JPH07122519B2 - Refrigerator with economizer - Google Patents

Refrigerator with economizer

Info

Publication number
JPH07122519B2
JPH07122519B2 JP1242813A JP24281389A JPH07122519B2 JP H07122519 B2 JPH07122519 B2 JP H07122519B2 JP 1242813 A JP1242813 A JP 1242813A JP 24281389 A JP24281389 A JP 24281389A JP H07122519 B2 JPH07122519 B2 JP H07122519B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
liquid
economizer
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1242813A
Other languages
Japanese (ja)
Other versions
JPH03105155A (en
Inventor
俊之 桃野
正年 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1242813A priority Critical patent/JPH07122519B2/en
Publication of JPH03105155A publication Critical patent/JPH03105155A/en
Publication of JPH07122519B2 publication Critical patent/JPH07122519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒回路にエコノマイザが配設された冷凍装
置に関し、特にリキッドインジェクションにより圧縮機
の吐出ガス温度を制御するようにしたものに関する。
Description: TECHNICAL FIELD The present invention relates to a refrigerating device in which an economizer is arranged in a refrigerant circuit, and more particularly to a refrigerating device in which a discharge gas temperature of a compressor is controlled by liquid injection.

(従来の技術) 従来より、例えば「冷凍空調便覧、第4版、基礎編(昭
和56年5月30日、社団法人 日本冷凍協会発行)」の第
382頁に開示されているように、圧縮機及び凝縮器の容
量を制御しながら冷凍能力を増大させるエコノマイザを
備えた冷凍装置は知られている。このエコノマイザ付冷
凍装置は、圧縮機、凝縮器、受液器、主減圧弁、蒸発器
及び液滴分離器を順次配管により接続した冷媒回路を備
えるとともに、受液器からの液冷媒を減圧弁により減圧
して中間冷却器(エコノマイザ)でガス化した後、圧縮
機の中間圧となる箇所にバイパスさせるバイパス路を備
え、中間冷却器での冷媒の蒸発熱で主冷媒回路の液冷媒
を過冷却するようにしたものである。
(Prior Art) Conventionally, for example, "Refrigeration and Air Conditioning Handbook, 4th Edition, Basic Edition" (May 30, 1981, published by the Japan Refrigeration Association)
As disclosed on page 382, refrigeration systems with economizers that increase refrigeration capacity while controlling the capacity of the compressor and condenser are known. This refrigeration system with an economizer has a refrigerant circuit in which a compressor, a condenser, a liquid receiver, a main pressure reducing valve, an evaporator and a droplet separator are sequentially connected by piping, and a liquid refrigerant from the liquid receiver is reduced in pressure by a pressure reducing valve. After it is decompressed and gasified in the intercooler (economizer), it is equipped with a bypass path to bypass the intermediate pressure of the compressor, and the heat of evaporation of the refrigerant in the intercooler causes the liquid refrigerant in the main refrigerant circuit to pass over. It is designed to be cooled.

また、この他、上記文献には、液冷媒を液管で減圧した
後、レシーバでガス冷媒と液冷媒とを分離し、そのガス
冷媒を圧縮機の中間圧となる箇所にバイパスさせ、低温
の液冷媒のみを蒸発器で蒸発させるようにしたエコノマ
イザレシーバを設けたものも開示されている。そして、
このようなエコノマイザサイクルにより、冷凍サイクル
のエンタルピ変化がエコノマイザを使用しないときより
も増大し、冷凍効果を増大させることができる。
Further, in addition to this, in the above-mentioned document, after decompressing the liquid refrigerant with a liquid pipe, the gas refrigerant and the liquid refrigerant are separated by a receiver, and the gas refrigerant is bypassed to a location at an intermediate pressure of the compressor, and the low temperature There is also disclosed one provided with an economizer receiver in which only the liquid refrigerant is evaporated by the evaporator. And
With such an economizer cycle, the enthalpy change of the refrigeration cycle is increased more than when the economizer is not used, and the refrigeration effect can be increased.

(発明が解決しようとする課題) ところで、上記圧縮機として使用されるターボ式、スク
リュー式、スクロール式等の回転型圧縮機では、性能向
上の点で圧縮部分の隙間を可及的に小さくすることが望
ましい。しかし、実際にはこの圧縮部分の隙間を小さく
するのに限度があり、その要因は、吐出ガス温度の変動
により圧縮部分が熱膨張してメタル接触を招来すること
による。そして、このメタル接触を回避するために、吐
出ガス温度が所定値以上に上昇すると圧縮機を停止させ
る保護装置(吐出管サーモ)を設けるほか、リキッドイ
ンジェクションを行って吐出ガス温度を安定させ、圧縮
部分の熱膨張を抑えることがなされている。
(Problems to be solved by the invention) By the way, in a rotary type compressor such as a turbo type, a screw type, or a scroll type used as the above-mentioned compressor, the gap of the compressed portion is made as small as possible in terms of performance improvement. Is desirable. However, in reality, there is a limit to reducing the gap of the compressed portion, and the cause is that the compressed portion thermally expands due to the fluctuation of the discharge gas temperature and causes metal contact. In order to avoid this metal contact, a protective device (discharge pipe thermostat) that stops the compressor when the discharge gas temperature rises above a predetermined value is provided, and liquid injection is performed to stabilize the discharge gas temperature and compress it. The thermal expansion of the part is suppressed.

上記リキッドインジェクションにより吐出ガス温度の上
昇を抑える場合、保護装置の温度セットを低く設定し、
かつ該保護装置が圧縮機の正常運転中に作動しないよ
う、常にインジェクション用の液冷媒を確保する必要が
ある。例えば圧縮機の起動時にインジェクション路の冷
媒取出し口に液冷媒がないと、起動直後に吐出ガス温度
が急激に上昇して保護装置の作動を招き、圧縮機が停止
する。
If you want to suppress the rise in discharge gas temperature by the above liquid injection, set the temperature set of the protective device low,
Moreover, it is necessary to always secure the liquid refrigerant for injection so that the protection device does not operate during normal operation of the compressor. For example, if there is no liquid refrigerant at the refrigerant outlet of the injection path at the time of starting the compressor, the temperature of the discharge gas will rise rapidly immediately after starting, causing the protection device to operate, and stopping the compressor.

そこで、例えば第2図に示す如く、圧縮機(a)、凝縮
器(b)、自動膨張弁(c)及び蒸発器(d)を順次接
続してなる冷媒回路(e)に対し、凝縮器(b)から膨
張弁(c)に至る冷媒の一部を圧縮機(a)の中間圧と
なる箇所に吐出させるインジェクション路(f)の冷媒
取出し口にレシーバ等の液溜り(g)を配置し、この液
溜り(g)内の液冷媒によりインジェクション用液冷媒
を確保するようになされているが、冷媒回路(e)に液
溜り(g)を要し、冷凍装置が大型化しかつ構造が複雑
になるのは否めない。
Therefore, for example, as shown in FIG. 2, a condenser (a), a condenser (b), an automatic expansion valve (c) and an evaporator (d) are sequentially connected to a refrigerant circuit (e), and A liquid reservoir (g) such as a receiver is arranged at the refrigerant outlet of the injection path (f) that discharges a part of the refrigerant from (b) to the expansion valve (c) to a location at an intermediate pressure of the compressor (a). However, the liquid refrigerant for liquid injection is secured by the liquid refrigerant in the liquid pool (g), but since the liquid pool (g) is required in the refrigerant circuit (e), the refrigerating apparatus becomes large and the structure is large. It cannot be denied that it becomes complicated.

尚、図中、(c1)は蒸発器(d)の吐出側配管に配置さ
れた感温筒で、膨張弁(c)の開度を制御するものであ
る。(h)はインジェクション路(f)を開閉する電磁
弁、(i)はインジェクション路(f)の冷媒を減圧す
る自動膨張弁で、圧縮機(a)の吐出側配管に配置した
感温筒(i1)により開度が調整される。(j)は水を冷
却する水冷却器で、水入口(k1)及び水出口(k2)を有
する密閉シェル(k)内に蒸発器(d)が配設されたシ
ェルアンドチューブ式熱交換器からなる。
In the figure, (c 1 ) is a temperature-sensing cylinder arranged in the discharge side pipe of the evaporator (d), and controls the opening of the expansion valve (c). (H) is a solenoid valve that opens and closes the injection passage (f), (i) is an automatic expansion valve that decompresses the refrigerant in the injection passage (f), and is a temperature-sensing tube (in the discharge side pipe of the compressor (a) ( The opening is adjusted by i 1 ). (J) is a water cooler for cooling water, which is a shell-and-tube heat system in which an evaporator (d) is arranged in a closed shell (k) having a water inlet (k 1 ) and a water outlet (k 2 ). It consists of an exchange.

本発明は斯かる諸点に鑑みてなされたもので、その目的
は、上記従来のエコノマイザを利用することにより、レ
シーバ等の液留りを要することなく、インジェクション
用の液冷媒を確保するようにすることにある。
The present invention has been made in view of these points, and an object thereof is to secure a liquid refrigerant for injection by using the above-described conventional economizer without requiring liquid retention such as a receiver. Especially.

(課題を解決するための手段) 上記の目的を達成すべく、請求項(1)に係る発明で
は、冷媒回路の凝縮器から減圧機構に至る液冷媒の一部
をインジェクション路により圧縮機の中間圧となる箇所
にバイパスさせるとともに、そのインジェクション路に
エコノマイザを配設し、インジェクション路の冷媒取出
し口をエコノマイザの2次側とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the invention according to claim (1), a part of the liquid refrigerant from the condenser of the refrigerant circuit to the pressure reducing mechanism is partially connected to the middle of the compressor by the injection path. Bypass to the place where the pressure is applied, an economizer is installed in the injection path, and the refrigerant outlet of the injection path is the secondary side of the economizer.

具体的には、第1図に示すように、圧縮機(1)、凝縮
器(2)、主減圧機構(3)及び蒸発器(8)を順次液
管(9a)及びガス管(9b)からなる配管(9)により接
続してなる主冷媒回路(10)と、該主冷媒回路(10)の
凝縮器(2)から主減圧機構(3)に流れる液管(9a)
内の冷媒の一部を主減圧機構(3)及び蒸発器(8)を
バイパスさせて圧縮機(1)の中間圧となる箇所に吐出
させるインジェクション路(17)とを設けるとともに、
上記インジェクション路(17)には、インジェクション
路(17)を流れる冷媒を減圧する副減圧機構と、該副減
圧機構による冷媒の減圧効果に基づき、上記凝縮器
(2)から主減圧機構(3)に流れる液管(9a)内の液
冷媒を過冷却して冷凍能力を増大させるエコノマイザと
を配設する。
Specifically, as shown in FIG. 1, a compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (8) are sequentially arranged in a liquid pipe (9a) and a gas pipe (9b). A main refrigerant circuit (10) connected by a pipe (9) consisting of a liquid pipe (9a) flowing from the condenser (2) of the main refrigerant circuit (10) to the main pressure reducing mechanism (3).
An injection passage (17) is provided for discharging a part of the refrigerant inside the compressor (1) by bypassing the main pressure reducing mechanism (3) and the evaporator (8), and
The injection passage (17) has a sub pressure reducing mechanism for reducing the pressure of the refrigerant flowing through the injection passage (17), and the condenser (2) to the main pressure reducing mechanism (3) based on the pressure reducing effect of the refrigerant by the sub pressure reducing mechanism. And an economizer that supercools the liquid refrigerant in the liquid pipe (9a) flowing into the tank and increases the refrigerating capacity.

そして、上記インジェクション路(17)を、エコノマイ
ザにより過冷却された液管(9)内の液冷媒を取り出す
ようにエコノマイザと主減圧機構(3)との間の液管
(9a)に接続する。
Then, the injection passage (17) is connected to the liquid pipe (9a) between the economizer and the main decompression mechanism (3) so as to take out the liquid refrigerant in the liquid pipe (9) supercooled by the economizer.

また、請求項(2)に係る発明では、上記副減圧機構
を、圧縮機(1)の吐出側ガス管(9b)に配置された感
温筒(19a)を有する自動膨張弁(19)とする。
Further, in the invention according to claim (2), the sub decompression mechanism is an automatic expansion valve (19) having a temperature sensing tube (19a) arranged in the discharge side gas pipe (9b) of the compressor (1). To do.

さらに、請求項(3)に係る発明では、上記エコノマイ
ザは、主冷媒回路(10)の一部を構成する内管(12)
と、該内管(12)の回りに環状空間(14)をあけて配置
され、該環状空間(14)がインジェクション路(17)の
一部を構成する外管(13)との2重管構造で、かつ副減
圧機構で減圧された冷媒と内管(12)内の液冷媒とを熱
交換させる中間冷却器(11)で構成する。
Further, in the invention according to claim (3), the economizer is an inner pipe (12) forming a part of the main refrigerant circuit (10).
And an outer pipe (13) that is arranged around the inner pipe (12) with an annular space (14) open, and the annular space (14) constitutes a part of the injection path (17). The intermediate cooler (11) has a structure and is configured to exchange heat between the refrigerant decompressed by the sub pressure reducing mechanism and the liquid refrigerant in the inner pipe (12).

(作用) 上記の構成により、請求項(1)に係る発明では、主冷
媒回路(10)において凝縮器(2)から主減圧機構
(3)に流れる液管(9a)内の冷媒の一部がインジェク
ション路(17)に流れ、この冷媒は副減圧機構で減圧さ
れた後、エコノマイザで主冷媒回路(10)の液管(9a)
内の液冷媒を過冷却し、この過冷却により冷凍能力が増
大する。そして、上記エコノマイザ通過後の冷媒は圧縮
機(1)の中間圧となる箇所に吐出され、このリキッド
インジェクションにより圧縮機(1)の吐出ガス温度が
一定温度に制御される。
(Operation) With the above configuration, in the invention according to claim (1), a part of the refrigerant in the liquid pipe (9a) flowing from the condenser (2) to the main pressure reducing mechanism (3) in the main refrigerant circuit (10). Flows into the injection path (17), this refrigerant is decompressed by the auxiliary decompression mechanism, and then the economizer liquid pipe (9a) of the main refrigerant circuit (10).
The liquid refrigerant inside is supercooled, and the refrigeration capacity is increased by this supercooling. Then, the refrigerant that has passed through the economizer is discharged to a location having an intermediate pressure of the compressor (1), and the liquid injection controls the discharge gas temperature of the compressor (1) to a constant temperature.

その場合、上記インジェクション路(17)は、エコノマ
イザにより過冷却された液管(9a)内の液冷媒を取り出
すようにエコノマイザと主減圧機構(3)との間の液管
(9a)に接続されているので、インジェクション路(1
7)のエコノマイザには、エコノマイザによる過冷却状
態となってガス冷媒にはなり難い液冷媒が常に安定して
流れることとなり、この液冷媒によってインジェクショ
ン用液冷媒が安定確保される。よって液溜りが不要とな
り、回路構成の簡単化及び冷凍装置の小形化を図ること
ができる。
In that case, the injection passage (17) is connected to the liquid pipe (9a) between the economizer and the main decompression mechanism (3) so as to take out the liquid refrigerant in the liquid pipe (9a) supercooled by the economizer. Therefore, the injection path (1
In the economizer of 7), the liquid refrigerant that does not easily become a gas refrigerant in a supercooled state by the economizer always flows stably, and the liquid refrigerant ensures stable injection liquid refrigerant. Therefore, no liquid pool is required, and the circuit configuration can be simplified and the refrigeration system can be downsized.

また、上記エコノマイザ通過後の液管(9a)内の冷媒は
エコノマイザにより過冷却されてガス状態になり難いの
で、機器周囲温度の上昇等の何等かの影響により凝縮器
(2)通過後であってエコノマイザ通過前の液冷媒がガ
ス化しても、上記エコノマイザ通過後の液冷媒はガス化
せずに液状態に保持される。このため、冷凍装置の停止
後の再起動時もエコノマイザにより過冷却された液冷媒
が残存し、起動直後に直ちにリキッドインジェクション
を行うことができる。
Further, since the refrigerant in the liquid pipe (9a) after passing through the economizer is difficult to be supercooled by the economizer to be in a gas state, it may be after passing through the condenser (2) due to some influence such as an increase in ambient temperature of the device. Even if the liquid refrigerant before passing through the economizer is gasified, the liquid refrigerant after passing through the economizer is not gasified and is kept in a liquid state. Therefore, even when the refrigeration system is restarted after being stopped, the liquid refrigerant supercooled by the economizer remains, and the liquid injection can be immediately performed immediately after the startup.

請求項(2)に係る発明では、エコノマイザにより過冷
却された液冷媒がインジェクション用の冷媒として使用
されるので、このインジェクション用冷媒の量は比較的
少量で済むこととなる。このため、上記副減圧機構が、
圧縮機(1)の吐出管に感温筒(19a)を有する自動膨
張弁(19)とされていると、冷媒量の少ない分だけ膨張
弁(19)を小形化でき、コストダウン化を図るととも
に、その耐久性、信頼性を向上させることができる。
In the invention according to claim (2), since the liquid refrigerant supercooled by the economizer is used as the refrigerant for injection, the amount of the refrigerant for injection can be relatively small. Therefore, the sub pressure reducing mechanism,
If the discharge pipe of the compressor (1) is an automatic expansion valve (19) having a temperature sensitive cylinder (19a), the expansion valve (19) can be downsized by the amount of the smaller amount of refrigerant, and the cost can be reduced. At the same time, its durability and reliability can be improved.

請求項(3)に係る発明では、上記エコノマイザが内管
(12)及び外管(13)からなる中間冷却器(11)で構成
され、両管(12),(13)間の環状空間(14)を副減圧
機構で減圧された冷媒が流れ、この冷媒により内管(1
2)内の液冷媒が過冷却されるので、エコノマイザとし
ての効果を良好に発揮できる。
In the invention according to claim (3), the economizer is composed of an intercooler (11) including an inner pipe (12) and an outer pipe (13), and an annular space () between both pipes (12) and (13) ( Refrigerant whose pressure has been reduced by the sub-pressure reducing mechanism flows through the inner pipe (1).
2) Since the liquid refrigerant inside is supercooled, the effect as an economizer can be exhibited well.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の実施例に係る冷水用のエコノマイザ付
冷凍装置(A)の全体構成を示し、(1)はターボ式、
スクリュー式、スクロール式等の圧縮機、(2)は凝縮
器、(3)は主減圧機構としての外部均圧式の蒸発器用
自動膨張弁である。(4)は水を冷却するための水冷却
器であって、この水冷却器(4)は、下部に水入口
(5)が、また上部に水出口(6)がそれぞれ開口され
た密閉シェル(7)と、該シェル(7)内に熱交換可能
に配設された伝熱管からなる蒸発器(8)とで構成され
ている。そして、上記圧縮機(1)、凝縮器(2)、膨
張弁(3)及び蒸発器(8)(伝熱管)は順次液管(9
a)及びガス管(9b)からなる配管(9)によって冷媒
循環可能に接続されており、凝縮器(2)で奪った冷熱
を蒸発器(8)に移動させて水冷却器(4)内の水を冷
却するようにした主冷媒回路(10)が構成されている。
(3a)は蒸発器(8)の出口側ガス管(9b)に配設され
た感温筒で、上記自動膨張弁(3)の開度を制御するも
のである。
FIG. 1 shows the overall configuration of a refrigerating apparatus (A) for cold water according to an embodiment of the present invention, in which (1) is a turbo type,
A screw type or scroll type compressor, (2) is a condenser, and (3) is an external pressure equalizing type automatic expansion valve for an evaporator as a main pressure reducing mechanism. (4) is a water cooler for cooling water, and this water cooler (4) is a closed shell having a water inlet (5) at the bottom and a water outlet (6) at the top. (7) and an evaporator (8) composed of a heat transfer tube disposed in the shell (7) so that heat can be exchanged. The compressor (1), the condenser (2), the expansion valve (3) and the evaporator (8) (heat transfer tube) are sequentially connected to the liquid pipe (9).
It is connected by a pipe (9) consisting of a) and a gas pipe (9b) so that the refrigerant can circulate, and the cold heat taken by the condenser (2) is moved to the evaporator (8) and inside the water cooler (4). The main refrigerant circuit (10) is configured to cool the water.
(3a) is a temperature-sensing cylinder provided in the outlet side gas pipe (9b) of the evaporator (8), and controls the opening of the automatic expansion valve (3).

上記主冷媒回路(10)の液管(9a)には、冷凍能力を増
大させるためのエコノマイザとしての中間冷却器(11)
が配設されている。この中間冷却器(11)は、内管(1
2)とその周りに密閉円環状の環状空間(14)をあけて
同心状に配置された外管(13)との2重管からなり、内
管(12)内が主冷媒回路(10)の一部とされている。ま
た、内管(12)と外管(13)との間の環状空間(14)の
うち、その凝縮器(2)側の端部は主冷媒回路(10)に
おいて中間冷却器(11)と自動膨張弁(3)との間の液
管(9a)に配管(15)を介して、また膨張弁(3)側の
端部は圧縮機(1)の中間圧となる箇所に配管(16)を
介してそれぞれ接続されており、この両配管(15),
(16)ないし中間冷却器(11)の環状空間(14)によ
り、凝縮器(2)から自動膨張弁(3)に流れる冷媒の
一部を膨張弁(3)及び蒸発器(8)をバイパスさせて
圧縮機(1)の中間圧となる箇所に吐出させるようにし
たインジェクション路(17)が構成されている。
An intermediate cooler (11) as an economizer for increasing the refrigerating capacity is provided in the liquid pipe (9a) of the main refrigerant circuit (10).
Is provided. This intercooler (11) has an inner tube (1
2) and a double tube consisting of an outer tube (13) arranged concentrically with a closed annular space (14) around the inner tube (12) inside the main refrigerant circuit (10) Is part of the. Further, of the annular space (14) between the inner pipe (12) and the outer pipe (13), the end of the annular space (14) on the condenser (2) side is connected to the intercooler (11) in the main refrigerant circuit (10). The pipe (15) is connected to the liquid pipe (9a) between the automatic expansion valve (3) and the pipe (16) is connected to the end of the expansion valve (3) at an intermediate pressure of the compressor (1). ) Respectively, and these two pipes (15),
By the annular space (14) of the intermediate cooler (16) or (16), a part of the refrigerant flowing from the condenser (2) to the automatic expansion valve (3) bypasses the expansion valve (3) and the evaporator (8). The injection passage (17) is configured so as to be discharged to a location where the intermediate pressure of the compressor (1) is reached.

また、上記配管(15)の途中にはインジェクション路
(17)の冷媒の流れを開閉制御する電磁弁(18)と、イ
ンジェクション路(17)を流れる冷媒を減圧する副減圧
機構としての冷却器用自動膨張弁(19)とが液管(9a)
側から順に配設されている。また、上記圧縮機(1)吐
出側のガス管(9b)には上記冷却器用自動膨張弁(19)
の開度を制御する感温筒(19a)が配設されている。そ
して、主冷媒回路(10)においてその液管(9a)を流れ
る液冷媒を中間冷却器(11)で冷却して過冷却状態とす
るとともに、その過冷却された液管(9a)内の液冷媒の
一部を、中間冷却器(11)と自動膨張弁(3)との間の
液管(9a)から配管(15)によりインジェクション路
(17)に取り出して自動膨張弁(19)により減圧し、こ
の減圧された冷媒を中間冷却器(11)の環状空間(14)
内で内管(12)内の液冷媒と熱交換させた後、圧縮機
(1)の中間圧となる部分にインジェクションするよう
になされている。
Further, an electromagnetic valve (18) for controlling the opening and closing of the flow of the refrigerant in the injection path (17) in the middle of the pipe (15), and an automatic cooler as a sub pressure reducing mechanism for reducing the pressure of the refrigerant flowing in the injection path (17). Expansion valve (19) and liquid pipe (9a)
They are arranged in order from the side. The gas pipe (9b) on the discharge side of the compressor (1) has an automatic expansion valve (19) for the cooler.
A temperature-sensitive tube (19a) for controlling the opening degree of is provided. The liquid refrigerant flowing through the liquid pipe (9a) in the main refrigerant circuit (10) is cooled by the intercooler (11) to be in a supercooled state, and the liquid in the supercooled liquid pipe (9a) is A part of the refrigerant is taken out from the liquid pipe (9a) between the intercooler (11) and the automatic expansion valve (3) to the injection path (17) through the pipe (15) and decompressed by the automatic expansion valve (19). Then, the pressure-reduced refrigerant is passed through the annular space (14) of the intercooler (11).
After heat exchange with the liquid refrigerant in the inner pipe (12) therein, the liquid is injected into a portion having an intermediate pressure of the compressor (1).

したがって、上記実施例においては、冷凍装置(A)の
運転中、電磁弁(18)が開弁状態にあるとき、主冷媒回
路(10)の圧縮機(1)から吐出された高圧ガス冷媒は
凝縮器(2)で液化され、この液冷媒は中間冷却器(1
1)の内管(12)内で冷却されて過冷却状態となる。こ
の液冷媒は凝縮器用膨張弁(3)で減圧された後、水冷
却器(4)の蒸発器(8)で蒸発し、この蒸発したガス
冷媒は圧縮機(1)に吸い込まれて再圧縮される。そし
て、上記中間冷却器(11)での液冷媒の過冷却により冷
凍装置(A)の冷凍能力が増大する。
Therefore, in the above embodiment, during operation of the refrigeration system (A), when the solenoid valve (18) is in the open state, the high pressure gas refrigerant discharged from the compressor (1) of the main refrigerant circuit (10) is It is liquefied in the condenser (2) and this liquid refrigerant is cooled by the intercooler (1
It is cooled in the inner pipe (12) of 1) and becomes a supercooled state. The liquid refrigerant is decompressed by the condenser expansion valve (3) and then evaporated by the evaporator (8) of the water cooler (4), and the evaporated gas refrigerant is sucked into the compressor (1) and recompressed. To be done. Then, the subcooling of the liquid refrigerant in the intercooler (11) increases the refrigeration capacity of the refrigeration system (A).

また、上記凝縮器(2)から凝縮器用膨張弁(3)に液
管(9a)内を流れる過冷却状態の冷媒の一部がインジェ
クション路(17)に流れ、この冷媒は冷却器用膨張弁
(19)で減圧された後、中間冷却器(11)の環状空間
(14)内を通り、そこで主冷媒回路(10)の液冷媒を過
冷却状態にする。そして、この中間冷却器(11)を通過
した冷媒は圧縮機(1)の中間圧となる箇所に吐出さ
れ、このリキッドインジェクションにより圧縮機(1)
の吐出ガス温度が一定温度に制御される。
Further, a part of the supercooled refrigerant flowing in the liquid pipe (9a) from the condenser (2) to the condenser expansion valve (3) flows to the injection path (17), and this refrigerant is used for the cooler expansion valve ( After being decompressed in 19), it passes through the annular space (14) of the intercooler (11), where the liquid refrigerant in the main refrigerant circuit (10) is supercooled. Then, the refrigerant that has passed through the intercooler (11) is discharged to a location having an intermediate pressure of the compressor (1), and by this liquid injection, the compressor (1)
The discharge gas temperature of is controlled to a constant temperature.

この実施例では、上記インジェクション路(17)は主冷
媒回路(10)に対し、中間冷却器(11)により過冷却さ
れた液管(9a)内の液冷媒を取り出すように中間冷却器
(11)と自動膨張弁(3)との間の液管(9a)に接続さ
れているので、インジェクション路(17)には常に安定
して、中間冷却器(11)により過冷却された液冷媒が流
れることとなり、中間冷却器(11)の環状空間(14)に
液冷媒が保有され、この液冷媒によってインジェクショ
ン用液冷媒が確保される。従って、インジェクション用
冷媒を溜めるためのレシーバ等の液溜りが不要となり、
この液溜りの省略により、冷凍装置(A)の回路構成を
簡単にしかつ冷凍装置(A)を小形化しつつ、リキッド
インジェクションにより吐出ガス温度制御を安定して行
って圧縮機(1)の耐久性、信頼性を向上させることが
できる。
In this embodiment, the injection passage (17) is connected to the main refrigerant circuit (10) so as to take out the liquid refrigerant in the liquid pipe (9a) supercooled by the intermediate cooler (11). ) And the automatic expansion valve (3) are connected to the liquid pipe (9a), the liquid refrigerant supercooled by the intercooler (11) is always stable in the injection path (17). As a result, the liquid refrigerant is retained in the annular space (14) of the intercooler (11), and the liquid refrigerant ensures the injection liquid refrigerant. Therefore, no liquid pool such as a receiver is needed to store the injection refrigerant,
The omission of this liquid pool simplifies the circuit configuration of the refrigeration system (A) and downsizes the refrigeration system (A), while stably controlling the discharge gas temperature by liquid injection to improve the durability of the compressor (1). , Reliability can be improved.

また、主冷媒回路(10)において中間冷却器(11)によ
り過冷却された液冷媒がインジェクション用の液冷媒と
して使用されるので、この過冷却された冷媒のインジェ
クションによる冷却効果が大きくなり、その分、インジ
ェクション用液冷媒の量は比較的少量で済むこととな
る。従って、上記冷却器用自動膨張弁(19)で減圧され
る冷媒量も少なくなり、この冷媒量の少ない分だけ膨張
弁(19)を小形化でき、よってコストダウン化を図ると
ともに、膨張弁(19)の耐久性、信頼性を向上させるこ
とができる。
Further, in the main refrigerant circuit (10), since the liquid refrigerant supercooled by the intercooler (11) is used as the liquid refrigerant for injection, the cooling effect by the injection of the supercooled refrigerant becomes large, Therefore, the amount of the injection liquid refrigerant is relatively small. Therefore, the amount of refrigerant decompressed by the cooler automatic expansion valve (19) also decreases, and the expansion valve (19) can be downsized by the smaller amount of the refrigerant, thereby reducing the cost and expanding the expansion valve (19). ) Durability and reliability can be improved.

また、上記中間冷却器(11)通過後の液管(9a)内の冷
媒は、中間冷却器(11)により過冷却されてガス状態に
なり難いので、機器周囲温度の上昇等の何等かの影響に
より凝縮器(2)通過後でかつ中間冷却器(11)通過前
の液冷媒がガス化したときでもガス化せず、液状態に保
持される。このため、冷凍装置(A)の停止後の再起動
時も中間冷却器(11)に過冷却された液冷媒が残存する
こととなり、よって、冷凍装置(A)の起動直後から直
ちにリキッドインジェクションが可能となる。
Further, the refrigerant in the liquid pipe (9a) after passing through the intercooler (11) is difficult to be supercooled by the intercooler (11) to be in a gas state. Due to the influence, even when the liquid refrigerant after passing through the condenser (2) and before passing through the intercooler (11) is gasified, it is not gasified and is kept in a liquid state. For this reason, the supercooled liquid refrigerant remains in the intercooler (11) even when the refrigeration system (A) is restarted after it is stopped. Therefore, liquid injection is immediately performed immediately after the refrigeration system (A) is started. It will be possible.

(発明の効果) 以上説明したように、請求項(1)に係る発明による
と、圧縮機の吐出ガス温度の制御のためにリキッドイン
ジェクションを行う場合において、主冷媒回路の減圧機
構に至る液冷媒を過冷却するエコノマイザを利用し、イ
ンジェクション用の液冷媒をエコノマイザの2次側から
取り出すようにしたことにより、従来の如くレシーバ等
の液溜りを要することなく、インジェクション用の液冷
媒をエコノマイザによる過冷却状態でガス化し難い液冷
媒として安定して確保することができ、よって冷凍機の
小形化及び冷媒回路構成の簡単化を図りつつ、圧縮機の
信頼性の向上を図ることができる。
(Effect of the invention) As described above, according to the invention according to claim (1), when liquid injection is performed for controlling the discharge gas temperature of the compressor, the liquid refrigerant reaching the pressure reducing mechanism of the main refrigerant circuit. By using an economizer that supercools the refrigerant, the liquid refrigerant for injection is taken out from the secondary side of the economizer. It can be stably secured as a liquid refrigerant that is difficult to gasify in the cooled state, and therefore, the reliability of the compressor can be improved while achieving downsizing of the refrigerator and simplification of the refrigerant circuit configuration.

また、請求項(2)に係る発明によれば、上記インジェ
クション路で冷媒を減圧させる副減圧機構を、圧縮機吐
出側に感温筒を有する自動膨張弁で構成したことによ
り、その膨張弁で膨張させる冷媒量が少ないので、膨張
弁を小形化でき、コストダウン化及び膨張弁の耐久性、
信頼性の向上を図ることができる。
Further, according to the invention of claim (2), since the auxiliary decompression mechanism for decompressing the refrigerant in the injection path is constituted by the automatic expansion valve having the temperature sensing cylinder on the compressor discharge side, Since the amount of refrigerant to be expanded is small, the expansion valve can be miniaturized, cost reduction and durability of the expansion valve,
It is possible to improve reliability.

さらに、請求項(3)に係る発明によると、上記エコノ
マイザを内管及び外管からなる2重管構造の中間冷却器
で構成したことにより、両管間の環状空間を副減圧機構
で減圧された冷媒を流して、この冷媒により内管内の液
冷媒を過冷却でき、エコノマイザとしての効果を良好に
発揮できる。
Further, according to the invention of claim (3), since the economizer is composed of an intercooler having a double pipe structure including an inner pipe and an outer pipe, the annular space between the two pipes is decompressed by the auxiliary decompression mechanism. It is possible to cause the refrigerant to flow, and to supercool the liquid refrigerant in the inner pipe by this refrigerant, so that the effect as an economizer can be exhibited well.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す冷媒配管系統図である。
第2図は従来例を示す第1図相当図である。 (A)……冷凍装置 (1)……圧縮機 (2)……凝縮器 (3)……膨張弁(主減圧機構) (8)……蒸発器 (9)……配管 (9b)……ガス管 (10)……主冷媒回路 (11)……中間冷却器(エコノマイザ) (12)……内管 (13)……外管 (14)……環状空間 (17)……インジェクション路 (19)……膨張弁(副減圧機構) (19a)……感温筒
FIG. 1 is a refrigerant piping system diagram showing an embodiment of the present invention.
FIG. 2 is a view corresponding to FIG. 1 showing a conventional example. (A) -Refrigerator (1) -Compressor (2) -Condenser (3) -Expansion valve (main decompression mechanism) (8) -Evaporator (9) -Piping (9b) ... … Gas pipe (10) …… Main refrigerant circuit (11) …… Intercooler (economizer) (12) …… Inner pipe (13) …… Outer pipe (14) …… Annular space (17) …… Injection path (19) …… Expansion valve (sub pressure reducing mechanism) (19a) …… Temperature sensing tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)、凝縮器(2)、主減圧機構
(3)及び蒸発器(8)を順次液管(9a)及びガス管
(9b)からなる配管(9)により接続してなる主冷媒回
路(10)と、 上記主冷媒回路(10)の凝縮器(2)から主減圧機構
(3)に流れる液管(9a)内の冷媒の一部を主減圧機構
(3)及び蒸発器(8)をバイパスさせて圧縮機(1)
の中間圧となる箇所に吐出させるインジェクション路
(17)とを備え、 上記インジェクション路(17)には、インジェクション
路(17)を流れる冷媒を減圧する副減圧機構と、該副減
圧機構による冷媒の減圧効果に基づき、上記凝縮器
(2)から主減圧機構(3)に流れる液管(9a)内の液
冷媒を過冷却して冷凍能力を増大させるエコノマイザと
が配設され、 上記インジェクション路(17)は、エコノマイザにより
過冷却された液管(9a)内の液冷媒を取り出すようにエ
コノマイザと主減圧機構(3)との間の液管(9a)に接
続されていることを特徴とするエコノマイザ付冷凍装
置。
1. A compressor (1), a condenser (2), a main decompression mechanism (3) and an evaporator (8) are connected by a pipe (9) consisting of a liquid pipe (9a) and a gas pipe (9b) in order. And a part of the refrigerant in the liquid pipe (9a) flowing from the condenser (2) of the main refrigerant circuit (10) to the main pressure reducing mechanism (3). ) And evaporator (8) by-pass compressor (1)
An injection path (17) for discharging the intermediate pressure of the injection path (17), the injection path (17), the auxiliary pressure reducing mechanism for depressurizing the refrigerant flowing through the injection path (17), An economizer for supercooling the liquid refrigerant in the liquid pipe (9a) flowing from the condenser (2) to the main pressure reducing mechanism (3) to increase the refrigerating capacity based on the pressure reducing effect is provided, and the injection path ( 17) is characterized in that it is connected to the liquid pipe (9a) between the economizer and the main decompression mechanism (3) so as to take out the liquid refrigerant in the liquid pipe (9a) supercooled by the economizer. Refrigerator with economizer.
【請求項2】副減圧機構は、圧縮機(1)の吐出側ガス
管(9b)に配設された感温筒(19a)を有する自動膨張
弁(19)であることを特徴とする請求項(1)記載のエ
コノマイザ付冷凍装置。
2. The sub decompression mechanism is an automatic expansion valve (19) having a temperature sensing cylinder (19a) arranged in the discharge side gas pipe (9b) of the compressor (1). The refrigeration apparatus with an economizer according to the item (1).
【請求項3】エコノマイザは、主冷媒回路(10)の一部
を構成する内管(12)と、該内管(12)の回りに環状空
間(14)をあけて配置され、該環状空間(14)がインジ
ェクション路(17)の一部を構成する外管(13)との2
重管構造で、かつ副減圧機構で減圧された冷媒と内管
(12)内の液冷媒とを熱交換させる中間冷却器(11)で
あることを特徴とする請求項(1)又は(2)記載のエ
コノマイザ付冷凍装置。
3. The economizer is arranged with an inner pipe (12) forming a part of a main refrigerant circuit (10) and an annular space (14) around the inner pipe (12). (14) with the outer pipe (13) that forms part of the injection path (17)
The intermediate cooler (11) having a heavy pipe structure and for exchanging heat between the refrigerant decompressed by the auxiliary decompression mechanism and the liquid refrigerant in the inner pipe (12). ) Refrigeration equipment with an economizer as described.
JP1242813A 1989-09-18 1989-09-18 Refrigerator with economizer Expired - Lifetime JPH07122519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242813A JPH07122519B2 (en) 1989-09-18 1989-09-18 Refrigerator with economizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242813A JPH07122519B2 (en) 1989-09-18 1989-09-18 Refrigerator with economizer

Publications (2)

Publication Number Publication Date
JPH03105155A JPH03105155A (en) 1991-05-01
JPH07122519B2 true JPH07122519B2 (en) 1995-12-25

Family

ID=17094672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242813A Expired - Lifetime JPH07122519B2 (en) 1989-09-18 1989-09-18 Refrigerator with economizer

Country Status (1)

Country Link
JP (1) JPH07122519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163243A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Refrigerator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3104513B2 (en) * 1993-12-28 2000-10-30 三菱電機株式会社 accumulator
JP4657087B2 (en) * 2005-11-14 2011-03-23 三洋電機株式会社 Heat pump water heater
JP2007178029A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Refrigerating air conditioner
JP2009228978A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Refrigerating device
JP4479828B2 (en) * 2008-05-15 2010-06-09 ダイキン工業株式会社 Refrigeration equipment
JP5168327B2 (en) * 2010-08-26 2013-03-21 三菱電機株式会社 Refrigeration air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118255U (en) * 1981-01-16 1982-07-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163243A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Refrigerator

Also Published As

Publication number Publication date
JPH03105155A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
US3659783A (en) Temperature regulated flow control element for automotive air-conditioners
JPH11193967A (en) Refrigerating cycle
JPH0718602B2 (en) Operation method and apparatus for supercritical vapor compression cycle
MX2007010002A (en) Refrigeration circuit with improved liquid/vapour receiver.
US20050039473A1 (en) Defrosting methodology for heat pump water heating system
US3332251A (en) Refrigeration defrosting system
JPH0796973B2 (en) Refrigerating apparatus with economizer and operation control method thereof
JP2000266415A (en) Refrigerating cycle
JPH07122519B2 (en) Refrigerator with economizer
US3390540A (en) Multiple evaporator refrigeration systems
JPH09318166A (en) Refrigerating apparatus
EP1264150B1 (en) Regulator with receiver for refrigerators and heatpumps
JP4090240B2 (en) Cooling system
JPH09318205A (en) Refrigerating device
JP2708925B2 (en) Multi-source refrigeration equipment
JP2001033110A (en) Refrigerator
JPH0420752A (en) Double-element type freezer device
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPH0225096Y2 (en)
JP2708926B2 (en) Multi-source refrigeration equipment
JPH0534027A (en) Freezer
KR20040053696A (en) Refrigerating system using two stage refrigerating cycle
JP2854079B2 (en) Multi-source refrigeration equipment
WO2004109198A1 (en) Refrigeration cycle