JPH01139964A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner

Info

Publication number
JPH01139964A
JPH01139964A JP29750287A JP29750287A JPH01139964A JP H01139964 A JPH01139964 A JP H01139964A JP 29750287 A JP29750287 A JP 29750287A JP 29750287 A JP29750287 A JP 29750287A JP H01139964 A JPH01139964 A JP H01139964A
Authority
JP
Japan
Prior art keywords
refrigerant
solenoid valve
indoor unit
indoor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29750287A
Other languages
Japanese (ja)
Other versions
JP2533585B2 (en
Inventor
Junichi Hasegawa
淳一 長谷川
Mareo Sudo
須藤 希雄
Kazutoshi Ota
和利 太田
Hiroyuki Nakamura
博幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297502A priority Critical patent/JP2533585B2/en
Publication of JPH01139964A publication Critical patent/JPH01139964A/en
Application granted granted Critical
Publication of JP2533585B2 publication Critical patent/JP2533585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To prevent lubricating oil from being diluted, by providing a solenoid valve on a refrigerant piping at a delivery port of each of a plurality of indoor units, and flowing a refrigerant passing through the heat exchanger of the indoor unit under operation into the indoor unit under interruption through a throttle mechanism for cooling. CONSTITUTION: An indoor unit under operation is judged to be an indoor unit 9' including an indoor heat exchanger 9, and simultaneously opens a heating inlet solenoid valve 11 and a cooling inlet solenoid valve 5, to which a refrigerant is flowed. Further, the indoor unit in interruption is judged to be an indoor unit 10' including an indoor heat exchanger 10 to open a cooling inlet solenoid valve 6 but with a heating inlet solenoid valve 12 kept closed intactly. As a result, the refrigerant flows to the indoor heat exchanger 10 after passage through a throttle mechanism 8 for cooling with more reduced resistance than a throttle mechanism 4 for heating. Once a predetermined time is elapsed after the operation is started, a solenoid valve 6 of an interruption indoor unit is closed. The refrigerant is gradually returned from a capillary 17 to a compressor low pressure side. As a result, upon operation starting with the reduced number of the indoor units dilution of lubricating oil due to residual refrigerant return to the compressor is restricted, and hence reliability of the compressor is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多室形空気調和機に係り、特に、暖房運転始動
時の圧縮機摺動部への潤滑を適正にするのに好適な、多
室形空気調和機に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-chamber air conditioner, and in particular, a method suitable for properly lubricating sliding parts of a compressor at the time of starting heating operation. This invention relates to a multi-room air conditioner.

〔従来の技術〕[Conventional technology]

従来の装置は、例えば、特開昭61−83833号公報
記載のように、圧縮機の回転数が可変なインバータ式の
冷凍サイクルにおいて、潤滑油が不足するような低速回
転が続いたときは、圧縮機を高速回転させ、冷媒の流れ
を良く、するよう絞り機構を調節するような構成となっ
ていた。
For example, in an inverter-type refrigeration cycle where the rotation speed of the compressor is variable, as described in Japanese Patent Application Laid-Open No. 61-83833, when low-speed rotation continues such that lubricating oil is insufficient, The configuration was such that the compressor rotated at high speed and the throttle mechanism was adjusted to improve the flow of refrigerant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、圧縮機の低速運転時の潤滑油不足につ
いての技術は示されているが、複数台の室内ユニットを
有する多室形空気調和機が少台数で運転開始するときに
ついての配慮がなされておらず、この始動時における余
剰冷媒が圧縮機内へ戻ることによる圧縮機内潤滑油の稀
薄化と、吐出圧力上昇にともなう潤滑油の粘度低下とに
よる圧縮機摺動部の油膜厚さの低下の問題が残されてい
た。
The above-mentioned conventional technology shows a technique for dealing with the lack of lubricating oil when the compressor operates at low speed, but it does not take into consideration when a multi-room air conditioner having multiple indoor units starts operation with a small number of units. The lubricating oil inside the compressor is diluted due to excess refrigerant returning to the compressor at startup, and the viscosity of the lubricating oil decreases as the discharge pressure increases, resulting in a decrease in the thickness of the oil film on the sliding parts of the compressor. The problem remained.

本発明は、上記従来技術の問題点を解決するためになさ
れたもので、吐出圧力が高圧になりやすい室内ユニット
少台数運転開始時に、圧縮機への余剰冷媒戻りによる潤
滑油の稀薄化を迎え、圧縮機摺動部の油膜厚さを適正に
保ち、圧縮機の信頼性を向上しうる多室形空気調和機を
提供することを、その目的とするものである。
The present invention was made in order to solve the problems of the prior art described above, and when starting operation of a small number of indoor units where the discharge pressure tends to be high, the lubricating oil becomes diluted due to surplus refrigerant returning to the compressor. The object of the present invention is to provide a multi-chamber air conditioner that can maintain an appropriate oil film thickness on the sliding parts of the compressor and improve the reliability of the compressor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る多室形空気調
和機の構成は、一台の室外ユニットに複数台の室内ユニ
ットを備え、冷、暖房運転切り換え可能に冷媒配管系を
接続してなる多室形空気調和機において、上記複数台の
各室内ユニットの出入口の冷媒配管に電磁弁を設けると
共に、暖房運転であること、他の室内ユニットが停止中
であること、圧縮機の温度が低く冷始動であることの各
信号を受ける信号検出手段を設け、暖房運転で冷始動す
るとき、停止中の室内ユニットの暖房時入口電磁弁を閉
としたまま、当該停止中の室内ユニットの冷房時入口電
磁弁を一定時間開き、前記停・正中の室内ユニットに、
運転中の室内ユニットの熱交換器を経た冷媒を冷房用絞
り機構を介して流入させるようにした制御手段を設けた
ものである〔作用〕 本発明の技術が必要とされるのは、暖房運転時に限って
いるが、その理由は、冷房運転時には冷媒が必ず凝縮器
を通り、また通常、その容量は余分な冷媒を溜めるに足
りる容量を有しているからである。
In order to achieve the above object, the configuration of the multi-room air conditioner according to the present invention includes one outdoor unit and a plurality of indoor units, and connects a refrigerant piping system to enable switching between cooling and heating modes. In this multi-room air conditioner, a solenoid valve is installed in the refrigerant pipe at the inlet and outlet of each of the plurality of indoor units, and a solenoid valve is installed in the refrigerant pipe at the entrance and exit of each of the plurality of indoor units. A signal detection means is provided to receive each signal indicating a cold start, and when a cold start is performed during heating operation, the heating inlet solenoid valve of the stopped indoor unit is kept closed, and the cooling of the stopped indoor unit is started. When the inlet solenoid valve is opened for a certain period of time, the indoor unit at the stop/main position is
This device is equipped with a control means that allows the refrigerant that has passed through the heat exchanger of the indoor unit during operation to flow in through the cooling throttle mechanism. [Function] The technology of the present invention is required during heating operation. The reason for this is that refrigerant always passes through the condenser during cooling operation, and the condenser usually has a capacity sufficient to store excess refrigerant.

したがって、本発明では、室内ユニットからの暖房運転
指令の信号を受け、かつ、冷媒の多量吐ある。したがっ
て、運転停止後数分以内に運転するような、すなねち圧
縮機の温度が高いような通常温始動と呼ばれるときには
本発明の技術は不要である。    □ そこで、圧縮機が低温であるときのみを感知する手段と
しては、圧縮機本体にサーミスタなどの検知手段を設け
、その信号が一定の温度以下であることを示す値のとき
だけ本発明の動作を行う。
Therefore, in the present invention, a heating operation command signal is received from the indoor unit, and a large amount of refrigerant is discharged. Therefore, the technique of the present invention is not necessary when the compressor is operated within several minutes after the operation is stopped, which is called a normal warm start when the temperature of the flat compressor is high. □ Therefore, as a means to detect only when the compressor is at a low temperature, a detecting means such as a thermistor is provided in the compressor body, and the present invention operates only when the signal is a value indicating that the temperature is below a certain level. I do.

また、停止中の室内ユニットがどのユニットかは、室内
ユニットからの運転指示信号のないユニットを停止ユニ
ットと判別した上で、停止ユニットの冷房入口側flf
fl弁のみを開くようになっている、したがって1本発
明の制御手段は暖房運転であること、他の室内ユニット
が停止中であること、圧縮機の温度が低く冷始動である
ことの3つの信号が確認されたとき以外は作動せず、誤
動作することがない。
In addition, to determine which indoor unit is stopped, the unit for which there is no operation instruction signal from the indoor unit is determined to be the stopped unit, and then the cooling inlet side flf of the stopped unit is determined.
Therefore, the control means of the present invention is designed to open only the fl valve, and therefore, the control means of the present invention has three conditions: heating operation, other indoor units are stopped, and compressor temperature is low and cold start is performed. It will not operate unless the signal is confirmed, and will not malfunction.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明の一実施例に係る多室形空気調和機の冷
凍サイクル系統図、第2図は、第1図の多室形空気調和
機の制御系統図、第3図は、その制御動作の手順を示す
フローチャート図である。
Fig. 1 is a refrigeration cycle system diagram of a multi-chamber air conditioner according to an embodiment of the present invention, Fig. 2 is a control system diagram of the multi-chamber air conditioner of Fig. 1, and Fig. 3 is its control system diagram. FIG. 3 is a flowchart diagram showing the procedure of control operation.

第1図において、1は圧縮機であり、一定回転数のもの
であっても、回転数が変化しうるインバータ方式のもの
であってもよい。2は四路切換弁であり、この四路切換
弁2は、圧縮機1から吐出される高温高圧のガス冷媒を
、冷房時は室外ユニット側の室外側熱交換器3へ、暖房
時は室内ユニット側の室内側熱交換器9,10へ選択し
て流すための流路切換えを行う。
In FIG. 1, reference numeral 1 denotes a compressor, which may be of a constant rotation speed or may be of an inverter type whose rotation speed can be varied. 2 is a four-way switching valve, and this four-way switching valve 2 directs the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 to the outdoor heat exchanger 3 on the outdoor unit side during cooling, and to the indoor heat exchanger 3 during heating. The flow path is switched to selectively flow to the indoor heat exchangers 9 and 10 on the unit side.

4は暖房用絞り機構、5,6は冷房時入口電磁弁、7,
8は冷房用絞り機構、9.10は室内側熱交換器、11
.12は暖房時入口電磁弁である。冷房時入口f4磁弁
5,6および暖房時入口電磁弁11,12は、室内側熱
交換器9,10を有する各室内ユニットの出入口の冷媒
配管に配設されている。
4 is a diaphragm mechanism for heating, 5 and 6 are inlet solenoid valves for cooling, 7,
8 is a cooling throttle mechanism, 9.10 is an indoor heat exchanger, 11
.. 12 is a heating inlet solenoid valve. The cooling inlet f4 solenoid valves 5, 6 and the heating inlet solenoid valves 11, 12 are arranged in the refrigerant piping at the entrance and exit of each indoor unit having the indoor heat exchangers 9, 10.

18は暖房用絞り機構4と並列に設置された逆止弁、1
9,20は、冷房用絞り機構7,8に並列に設置された
逆止弁で、いずれも矢印の方向にのみ冷媒を流し、矢印
方向に冷媒が流れるとき前述の各絞り機構をバイパスす
る機能を持つ。
18 is a check valve installed in parallel with the heating throttle mechanism 4;
Reference numerals 9 and 20 indicate check valves installed in parallel with the cooling throttle mechanisms 7 and 8, each of which has a function of allowing refrigerant to flow only in the direction of the arrow, and bypassing each of the aforementioned throttle mechanisms when the refrigerant flows in the direction of the arrow. have.

16.17は、暖房運転時、運転停止している室内ユニ
ットの出入口電磁弁が閉じられているとき、暖房時入口
側電磁弁5,6から洩れて流入し溜り込んだ冷媒を圧縮
機吸込側配管14に戻すためのキャピラリである。
16.17 indicates that during heating operation, when the inlet/outlet solenoid valve of the indoor unit that is not in operation is closed, the refrigerant that leaks from the inlet side solenoid valves 5 and 6 during heating and accumulates is transferred to the compressor suction side. This is a capillary for returning to the pipe 14.

13は、暖房運転時吐出側となり高圧となる配管を示す
。21は、冷媒が液状で圧縮機へ戻ることを防止する気
液分離器的機能を持つアキュムレータである。
Reference numeral 13 indicates a pipe that is on the discharge side and becomes high pressure during heating operation. 21 is an accumulator that has a gas-liquid separator function to prevent the refrigerant from returning to the compressor in liquid form.

このような構成の冷凍サイクルにおける、一般的な冷暖
房運転の作用を説明する。
The operation of general heating and cooling operation in a refrigeration cycle having such a configuration will be explained.

冷房運転時は、圧縮機1から吐出される高温高圧のガス
冷媒は、四路切換弁2を経て室外側熱交換器3(凝縮器
として作用)へ流れ室外空気に放熱し凝縮されて高圧液
状冷媒となる。この液状冷媒は逆止弁18を経て、冷房
時入口電磁弁5または6を開弁することにより流路が選
択され、例えば冷房時入口電磁弁5を開弁じたときは、
冷房用絞り機構7を経て減圧され室内側熱交換器9(蒸
発器として作用)を通り室内空気と熱交換してガス状冷
媒となり、選択開弁されている暖房時入口電磁弁(冷房
時出口電磁弁)11を経て配管13から四路切換弁2を
通り、圧縮機吸込側配管14、アキュムレータ21を経
て圧縮機1へ戻り、以下同じサイクルを繰返す周知の冷
房運転を行う。
During cooling operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows through the four-way switching valve 2 to the outdoor heat exchanger 3 (acting as a condenser), radiates heat to the outdoor air, and is condensed into high-pressure liquid. Becomes a refrigerant. This liquid refrigerant passes through the check valve 18, and a flow path is selected by opening the cooling inlet solenoid valve 5 or 6. For example, when the cooling inlet solenoid valve 5 is opened,
The pressure is reduced through the cooling throttle mechanism 7, and the indoor heat exchanger 9 (acts as an evaporator) exchanges heat with the indoor air to become a gaseous refrigerant. A well-known cooling operation is carried out by passing through the piping 13 (electromagnetic valve) 11, passing through the four-way switching valve 2, returning to the compressor 1 via the compressor suction side piping 14, and the accumulator 21, and repeating the same cycle thereafter.

冷房時入口電磁弁6および出口電磁弁12を選択開弁じ
た場合は、冷媒は冷房用絞り機構8を経て室内側熱交換
器1oを通り出口電磁弁(暖房時入口電磁弁)12を経
る流れとなる。
When the cooling inlet solenoid valve 6 and the outlet solenoid valve 12 are selectively opened, the refrigerant flows through the cooling throttle mechanism 8, the indoor heat exchanger 1o, and the outlet solenoid valve (heating inlet solenoid valve) 12. becomes.

なお、各電磁弁5,6,11.12の全てを開き、室内
側熱交換器9,10の両方に同時に冷媒を流すことも可
能であることは言うまでもない。
It goes without saying that it is also possible to open all of the electromagnetic valves 5, 6, 11, 12 and allow the refrigerant to flow through both the indoor heat exchangers 9, 10 at the same time.

一般に冷房での室内ユニットを1台のみ運転するような
少台数運転時にも、冷媒は室内ユニット全台数を同時に
運転するに足りる冷媒量を封入しであるため、余剰冷媒
が発生するが、通常凝縮器は充分な容量を持っているた
め余剰冷媒を液冷媒としてその中に溜め込むことができ
、なお不足する場合は、受液器であるレシーバタンク2
2を設け、ここに液状冷媒を溜めることによってその量
を調節することができる。
In general, even when operating a small number of indoor units (such as when only one indoor unit is operated), surplus refrigerant is generated because the refrigerant is filled with enough refrigerant to operate all indoor units at the same time, but it usually condenses. Since the container has sufficient capacity, excess refrigerant can be stored in it as liquid refrigerant, and if there is still insufficient refrigerant, the receiver tank 2, which is a liquid receiver, is used.
2, and by storing liquid refrigerant there, the amount of liquid refrigerant can be adjusted.

一方、暖房運転時には、圧縮機1から吐出された高温高
圧のガス状冷媒は、四路切換弁2を暖房側に切り換える
ことにより、配管13を経て暖房時入口電磁弁11.1
2に至る。暖房時入口電磁弁11を選択開弁じたときは
、冷房時入口電磁弁(暖房時出口電磁弁)5を開弁じ、
室内側熱交換器(凝縮器として作用)9側に冷媒を流し
、ここで室内空気に放熱凝縮して液状冷媒となる。液状
冷媒は逆止弁19.電磁弁5を通り暖房用絞り機構4を
経て減圧され、室外側熱交換器(蒸発器として作用)3
にて外気と熱交換して蒸発し、低温低圧のガス状冷媒と
なり、四路切換弁2を経て圧縮機吸込側配管14.アキ
ュムレータ21を通って圧縮機1に戻り、以下同じサイ
クルを繰り返す周知のヒートポンプ式暖房運転を行う。
On the other hand, during heating operation, the high temperature and high pressure gaseous refrigerant discharged from the compressor 1 is transferred through the heating inlet solenoid valve 11.1 through the piping 13 by switching the four-way switching valve 2 to the heating side.
2. When the heating inlet solenoid valve 11 is selectively opened, the cooling inlet solenoid valve (heating outlet solenoid valve) 5 is opened.
The refrigerant flows into the indoor heat exchanger (acting as a condenser) 9, where it radiates heat into the indoor air and condenses to become a liquid refrigerant. For liquid refrigerant, check valve 19. The pressure is reduced through the solenoid valve 5 and the heating throttle mechanism 4, and the outdoor heat exchanger (acts as an evaporator) 3
It exchanges heat with outside air and evaporates, becoming a low-temperature, low-pressure gaseous refrigerant, which passes through the four-way selector valve 2 and enters the compressor suction side pipe 14. It passes through the accumulator 21 and returns to the compressor 1, and thereafter the same cycle is repeated to perform a well-known heat pump type heating operation.

暖房時入口電磁弁12を選択開弁したときは、その出口
側に当る冷房時入口電磁弁(暖房時出口電磁弁)6を開
弁させ、室内側熱交換器10.逆止弁20.電磁弁6を
通る同様の冷媒循環を行い暖房運転を行う、もちろん、
全部の室内側熱交換器に冷媒を流す全室同時運転も可能
である。
When the heating inlet solenoid valve 12 is selectively opened, the cooling inlet solenoid valve (heating outlet solenoid valve) 6 on the outlet side thereof is opened, and the indoor heat exchanger 10 is opened. Check valve 20. Similar refrigerant circulation through the solenoid valve 6 is performed to perform heating operation, of course.
Simultaneous operation in all rooms in which refrigerant flows through all indoor heat exchangers is also possible.

このような一般的な暖房運転で、室内ユニットを少台数
運転する場合、冷房運転と同様に余剰冷媒が生じるが、
圧縮機1から出た冷媒は室内側熱交換器に到るまでは高
温高圧のガス状冷媒であり、圧縮機−室内側熱交換器間
に例え容器を置いても、ガス状で比体積の大きい冷媒で
あるから余剰冷媒を溜めることは不可能である。室内側
熱交換器の容量は全台数運転時の1/2から数分の1に
なるため、充分な放熱が行われず吐出圧力が高くなり、
始動時に一挙に多量の冷媒とその中に溶解している潤滑
油が持出され、圧縮機内の油面が一時的に低下し1機械
的にロックするに到る。また、吐出圧力が高いというこ
とは同時に冷媒や潤滑油の温度も高くなり、潤滑油の粘
度が減少し、圧縮機摺動部の油膜厚さを保つことができ
なくなる。また、冷媒が余剰で運転されるため、冷媒が
冷凍サイクル内を循環して戻ってくる数分後には圧縮機
へ戻る冷媒が過多となり、潤滑油が冷媒で稀釈され、同
時に潤滑上不都合を生ずる。
When operating a small number of indoor units in such general heating operation, surplus refrigerant is generated as in cooling operation, but
The refrigerant that comes out of the compressor 1 is a high-temperature, high-pressure gaseous refrigerant until it reaches the indoor heat exchanger, and even if a container is placed between the compressor and the indoor heat exchanger, it is gaseous and has a specific volume. Since it is a large refrigerant, it is impossible to store excess refrigerant. Since the capacity of the indoor heat exchanger is reduced to 1/2 to a fraction of the capacity when all units are in operation, sufficient heat radiation is not achieved and the discharge pressure increases.
At the time of startup, a large amount of refrigerant and lubricating oil dissolved therein are taken out all at once, and the oil level inside the compressor temporarily drops, resulting in a mechanical lock. Furthermore, when the discharge pressure is high, the temperature of the refrigerant and lubricating oil also increases, and the viscosity of the lubricating oil decreases, making it impossible to maintain the thickness of the oil film on the sliding parts of the compressor. Additionally, since the system is operated with a surplus of refrigerant, a few minutes after the refrigerant circulates through the refrigeration cycle and returns, too much refrigerant returns to the compressor, diluting the lubricating oil with the refrigerant and causing lubrication problems. .

本発明は、このような問題を解決するために開発された
もので、その一実施例を、第1図に合せて第2,3図を
参照して説明する。
The present invention was developed to solve such problems, and one embodiment thereof will be described with reference to FIGS. 2 and 3 in conjunction with FIG. 1.

第2図において、23は圧縮機1の本体温度を検知する
サーミスタ、24は第1の室内ユニットq、第2の室内
ユニット1σからの運転信号、冷、暖房信号、及び前記
サーミスタ23の信号を受け、四路切換弁4及び各電磁
弁のいずれを開閉するかを判断し制御する制御部、25
は制御部24の判断、指令に従って各電磁弁の開閉を行
う電磁弁制御部である。制御部24、電磁弁制御部25
は、マイクロコンピュータなどの演算制御手段からなり
、暖房運転であること、少台数運転であること、圧縮機
の温度が低く冷始動であることの3つの信号を受ける信
号検出手段としての機能と。
In FIG. 2, 23 is a thermistor that detects the main body temperature of the compressor 1, and 24 is a thermistor that detects the operating signals, cooling and heating signals from the first indoor unit q and the second indoor unit 1σ, and the signal of the thermistor 23. a control unit that determines and controls which of the four-way switching valve 4 and each solenoid valve to open or close;
is a solenoid valve control unit that opens and closes each solenoid valve according to judgments and commands from the control unit 24. Control unit 24, solenoid valve control unit 25
consists of arithmetic control means such as a microcomputer, and functions as a signal detection means that receives three signals: heating operation, small number operation, and cold start due to low compressor temperature.

以下に説明する制御を行う制御手段としての機能を有す
る。
It has a function as a control means that performs the control described below.

その動作を第3図に示すフローチャートの手順(ステッ
プN09)に従って説明する。
The operation will be explained according to the procedure (step N09) of the flowchart shown in FIG.

運転が開始されると、制御部24は、第2図に示すよう
に第1,2の室内ユニットq、1σ、及びサーミスタ2
3の信号を取り込む。
When the operation is started, the control unit 24 controls the first and second indoor units q and 1σ and the thermistor 2 as shown in FIG.
Take in the signal of 3.

運転が暖房運転であるか否かを判断する(ステップ■)
。暖房運転であれば四路切換弁2に通電し暖房側に切り
換える。
Determine whether the operation is heating operation (step ■)
. If it is heating operation, the four-way switching valve 2 is energized and switched to the heating side.

圧縮機1の温度が所定温度(例えば50℃)以下か否か
を判断(ステップ■)し、所定温度以下であれば冷始動
であるから本発明の動作が必要と判断し、電磁弁制御部
25に信号を送る。
It is determined whether the temperature of the compressor 1 is below a predetermined temperature (for example, 50° C.) (step ■), and if it is below the predetermined temperature, it is determined that the operation of the present invention is necessary because it is a cold start, and the solenoid valve control section Send a signal to 25.

今、本実施例では、室内側熱交換器9が運転する例を説
明する。
In this embodiment, an example in which the indoor heat exchanger 9 operates will now be described.

そこで、運転している室内ユニットは室内側熱交換器9
を有する第1の室内ユニットりであることを判断(ステ
ップ■)し、運転開始から所定時間内(ステップ■)に
、そこへ冷媒を流す暖房時入口電磁弁11と冷房時入口
電磁弁(暖房時出口電磁弁)5を同時に開弁させる(ス
テップ■)。
Therefore, the indoor unit being operated is the indoor heat exchanger 9.
(step ■), and within a predetermined time from the start of operation (step At the same time, the outlet solenoid valve) 5 is opened (step ■).

さらに停止している室内ユニットは室内側熱交換器1o
を有する第2の室内ユニット10’であることを判別(
ステップ■)して、その冷房時入口電磁弁6を開弁させ
る。暖房時入口電磁弁12は閉じたままとする(ステッ
プ■)。
Furthermore, the indoor unit that is stopped is the indoor heat exchanger 1o.
It is determined that the second indoor unit 10' has a
In step (2), the cooling inlet solenoid valve 6 is opened. During heating, the inlet solenoid valve 12 remains closed (step ■).

この結果、冷媒は、暖房時ムロ電磁弁11→室内側熱交
換器9→逆止弁19→冷房時入ロ電磁弁(暖房時出口電
磁弁)5の順序で流れ、冷房時入口電磁弁6が開いてい
るので、暖房用絞り機構4より抵抗の少ない室内側熱交
換器10側の冷房用絞り機構8を経て室内側熱交換器1
0に流れる。
As a result, the refrigerant flows in the order of the heating solenoid valve 11 → the indoor heat exchanger 9 → the check valve 19 → the cooling inlet solenoid valve (heating outlet solenoid valve) 5, and the cooling inlet solenoid valve 6. is open, the indoor heat exchanger 1 passes through the cooling throttle mechanism 8 on the indoor heat exchanger 10 side, which has less resistance than the heating throttle mechanism 4.
Flows to 0.

室内側熱交換器10は停止しているので、一般に周囲温
度よりも低く、さらに、キャピラリ17によって圧縮機
低圧側に引かれているので、当該室内側熱交換器10内
部は低圧になっており、また冷房用絞り機構2oから流
入される冷媒は、既に室内側熱交換器9で凝縮され液状
となっているものであるから、前記室内側熱交換器10
には充分な量の余剰冷媒を溜めることができる。そこで
Since the indoor heat exchanger 10 is stopped, the temperature is generally lower than the ambient temperature, and since it is drawn to the low pressure side of the compressor by the capillary 17, the pressure inside the indoor heat exchanger 10 is low. Furthermore, since the refrigerant flowing from the cooling throttle mechanism 2o has already been condensed and liquefied in the indoor heat exchanger 9, the refrigerant flows into the indoor heat exchanger 10.
can store a sufficient amount of excess refrigerant. Therefore.

全体の循環冷媒量が減少し、加えて室内側熱交換器10
でも若干放熱されるので吐出圧力も高くならない。
The total amount of circulating refrigerant is reduced, and in addition, the indoor heat exchanger 10
However, since some heat is radiated, the discharge pressure does not increase.

運転開始後一定時間(数分)経過する(ステップ■)と
、冷凍サイクルが安定するので、停止室内ユニットの冷
房時入口電磁弁6を閉じる(ステップ■)、冷媒はキャ
ピラリ17から徐々に圧縮機低圧側へ戻る。
When a certain period of time (several minutes) has passed after the start of operation (step ■), the refrigeration cycle becomes stable, so the cooling inlet solenoid valve 6 of the stopped indoor unit is closed (step ■), and the refrigerant is gradually transferred from the capillary 17 to the compressor. Return to the low pressure side.

なお、圧縮機温度が高いとき、サーモスタットによる短
時間のOFFの後の再始動のときは上記の動作は行われ
ず、運転している室内ユニットの出入口電磁弁のみを開
く通常の運転が行われる。
Note that when the compressor temperature is high and the compressor is restarted after being turned off for a short time by the thermostat, the above operation is not performed, and normal operation is performed in which only the inlet and outlet solenoid valves of the operating indoor unit are opened.

から少台数運転を行い、吐出圧力が高くなるような運転
開始時に吐出圧力の上昇を押え、レシーバタンクなどの
特別な容器を設けずに循環冷媒量を少なくするように、
停止している室内ユニットの室内側熱交換器に余剰冷媒
を一時的に溜めることができる。したがって、運転開始
時の潤滑油の一挙持出しを防止し、圧縮機内摺動部の油
膜厚さを保つことができ、さらに冷媒−逐時の圧縮機へ
の余剰冷媒戻りによる油の稀薄化を抑えることもでき、
圧縮機信頼性向上に大きな効果をもたらす。
In order to reduce the amount of refrigerant being circulated, we started by operating a small number of units, suppressing the increase in discharge pressure at the start of operation when the discharge pressure would be high, and reducing the amount of circulating refrigerant without installing a special container such as a receiver tank.
Surplus refrigerant can be temporarily stored in the indoor heat exchanger of a stopped indoor unit. Therefore, it is possible to prevent the lubricating oil from being carried out all at once at the start of operation, maintain the thickness of the oil film on the sliding parts inside the compressor, and further suppress the dilution of the oil due to surplus refrigerant returning to the compressor from time to time. You can also
This has a significant effect on improving compressor reliability.

また、コスト面でも、冷凍サイクル部品の追加がほとん
どないので、その効果も大きい。
Also, in terms of cost, there are almost no additional refrigeration cycle parts, so the effect is great.

なお、前述の実施例では、室内ユニットが2台で、その
1台が稼働する例を説明したが、室内ユニットが3台以
上あって少台数運転する場合にも同様に動作すればよい
ことは明らかである。
In addition, in the above-mentioned embodiment, an example was explained in which there are two indoor units and one of them operates, but it is possible to operate in the same way even when there are three or more indoor units and a small number of them are operated. it is obvious.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、吐出圧力が高圧に
なりやすい室内ユニット少台数運転開始時に、圧縮機へ
の余剰冷媒戻りによる潤滑油の稀薄化を抑え、圧縮機摺
動部の油膜厚さを適正に保ち、圧縮機の信頼性を向上し
うる多室形空気調和機を提供することができる。
As described above, according to the present invention, when starting operation of a small number of indoor units where the discharge pressure tends to be high, dilution of lubricating oil due to excess refrigerant returning to the compressor can be suppressed, and an oil film on the sliding parts of the compressor can be prevented. It is possible to provide a multi-chamber air conditioner in which the thickness can be kept appropriate and the reliability of the compressor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る多室形空気調和機の
冷凍サイクル系統図、第2図は、第1図の多室形空気調
和機の制御系統図、第3図は、その制御動作の手順を示
すフローチャート図である1・・・圧縮機、2・・・四
路切換弁、3・・・室外側熱交換器、4・・・暖房用絞
り機構、5,6・・・冷房時入口電磁弁、7,8・・・
冷房用絞り機構、9,10・・・室内側熱交換器、グ・
・・第1の室内ユニット、10′・・・第2の室内ユニ
ット、11.12・・・暖房時入口電磁弁、13・・・
配管、14・・・圧縮機吸込側配管、16.17・・・
キャピラリ、18,19,20・・・逆止弁、23・・
・サーミスタ、24・・・制御部、25・・・電磁弁制
御部。
FIG. 1 is a refrigeration cycle system diagram of a multi-chamber air conditioner according to an embodiment of the present invention, FIG. 2 is a control system diagram of the multi-chamber air conditioner of FIG. 1, and FIG. 1. Compressor, 2. Four-way switching valve, 3. Outdoor heat exchanger, 4. Heating throttle mechanism, 5, 6. ... Cooling inlet solenoid valve, 7, 8...
Cooling throttle mechanism, 9, 10... indoor heat exchanger, g.
...First indoor unit, 10'...Second indoor unit, 11.12...Heating inlet solenoid valve, 13...
Piping, 14... Compressor suction side piping, 16.17...
Capillary, 18, 19, 20... Check valve, 23...
- Thermistor, 24... control section, 25... solenoid valve control section.

Claims (1)

【特許請求の範囲】[Claims] 1、一台の室外ユニットに複数台の室内ユニットを備え
、冷、暖房運転切り換え可能に冷媒配管系を接続してな
る多室形空気調和機において、上記複数台の各室内ユニ
ットの出入口の冷媒配管に電磁弁を設けると共に、暖房
運転であること、他の室内ユニットが停止中であること
、圧縮機の温度が低く冷始動であることの各信号を受け
る信号検出手段を設け、暖房運転で冷始動するとき、停
止中の室内ユニットの暖房時入口電磁弁を閉としたまま
、当該停止中の室内ユニットの冷房時入口電磁弁を一定
時間開き、前記停止中の室内ユニットに、運転中の室内
ユニットの熱交換器を経た冷媒を冷房用絞り機構を介し
て流入させるようにした制御手段を設けたことを特徴と
する多室形空気調和機。
1. In a multi-room air conditioner in which a single outdoor unit is equipped with a plurality of indoor units and a refrigerant piping system is connected to enable switching between cooling and heating operation, the refrigerant at the entrance and exit of each of the plurality of indoor units is In addition to installing a solenoid valve in the piping, a signal detection means is installed to receive signals indicating that heating operation is in progress, that other indoor units are stopped, and that compressor temperature is low and cold start is being performed. When performing a cold start, the cooling inlet solenoid valve of the stopped indoor unit is opened for a certain period of time while the heating inlet solenoid valve of the stopped indoor unit is kept closed, and the cooling inlet solenoid valve of the stopped indoor unit is opened for a certain period of time. A multi-room air conditioner characterized by being provided with a control means for causing refrigerant that has passed through a heat exchanger in an indoor unit to flow in through a cooling throttle mechanism.
JP62297502A 1987-11-27 1987-11-27 Multi-room air conditioner Expired - Lifetime JP2533585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297502A JP2533585B2 (en) 1987-11-27 1987-11-27 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297502A JP2533585B2 (en) 1987-11-27 1987-11-27 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH01139964A true JPH01139964A (en) 1989-06-01
JP2533585B2 JP2533585B2 (en) 1996-09-11

Family

ID=17847343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297502A Expired - Lifetime JP2533585B2 (en) 1987-11-27 1987-11-27 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2533585B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164152A1 (en) 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 Air conditioning operation control device, air conditioning system, air conditioning control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164152A1 (en) 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 Air conditioning operation control device, air conditioning system, air conditioning control method, and program

Also Published As

Publication number Publication date
JP2533585B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
KR890000347B1 (en) Refrigeration system
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
KR100815380B1 (en) Freezing apparatus
CN109595846B (en) Heat pump unit and method for controlling heat pump unit
CN112050292B (en) Air conditioning system, and air conditioning system control method and device
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
EP3410037A1 (en) Refrigeration unit, refrigeration system, and method of controlling refrigerant circuit
JP3731174B2 (en) Refrigeration cycle
JP3467837B2 (en) Air conditioner
CN111919073B (en) Refrigerating device
CN114659238B (en) Air conditioning system and low-temperature starting control method thereof
JPH04340046A (en) Operation control device of air conditioner
JPH01139964A (en) Multi-chamber type air conditioner
JPH04324069A (en) Refrigerating plant
JPH109690A (en) Refrigerator
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP2504416B2 (en) Refrigeration cycle
JP4153203B2 (en) Cooling system
CN219037061U (en) Air conditioning system
CN110542183B (en) Operation control method, operation control device, air conditioner, and storage medium
JP7493678B2 (en) Outdoor unit for refrigeration device and refrigeration device equipped with same
KR20140093449A (en) An air conditioner and a control method the same
JPH07293975A (en) Air conditioner
JPH0593548A (en) Refrigerator
JPH08320161A (en) Air conditioner