JPH0796973B2 - Refrigerating apparatus with economizer and operation control method thereof - Google Patents

Refrigerating apparatus with economizer and operation control method thereof

Info

Publication number
JPH0796973B2
JPH0796973B2 JP24281489A JP24281489A JPH0796973B2 JP H0796973 B2 JPH0796973 B2 JP H0796973B2 JP 24281489 A JP24281489 A JP 24281489A JP 24281489 A JP24281489 A JP 24281489A JP H0796973 B2 JPH0796973 B2 JP H0796973B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
economizer
main
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24281489A
Other languages
Japanese (ja)
Other versions
JPH03105156A (en
Inventor
俊之 桃野
正年 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP24281489A priority Critical patent/JPH0796973B2/en
Publication of JPH03105156A publication Critical patent/JPH03105156A/en
Publication of JPH0796973B2 publication Critical patent/JPH0796973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒回路にエコノマイザが配設された冷凍装
置及びその運転制御方法に関し、特に圧縮機の吐出ガス
温度を制御するようにしたものに関する。
Description: TECHNICAL FIELD The present invention relates to a refrigerating device in which an economizer is arranged in a refrigerant circuit and an operation control method thereof, and more particularly to a device for controlling a discharge gas temperature of a compressor. Regarding

(従来の技術) 従来より、例えば「冷凍空調便覧、第4版、基礎編(昭
和56年5月30日、社団法人 日本冷凍協会発行)」の第
382頁に開示されているように、圧縮機及び凝縮機の容
量を制御しながら冷凍能力を増大させるエコノマイザを
備えた冷凍装置は知られている。このエコノマイザ付冷
凍装置は、圧縮機、凝縮器、受液器、主減圧弁、蒸発器
及び液滴分離器を順次配管により接続した冷媒回路を備
えるとともに、受液器からの液冷媒を減圧弁により減圧
して中間冷却器(エコノマイザ)でガス化したのち圧縮
機の中間圧となる箇所にバイパスさせるバイパス路を備
え、中間冷却器での冷媒の蒸発器で主冷媒回路の液冷媒
を過冷却するようにしたものである。
(Prior Art) Conventionally, for example, "Refrigeration and Air Conditioning Handbook, 4th Edition, Basic Edition" (May 30, 1981, published by the Japan Refrigeration Association)
As disclosed on page 382, there are known refrigeration systems with economizers that increase refrigeration capacity while controlling compressor and condenser capacities. This refrigeration system with an economizer has a refrigerant circuit in which a compressor, a condenser, a liquid receiver, a main pressure reducing valve, an evaporator and a droplet separator are sequentially connected by piping, and a liquid refrigerant from the liquid receiver is reduced in pressure by a pressure reducing valve. It has a bypass passage that bypasses the intermediate pressure of the compressor after it is decompressed and gasified by the intermediate cooler (economizer), and the refrigerant refrigerant in the intermediate cooler supercools the liquid refrigerant in the main refrigerant circuit. It is something that is done.

また、この他、上記文献には、液冷媒を液管で減圧した
後、レシーバでガス冷媒と液冷媒とを分離し、そのガス
冷媒を圧縮機の中間圧となる箇所にバイパスさせ、低温
の液冷媒のみを蒸発器で蒸発させるようにしたエコノマ
イザレシーバを設けたものも開示されている。そして、
このようなエコノマイザサイクルにより、冷凍サイクル
のエンタルピ変化がエコノマイザを使用しないときより
も増大し、冷凍効果を増大させることができる。
Further, in addition to this, in the above-mentioned document, after decompressing the liquid refrigerant with a liquid pipe, the gas refrigerant and the liquid refrigerant are separated by a receiver, and the gas refrigerant is bypassed to a location at an intermediate pressure of the compressor, and the low temperature There is also disclosed one provided with an economizer receiver in which only the liquid refrigerant is evaporated by the evaporator. And
With such an economizer cycle, the enthalpy change of the refrigeration cycle is increased more than when the economizer is not used, and the refrigeration effect can be increased.

(発明が解決しようとする課題) ところで、上記エコノマイザサイクルを有する冷凍装置
においては、バイパス路の減圧機構として、吐出管に配
置した感温筒により開度制御される自動膨張弁を使用す
ると、圧縮機の吐出ガス温度を制御することができる。
すなわち、吐出ガス温度が高いときには膨張弁の開度を
大きくして過熱度を小さくすることにより、吐出ガス温
度の上昇を抑える一方、吐出ガス温度が低いときには膨
張弁の開度を小さくして過熱度を大きくすることによ
り、吐出ガス温度の低下を抑えることができる。しか
し、その場合、例えばアンローダ付圧縮機をロードアッ
プした場合、吐出ガス圧力は直ちに上昇するが、感温筒
により吐出ガス温度の上昇はすぐには検出されないの
で、一時的に、温度は低いが圧力が高い状態が生じて、
自動膨張弁は過熱度が小さくなったと判断して絞る方向
に作動し、その結果、吐出ガス温度が過上昇して潤滑油
の劣化等を招いて圧縮機の信頼性を損ねる虞れがあっ
た。
(Problems to be solved by the invention) By the way, in the refrigerating apparatus having the economizer cycle, when an automatic expansion valve whose opening is controlled by a temperature-sensing cylinder arranged in the discharge pipe is used as the decompression mechanism of the bypass passage, The discharge gas temperature of the machine can be controlled.
That is, when the discharge gas temperature is high, the opening degree of the expansion valve is increased to reduce the degree of superheat to suppress the rise in the discharge gas temperature, while when the discharge gas temperature is low, the opening degree of the expansion valve is reduced to prevent overheating. By increasing the degree, it is possible to suppress a decrease in discharge gas temperature. However, in that case, for example, when the compressor with an unloader is loaded up, the discharge gas pressure immediately rises, but since the rise in the discharge gas temperature is not immediately detected by the temperature sensing cylinder, the temperature is temporarily low. High pressure occurs,
The automatic expansion valve operates in the direction of squeezing when it judges that the degree of superheat has become small, and as a result, the discharge gas temperature rises excessively, which may cause deterioration of the lubricating oil and impair the reliability of the compressor. .

本発明は斯かる点に鑑みてなされたもので、その目的
は、圧縮機のロードアップ時にはエコノマイザの機能を
停止させて、圧縮機に対し冷媒をインジェクションする
ようにすることにより、圧縮機の吐出ガス温度を予め冷
却するようにし、よってその信頼性の向上を図ることに
ある。
The present invention has been made in view of such a point, and an object thereof is to stop the function of the economizer at the time of load-up of the compressor and to inject the refrigerant into the compressor, thereby discharging the compressor. It is intended to cool the gas temperature in advance and thus improve its reliability.

(課題を解決するための手段) 上記の目的を達成するために、請求項(1)に係る発明
の解決手段は、主冷媒回路の冷媒の一部を圧縮機の中間
圧となる箇所にエコノマイザを介してバイパスさせる場
合において、圧縮機のロードアップ時には、その前に所
定時間、冷媒をエコノマイザをバイパスさせるようにし
て、その冷媒のインジェクション効果により圧縮機の吐
出ガス温度の過上昇を未然に防止するようにしている。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the invention according to claim (1) is an economizer in which a part of the refrigerant in the main refrigerant circuit is at an intermediate pressure of the compressor. When bypassing the compressor, the refrigerant is allowed to bypass the economizer for a predetermined time before the compressor is loaded up, and the excessive effect of the refrigerant injection effect is prevented in advance. I am trying to do it.

具体的には、この発明では、第1図に示すように、アン
ローダ機構(1a)により運転容量を調整可能な圧縮機
(1)、凝縮器(2)、主減圧機構(3)及び蒸発器
(8)を順次配管(9)により接続してなる主冷媒回路
(10)と、該主冷媒回路(10)の凝縮器(2)から主減
圧機構(3)に流れる液冷媒の一部を主減圧機構(3)
及び蒸発器(8)をバイパスさせて圧縮機(1)の中間
圧となる箇所に吐出させる第1バイパス路(17)と、圧
縮機(1)の吐出側ガス配管(9b)に配置された感温筒
(19a)により開度調整され、上記第1バイパス路(1
7)を流れる冷媒を減圧する自動膨張弁からなる第1減
圧機構(19)と、該第1減圧機構(19)による冷媒の減
圧効果に基づき、上記蒸発機(8)から主減圧機構
(3)に流れる液冷媒を過冷却して冷凍能力を増大させ
るエコノマイザとを備えた冷凍装置を前提としている。
Specifically, in the present invention, as shown in FIG. 1, a compressor (1), a condenser (2), a main depressurization mechanism (3) and an evaporator whose operating capacity can be adjusted by an unloader mechanism (1a). A main refrigerant circuit (10) in which (8) is sequentially connected by a pipe (9), and a part of the liquid refrigerant flowing from the condenser (2) of the main refrigerant circuit (10) to the main pressure reducing mechanism (3). Main decompression mechanism (3)
And a first bypass passage (17) for bypassing the evaporator (8) and discharging to a location having an intermediate pressure of the compressor (1), and a discharge side gas pipe (9b) of the compressor (1). The opening is adjusted by the temperature sensing tube (19a), and the first bypass path (1
Based on the first pressure reducing mechanism (19) consisting of an automatic expansion valve for reducing the pressure of the refrigerant flowing through (7) and the refrigerant pressure reducing effect of the first pressure reducing mechanism (19), the evaporator (8) to the main pressure reducing mechanism (3 ) Is assumed to be a refrigerating apparatus provided with an economizer that supercools the liquid refrigerant flowing in the above) to increase the refrigerating capacity.

そして、上記第1バイパス路(17)の液冷媒をエコノマ
イザ及び第1減圧機構(19)をバイパスして圧縮機
(1)の中間圧となる箇所に流通させる第2バイパス路
(21)と、該第バイパス路(21)を流れる冷媒を減圧す
る第2減圧機構(22)と、上記冷媒回路(10)の液冷媒
の一部を圧縮機(1)の中間圧となる箇所にバイパスさ
せる経路を第1バイパス路(17)のエコノマイザ側と第
2バイパス路(21)側とに選択的に切り換える切換手段
(23)とを設ける。
And a second bypass passage (21) for causing the liquid refrigerant in the first bypass passage (17) to bypass the economizer and the first depressurization mechanism (19) and to flow to a location at an intermediate pressure of the compressor (1), A second pressure reducing mechanism (22) for reducing the pressure of the refrigerant flowing through the second bypass passage (21), and a path for bypassing a part of the liquid refrigerant in the refrigerant circuit (10) to a location at an intermediate pressure of the compressor (1). And a switching means (23) for selectively switching between the economizer side of the first bypass path (17) and the second bypass path (21) side.

また、圧縮機(1)に容量を増大すべき指令信号が出力
されたことを検出する検出手段(26)と、該検出手段
(26)の出力を受け、圧縮機(1)に容量増大指令信号
が出力されたときに、圧縮機(1)の容量を増大させる
所定時間前に主冷媒回路(10)の冷媒の一部を第2バイ
パス路(21)側に流通させ、圧縮機(1)の容量を増大
させた後、主冷媒回路(10)の冷媒の一部を第1バイパ
ス路(17)のエコノマイザ側に流通させるよう、上記切
換手段(23)を制御する制御手段(27)とを設けたこと
を特徴としている。
Further, a detecting means (26) for detecting that a command signal for increasing the capacity is output to the compressor (1), and an output of the detecting means (26) to receive a capacity increasing command to the compressor (1). When a signal is output, a part of the refrigerant in the main refrigerant circuit (10) is circulated to the second bypass passage (21) side a predetermined time before the capacity of the compressor (1) is increased, and the compressor (1 ), The control means (27) for controlling the switching means (23) so that a part of the refrigerant in the main refrigerant circuit (10) is circulated to the economizer side of the first bypass passage (17). It is characterized by having and.

請求項(2)に係る発明では、第4図に示す如く、上記
第1バイパス路(17)を、エコノマイザにより過冷却さ
れた液冷媒を取出可能に主冷媒回路(10)に接続する。
In the invention according to claim (2), as shown in FIG. 4, the first bypass passage (17) is connected to the main refrigerant circuit (10) so that the liquid refrigerant supercooled by the economizer can be taken out.

請求項(3)に係る発明では、第2図及び第4図に示す
ように上記エコノマイザを、主冷媒回路(10)の一部を
構成する内管(12)と、該内管(12)の回りに環状空間
(14)をあけて配置され、該環状空間(14)が第1バイ
パス路(17)の一部を構成する外管(13)との2重管構
造で、かつ第1減圧機構(19)で減圧された冷媒と内管
(12)内の液冷媒とを熱交換させる中間冷却器(11)で
構成する。
In the invention according to claim (3), as shown in FIGS. 2 and 4, the economizer is an inner pipe (12) forming a part of the main refrigerant circuit (10), and the inner pipe (12). An annular space (14) is formed around the first annular passage (14), and the annular space (14) has a double pipe structure with an outer pipe (13) forming a part of the first bypass passage (17), and The intercooler (11) is configured to exchange heat between the refrigerant decompressed by the decompression mechanism (19) and the liquid refrigerant in the inner pipe (12).

また、請求項(4)に係る発明では、上記エコノマイザ
付冷凍装置の運転制御方法として、上記構成の冷凍装置
に対し、圧縮機(1)に容量を増大すべき指令信号が出
力されたときに、圧縮機(1)の容量を増大させる所定
時間前に上記主冷媒回路(10)を液冷媒の一部をエコノ
マイザをバイパスして圧縮機(1)の中間圧となる箇所
に流通させ、次いで、圧縮機(1)の容量を増大させる
構成とする。
In the invention according to claim (4), as an operation control method of the refrigerating apparatus with the economizer, when a command signal for increasing the capacity is output to the compressor (1), the refrigerating apparatus having the above configuration is output. , A predetermined time before the capacity of the compressor (1) is increased, a part of the liquid refrigerant is circulated in the main refrigerant circuit (10) by bypassing the economizer to an intermediate pressure position of the compressor (1), and then, , The capacity of the compressor (1) is increased.

(作用) 上記の構成により、請求項(1)に係る発明では、圧縮
機(1)のロードアップ時、圧縮機(1)に容量を増大
すべき指令信号が出力されると、そのことが検出手段
(26)より検出され、この検出手段(26)の出力を受け
た制御手段(27)により切換手段(23)が制御されて、
先ず、主冷媒回路(10)の凝縮器(2)から主減圧機構
(3)に至る冷媒の一部が第2バイパス路(21)側に流
通させる。次いで、所定時間が経過すると、圧縮機
(1)の容量が増大調整され、しかる後、上記主冷媒回
路(10)の冷媒の一部は第1バイパス路(17)のエコノ
マイザ側に流通される。このため、圧縮機(1)のロー
ドアップ時に、第1減圧機構(19)の感温筒(19a)の
検出遅れにより自動膨張弁の開度が一時的に小さくなっ
ても、圧縮機(1)のロードアップが実行される前に一
定時間、エコノマイザを通過しない液・ガスの混合した
冷媒が圧縮機(1)の中間圧となる箇所に吐出されるこ
となり、そのインジェクション効果により吐出ガス温度
の過上昇が未然に防止される。
(Operation) With the above configuration, in the invention according to claim (1), when a command signal for increasing the capacity is output to the compressor (1) at the time of load-up of the compressor (1), this may occur. The switching means (23) is controlled by the control means (27) which is detected by the detection means (26) and receives the output of this detection means (26),
First, a part of the refrigerant from the condenser (2) of the main refrigerant circuit (10) to the main pressure reducing mechanism (3) is circulated to the second bypass passage (21) side. Next, when a predetermined time has elapsed, the capacity of the compressor (1) is adjusted to be increased, and then a part of the refrigerant in the main refrigerant circuit (10) is circulated to the economizer side of the first bypass passage (17). . Therefore, when the compressor (1) is loaded up, even if the opening of the automatic expansion valve is temporarily reduced due to the detection delay of the temperature sensing cylinder (19a) of the first pressure reducing mechanism (19), the compressor (1 ), The mixed refrigerant of liquid and gas that does not pass through the economizer is discharged for a certain period of time to the place where the intermediate pressure of the compressor (1) is reached, and the injection gas temperature is caused by the injection effect. Is prevented from rising excessively.

請求項(2)に係る発明では、第1バイパス路(17)
は、エコノマイザにより過冷却された液冷媒を取り出す
ように主冷媒回路(10)に接続されているので、第1バ
イパス路(17)には常に過冷却された液冷媒が流れるこ
ととなり、この液冷媒によってインジェクション用液冷
媒が確保される。このことによってレシーバ等の液溜り
が不要となり、回路構成の簡単化及び冷凍装置の小形化
を図ることができる。
In the invention according to claim (2), the first bypass path (17)
Is connected to the main refrigerant circuit (10) so as to take out the liquid refrigerant supercooled by the economizer, so that the subcooled liquid refrigerant always flows through the first bypass passage (17). The liquid coolant for injection is secured by the coolant. This eliminates the need for a liquid reservoir such as a receiver, thereby simplifying the circuit configuration and downsizing the refrigeration system.

請求項(3)に係る発明では、上記エコノマイザが内管
(12)及び外管(13)からなる中間冷却器(11)で構成
され、両管(12),(13)間の環状空間(14)を第1減
圧機構(19)で減圧された冷媒が流れ、この冷媒により
内管(12)内の液冷媒が過冷却されるので、エコノマイ
ザとしての効果を良好に発揮できる。
In the invention according to claim (3), the economizer is composed of an intercooler (11) including an inner pipe (12) and an outer pipe (13), and an annular space () between both pipes (12) and (13) ( The refrigerant decompressed by the first decompression mechanism (19) flows through 14) and the liquid refrigerant in the inner pipe (12) is supercooled by this refrigerant, so that the effect as an economizer can be excellently exhibited.

請求項(4)に係る発明では、圧縮機(1)のロードア
ップ時、圧縮機(1)に容量を増大すべき指令信号が出
力されると、先ず、主冷媒回路(10)の冷媒の一部がエ
コノマイザをバイパスして圧縮機(1)に流通される。
次いで、所定時間が経過すると、圧縮機(1)の容量が
増大調整される。このため、上記請求項(1)に係る発
明と同様に、感温筒(19a)の検出遅れにより自動膨張
弁(19)の開度が一時的に小さくなっても、一定時間、
エコノマイザを通過しない液・ガスの混合した冷媒が圧
縮機(1)の中間圧となる箇所に吐出され、吐出ガス温
度を過上昇が未然に防止される。
In the invention according to claim (4), when the command signal for increasing the capacity is output to the compressor (1) during load-up of the compressor (1), first, the refrigerant in the main refrigerant circuit (10) is discharged. A part of it bypasses the economizer and is distributed to the compressor (1).
Next, when a predetermined time elapses, the capacity of the compressor (1) is increased and adjusted. Therefore, like the invention according to claim (1), even if the opening degree of the automatic expansion valve (19) is temporarily reduced due to the detection delay of the temperature sensing cylinder (19a),
The liquid / gas mixed refrigerant that does not pass through the economizer is discharged to a location having an intermediate pressure of the compressor (1) to prevent the discharge gas temperature from excessively rising.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明の実施例に係る冷水用エコノマイザ付冷
凍装置(A)の全体構成を示し、(1)はターボ式、ス
クリュー式、スクロール式等の圧縮機、(1a)はサクシ
ョンベーン制御により圧縮機(1)の運転容量を例えば
100%,75%,50%,25%及び0%の5つのステップに調整
するアンローダ機構である。(2)は凝縮器、(3)に
主減圧機構としての外部均圧式の蒸発器用自動膨張弁で
ある。(4)は水を冷却するための水冷却器であって、
この水冷却器(4)は、下部に水入口(5)が、また上
部に水出口(6)がそれぞれ開口された密閉シェル
(7)と、該シェル(7)内に熱交換可能に配設された
伝熱管からなる蒸発器(8)とで構成されている。そし
て、上記圧縮機(1)、凝縮器(2)、膨張弁(3)及
び蒸発機(8)(伝熱管)は順次液管(9a)及びガス管
(9b)からなる配管(9)によって冷媒循環可能に接続
されており、凝縮器(2)で奪った冷熱を蒸発器(8)
に移動させて水冷却器(4)内の水を冷却するようにし
た主冷媒回路(10)が構成されている。(3a)は蒸発機
(8)の出口側ガス管(9b)に配設された感温筒で、上
記自動膨張弁(3)の開度を制御するものである。
FIG. 2 shows the overall structure of a refrigerating apparatus (A) for a cold water economizer according to an embodiment of the present invention. (1) is a compressor of turbo type, screw type, scroll type, etc., and (1a) is suction vane control. The operating capacity of the compressor (1)
It is an unloader mechanism that adjusts to 5 steps of 100%, 75%, 50%, 25% and 0%. (2) is a condenser, and (3) is an external pressure equalizing type automatic expansion valve for an evaporator as a main pressure reducing mechanism. (4) is a water cooler for cooling water,
This water cooler (4) is provided with a closed shell (7) having a water inlet (5) at the bottom and a water outlet (6) at the top, and a heat-exchangeable arrangement in the shell (7). It is composed of an evaporator (8) including a heat transfer tube provided. The compressor (1), the condenser (2), the expansion valve (3) and the evaporator (8) (heat transfer tube) are sequentially arranged by a pipe (9) including a liquid pipe (9a) and a gas pipe (9b). It is connected so that the refrigerant can circulate, and the cold heat taken by the condenser (2) is evaporated (8).
The main refrigerant circuit (10) is configured so as to cool the water in the water cooler (4) by moving the main refrigerant circuit (10). (3a) is a temperature-sensing cylinder provided in the outlet side gas pipe (9b) of the evaporator (8), and controls the opening of the automatic expansion valve (3).

上記主冷媒回路(10)の液管(9a)には、冷凍能力を増
大させるためのエコノマイザとしての中間冷却器(11)
が配設されている。この中間冷却器(11)は、内管(1
2)とその周りに密閉円環状の環状空間(14)をあけて
同心状に配置された外管(13)との2重管からなり、内
管(12)内が主冷媒回路(10)の一部とされている。ま
た、内管(12)と外管(13)との間の環状空間(14)の
うち、その凝縮機(2)側の端部は中間冷却器(11)凝
縮器(2)との間の液管(9a)に配管(15)を介して、
また膨張弁(3)側の端部は圧縮機(1)の中間圧とな
る箇所に配管(16)を介してそれぞれ接続されており、
この両配管(15),(16)ないし中間冷却器(11)の環
状空間(14)により、凝縮機(2)から自動膨張弁
(3)に流れる冷媒の一部を膨張弁(3)及び蒸発器
(8)をバイパスさせて圧縮機(1)の中間圧となる箇
所に吐出させるようにした第1バイパス路(17)が構成
されている。
An intermediate cooler (11) as an economizer for increasing the refrigerating capacity is provided in the liquid pipe (9a) of the main refrigerant circuit (10).
Is provided. This intercooler (11) has an inner tube (1
2) and a double tube consisting of an outer tube (13) arranged concentrically with a closed annular space (14) around the inner tube (12) inside the main refrigerant circuit (10) Is part of the. Further, the end of the annular space (14) between the inner pipe (12) and the outer pipe (13) on the side of the condenser (2) is between the intercooler (11) and the condenser (2). Through the pipe (15) to the liquid pipe (9a) of
The end on the side of the expansion valve (3) is connected to the intermediate pressure part of the compressor (1) via a pipe (16),
Due to the annular spaces (14) of the two pipes (15) and (16) or the intercooler (11), part of the refrigerant flowing from the condenser (2) to the automatic expansion valve (3) is expanded to the expansion valve (3) and A first bypass passage (17) is configured so that the evaporator (8) is bypassed and discharged to a location having an intermediate pressure of the compressor (1).

上記配管(15)の途中には、第1バイパス路(17)を流
れる冷媒を減圧する第1減圧機構としての冷却器自動膨
張弁(19)が配設されている。(19a)は圧縮機(1)
吐出側のガス管(9b)に配設された感温筒で、上記膨張
弁(19)の開度を制御するものである。そして、主冷媒
回路(10)の液管(9a)を流れる液冷媒を中間冷却器
(11)で冷却して過冷却状態とするとともに、その過冷
却された液冷媒の一部を配管(15)により取り出して自
動膨張弁(19)により減圧し、この減圧された冷媒を中
間冷却器(11)の環状空間(14)内で内管(12)内の液
冷媒と熱交換させた後、圧縮機(1)の中間圧となる部
分に吐出させるようになされている。
A cooler automatic expansion valve (19) as a first pressure reducing mechanism for reducing the pressure of the refrigerant flowing through the first bypass passage (17) is provided in the middle of the pipe (15). (19a) is a compressor (1)
The opening of the expansion valve (19) is controlled by a temperature sensitive tube provided in the gas pipe (9b) on the discharge side. Then, the liquid refrigerant flowing through the liquid pipe (9a) of the main refrigerant circuit (10) is cooled by the intercooler (11) to be in a supercooled state, and a part of the supercooled liquid refrigerant is piped (15). ) And reduce the pressure by the automatic expansion valve (19), and after the pressure-reduced refrigerant is heat-exchanged with the liquid refrigerant in the inner pipe (12) in the annular space (14) of the intercooler (11), The compressor (1) is designed to discharge to a portion having an intermediate pressure.

また、上記液管(9a)からの分岐部と中間冷却器(11)
との間の第1バイパス路(17)を構成する配管(15)に
は配管(20)一端が接続され、この配管(20)の他端は
中間冷却器(11)と圧縮機(1)との間の配管(16)
(第1バイパス路(17))に接続されており、この配管
(20)により第1バイパス路(17)の液冷媒を、中間冷
却器(11)及び膨張弁(19)をバイパスして圧縮機
(1)の中間圧となる箇所に流通させる第2バイパス路
(21)を構成している。また、上記配管(20)の途中に
は、第2バイパス路(21)を流れる冷媒を減圧する第2
減圧機構としてのキャピラリチューブ(22)が配設され
ている。
In addition, the branch from the liquid pipe (9a) and the intercooler (11)
The one end of the pipe (20) is connected to the pipe (15) that constitutes the first bypass passage (17) between the pipe (20) and the intermediate cooler (11) and the compressor (1). Plumbing to and from (16)
It is connected to the (first bypass passage (17)), and the liquid refrigerant in the first bypass passage (17) is compressed by this pipe (20) by bypassing the intercooler (11) and the expansion valve (19). A second bypass passage (21) is provided to circulate the intermediate pressure in the machine (1). Further, in the middle of the pipe (20), a second refrigerant for depressurizing the refrigerant flowing through the second bypass passage (21) is provided.
A capillary tube (22) as a pressure reducing mechanism is arranged.

さらに、上記主冷媒回路(10)の液管(9a)の冷媒の一
部を圧縮機(1)の中間圧となる箇所にバイパスさせる
経路を第1バイパス路(17)の中間冷却器(11)側と第
2バイパス路(21)側とに選択的に切り換える切換機構
(23)が設けられている。この切換機構(23)は、第2
バイパス路(21)への接続部と膨張弁(19)との間の配
管(15)に配設された第1電磁弁(SV1)と、配管(2
0)に配設された第2電磁弁(SV2)とからなり、上記第
1電磁弁(SV1)は圧縮機(1)の起動と同時に全開状
態に切り換えられる。そして、この全開の第1電磁弁
(SV1)に対し、第2電磁弁(SV2)を開閉制御すること
で、第1又は第2バイパス路(17),(21)の選択を切
り換え、第2電磁弁(SV2)を閉じたときには、主冷媒
回路(10)の冷媒の一部を圧縮機(1)の中間圧となる
箇所にバイパスさせる経路を第1バイパス路(17)の中
間冷却器(11)側とする一方、第2電磁弁(SV2)を開
いたときには、同バイパス経路を第2バイパス路(21)
側とするようにしている。
Furthermore, a path for bypassing a part of the refrigerant in the liquid pipe (9a) of the main refrigerant circuit (10) to a location having an intermediate pressure of the compressor (1) is an intercooler (11) of the first bypass path (17). ) Side and the second bypass path (21) side is provided with a switching mechanism (23) for selectively switching. This switching mechanism (23) has a second
The first solenoid valve (SV 1 ) arranged in the pipe (15) between the connection to the bypass passage (21) and the expansion valve (19), and the pipe (2
0) and a second solenoid valve (SV 2 ), the first solenoid valve (SV 1 ) is switched to the fully open state at the same time when the compressor (1) is started. Then, by controlling the opening and closing of the second solenoid valve (SV 2 ) with respect to the fully opened first solenoid valve (SV 1 ), the selection of the first or second bypass passages (17), (21) is switched, When the second solenoid valve (SV 2 ) is closed, a path for bypassing a part of the refrigerant in the main refrigerant circuit (10) to a location at an intermediate pressure of the compressor (1) is formed in the middle of the first bypass path (17). On the other hand, when the second solenoid valve (SV 2 ) is opened, the same bypass path is used as the second bypass path (21).
Try to be on the side.

上記圧縮機(1)のアンローダ機構(1a)及び切換機構
(23)の両電磁弁(SV1),(SV2)は制御装置(24)に
よって作動制御されるように構成されている。この制御
装置(24)には上記水冷却器(4)内の水温を検出する
水温センサ(25)の測定信号が入力されている。制御装
置(24)における制御手段について第3図のフローチャ
ート図により説明すると、圧縮機(1)が例えば50%の
容量で運転されている運転中、まず、ステップS1で水冷
却器(4)内の水温が目標温度よりも高くて圧縮機
(1)を75%の容量で運転するためのロードアップ指令
信号が出力されたかどうかを判定し、この判定がNOのと
きには同ステップS1を繰り返す。一方、判定がYESにな
ると、ステップS2に進み、第2電磁弁(SV2)を開いた
後、ステップS3で第1設定時間t1(例えば10秒)が経過
したか否かを判定し、判定がYESになるまで同ステップS
3を繰り返す。そして、設定時間t1の経過により判定がY
ESになると、ステップS4においてアンローダ機構(1a)
により圧縮機(1)を1ステップだけアップして運転容
量を75%にする。この後、ステップS5に進んで第2設定
時間t2(感温筒(19)の検出状態が反転する時間よりも
長い時間で例えば1分)が経過したか否かを判定し、判
定がYESになるまで同ステップS5を繰り返す。そして、
所定時間t2の経過により判定がYESになると、ステップS
6において上記第2電磁弁SV2)を全閉にした後、最初の
ステップS1に戻る。
The solenoid valves (SV 1 ) and (SV 2 ) of the unloader mechanism (1a) and the switching mechanism (23) of the compressor (1) are configured to be operated and controlled by the control device (24). A measurement signal of a water temperature sensor (25) for detecting the water temperature in the water cooler (4) is input to the control device (24). The control means in the control device (24) will be described with reference to the flowchart of FIG. 3. During operation of the compressor (1) operating at, for example, 50% capacity, first, in step S 1 , the water cooler (4) It is determined whether or not the water temperature inside is higher than the target temperature and a load-up command signal for operating the compressor (1) at a capacity of 75% has been output. If this determination is NO, the same step S 1 is repeated. . On the other hand, if the decision is made to YES, the process proceeds to step S 2, after opening the second solenoid valve (SV 2), whether the first set time t 1 (e.g. 10 seconds) has elapsed in step S 3 determines The same step S until the judgment becomes YES.
Repeat 3 . When the set time t 1 elapses, the determination is Y
When it comes to ES, the unloader mechanism (1a) in step S 4
The compressor (1) is stepped up by one step to bring the operating capacity to 75%. After that, the process proceeds to step S 5, and it is determined whether or not the second set time t 2 (for example, 1 minute longer than the time when the detection state of the temperature sensing tube (19) is reversed) has elapsed, and the determination is made. Repeat step S 5 until YES. And
If the determination is YES after the elapse of the predetermined time t 2 , step S
After completely closing the second solenoid valve SV 2 ) in 6 , the procedure returns to the first step S 1 .

すなわち、この実施例では、上記のフローのステップS1
により、圧縮機(1)のアンローダ機構(1a)に圧縮機
(1)の運転容量の増大すべき指令信号が出力されたこ
とを検出する検出手段(26)が構成されている。
That is, in this embodiment, step S 1 of the above flow is
Thus, the detection means (26) for detecting that the command signal for increasing the operating capacity of the compressor (1) is output to the unloader mechanism (1a) of the compressor (1) is configured.

また、同ステップS2〜S6により、上記検出手段(26)の
出力を受け、圧縮機(1)に容量増大指令信号が出力さ
れたときに、圧縮機(1)の容量を増大させる所定時間
t1前に主冷媒回路(10)の冷媒の一部を第2バイパス路
(21)側に流通させ、圧縮機(1)の容量を増大させた
後、所定時間t2の間、主冷媒回路(10)の冷媒の一部を
第1バイパス路(17)の中間冷却器(11)側に流通させ
るよう、上記切換機構(23)を制御する制御手段(27)
が構成されている。
The predetermined by the step S 2 to S 6, receiving the output of said detecting means (26), when the capacity increase command signal to the compressor (1) is output, increasing the capacity of the compressor (1) time
Before t 1, a part of the refrigerant in the main refrigerant circuit (10) is circulated to the second bypass passage (21) side to increase the capacity of the compressor (1), and then for a predetermined time t 2 , the main refrigerant is Control means (27) for controlling the switching mechanism (23) so that a part of the refrigerant of the circuit (10) is circulated to the intercooler (11) side of the first bypass passage (17).
Is configured.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be described.

圧縮機(1)の起動に伴って第1電磁弁(SV1)が開弁
状態となり、第2電磁弁(SV2)は閉弁している。この
とき、主冷媒回路(10)の圧縮機(1)から吐出された
高圧ガス冷媒は凝縮器(2)で液化した後、中間冷却器
(11)の内管(12)内で冷却されて過冷却状態となる。
この液冷媒は凝縮器用膨張弁(3)で減圧されたのち、
水冷却器(4)の蒸発器(8)で蒸発し、この蒸発熱に
より水冷却器(4)内の水が冷却される。蒸発器(8)
で蒸発したガス冷媒は圧縮機(1)に好い込まれて再圧
祝される。そして、上記中間冷却器(11)での液冷媒の
好冷却により冷凍装置(A)の冷凍能力が増大する。
With the start of the compressor (1), the first solenoid valve (SV 1 ) is opened and the second solenoid valve (SV 2 ) is closed. At this time, the high-pressure gas refrigerant discharged from the compressor (1) of the main refrigerant circuit (10) is liquefied in the condenser (2) and then cooled in the inner pipe (12) of the intercooler (11). It becomes a supercooled state.
This liquid refrigerant is decompressed by the expansion valve (3) for the condenser,
The water in the water cooler (4) is evaporated by the evaporator (8), and the heat of evaporation cools the water in the water cooler (4). Evaporator (8)
The gas refrigerant evaporated in step 1 is favored by the compressor (1) and recompressed. Then, the refrigerating capacity of the refrigerating apparatus (A) is increased by the good cooling of the liquid refrigerant in the intermediate cooler (11).

また、上記凝縮器(2)から凝縮器用膨張弁(3)に流
れる液冷媒の一部が第1バイパス路(17)に流れ、この
冷媒は冷却器用膨張弁(19)で減圧された後、中間冷却
器(11)環状空間(14)内を通り、そこで主冷媒回路
(10)の液冷媒を好冷却する。この中間冷却(11)を通
過した冷媒は圧縮機(1)の中間圧となる箇所に吐出さ
れる。そして、上記冷却器用膨張弁(19)の開度は圧縮
機(1)の吐出側の感温筒(19a)により制御され、こ
の制御により圧縮機(1)の吐出ガス温度が一定温度に
制御される。
Further, a part of the liquid refrigerant flowing from the condenser (2) to the condenser expansion valve (3) flows to the first bypass passage (17), and the refrigerant is decompressed by the cooler expansion valve (19), It passes through the annular space (14) of the intermediate cooler (11), where the liquid refrigerant in the main refrigerant circuit (10) is cooled well. The refrigerant that has passed through the intermediate cooling (11) is discharged to a location having an intermediate pressure of the compressor (1). The opening of the expansion valve (19) for the cooler is controlled by the temperature sensing tube (19a) on the discharge side of the compressor (1), and the temperature of the discharge gas of the compressor (1) is controlled to a constant temperature by this control. To be done.

このような運転中、水冷却器(4)内の水温が水温セン
サ(25)により検出され、その水温が目標温度よりも高
いときには、制御装置(24)から圧縮機(1)のアンロ
ーダ機構(1a)に対しロードアップ指令信号が出力され
る。そして、このロードアップ指令信号の出力により、
まず上記第2電磁弁(SV2)が第1設定時間t1(10秒)
の間、開かれる。この第2電磁弁(SV2)の開弁によ
り、上記凝縮器(2)から凝縮器用膨張弁(3)に流れ
る冷媒の一部が第2バイパス路(21)により中間冷却器
(11)をバイパスして圧縮機(1)の中間圧となる箇所
に流れる。上記設定時間t1が経過すると、アンローダ機
構(1a)に実際のロードアップ信号が出力されて、圧縮
機(1)の運転容量が増大する。このロードアップの
後、第2設定時間t2(1分)が経過し、圧縮機(1)の
運転状態が安定すると、上記第2電磁弁(SV2)が元の
状態に閉弁する。
During such operation, the water temperature in the water cooler (4) is detected by the water temperature sensor (25), and when the water temperature is higher than the target temperature, the control device (24) causes the unloader mechanism ( A load-up command signal is output to 1a). And by the output of this load-up command signal,
First, the second solenoid valve (SV 2 ) has the first set time t 1 (10 seconds)
Open for a while. By opening the second solenoid valve (SV 2 ), a part of the refrigerant flowing from the condenser (2) to the condenser expansion valve (3) passes through the second bypass passage (21) to the intercooler (11). It bypasses and flows to the place where it becomes an intermediate pressure of the compressor (1). When the set time t 1 has elapsed, an actual load-up signal is output to the unloader mechanism (1a), and the operating capacity of the compressor (1) increases. After this load-up, when the second set time t 2 (1 minute) elapses and the operating state of the compressor (1) stabilizes, the second solenoid valve (SV 2 ) closes to its original state.

したがって、この実施例では、圧縮機(1)のロードア
ップ時、上記感温筒(19a)の検出遅れにより冷却器用
膨張弁(19)の開度が一時的に小さくなった場合でも、
圧縮機(1)のロードアップが実行される前に一定時間
t1だけ、中間冷却器(11)を通過しない液・ガスの混合
した冷媒が圧縮機(1)の中間圧となる箇所に吐出され
ることなり、そのインジェクション効果により吐出ガス
温度の過上昇を未然に防止して、圧縮機(1)の信頼性
を向上させることができる。
Therefore, in this embodiment, when the compressor (1) is loaded, even when the opening degree of the cooler expansion valve (19) is temporarily reduced due to the detection delay of the temperature sensing cylinder (19a),
A certain period of time before the compressor (1) is loaded up
Only for t 1 , the mixed refrigerant of liquid and gas that does not pass through the intercooler (11) is discharged to the place where the intermediate pressure of the compressor (1) is reached, and the injection effect causes the discharge gas temperature to rise excessively. This can be prevented in advance, and the reliability of the compressor (1) can be improved.

第4図は本発明の他の実施例の要部を示す。尚、第2図
と同じ部分については動じ符号を付してその詳細な説明
は省略する。
FIG. 4 shows the essential parts of another embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.

この実施例では、第1バイパス路(17′)は主冷媒回路
(10)に対し、中間冷却器(11)により過冷却された液
冷媒を取り出すように中間冷却器(11)と自動膨張弁
(3)との間の液管(9a)に接続されている。従って、
この場合、第1バイパス路(17′)には常に過冷却され
た液冷媒が流れることとなるり、この液冷媒によってイ
ンジェクション用液冷媒が確保される。このため、イン
ジェクション用冷媒を溜めるためのレシーバ等の液溜り
が不要となり、この液溜りの省略により、冷凍装置
(A)の回路構成を簡単にしかつ冷凍装置(A)を小形
化しつつ、リキッドインジェクションにより吐出ガス温
度制御を安定して行って圧縮機(1)の耐久性、信頼性
を向上させることができる。
In this embodiment, the first bypass passage (17 ') is provided to the main refrigerant circuit (10) so as to take out the liquid refrigerant supercooled by the intercooler (11) and the automatic expansion valve. It is connected to the liquid pipe (9a) between (3). Therefore,
In this case, the subcooled liquid refrigerant always flows through the first bypass passage (17 '), and the liquid refrigerant for injection is secured by this liquid refrigerant. For this reason, a liquid reservoir such as a receiver for storing the injection refrigerant is not necessary, and by omitting the liquid reservoir, the circuit configuration of the refrigerating apparatus (A) is simplified and the refrigerating apparatus (A) is downsized, and liquid injection is performed. Thus, the discharge gas temperature can be stably controlled, and the durability and reliability of the compressor (1) can be improved.

また、主冷媒回路(10)において中間冷却器(11)によ
り過冷却された液冷媒がインジェクション用の液冷媒と
して使用されるので、この過冷却された液冷媒のインジ
ェクションによる冷却効果が大きくなり、その分、イン
ジェクション用液冷媒の量は比較的少量で済むこととな
る。従って、上記冷却器用自動膨張弁(19)で減圧され
る冷媒量も少なくなり、この冷媒量の少ない分だけ膨張
弁(19)を小形化でき、よってコストダウン化を図ると
ともに、膨張弁(19)の耐久性、信頼性を向上させるこ
とができる。
Further, in the main refrigerant circuit (10), since the liquid refrigerant supercooled by the intercooler (11) is used as the liquid refrigerant for injection, the cooling effect by the injection of this supercooled liquid refrigerant becomes large, Therefore, the amount of the injection liquid refrigerant can be relatively small. Therefore, the amount of refrigerant decompressed by the cooler automatic expansion valve (19) also decreases, and the expansion valve (19) can be downsized by the smaller amount of the refrigerant, thereby reducing the cost and expanding the expansion valve (19). ) Durability and reliability can be improved.

(発明の効果) 以上説明したように、請求項(1)及び(4)に係る発
明によると、主冷媒回路の凝縮器から主減圧機構に至る
冷媒の一部を圧縮機の中間圧となる箇所にバイパスさ
せ、その途中の自動膨張弁で冷媒を減圧したのちエコノ
マイザで蒸発させて、このエコノマイザにより主冷媒回
路の冷媒を過冷却するようにしたエコノマイザ付冷凍装
置に対し、圧縮機をロードアップ時、そのロードアップ
を実行する前に所定時間、冷媒を膨張弁及びエコノマイ
ザをバイパスさせるようにしたことにより、吐出ガス温
度を検出する感温筒の検出遅れにより自動膨張弁の開度
が一時的に小さくなっても、一定時間、エコノマイザを
通過しない液・ガスの混合した冷媒を圧縮機の中間圧と
なる箇所に吐出させてインジェクション効果を得ること
ができ、吐出ガスの温度の過上昇を未然に防いで圧縮機
の信頼性を向上を図ることができる。
(Effects of the Invention) As described above, according to the inventions of claims (1) and (4), a part of the refrigerant from the condenser of the main refrigerant circuit to the main pressure reducing mechanism becomes the intermediate pressure of the compressor. Bypass to a location, decompress the refrigerant with an automatic expansion valve in the middle, evaporate it with an economizer, then supercool the refrigerant in the main refrigerant circuit with this economizer. At this time, the refrigerant bypasses the expansion valve and the economizer for a predetermined time before executing the load-up, so that the opening of the automatic expansion valve is temporarily stopped due to the detection delay of the temperature sensing tube that detects the discharge gas temperature. Even if it becomes extremely small, it is possible to obtain the injection effect by discharging the mixed refrigerant of liquid and gas that does not pass through the economizer for a certain period of time to the place where it becomes the intermediate pressure of the compressor. In this case, it is possible to prevent the temperature of the discharge gas from excessively rising and improve the reliability of the compressor.

請求項(2)に係る発明によれば、上記バイパス路を、
エコノマイザにより過冷却された液冷媒を取り出すよう
に主冷媒回路に接続したので、バイパス路に常に過冷却
された液冷媒を流してインジェクション用液冷媒を確保
でき、よって回路構成の簡単化及び冷凍装置の小形化を
図ることができる。
According to the invention of claim (2), the bypass path is
Since it was connected to the main refrigerant circuit so as to take out the supercooled liquid refrigerant by the economizer, the supercooled liquid refrigerant can always be made to flow to the bypass passage to secure the injection liquid refrigerant, thus simplifying the circuit configuration and refrigeration equipment. Can be miniaturized.

請求項(3)に係る発明によると、上記エコノマイザを
内管及び外管からなる中間冷却器で構成して、両管間の
環状空間を膨張弁で減圧された冷媒通路として、その冷
媒により内管内の液冷媒を過冷却するようにしたので、
エコノマイザとしての効果を良好に発揮できる。
According to the invention of claim (3), the economizer is composed of an intercooler consisting of an inner pipe and an outer pipe, and the annular space between the two pipes is used as a refrigerant passage decompressed by an expansion valve to Since I tried to supercool the liquid refrigerant in the pipe,
The effect as an economizer can be exhibited well.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示す図である。第2図以下の図
面は本発明の実施例を示し、第2図は冷凍装置の全体構
成を示す冷媒配管系統図、第3図は制御手段を示すフロ
ーチャート図である。第4図は他の実施例を示す第2図
相当図である。 (A),(A′)……冷凍装置 (1)……圧縮機 (1a)……アンローダ機構 (2)……凝縮機 (3)……膨張弁(主減圧機構) (8)……蒸発器 (9)……配管 (9b)……ガス管 (10)……主冷媒回路 (11)……中間冷却器(エコノマイザ) (12)……内管 (13)……外管 (14)……環状空間 (17),(17′)……第1バイパス路 (19)……膨張弁(第1減圧機構) (19a)……感温筒 (21)……第2バイパス路 (22)……キャピラリチューブ(第2減圧機構) (23)……切換機構(切換手段) (24)……制御装置 (26)……検出手段 (27)……制御手段
FIG. 1 is a diagram showing the configuration of the present invention. FIG. 2 and the following drawings show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram showing the overall configuration of a refrigerating apparatus, and FIG. 3 is a flow chart diagram showing a control means. FIG. 4 is a view corresponding to FIG. 2 showing another embodiment. (A), (A ') ... Refrigerator (1) ... Compressor (1a) ... Unloader mechanism (2) ... Condenser (3) ... Expansion valve (main decompression mechanism) (8) ... Evaporator (9) …… Pipe (9b) …… Gas pipe (10) …… Main refrigerant circuit (11) …… Intercooler (economizer) (12) …… Inner pipe (13) …… Outer pipe (14) ) …… Annular space (17), (17 ′) …… First bypass passage (19) …… Expansion valve (first depressurization mechanism) (19a) …… Temperature tube (21) …… Second bypass passage ( 22) …… Capillary tube (second pressure reducing mechanism) (23) …… Switching mechanism (switching means) (24) …… Control device (26) …… Detecting means (27) …… Controlling means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アンローダ機構(1a)により運転容量を調
整可能な圧縮機(1)、凝縮器(2)、主減圧機構
(3)及び蒸発器(8)を順次配管(9)により接続し
てなる主冷媒回路(10)と、 上記主冷媒回路(10)の凝縮器(2)から主減圧機構
(3)に流れる液冷媒の一部を主減圧機構(3)及び蒸
発器(8)をバイパスさせて圧縮機(1)の中間圧とな
る箇所に吐出させる第1バイパス路(17)と、 圧縮機(1)の吐出側ガス配管(9b)に配置された感温
筒(19a)により開度調整され、上記第1バイパス路(1
7)を流れる冷媒を減圧する自動膨張弁からなる第1減
圧機構(19)と、 上記第1減圧機構(19)による冷媒の減圧効果に基づ
き、上記蒸発機(8)から主減圧機構(3)に流れる液
冷媒を過冷却して冷凍能力を増大させるエコノマイザと
を備えた冷凍装置において、 上記第1バイパス路(17)の液冷凍をエコノマイザ及び
第1減圧機構(19)をバイパスして圧縮機(1)の中間
圧となる箇所に流通させる第2バイパス路(21)と、 上記第2バイパス路(21)を流れる冷媒を減圧する第2
減圧機構(22)と、 主冷媒回路(10)の液冷媒の一部を圧縮機(1)の中間
圧となる箇所にバイパスさせる経路を、第1バイパス路
(17)のエコノマイザ側と第2バイパス路(21)側とに
選択的に切り換える切換手段(23)と、 上記圧縮機(1)に容量を増大すべき指令信号が出力さ
れたことを検出する検出手段(26)と、 上記検出手段(26)の出力を受け、圧縮機(1)に容量
増大指令信号が出力されたときに、圧縮機(1)の容量
を増大させる所定時間前に主冷媒回路(10)の冷媒の一
部を第2バイパス路(21)側に流通させ、圧縮機(1)
の容量を増大させた後、主冷媒回路(10)の冷媒の一部
を第1バイパス路(17)のエコノマイザ側に流通させる
よう、上記切換手段(23)を制御する制御手段(27)と
を設けたことを特徴とするエコノマイザ付冷凍装置。
1. A compressor (1) whose operating capacity can be adjusted by an unloader mechanism (1a), a condenser (2), a main decompression mechanism (3) and an evaporator (8) are sequentially connected by a pipe (9). A main refrigerant circuit (10) and a part of the liquid refrigerant flowing from the condenser (2) of the main refrigerant circuit (10) to the main pressure reducing mechanism (3), and the main pressure reducing mechanism (3) and the evaporator (8). First bypass passage (17) for bypassing the gas and discharging it to an intermediate pressure location of the compressor (1), and a temperature sensing tube (19a) arranged in the discharge side gas pipe (9b) of the compressor (1) The opening is adjusted by the
The first pressure reducing mechanism (19) consisting of an automatic expansion valve for reducing the pressure of the refrigerant flowing through (7), and the pressure reducing effect of the refrigerant by the first pressure reducing mechanism (19), from the evaporator (8) to the main pressure reducing mechanism (3). In the refrigerating device provided with an economizer that supercools the liquid refrigerant flowing in the above) to increase the refrigerating capacity, the liquid refrigeration of the first bypass passage (17) is compressed by bypassing the economizer and the first pressure reducing mechanism (19). A second bypass passage (21) that circulates to a location that has an intermediate pressure of the machine (1), and a second that reduces the pressure of the refrigerant that flows through the second bypass passage (21).
The depressurization mechanism (22) and a path for bypassing a part of the liquid refrigerant of the main refrigerant circuit (10) to a location at an intermediate pressure of the compressor (1) are provided on the economizer side of the first bypass path (17) and on the second side. Switching means (23) for selectively switching to the bypass path (21) side, detection means (26) for detecting that a command signal for increasing the capacity has been output to the compressor (1), and the detection means When the capacity increase command signal is output to the compressor (1) in response to the output of the means (26), one of the refrigerant in the main refrigerant circuit (10) is supplied a predetermined time before the capacity of the compressor (1) is increased. Part to the second bypass passage (21) side, and the compressor (1)
The control means (27) for controlling the switching means (23) so that a part of the refrigerant in the main refrigerant circuit (10) is circulated to the economizer side of the first bypass passage (17) after the capacity of the main refrigerant circuit (10) is increased. A refrigeration system with an economizer characterized by being provided with.
【請求項2】第1バイパス路(17)は、エコノマイザに
より過冷却された液冷媒を取出可能に主冷媒回路(10)
に接続されていることを特徴とする請求項(1)記載の
エコノマイザ付冷凍装置。
2. A main refrigerant circuit (10) for allowing the first bypass passage (17) to take out liquid refrigerant supercooled by an economizer.
The refrigeration system with an economizer according to claim 1, characterized in that the refrigeration system is connected to.
【請求項3】エコノマイザは、主冷媒回路(10)の一部
を構成する内管(12)と、該内管(12)の回りに環状空
間(14)をあけて配置され、該環状空間(14)が第1バ
イパス路(17)の一部を構成する外管(13)との2重管
構造で、かつ第1減圧機構(19)で減圧された冷媒と内
管(12)内の液冷媒とを熱交換させる中間冷却器(11)
であることを特徴とする請求項(1)又は(2)記載は
エコノマイザ付冷凍装置
3. The economizer is arranged with an inner pipe (12) forming a part of a main refrigerant circuit (10) and an annular space (14) around the inner pipe (12). (14) has a double pipe structure with the outer pipe (13) forming a part of the first bypass passage (17), and the refrigerant reduced in pressure by the first pressure reducing mechanism (19) and the inner pipe (12) Intercooler (11) for exchanging heat with other liquid refrigerant
The refrigeration apparatus with an economizer according to Claim (1) or (2), characterized in that
【請求項4】アンローダ機構(1a)により運転容量を調
整可能に圧縮機(1)、凝縮器(2)、主減圧機構
(3)及び蒸発器(8)を順次配管(9)により接続し
てなる主冷媒回路(10)と、 上記主冷媒回路(10)の凝縮器(2)から主減圧機構
(3)に流れる冷媒の一部を主減圧機構(3)及び蒸発
器(8)をバイパスさせて圧縮機(1)の中間圧となる
箇所に吐出させるバイパス路(17)と、 圧縮機(1)の吐出側ガス管(9b)に配置された感温筒
(19a)により開度調整され、上記バイパス路(17)を
流れる冷媒を減圧する自動膨張弁(19)と、 上記自動膨張弁(19)による冷媒の減圧効果に基づき、
上記蒸発器(8)から主減圧機構(3)に流れる液冷媒
を過冷却して冷凍能力を増大させるエコノマイザとを備
えた冷凍装置の運転制御方法であって、 上記圧縮機(1)に容量を増大すべき指令信号が出力さ
れたときに、圧縮機(1)の容量を増大させる所定時間
前に上記主冷媒回路(10)の液冷媒の一部をエコノマイ
ザ及び膨張弁(19)をバイパスして圧縮機(1)の中間
圧となる箇所に流通させ、次いで、圧縮機(1)の容量
を増大させることを特徴とするエコノマイザ付冷凍装置
の運転制御方法。
4. A compressor (1), a condenser (2), a main depressurization mechanism (3) and an evaporator (8) are sequentially connected by a pipe (9) so that the operating capacity can be adjusted by an unloader mechanism (1a). And a part of the refrigerant flowing from the condenser (2) of the main refrigerant circuit (10) to the main decompression mechanism (3) in the main decompression mechanism (3) and the evaporator (8). The bypass passage (17) for bypassing and discharging to a place where the pressure becomes the intermediate pressure of the compressor (1), and the temperature sensing cylinder (19a) arranged in the discharge side gas pipe (9b) of the compressor (1) Based on the automatic expansion valve (19) that is adjusted and reduces the pressure of the refrigerant flowing through the bypass passage (17), and the pressure reducing effect of the refrigerant by the automatic expansion valve (19),
A method for controlling the operation of a refrigerating apparatus, comprising: an economizer for supercooling a liquid refrigerant flowing from the evaporator (8) to the main pressure reducing mechanism (3) to increase refrigerating capacity, wherein the compressor (1) has a capacity When a command signal for increasing the capacity is output, a part of the liquid refrigerant in the main refrigerant circuit (10) bypasses the economizer and the expansion valve (19) a predetermined time before the capacity of the compressor (1) is increased. Then, the operation control method of the refrigerating apparatus with an economizer is characterized in that the compressor (1) is circulated to a location having an intermediate pressure and then the capacity of the compressor (1) is increased.
JP24281489A 1989-09-18 1989-09-18 Refrigerating apparatus with economizer and operation control method thereof Expired - Lifetime JPH0796973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24281489A JPH0796973B2 (en) 1989-09-18 1989-09-18 Refrigerating apparatus with economizer and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24281489A JPH0796973B2 (en) 1989-09-18 1989-09-18 Refrigerating apparatus with economizer and operation control method thereof

Publications (2)

Publication Number Publication Date
JPH03105156A JPH03105156A (en) 1991-05-01
JPH0796973B2 true JPH0796973B2 (en) 1995-10-18

Family

ID=17094687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24281489A Expired - Lifetime JPH0796973B2 (en) 1989-09-18 1989-09-18 Refrigerating apparatus with economizer and operation control method thereof

Country Status (1)

Country Link
JP (1) JPH0796973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460426B1 (en) * 2010-09-30 2014-11-10 미츠비시 쥬고교 가부시키가이샤 Turbo freezer device, control device therefor, and control method therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device
JP2007085706A (en) * 2005-09-26 2007-04-05 Sanyo Electric Co Ltd Refrigerating device
JP4716832B2 (en) * 2005-09-26 2011-07-06 三洋電機株式会社 Refrigeration equipment
JP4716937B2 (en) * 2006-06-28 2011-07-06 三洋電機株式会社 Refrigeration cycle apparatus, heat pump water heater, and control method for refrigeration cycle apparatus
JP4931848B2 (en) * 2008-03-31 2012-05-16 三菱電機株式会社 Heat pump type outdoor unit for hot water supply
JP5383802B2 (en) * 2009-06-23 2014-01-08 三菱電機株式会社 Vapor compression cycle equipment
JP5855312B2 (en) * 2013-03-12 2016-02-09 三菱電機株式会社 Air conditioner
EP2975335B1 (en) * 2013-03-12 2018-12-05 Mitsubishi Electric Corporation Air conditioner
EP2975336B1 (en) * 2013-03-12 2020-08-05 Mitsubishi Electric Corporation Air conditioner
JP6071741B2 (en) * 2013-05-16 2017-02-01 株式会社神戸製鋼所 Heat pump system
JP2017026238A (en) * 2015-07-24 2017-02-02 株式会社富士通ゼネラル Heat pump cycle device
WO2020138978A2 (en) * 2018-12-28 2020-07-02 윤명혁 Thermo-hygrostat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460426B1 (en) * 2010-09-30 2014-11-10 미츠비시 쥬고교 가부시키가이샤 Turbo freezer device, control device therefor, and control method therefor

Also Published As

Publication number Publication date
JPH03105156A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
EP2068096B1 (en) Refrigeration device
US4833893A (en) Refrigerating system incorporating a heat accumulator and method of operating the same
JP2008096033A (en) Refrigerating device
JP4462435B2 (en) Refrigeration equipment
JPH0796973B2 (en) Refrigerating apparatus with economizer and operation control method thereof
JPH085185A (en) Refrigerating cycle system
JP2009186033A (en) Two-stage compression type refrigerating device
WO2021065156A1 (en) Heat source unit and refrigeration device
JP5119513B2 (en) Dual refrigerator
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
CN111919073B (en) Refrigerating device
JPH0820138B2 (en) Refrigeration equipment
JPH04340046A (en) Operation control device of air conditioner
JPH07190515A (en) Freezer
JPH07122519B2 (en) Refrigerator with economizer
JP2009293887A (en) Refrigerating device
JPH09318205A (en) Refrigerating device
JP2708925B2 (en) Multi-source refrigeration equipment
JP3303689B2 (en) Binary refrigeration equipment
JP7179445B2 (en) refrigeration cycle equipment
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JP4284823B2 (en) Refrigeration equipment
JPH03263556A (en) Multiple refrigerating machine
EP4177545A1 (en) Heat source unit and control method therefor
JP6787465B1 (en) Heat source unit and refrigeration equipment