JPS60155571A - Manufacture of titanium carbonitride ceramic by normal baking process - Google Patents

Manufacture of titanium carbonitride ceramic by normal baking process

Info

Publication number
JPS60155571A
JPS60155571A JP59008430A JP843084A JPS60155571A JP S60155571 A JPS60155571 A JP S60155571A JP 59008430 A JP59008430 A JP 59008430A JP 843084 A JP843084 A JP 843084A JP S60155571 A JPS60155571 A JP S60155571A
Authority
JP
Japan
Prior art keywords
titanium carbonitride
powder
metal
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59008430A
Other languages
Japanese (ja)
Other versions
JPS6353150B2 (en
Inventor
忠彦 渡辺
一久 菖蒲
裕子 津谷
祐嗣 榎本
早川 順四郎
柳下 紀
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59008430A priority Critical patent/JPS60155571A/en
Publication of JPS60155571A publication Critical patent/JPS60155571A/en
Publication of JPS6353150B2 publication Critical patent/JPS6353150B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、炭窒化チタンとホウ化物との混合粉末から、
普通焼成によシ優れた機械的強度、硬度、じん性を有す
る高密度高強度焼結体を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a mixed powder of titanium carbonitride and a boride.
The present invention relates to a method for producing a high-density, high-strength sintered body that has excellent mechanical strength, hardness, and toughness compared to ordinary firing.

炭窒化チタンは、一般に融点、硬度、じん性が高く、ま
た耐酸化性もよいため、耐摩耗性機械部品材料、切削工
具材料としての用途が期待されているが、炭窒化チタン
単味焼結体の抗折力は低く、もろいという欠点があり、
単味焼結体は工業的に利用されないでいる。またサーメ
ツト材の母材として炭窒化チタンは使われているが、結
合剤として添加するN1のため、炭窒化チタン系サーメ
ツト材は耐酸化性及び耐熱性に難点が生じる。
Titanium carbonitride generally has a high melting point, hardness, toughness, and good oxidation resistance, so it is expected to be used as a material for wear-resistant mechanical parts and cutting tools. The body has a low transverse rupture strength and is brittle.
Plain sintered bodies are not used industrially. Furthermore, titanium carbonitride is used as a base material for cermet materials, but titanium carbonitride-based cermet materials suffer from difficulties in oxidation resistance and heat resistance due to the addition of N1 as a binder.

本発明者らは、このような従来法の欠点を改良するのを
目的として、先に炭窒化チタンと金属ホウ化物との混合
粉末をホットプレス法で焼結することによシ高密度、高
強度なセラミックスを得る方法を提案した(特願昭57
−121748号)。
In order to improve these drawbacks of the conventional method, the present inventors first sintered a mixed powder of titanium carbonitride and metal boride using a hot press method to create a high-density, high-density powder. Proposed a method to obtain strong ceramics (patent application 1983)
-121748).

しかしながら、ホットプレス法は、容易に高強度のセラ
ミックスが得られるという点では有利であるが、設備上
の関係で複雑な形状や大型のものを得ることが困難でち
るという問題を伴う。他方、普通焼成法を用いればこの
ような問題は解決されるが、空隙率が高くなるのを免れ
ないだめ、高強度のものとすることができない。
However, although the hot pressing method is advantageous in that high-strength ceramics can be easily obtained, it is accompanied by the problem that it is difficult to obtain products with complex shapes or large sizes due to equipment constraints. On the other hand, if a normal firing method is used, this problem can be solved, but the porosity will increase, and high strength cannot be obtained.

本発明者らは、このような炭窒化チタン系セラミックス
が伴う種々の欠点を克服し、普通焼成法により高密度、
高強度のセラミックスを製造する方法を開発するために
、さらに研究を続けた結果、炭窒化チタン粉末に特定の
金属ホウ化物粉末を2種以上組み合わせて添加すれば、
ホットプレス法によらずに、比較的低い温度で焼成して
も高密度、高強度の強じんなセラミックスが得られるこ
とを見出し、この知見に基づいて本発明をなすに至った
The present inventors have overcome the various drawbacks associated with such titanium carbonitride ceramics, and have achieved high density and
In order to develop a method for manufacturing high-strength ceramics, we continued our research and found that if a combination of two or more specific metal boride powders is added to titanium carbonitride powder,
It was discovered that a strong ceramic with high density and high strength can be obtained even if it is fired at a relatively low temperature without using the hot press method, and based on this knowledge, the present invention was accomplished.

すなわち、本発明は炭素と窒素とを1=9ないし9:1
の原子比で含有する炭窒化チタン粉末に対し、TiB2
. CrB2 、TaB2 、 MnB2 、 MoB
2 、 VB2 。
That is, in the present invention, carbon and nitrogen are mixed in a ratio of 1=9 to 9:1.
For titanium carbonitride powder containing an atomic ratio of TiB2
.. CrB2, TaB2, MnB2, MoB
2, VB2.

N1)B2 、 HfB2 、 AtB2 r ZrB
2のニホウ化金属、Tj、B 、 CrB 、 TaB
 、 MnB 、 MoB 、 VB 、 NbB 、
 HfB 。
N1) B2, HfB2, AtB2 r ZrB
2 metal diborides, Tj, B, CrB, TaB
, MnB, MoB, VB, NbB,
HfB.

ZrBの一ホウ化金属及びW2B6 + MO2BSの
五ニホウ化金属の中から選ばれた2種以上のホウ化金属
の粉末を全量に基づき5〜95重量%の割合で添加した
混合粉末を圧粉体に成形したのち、普通焼成することを
特徴とする炭窒化チタン系セラミックスの製造方法を提
供するものである。
A green compact is made of a mixed powder in which powders of two or more metal borides selected from metal monoboride of ZrB and metal pentaboride of W2B6 + MO2BS are added at a ratio of 5 to 95% by weight based on the total amount. The present invention provides a method for producing titanium carbonitride ceramics, which is characterized in that the titanium carbonitride ceramics are formed by molding and then normally fired.

本発明において原料主成分として用いられる炭窒化チタ
ンは、その組成中の炭素と窒素との原子比が1:9ない
し9:1の範囲内にあるもの、すなわち一般式 %式% (式中のXは0.1〜0.9の範囲内の数である)で表
わされるものである。
The titanium carbonitride used as the main raw material component in the present invention has a composition in which the atomic ratio of carbon to nitrogen is within the range of 1:9 to 9:1, that is, the general formula % formula % (in the formula X is a number within the range of 0.1 to 0.9).

まだ、この炭窒化チタン粉末に添加されるホウ化金属粉
末としては、TiB2 、 CrB2 、 TaB2 
However, the metal boride powders added to the titanium carbonitride powder include TiB2, CrB2, and TaB2.
.

MoB2 、 VB2 、 NbB2 + HfB2B
 、 AtB2 、 ZrB2のニホウ化金属、TiB
 r CrB 、 TaB 、 MnB 、 MoB 
、 VB +NbB 、 HfB 、 ZrBの一ホウ
化金属及びW2B5゜MO2B5の五ニホウ化金属の中
から選ばれた2種又はそれ以上の組合せが用いられる。
MoB2, VB2, NbB2 + HfB2B
, AtB2, metal diboride of ZrB2, TiB
r CrB, TaB, MnB, MoB
, VB + NbB , HfB , metal monoboride of ZrB, and metal pentaboride of W2B5°MO2B5, or a combination of two or more thereof is used.

これらのホウ化金属粉末は、原料粉末全量に基づき5〜
95重量%、好ましくは20〜70重量%の割合で添加
される。この量が5重量%未満、若しくは95重量%よ
りも多くなると得られるセラミックスの強度が著しく低
下する。
These metal boride powders are based on the total amount of raw material powder.
It is added in a proportion of 95% by weight, preferably 20-70% by weight. If this amount is less than 5% by weight or more than 95% by weight, the strength of the resulting ceramic will be significantly reduced.

特に良質のセラミックスは、前記のニホウ化金属の2種
以上、あるいは前記のニホウ化金属の1種以上と、前記
の一ホウ化金属及び五ニホウ化金属の中から選ばれた1
種以上との組合せを添加した場合、例えば全量当920
〜70重量%のTlB21C!rB2 、 ZrB2の
中から選ばれた1種以上と、全量当り50重量%以下の
TaB2 、 VB2 、 MoB2 、 N1)B2
 rMO2B5 + W2B5の中から選ばれた1種以
上との組合せを添加した場合に得られる。
Particularly high-quality ceramics include two or more of the above-mentioned metal diborides, or one or more of the above-mentioned metal diborides and one selected from the above-mentioned metal monoborides and metal pentaborides.
If a combination of seeds or more is added, for example, 920 per total amount
~70% by weight TlB21C! one or more selected from rB2, ZrB2, and 50% by weight or less of TaB2, VB2, MoB2, N1)B2 based on the total amount
It is obtained when a combination with one or more selected from rMO2B5 + W2B5 is added.

これらの原料粉末はいずれも平均粒径2μ以下、好まし
くは1μ以下の粉末として用いるのがよい。
All of these raw material powders are preferably used as powders with an average particle size of 2 μm or less, preferably 1 μm or less.

本発明方法においては、このような原料粉末混合物を普
通焼成法によシ焼結するが、これは例えば原料粉末混合
物を金型に入れ、500〜5000〜/d程度の圧力を
加えて圧粉体とし、次いでラバープレスでさらに500
〜1.0.000%/cJ程度の圧力を加えたのち、真
空中、あるいは水素ガス、窒素ガス、アルゴンガスなど
の非酸化性雰囲気中において1500〜2000℃、好
ましくは1700〜1900℃の温度で30〜300分
間焼成することによって行うことができる。この場合、
金型における冷間圧縮工程は所望に応じ省略することも
できるし、また泥しよう法により圧粉体を形成させるこ
ともできる。さらにまた、上記のようにして得だ焼成体
をH工P法を用いてち密化することもできる。
In the method of the present invention, such a raw material powder mixture is sintered by a normal sintering method, which involves, for example, placing the raw material powder mixture in a mold and applying a pressure of about 500 to 5000 m/d to compact the powder. body and then rubber press for another 500
After applying a pressure of ~1.0.000%/cJ, the temperature is 1500 to 2000°C, preferably 1700 to 1900°C in vacuum or in a non-oxidizing atmosphere such as hydrogen gas, nitrogen gas, or argon gas. This can be done by baking for 30 to 300 minutes. in this case,
The cold compression step in the mold can be omitted if desired, and the green compact can also be formed by a slurry method. Furthermore, the obtained fired body as described above can also be densified using the H-P method.

本発明の材料は、低い温度で、高強度、高硬度、強靭性
かつ高密度な焼結体であシ、切削工具、耐摩耗性機械部
品としても使用することができる。
The material of the present invention can also be used as a sintered body having high strength, high hardness, toughness and high density at low temperatures, cutting tools, and wear-resistant mechanical parts.

又、この材料中のホウ化金属は、周期率表のIV b族
化合物を含む環境中では潤滑性に富むM−(IVl))
2化合物表面層を形成し、一層すぐれた摺動性能を付与
できる。
In addition, the metal boride in this material has a high lubricity in an environment containing Group IVb compounds of the periodic table (M-(IVl)).
By forming a two-compound surface layer, even better sliding performance can be imparted.

次に実施例によシ本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 炭素と窒素の原子比が1:1の炭窒化チタンT1Co、
51”lo、s の粉末(平均粒径1μ)に、全量当り
30重量%に相当するT i B 2粉末(平均粒径2
μ)と、第1表に示した量のTaB2粉末(平均粒径2
μ)を加え、十分に混合し、この混合粉末を1000 
K9 /cnfで冷間圧縮後、3000に7/crlで
ラバープレスして圧粉体を形成させる。この圧粉体を真
空焼結炉に入れ、1700℃で90分間加熱焼成する。
Example 1 Titanium carbonitride T1Co with an atomic ratio of carbon and nitrogen of 1:1,
51" lo,s powder (average particle size 1 μ), T i B 2 powder (average particle size 2
μ) and the amount of TaB2 powder (average particle size 2
μ), mix thoroughly, and add this mixed powder to 1000
After cold compression at K9/cnf, a green compact is formed by rubber pressing at 3000/7/crl. This green compact is placed in a vacuum sintering furnace and fired at 1700° C. for 90 minutes.

このようにして得た焼結体の特性を第1表に示す。The properties of the sintered body thus obtained are shown in Table 1.

第1表 実施例1で用いた炭窒化チタンT I Co 、 s 
N o、 s の粉末(平均粒径1μ)に全量当り30
重量%のTiB2粉末(平均粒径2μ)及び全量描シ1
重量%のTaB2粉末(平均粒径2μ)を加え、実施例
1と同様にして圧粉体を形成させたのち、真空焼結炉中
、異なった温度で90分間加熱焼成する。
Table 1 Titanium carbonitride T I Co , s used in Example 1
30 per total amount of N o,s powder (average particle size 1μ)
Weight% TiB2 powder (average particle size 2μ) and total amount drawn 1
After adding % by weight of TaB2 powder (average particle size 2 μm) and forming a green compact in the same manner as in Example 1, it is heated and fired for 90 minutes at different temperatures in a vacuum sintering furnace.

このようにして得た焼結体の特性を第2表に示す。The properties of the sintered body thus obtained are shown in Table 2.

第2表 実施例3 実施例1で用いた炭窒化チタンTi0o、5No、s 
の粉末(平均粒径1μ)に全量当930重量%に相当す
るTiB2粉末(平均粒径lμ)と、第3表に示した量
のT a B 2粉末(平均粒径1μ)を加え、十分に
混合し、これを実施例1と同様の条件で圧粉体とし、次
いで焼成する。
Table 2 Example 3 Titanium carbonitride used in Example 1 Ti0o, 5No, s
powder (average particle size 1μ), add TiB2 powder (average particle size 1μ) equivalent to 930% by weight based on the total amount and the amount of TaB2 powder (average particle size 1μ) shown in Table 3, and add enough This is made into a powder compact under the same conditions as in Example 1, and then fired.

このようにして得た焼結体の特性を第3表に示す。Table 3 shows the properties of the sintered body thus obtained.

第3表 実施例4 それぞれ異なった炭素と窒素の原子比をもつ1重々の炭
窒化チタンの粉末(平均粒径1μ)と、全量当り60重
量%に相当するTiB2の粉末(平均粒径1μ)と、全
量当り0.5重量%に相当するT a B 2の粉末(
平均粒径1μ)とを混合し、これを実施例1と同様の条
件で圧粉体とし、次いで1800℃において焼結する。
Table 3 Example 4 One layer of titanium carbonitride powder (average particle size 1μ) with different atomic ratios of carbon and nitrogen, and TiB2 powder (average particle size 1μ) corresponding to 60% by weight based on the total amount and T a B 2 powder corresponding to 0.5% by weight based on the total amount (
(average particle size: 1 μm), this is made into a powder compact under the same conditions as in Example 1, and then sintered at 1800°C.

このようにして得た焼結体の特性を第4表に示す・ い
 4 。
The properties of the sintered body thus obtained are shown in Table 4.

実施例5 実施例1で用いた炭窒化チタンTiC(,5N(,5の
粉末(平均粒径1μ)に対し、全量当り30重量%に相
当する量のTiB2の粉末(平均粒径lμ)と、全量描
シ1重量%に相当する量の各種ホウ化金属を添加し、実
施例1と同様の条件を用いて圧粉体とし、これを焼成す
る。
Example 5 To the powder of titanium carbonitride TiC(,5N(,5) (average particle size 1μ) used in Example 1, an amount of TiB2 powder (average particle size 1 μ) corresponding to 30% by weight based on the total amount was added. , various metal borides were added in an amount equivalent to 1% by weight of the total amount, and a compact was prepared using the same conditions as in Example 1, which was then fired.

このようにして得た焼結体の抗折力を第5表に示す。Table 5 shows the transverse rupture strengths of the sintered bodies thus obtained.

第5表 実施例6 1重量%の量で添加するホウ化金属として、TaB、 
VB又はNbBを用い、アルゴン雰囲気中1700℃で
120分間焼成すること以外は全〈実施例5と同様にし
て焼結体を製造する。
Table 5 Example 6 As the metal boride added in an amount of 1% by weight, TaB,
A sintered body is produced in the same manner as in Example 5 except that VB or NbB is used and the sintered body is fired at 1700° C. for 120 minutes in an argon atmosphere.

このようにして得た焼結体はいずれも80〜/実施例7 実施例1で用いた炭窒化チタンTlCo、5No、5 
の粉末(平均粒径1μ)に対し種々のホウ化金属の組合
せを添加し、実施例1と同様にして圧粉体に成形し、こ
れを水素雰囲気中、1700℃で120分焼成する。
The sintered bodies thus obtained were all 80~/Example 7 Titanium carbonitride TlCo, 5No, 5 used in Example 1
Combinations of various metal borides were added to the powder (average particle size: 1 μm), formed into a green compact in the same manner as in Example 1, and baked at 1700° C. for 120 minutes in a hydrogen atmosphere.

このようにして得た抗折力を第6表に示す。The transverse rupture strengths thus obtained are shown in Table 6.

第6表 実施例8 実施例1と同じ炭窒化チタンTlC0,5No、5 の
粉末(平均粒径1μ)に対し、全量当980重量%に相
当する量のT a B 2の粉末(平均粒径1μ)と全
量当91重量%に相当する量のvB2粉末(平均粒径1
μ)を添加し、実施例1と同じ方法で圧粉体としたのち
、真空焼結炉中に入れ1800℃で90分間焼成する。
Table 6 Example 8 Titanium carbonitride TlC0,5No.5 powder (average particle size 1μ), which is the same as in Example 1, was added with T a B 2 powder (average particle size 1 μ) and an amount of vB2 powder (average particle size 1 μ) corresponding to 91% by weight based on the total amount
μ) was added to form a green compact in the same manner as in Example 1, and then placed in a vacuum sintering furnace and fired at 1800° C. for 90 minutes.

このようにして抗折力90に9/−の焼結体を得た。In this way, a sintered body with a transverse rupture strength of 90 to 9/- was obtained.

特許出願人 工業技術院長 外1名 復代理人 阿 形 明Patent applicant: Director of the Agency of Industrial Science and Technology and 1 other person Sub-Agent Akira Agata

Claims (1)

【特許請求の範囲】 1 炭素と窒素とを1=9ないし9:1の原子比で含有
する炭窒化チタン粉末に対し、T I B 2 +Cr
B2 、−TaB2 、 MnB2 、 MoB2 +
 VB2 + ’NbB21HfB2 、 AtB2 
、 ZrB2のニホウ化金属、TiB。 CrB 、 TaB 、 MnB 、 MoB 、 V
B 、 NbB 、 HfB 、 ZrBの一ホウ化金
属及びW2B61 MO2B5の五ニホウ化金属の中か
ら選ばれた2種以上のホウ化金属の粉末を全量に基づき
5〜95重量%の割合で添加した混合粉末を圧粉体に成
形したのち、普通焼成することを特徴とする炭窒化チタ
ン系セラミックスの製造方法。
[Claims] 1. For titanium carbonitride powder containing carbon and nitrogen at an atomic ratio of 1=9 to 9:1, T I B 2 +Cr
B2 , -TaB2 , MnB2 , MoB2 +
VB2 + 'NbB21HfB2, AtB2
, metal diboride of ZrB2, TiB. CrB, TaB, MnB, MoB, V
A mixture in which powders of two or more metal borides selected from metal monoborides of B, NbB, HfB, and ZrB and metal pentaborides of W2B61 MO2B5 are added at a ratio of 5 to 95% by weight based on the total amount. A method for producing titanium carbonitride ceramics, which comprises forming powder into a green compact and then firing it normally.
JP59008430A 1984-01-23 1984-01-23 Manufacture of titanium carbonitride ceramic by normal baking process Granted JPS60155571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008430A JPS60155571A (en) 1984-01-23 1984-01-23 Manufacture of titanium carbonitride ceramic by normal baking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008430A JPS60155571A (en) 1984-01-23 1984-01-23 Manufacture of titanium carbonitride ceramic by normal baking process

Publications (2)

Publication Number Publication Date
JPS60155571A true JPS60155571A (en) 1985-08-15
JPS6353150B2 JPS6353150B2 (en) 1988-10-21

Family

ID=11692903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008430A Granted JPS60155571A (en) 1984-01-23 1984-01-23 Manufacture of titanium carbonitride ceramic by normal baking process

Country Status (1)

Country Link
JP (1) JPS60155571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910171A (en) * 1987-03-26 1990-03-20 Agency Of Industrial Science And Technology Titanium hafnium carbide-boride metal based ceramic sintered body
US5036028A (en) * 1988-05-03 1991-07-30 Agency Of Industrial Science And Technology High density metal boride-based ceramic sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918349A (en) * 1982-07-20 1984-01-30 松下精工株式会社 Heat pump system separation type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918349A (en) * 1982-07-20 1984-01-30 松下精工株式会社 Heat pump system separation type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910171A (en) * 1987-03-26 1990-03-20 Agency Of Industrial Science And Technology Titanium hafnium carbide-boride metal based ceramic sintered body
US5036028A (en) * 1988-05-03 1991-07-30 Agency Of Industrial Science And Technology High density metal boride-based ceramic sintered body

Also Published As

Publication number Publication date
JPS6353150B2 (en) 1988-10-21

Similar Documents

Publication Publication Date Title
JPS5837274B2 (en) High strength composite sintered material
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPS62182163A (en) Silicon nitride ceramic sintered body and manufacture
JPS5864269A (en) Silicon nitride sintered body and manufacture
US4963516A (en) SiC complex sintered bodies and production thereof
JPS60155571A (en) Manufacture of titanium carbonitride ceramic by normal baking process
JPS6212663A (en) Method of sintering b4c base fine body
JPS6357389B2 (en)
JPS6143308B2 (en)
US3261701A (en) Composition of matter containing aluminum nitride and aluminum boride
JPH0122233B2 (en)
AU645721B2 (en) Process for manufacturing ceramic-metal composites
JPS5860675A (en) Silicon nitride sintered body and manufacture
JPS5864270A (en) Silicon nitride sintered body
JPS60112668A (en) High density titanium carbonitride ceramic material and manufacture
JPS59174572A (en) Manufacture of minute cordierite-silicon nitride sintered body
JPS5864273A (en) Silicon nitride sintered body
JPS63282166A (en) High-density metal boride-base sintered ceramics body
JPS61151065A (en) Titanium carbonitride ceramic material
JPS5857393B2 (en) High-strength titanium nitride/metal boride composite ceramics
JPS5855378A (en) High strength heat resistant boride metal- zirconium oxide composite ceramics
JPS63260866A (en) Composite sintered body and manufacture
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture
JPS61242958A (en) Boron carbide-containing titanium carbonitirde base ceramic material
JPS63282234A (en) High-density metallic boride-base ceramics using iron group metal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term