)〜状態(f)はエジェクタ5の吸引部5G、状態(g)〜状態(c)は第1蒸発器6、状態(c)〜状態(i)は圧縮機1により変化した冷媒の状態変化をそれぞれ表わしている。冷媒循環量をGr=600kg/hと仮定する。エジェクタでの昇圧効果を高めるためには、ノズル部5Dでの加速幅を増幅させる、すなわち状態(b)、状態(h)におけるエンタルピ差を大きくする必要があるため、状態(d)において冷媒が飽和液相状態となるように、膨張弁3で減圧したのちに冷媒を分岐させる。このために、状態(a)〜状態(d)では、しかるべき膨張弁3が必要となる。状態(a)と状態(d)が同一点となるようにしても良いが、状態(b)、状態(e)におけるエンタルピ差が小さくなるために得策ではない。第1蒸発器6では、蒸発能力がQe=17.8kWとなるので、従来と同等の蒸発能力を出すためには、第2蒸発器7での蒸発能力はQe=9.0kWとなる。すなわち、状態(d)〜状態(b)に流れる冷媒の循環量はGr=201kg/hが必要となる。状態(d)〜状態(h)に流れる冷媒の循環量はGr=399kg/hである。また、状態(d)〜状態(h)と状態(f)〜状態(g)は等エントロピ変化である。状態(c)における圧力は前述した省エネ運転時の冷凍サイクル動作と同じであることから、この実施形態1の空気調和機も省エネ運転が可能である。 The Ph diagram of FIG. 3 shows an example of the air conditioner according to the first embodiment where the refrigerant pressure increase effect by the ejector 5 is 0.1 kgf / cm 2. (A)-(i) in a figure each represents the state of the refrigerant | coolant which circulates in this refrigerant circuit and changes. The states (a) to (d) are the expansion valve 3, the states (d) to (h) are the nozzle portion 5D of the ejector 5, and the states (h) to (f) to (g) are the mixing of the ejector 5. Part 5A and diffuser part 5C, states (d) to (b) are adjustment expansion valves 4, states (b) to (e) are the second evaporator 7, and states (e) to (f) are ejectors. 5, states (g) to (c) represent the first evaporator 6, and states (c) to (i) represent refrigerant state changes caused by the compressor 1, respectively. The refrigerant circulation rate is assumed to be Gr = 600 kg / h. In order to enhance the boosting effect at the ejector, it is necessary to amplify the acceleration width at the nozzle portion 5D, that is, to increase the enthalpy difference between the state (b) and the state (h). The refrigerant is branched after the pressure is reduced by the expansion valve 3 so as to be in a saturated liquid phase state. For this reason, the appropriate expansion valve 3 is required in the states (a) to (d). Although the state (a) and the state (d) may be the same point, it is not a good idea because the enthalpy difference between the state (b) and the state (e) becomes small. In the first evaporator 6, the evaporation capacity is Qe = 17.8 kW, so that the evaporation capacity in the second evaporator 7 is Qe = 9.0 kW in order to obtain the same evaporation capacity as the conventional one. That is, the circulation amount of the refrigerant flowing from the state (d) to the state (b) requires Gr = 201 kg / h. The circulation amount of the refrigerant flowing from the state (d) to the state (h) is Gr = 399 kg / h. Further, the state (d) to the state (h) and the state (f) to the state (g) are isentropic changes. Since the pressure in the state (c) is the same as the above-described refrigeration cycle operation during the energy saving operation, the air conditioner of the first embodiment can also perform the energy saving operation.

図4の空気線図は、この実施形態1に係る空気調和機において、エジェクタ5による冷媒の昇圧効果が0.1kgf/cm2であった場合を示している。実線で示した座標A〜座標C〜座標BBはこの実施形態1の空気調和機による空気線図、破線で示した座標A〜座標B'は従来の空気調和機による空気線図を表わしている。座標A〜座標Cは上流側の第1蒸発器6での利用側空気の状態変化を示し、座標C〜座標BBは下流側の第2蒸発器7での利用側空気の状態変化をそれぞれ示している。座標A〜座標C、座標C〜座標BB、座標A〜座標B'の傾きはSHF(顕熱比)を表わしており、冷媒の蒸発温度により決定される。ここで、風量はV=90m3/minとする。座標A〜座標Cでは第1蒸発器6における除湿量がL=4.43kg/min、座標C〜座標BBでは第2蒸発器7における除湿量がL=2.62kg/minとなり、第1蒸発器6および第2蒸発器7の合計で、7.06kg/minの除湿量Lとなる。 The air diagram of FIG. 4 shows the case where the pressure increase effect of the refrigerant by the ejector 5 is 0.1 kgf / cm 2 in the air conditioner according to the first embodiment. Coordinates A to C to BB indicated by solid lines represent an air diagram by the air conditioner of the first embodiment, and coordinates A to B ′ indicated by broken lines represent an air diagram by a conventional air conditioner. . Coordinates A to C indicate changes in the state of the use side air in the first evaporator 6 on the upstream side, and coordinates C to BB indicate changes in the state of the use side air in the second evaporator 7 on the downstream side. ing. The gradients of coordinates A to C, coordinates C to BB, and coordinates A to B ′ represent SHF (sensible heat ratio) and are determined by the evaporation temperature of the refrigerant. Here, the air volume is V = 90 m 3 / min. In coordinates A to C, the dehumidification amount in the first evaporator 6 is L = 4.43 kg / min, and in coordinates C to BB, the dehumidification amount in the second evaporator 7 is L = 2.62 kg / min. The dehumidifying amount L of 7.06 kg / min is obtained in total of the vessel 6 and the second evaporator 7.

以上のことから判るように、この実施形態1の空気調和機は、既述した従来の空気調和機による省エネ運転時の冷凍サイクル動作よりも除湿ができており、省エネ運転をしつつ除湿量の低下を抑えることができたのである。しかも、調整用膨張弁4と、第2蒸発器7と、エジェクタ5とを備えるといっただけの構成であり簡素で済む。また、吸湿装置および吸湿材を必要としないので、メンテナンス負荷およびランニングコストを小さくすることができる。そして、第1蒸発器6と第2蒸発器7が一体に構成されているので、蒸発器自体をコンパクトに構成できることは言うまでもなく、冷媒配管やバイパス配管の振り回しもコンパクトにできて見栄えもよくなる。 As can be seen from the above, the air conditioner of the first embodiment can dehumidify more than the refrigeration cycle operation during the energy saving operation by the conventional air conditioner described above, and the amount of dehumidification can be reduced while performing the energy saving operation. The decline could be suppressed. In addition, the configuration is simply provided with the adjusting expansion valve 4, the second evaporator 7, and the ejector 5. Moreover, since a hygroscopic device and a hygroscopic material are not required, maintenance load and running cost can be reduced. And since the 1st evaporator 6 and the 2nd evaporator 7 are comprised integrally, it cannot be overemphasized that the evaporator itself can be comprised compactly, and the swing of refrigerant | coolant piping and bypass piping can also be made compact and it looks good.

ここで、エジェクタ5による冷媒の昇圧と、第1蒸発器6と第2蒸発器7の合計蒸発能力および合計除湿量との関係を図5のテーブルに示す。図5のテーブルによれば、この実施形態1のエジェクタ5による冷媒の昇圧が大きくなっても、第1蒸発器6による蒸発能力と除湿量、第2蒸発器7による蒸発能力はいずれも一定であるが、第2蒸発器7による除湿量は増加している。結果として、合計蒸発能力は一定であるが、合計除湿量は増加している。   Here, the table of FIG. 5 shows the relationship between the refrigerant pressure increase by the ejector 5 and the total evaporation capability and total dehumidification amount of the first evaporator 6 and the second evaporator 7. According to the table of FIG. 5, even when the pressure increase of the refrigerant by the ejector 5 of the first embodiment increases, the evaporation capacity and dehumidification amount by the first evaporator 6 and the evaporation capacity by the second evaporator 7 are both constant. However, the amount of dehumidification by the second evaporator 7 is increasing. As a result, the total evaporation capacity is constant, but the total dehumidification amount is increasing.

一方で、比較形態として、調整用膨張弁4とつながった第2蒸発器7を共通の通風路内で通風方向上流側(風上)に配置し、エジェクタ5とつながった第1蒸発器6を風下に配置した冷媒回路の実験例も図5のテーブルに示している。この比較形態によれば、エジェクタ5による昇圧に伴って、風上の第2蒸発器7による除湿量は増加しているが、風下の第1蒸発器6による除湿量は低下している。結果として、合計除湿量はいくぶん増加傾向にあるが、実施形態1による合計除湿量よりも全般的に低い値となっている。すなわち、実施形態1のように第2蒸発器7よりも通風方向上流側に第1蒸発器6を配置することにより、合計蒸発能力を変えることなく合計除湿量を増やすことができる。   On the other hand, as a comparative form, the second evaporator 7 connected to the adjustment expansion valve 4 is disposed upstream in the ventilation direction (upwind) in the common ventilation path, and the first evaporator 6 connected to the ejector 5 is provided. An experimental example of the refrigerant circuit arranged in the lee is also shown in the table of FIG. According to this comparative form, the dehumidification amount by the second evaporator 7 on the windward increases with the pressure increase by the ejector 5, but the dehumidification amount by the first evaporator 6 on the leeward side decreases. As a result, the total dehumidification amount tends to increase somewhat, but is generally lower than the total dehumidification amount according to the first embodiment. That is, by disposing the first evaporator 6 upstream of the second evaporator 7 in the ventilation direction as in the first embodiment, the total dehumidification amount can be increased without changing the total evaporation capacity.

尚、上記実施形態1では、第1蒸発器6および第2蒸発器7を一体のケーシング内に配備した一体構成を例示したが、第1蒸発器6と第2蒸発器7を別体に構成して、例えば図1に示した風路ケーシング9の通風路9A内に配備することも可能である。このような構成によっても、第2蒸発器7よりも通風方向上流側に第1蒸発器6を配置することにより、合計蒸発能力を変えることなく合計除湿量を増やすことができる。
そして、上記の蒸発温度の異なる第1熱交換器と第2熱交換器を用いることが可能であるが、圧縮機の吸入圧力を上昇させるためには何らかの昇圧機構(上記ではエジェクタ)が必要となる。上記したエジェクタに代替させる場合は、膨張弁およびポンプの組合せ構成が必要となる。
In the first embodiment, an example in which the first evaporator 6 and the second evaporator 7 are disposed in an integral casing is illustrated. However, the first evaporator 6 and the second evaporator 7 are configured separately. For example, it is also possible to arrange in the air passage 9A of the air passage casing 9 shown in FIG. Even with such a configuration, by disposing the first evaporator 6 upstream of the second evaporator 7 in the ventilation direction, the total dehumidification amount can be increased without changing the total evaporation capacity.
The first heat exchanger and the second heat exchanger having different evaporation temperatures can be used. However, in order to increase the suction pressure of the compressor, some pressure increase mechanism (in the above, an ejector) is required. Become. When the above ejector is used, a combination of an expansion valve and a pump is required.

1 圧縮機
2 凝縮器
3 膨張弁
4 調整用膨張弁
5 エジェクタ(昇圧機構)
5A 合流部
5B 混合部
5C ディフューザ部
5D ノズル部
5E 接続管部
5F 接続管部
5G 吸引部
6 第1蒸発器
7 第2蒸発器
9 風路ケーシング
9A 通風路
10 分岐部
11〜16 冷媒配管
17〜19 バイパス配管
20 送風機
W 矢印
1 Compressor 2 Condenser 3 Expansion Valve 4 Adjustment Expansion Valve 5 Ejector (Pressure Boosting Mechanism)
5A Junction part 5B Mixing part 5C Diffuser part 5D Nozzle part 5E Connection pipe part 5F Connection pipe part 5G Suction part 6 1st evaporator 7 2nd evaporator 9 Air passage casing 9A Ventilation path 10 Branching parts 11-16 Refrigerant piping 17- 19 Bypass piping 20 Blower W Arrow

Claims (3)

冷媒を圧縮して吐出する圧縮機と、前記圧縮機から吐出された冷媒と熱源側流体との熱交換を行なう凝縮器と、前記凝縮器からの冷媒を減圧して飽和液状態にする膨張弁と、前記膨張弁からの冷媒との熱交換によって利用側空気に顕熱除去処理を行なう第1蒸発器と、がそれぞれ冷媒配管を介して環状に連結され、
更に、前記膨張弁と前記第1蒸発器の間の冷媒配管に配備されていて、前記膨張弁からの冷媒を昇圧して前記第1蒸発器へ送り出す昇圧機構と、
前記膨張弁と前記昇圧機構の間の冷媒配管に設けられ、前記膨張弁によって飽和液状態に減圧された冷媒を分岐する分岐部と、
前記分岐部と前記昇圧機構の合流部とをつなぐバイパス配管と、
前記バイパス配管に配備されていて、前記分岐部からの飽和液状態に減圧された冷媒を更に減圧する調整用膨張弁と、
前記調整用膨張弁の冷媒流通方向下流側のバイパス配管に配備されていて、前記調整用膨張弁からの冷媒との熱交換によって前記第1蒸発器からの利用側空気に潜熱除去処理を行なう第2蒸発器と、
を備え、
前記膨張弁で飽和液状態に減圧された冷媒は、前記分岐部から前記バイパス配管に流通して前記調整用膨張弁で更に減圧された冷媒の状態と、前記分岐部から前記冷媒配管に流入して前記昇圧機構に飽和液状態のまま送り出された冷媒の状態と、のエンタルピ差を大きくし、前記昇圧機構で冷媒の加速幅を増幅させることを特徴とする空気調和機。
A compressor that compresses and discharges the refrigerant; a condenser that exchanges heat between the refrigerant discharged from the compressor and the heat source side fluid; and an expansion valve that decompresses the refrigerant from the condenser to bring it into a saturated liquid state And a first evaporator that performs sensible heat removal processing on the use side air by heat exchange with the refrigerant from the expansion valve, respectively, are connected in an annular shape through refrigerant piping,
And a pressure increasing mechanism that is arranged in a refrigerant pipe between the expansion valve and the first evaporator, and pressurizes the refrigerant from the expansion valve and sends it to the first evaporator;
A branching section that is provided in a refrigerant pipe between the expansion valve and the pressure increasing mechanism and branches the refrigerant decompressed to a saturated liquid state by the expansion valve ;
A bypass pipe connecting the branch part and the junction part of the booster mechanism;
An expansion valve for adjustment, which is arranged in the bypass pipe and further depressurizes the refrigerant depressurized to the saturated liquid state from the branch part;
A bypass pipe disposed downstream of the adjustment expansion valve in the refrigerant flow direction and performing a heat removal process on the use side air from the first evaporator by exchanging heat with the refrigerant from the adjustment expansion valve. Two evaporators,
With
The refrigerant decompressed to the saturated liquid state by the expansion valve flows into the bypass pipe from the branch part and flows into the refrigerant pipe from the branch part and further from the branch part. An air conditioner characterized in that the enthalpy difference from the state of the refrigerant sent to the pressure increasing mechanism in the saturated liquid state is increased, and the acceleration width of the refrigerant is amplified by the pressure increasing mechanism.
共通の通風路内に第1蒸発器および第2蒸発器が配備されるとともに、前記通風路内で前記第1蒸発器が前記第2蒸発器よりも通風方向上流側に配置されていることを特徴とする請求項1に記載の空気調和機。 The first evaporator and the second evaporator are disposed in a common ventilation path, and the first evaporator is disposed upstream of the second evaporator in the ventilation direction in the ventilation path. The air conditioner according to claim 1, wherein 第1蒸発器と第2蒸発器とが一体に構成されているとともに、前記第1蒸発器から前記第2蒸発器へ利用側空気が通過するように、前記第1蒸発器および前記第2蒸発器に空気通路が形成されていることを特徴とする請求項1または請求項2に記載の空気調和機。 The first evaporator and the second evaporator are integrally formed, and the first evaporator and the second evaporator are so configured that the use-side air passes from the first evaporator to the second evaporator. The air conditioner according to claim 1 or 2, wherein an air passage is formed in the chamber.
JP2015548891A 2013-11-20 2013-11-20 Air conditioner Expired - Fee Related JP6257645B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/006805 WO2015075760A1 (en) 2013-11-20 2013-11-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2015075760A1 JPWO2015075760A1 (en) 2017-03-16
JP6257645B2 true JP6257645B2 (en) 2018-01-10

Family

ID=53179072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015548891A Expired - Fee Related JP6257645B2 (en) 2013-11-20 2013-11-20 Air conditioner

Country Status (2)

Country Link
JP (1) JP6257645B2 (en)
WO (1) WO2015075760A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885303A (en) * 2015-12-16 2017-06-23 上海日立电器有限公司 Sensible heat latent heat separates the air-conditioning system of control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358832B2 (en) * 2005-03-14 2009-11-04 三菱電機株式会社 Refrigeration air conditioner
JP4400533B2 (en) * 2005-08-26 2010-01-20 株式会社デンソー Ejector refrigeration cycle
JP2007218497A (en) * 2006-02-16 2007-08-30 Denso Corp Ejector type refrigeration cycle and refrigerant flow controller
JP4622960B2 (en) * 2006-08-11 2011-02-02 株式会社デンソー Ejector refrigeration cycle
JP2008304077A (en) * 2007-06-05 2008-12-18 Denso Corp Ejector type refrigerating cycle

Also Published As

Publication number Publication date
WO2015075760A1 (en) 2015-05-28
JPWO2015075760A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP4604909B2 (en) Ejector type cycle
US7320228B2 (en) Refrigerant cycle apparatus
CN104220823B (en) Refrigerating plant
JP6150140B2 (en) Heat exchange device and heat pump device
EP1628088A2 (en) Refrigerant cycle apparatus
WO2010038762A1 (en) Refrigeration cycle device
JP6218659B2 (en) Refrigeration air conditioner
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP2009229051A (en) Refrigerating device
JP2008530511A (en) Refrigeration circuit with improved liquid / vapor receiver
JPWO2009087733A1 (en) Refrigeration cycle equipment and four-way valve
CN105008820A (en) Air conditioner
JP2010236706A (en) Air conditioner
JP2011214753A (en) Refrigerating device
JP2009299911A (en) Refrigeration device
JP4971877B2 (en) Refrigeration cycle
JP2008008572A (en) Vapor compression type refrigerating cycle using ejector
JP6257645B2 (en) Air conditioner
JP2007170783A (en) Pressure reducer module with oil separator
JP2007205596A (en) Air conditioner
KR101639514B1 (en) An air conditioner
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP2010038456A (en) Vapor compression refrigeration cycle
JP4867335B2 (en) Air conditioner
JP2017146015A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6257645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees