JPH0534027A - Freezer - Google Patents

Freezer

Info

Publication number
JPH0534027A
JPH0534027A JP18630891A JP18630891A JPH0534027A JP H0534027 A JPH0534027 A JP H0534027A JP 18630891 A JP18630891 A JP 18630891A JP 18630891 A JP18630891 A JP 18630891A JP H0534027 A JPH0534027 A JP H0534027A
Authority
JP
Japan
Prior art keywords
low
temperature
pressure
evaporator
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18630891A
Other languages
Japanese (ja)
Inventor
Masayoshi Terao
公良 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP18630891A priority Critical patent/JPH0534027A/en
Publication of JPH0534027A publication Critical patent/JPH0534027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a freezer in which frosting is hardly generated within an evaporator and also within a freezer. CONSTITUTION:A freezer is comprised of a compressor 1, a condensor 2, a receiver 3, an expansion valve 4, an evaporator 6, a solenoid valve 7, a positive pressure expansion valve 8, a sub-evaporator 9 and a solenoid valve 10 having an adjusting means. In the case that sucked air 102 shows a temperature higher than 0 deg.C, the solenoid valve 10 is opened, the sucked air 102 is cooled to a condensed water non-freezing temperature slightly higher than 0 deg.C and then the air is sent to the evaporator 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、保冷庫内を氷点を下回
る温度に冷却する冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator for cooling the inside of a cool box to a temperature below freezing.

【0002】[0002]

【従来の技術】従来より、図5に示すように、コンプレ
ッサ110、コンデンサ120、レシーバ130、バル
ブ140、主エバポレータ150、および逆止弁160
を連設してなる主冷凍サイクル100に、バルブ21
0、着霜エバポレータ220、およびマグネットバルブ
230を有する着霜冷凍サイクル200を付設してな
り、保冷庫のドアを開けた時にバルブ140を閉じるこ
とにより、主エバポレータ150の着霜が防止できると
ともに、保冷庫内の急激な温度上昇を防いだ冷凍機Tが
知られている(日本電装公開技報 1986年1月15
日 整理番号45−090)。
2. Description of the Related Art Conventionally, as shown in FIG. 5, a compressor 110, a condenser 120, a receiver 130, a valve 140, a main evaporator 150, and a check valve 160.
Valve 21 to the main refrigeration cycle 100
0, a frost evaporator 220, and a frost refrigeration cycle 200 having a magnet valve 230 are attached, and by closing the valve 140 when the door of the cool box is opened, frost formation on the main evaporator 150 can be prevented, A refrigerator T that prevents a rapid temperature rise in the cool box is known (Nippon Denso Koho Giho January 15, 1986).
Daily reference number 45-090).

【0003】[0003]

【発明が解決しようとする課題】しかるに、上記従来の
冷凍機Tは、以下の様な課題がある。 (ア)着霜エバポレータ220に霜が短時間に多量に付
着するので、短いサイクルで着霜エバポレータ220の
除霜(所要時間1時間)を行う必要があり、この除霜中
に保冷庫のドアが開くと、保冷庫内に水蒸気量の多い空
気が進入し、主エバポレータ150に急速に霜が付く。 (イ)保冷庫のドアを開ける回数が少なくても主エバポ
レータ150に霜が付き時間経過に従い蓄積される。こ
の主エバポレータ150に付いた霜はマグネットバルブ
230を開いても除霜できない。本発明の目的は、エバ
ポレータおよび保冷庫内に霜が付き難い冷凍機の提供に
ある。
However, the conventional refrigerator T has the following problems. (A) Since a large amount of frost adheres to the frost formation evaporator 220 in a short time, it is necessary to defrost the frost formation evaporator 220 in a short cycle (the required time is 1 hour). When is opened, air with a large amount of water vapor enters the cool box, and the main evaporator 150 is rapidly frosted. (A) Frost is accumulated on the main evaporator 150 and accumulates over time even if the door of the cool box is not opened often. The frost on the main evaporator 150 cannot be defrosted even if the magnet valve 230 is opened. An object of the present invention is to provide a refrigerator in which frost does not easily form in the evaporator and the cool box.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する為、
本発明は、以下の構成を採用した。 (1)低温低圧の冷媒ガスを断熱圧縮して高温高圧の冷
媒ガスにするコンプレッサと、前記高温高圧の冷媒ガス
を冷却して液化させるコンデンサと、該コンデンサに連
設され、液冷媒を排出するとともに、冷媒を気液二相状
態で貯えるレシーバと、該レシーバから排出した前記液
冷媒を膨張させて低温低圧の液冷媒にするエキスパンシ
ョンバルブと、この低温低圧の液冷媒を蒸発させて保冷
庫内を氷点を下回る所定温度に冷却し、気化した低温低
圧の冷媒ガスを前記コンプレッサに戻すエバポレータ
と、除霜時に、前記コンプレッサの高温高圧の冷媒ガス
を前記エバポレータの入口側にバイパスするホットガス
除霜手段と、前記レシーバの排出側から排出される液冷
媒を導入し、この液冷媒を膨張させて低温低定圧の液冷
媒にする定圧膨張弁と、この低温低定圧の液冷媒を蒸発
させ、前記保冷庫内への進入空気を、略0℃の凝縮水不
凍結温度に冷却する副エバポレータと、該副エバポレー
タの冷媒ガスを前記コンプレッサの低圧側に戻す管路間
に配設され、前記進入空気が略0℃の設定温度を越える
場合に開弁する、絞り付の電磁弁とを有する。 (2)低温低圧の冷媒ガスを断熱圧縮して高温高圧の冷
媒ガスにするコンプレッサと、前記高温高圧の冷媒ガス
を冷却して液化させるコンデンサと、この液冷媒を膨張
させて低温低圧の液冷媒にする固定絞りと、この低温低
圧の液冷媒を蒸発させて保冷庫内を氷点を下回る所定温
度に冷却し、気化した低温低圧の冷媒ガスを排出するエ
バポレータと、前記コンプレッサの手前に配設され、冷
媒ガスの圧力変動を緩衝するアキュームレータと、除霜
時に、前記コンプレッサの高温高圧の冷媒ガスを前記エ
バポレータの入口側にバイパスするホットガス除霜手段
と、前記コンデンサから排出される液冷媒を導入し、こ
の液冷媒を膨張させて低温低定圧の液冷媒にする定圧膨
張弁と、この低温低定圧の液冷媒を蒸発させ、前記保冷
庫内への進入空気を、略0℃の凝縮水不凍結温度に冷却
する副エバポレータと、該副エバポレータの冷媒ガスを
前記アキュームレータの入口側に戻す管路間に配設さ
れ、前記進入空気が略0℃の設定温度を越える場合に開
弁する、絞り付の電磁弁とを有する。
[Means for Solving the Problems] In order to solve the above problems,
The present invention has the following configurations. (1) A compressor that adiabatically compresses a low-temperature low-pressure refrigerant gas into a high-temperature high-pressure refrigerant gas, a condenser that cools the high-temperature high-pressure refrigerant gas to liquefy it, and is connected to the condenser to discharge the liquid refrigerant. Along with, a receiver that stores the refrigerant in a gas-liquid two-phase state, an expansion valve that expands the liquid refrigerant discharged from the receiver to a low-temperature low-pressure liquid refrigerant, and a low-temperature low-pressure liquid refrigerant to evaporate Is cooled to a predetermined temperature below the freezing point, and an evaporator that returns the vaporized low-temperature low-pressure refrigerant gas to the compressor, and during defrosting, hot gas defrosting that bypasses the high-temperature high-pressure refrigerant gas of the compressor to the inlet side of the evaporator. Means and a constant pressure expansion valve for introducing a liquid refrigerant discharged from the discharge side of the receiver and expanding the liquid refrigerant into a low temperature low constant pressure liquid refrigerant , A sub-evaporator for evaporating the low-temperature low-constant-pressure liquid refrigerant to cool the air entering the cold storage to a condensed water unfreezing temperature of approximately 0 ° C., and a refrigerant gas of the sub-evaporator for the low-pressure side of the compressor. And a solenoid valve with a throttle, which is arranged between the return pipes and opens when the incoming air exceeds a set temperature of approximately 0 ° C. (2) A compressor that adiabatically compresses a low-temperature low-pressure refrigerant gas into a high-temperature high-pressure refrigerant gas, a condenser that cools the high-temperature high-pressure refrigerant gas and liquefies it, and a low-temperature low-pressure liquid refrigerant that expands this liquid refrigerant. A fixed throttle, an evaporator for evaporating the low-temperature low-pressure liquid refrigerant to cool the inside of the cool box to a predetermined temperature below the freezing point, and discharging the vaporized low-temperature low-pressure refrigerant gas, and is arranged in front of the compressor. An accumulator for buffering pressure fluctuations of the refrigerant gas, a hot gas defrosting means for bypassing the high-temperature and high-pressure refrigerant gas of the compressor to the inlet side of the evaporator during defrosting, and a liquid refrigerant discharged from the condenser are introduced. A constant pressure expansion valve that expands this liquid refrigerant into a low temperature low constant pressure liquid refrigerant, and evaporates this low temperature low constant pressure liquid refrigerant, and introduces air into the cool box. , A sub-evaporator that cools the condensed water to a non-freezing temperature of approximately 0 ° C. and a pipeline that returns the refrigerant gas of the sub-evaporator to the inlet side of the accumulator, and the incoming air has a set temperature of approximately 0 ° C. And a solenoid valve with a throttle that opens when exceeding.

【0005】[0005]

【作用】進入空気が略0℃の設定温度を越える場合に
は、絞り付の電磁弁が開弁するとともに、進入空気を副
エバポレータが略0℃の凝縮水不凍結温度に冷却(除霜
時でも)する。進入空気の中に含まれる水蒸気が副エバ
ポレータに拠り凝縮し、この凝縮水は凍ることなくドレ
ン水となって落下し外部に排出される。エバポレータ
は、略0℃の凝縮水不凍結温度に冷却した進入空気を、
さらに低い氷点を下回る所定温度に冷却する。
When the incoming air exceeds the set temperature of about 0 ° C, the solenoid valve with a throttle opens and the sub-evaporator cools the incoming air to the freezing temperature of the condensed water of about 0 ° C (when defrosting). But) The water vapor contained in the incoming air is condensed by the sub-evaporator, and this condensed water falls into drain water without freezing and is discharged to the outside. The evaporator uses the incoming air cooled to the condensed water antifreeze temperature of approximately 0 ° C.
Cool to a predetermined temperature below the lower freezing point.

【0006】[0006]

【発明の効果】水蒸気含有量の少ない、略0℃の凝縮水
不凍結温度に冷却した進入空気を、さらにエバポレータ
が冷却するので、エバポレータおよび保冷庫内に霜が付
き難く、冷凍能力が維持できるとともに、除霜から次の
除霜迄の時間を長くできる。
EFFECTS OF THE INVENTION Since the evaporator further cools the incoming air having a low water vapor content and cooled to the non-freezing temperature of the condensed water of approximately 0 ° C., the evaporator and the cold storage are less likely to be frosted and the refrigerating capacity can be maintained. In addition, the time from defrost to the next defrost can be extended.

【0007】[0007]

【実施例】本発明の第1実施例を図1〜図3に基づいて
説明する。冷凍機Rは、コンプレッサ1、コンデンサ
2、レシーバ3、エキスパンションバルブ4、保冷庫5
内を冷却するエバポレータ6、ホットガスバイパス用の
電磁弁7、定圧膨張弁8、副エバポレータ9、および絞
り付の電磁弁10を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. The refrigerator R includes a compressor 1, a condenser 2, a receiver 3, an expansion valve 4, and a cool box 5.
It has an evaporator 6 for cooling the inside, a solenoid valve 7 for hot gas bypass, a constant pressure expansion valve 8, a sub-evaporator 9, and a solenoid valve 10 with a throttle.

【0008】コンプレッサ1は、エンジンや電動機に拠
り駆動され、低温低圧の冷媒ガス11を断熱圧縮して高
温高圧の冷媒ガス12にする。コンデンサ2は、コンプ
レッサ1の高圧側バルブに連設されるとともに、コンデ
ンサファン(図示せず)を備え、上記高温高圧の冷媒ガ
ス12を冷却して液冷媒21にする。レシーバ3は、コ
ンデンサ2の出口側に連設され、負荷の変動に即応して
液冷媒21をエバポレータ6に排出できる様に、冷媒
(R- 12)を気液二相状態で貯える。エキスパンショ
ンバルブ4は、レシーバ3から排出される上記液冷媒2
1を急膨張させ低温低圧の霧状の液冷媒22にするニー
ドル弁と、ニードル弁を付勢するプレッシャスプリング
と、キャピラリチューブ41内および出口側配管61、
91の連結点より若干下流位置の、配管13に配設され
る感熱筒42内に封入される冷媒(R- 12)の液圧で
ニードル弁の開度を調節するダイヤフラムとを備える。
The compressor 1 is driven by an engine or an electric motor and adiabatically compresses the low-temperature low-pressure refrigerant gas 11 into a high-temperature high-pressure refrigerant gas 12. The condenser 2 is connected to the high-pressure side valve of the compressor 1 and is provided with a condenser fan (not shown) to cool the high-temperature and high-pressure refrigerant gas 12 into a liquid refrigerant 21. The receiver 3 is connected to the outlet side of the condenser 2 and stores the refrigerant (R-12) in a gas-liquid two-phase state so that the liquid refrigerant 21 can be discharged to the evaporator 6 in response to a change in load. The expansion valve 4 is the liquid refrigerant 2 discharged from the receiver 3.
1, a needle valve that rapidly expands into a low-temperature low-pressure atomized liquid refrigerant 22, a pressure spring that urges the needle valve, the inside of the capillary tube 41 and the outlet-side pipe 61,
A diaphragm that adjusts the opening degree of the needle valve by the hydraulic pressure of the refrigerant (R-12) sealed in the heat sensitive cylinder 42 arranged in the pipe 13 is provided at a position slightly downstream of the connection point of 91.

【0009】保冷庫5は、凍結食品等の被冷凍物を入れ
る函体であり、被冷凍物を出し入れする扉(図示せず)
が副エバポレータ9側に設けられている。エバポレータ
6は、エキスパンションバルブ4の出口側に連設される
とともに、保冷庫5内に配され、上記低温低圧の霧状の
液冷媒22を蒸発させ、その潜熱に拠り保冷庫5内を−
20℃に冷却する。なお、エバポレータ6内で気化した
低温低圧の冷媒ガス11は、コンプレッサ1に戻され
る。
The cold storage 5 is a box for storing frozen objects such as frozen foods, and a door (not shown) for putting in and out the frozen objects.
Are provided on the sub-evaporator 9 side. The evaporator 6 is connected to the outlet side of the expansion valve 4 and arranged in the cool box 5 to evaporate the low-temperature low-pressure mist-like liquid refrigerant 22. Due to the latent heat of the evaporator 6, the evaporator box 6-
Cool to 20 ° C. The low-temperature low-pressure refrigerant gas 11 vaporized in the evaporator 6 is returned to the compressor 1.

【0010】電磁弁7は、エバポレータ6に付着した霜
の量が多くなり、除霜が必要になると開かれ、コンプレ
ッサ1の高圧側から高温高圧の冷媒ガス12をエバポレ
ータ6の入口側にバイパスする。なお、電磁弁7の開弁
は、タイマーや、光学式や圧力式等の着霜検出手段を用
いて行なわれる。
The solenoid valve 7 is opened when the amount of frost adhering to the evaporator 6 increases and defrosting becomes necessary, and the high temperature and high pressure refrigerant gas 12 is bypassed from the high pressure side of the compressor 1 to the inlet side of the evaporator 6. . The solenoid valve 7 is opened by using a timer or frost detection means such as an optical type or a pressure type.

【0011】定圧膨張弁8は、レシーバ3の出口と副エ
バポレータ9とを連設する配管81中に配され、液冷媒
21を急膨張させ、低温低定圧の霧状の液冷媒23を流
出させる。
The constant pressure expansion valve 8 is arranged in a pipe 81 connecting the outlet of the receiver 3 and the sub-evaporator 9 in series, and rapidly expands the liquid refrigerant 21 to let out a low-temperature low-constant-pressure mist-like liquid refrigerant 23. .

【0012】副エバポレータ9は、定圧膨張弁8の出口
側に連設されるとともに、保冷庫5内にエバポレータ6
とともに配され、外気の吸入が行われる場合(開扉時、
換気時等)には液冷媒23を蒸発させ、その潜熱に拠り
吸入空気102を0℃より僅かに高い凝縮水不凍結温度
に冷却してエバポレータ6に送出する。なお、副エバポ
レータ9は、熱交換を行う表面が疎水材(弗素樹脂な
ど)でコーティングされ、凝縮水の落下を容易にしてい
る。
The sub-evaporator 9 is connected to the outlet side of the constant pressure expansion valve 8 and is connected to the evaporator 6 inside the cool box 5.
When the outside air is inhaled (when the door is open,
During ventilation, etc., the liquid refrigerant 23 is evaporated, and due to the latent heat of the liquid refrigerant 23, the intake air 102 is cooled to a non-freezing temperature of the condensed water slightly higher than 0 ° C. and sent to the evaporator 6. The surface of the sub-evaporator 9 for heat exchange is coated with a hydrophobic material (fluorine resin or the like) to facilitate the fall of the condensed water.

【0013】電磁弁10は、図2に示す様に、サーミス
タ101が、0℃を越える吸入空気102の温度Taを
検知すると、制御器103により通電が行われ開弁す
る。なお、吸入空気102の温度Taが0℃以下の場合
(閉扉時で且つ外気の導入を行わない時、又は外気温0
℃以下)、吸入空気102を冷却する必要が無いので通
電は行なわれず、電磁弁10は閉弁状態を維持する。
As shown in FIG. 2, when the thermistor 101 detects a temperature Ta of the intake air 102 exceeding 0 ° C., the solenoid valve 10 is energized by the controller 103 and opens. When the temperature Ta of the intake air 102 is 0 ° C. or less (when the door is closed and the outside air is not introduced, or the outside air temperature is 0).
Since it is not necessary to cool the intake air 102, the energization is not performed and the solenoid valve 10 maintains the closed state.

【0014】つぎに、冷凍機Rの作動(吸入空気102
の温度Taが0℃を越える場合)の要点を、図3の湿り
空気線図とともに述べる。吸入空気102(=外気)が
25℃、50%RH(図中A位置)であったとする。保
冷庫5の扉を開けた時、サーミスタ101が、0℃を越
える吸入空気102の温度Taを検知し、制御器103
により電磁弁10に通電が行われ、電磁弁10が開弁
し、副エバポレータ9が作動する。吸入空気102は、
副エバポレータ9で冷却され、図示B位置を経て、略0
℃、100%RH(図示C位置)となる。ここで、図示
B位置から図示C位置に状態変化する際、(B−C)の
水が凝縮するので、霜は、副エバポレータ9の疎水材か
ら液体状態のまま落下し、ドレン水として外部に排出さ
れる。略0℃、100%RHの冷却空気は、さらに、エ
バポレータ6で−20℃、100%RH(図示D位置)
に冷却され、図示C位置から図示D位置への状態変化の
際、(C−D)の水が凝縮し、エバポレータ6の表面に
霜として付着する。なお、25℃、50%RHの吸入空
気102を一気に−20℃、100%RHに冷却すれ
ば、約3.17倍の量(B−D)の水が凝縮する。
Next, the operation of the refrigerator R (intake air 102
(When the temperature Ta exceeds 0 ° C.) will be described with reference to the moist air diagram of FIG. It is assumed that the intake air 102 (= outside air) is at 25 ° C. and 50% RH (position A in the figure). When the door of the cool box 5 is opened, the thermistor 101 detects the temperature Ta of the intake air 102 exceeding 0 ° C., and the controller 103
Thus, the solenoid valve 10 is energized, the solenoid valve 10 is opened, and the sub-evaporator 9 operates. The intake air 102 is
It is cooled by the sub-evaporator 9, passes through the position B in the figure, and reaches approximately 0
C., 100% RH (position C in the figure). Here, when the state is changed from the illustrated position B to the illustrated position C, the water (B-C) is condensed, so that the frost falls from the hydrophobic material of the sub-evaporator 9 in a liquid state to the outside as drain water. Is discharged. The cooling air of approximately 0 ° C. and 100% RH is further cooled by the evaporator 6 to −20 ° C. and 100% RH (position D in the figure).
When the state is changed from the illustrated position C to the illustrated position D, the water (C-D) is condensed and adheres to the surface of the evaporator 6 as frost. If the intake air 102 at 25 ° C. and 50% RH is cooled to −20 ° C. and 100% RH all at once, about 3.17 times as much water (BD) is condensed.

【0015】以下、冷凍機Rの効果を述べる。 (あ)エバポレータ6および保冷庫5内に付く霜の量
は、一気に−20℃に冷却する冷凍機に比べ、1/3以
下(夏季の場合)である。このため、除霜から次の除霜
迄の時間を3倍以上(夏季の場合)にすることができ
る。 (い)エバポレータ6に霜が付き難いので、安定した、
高効率の冷凍運転ができる。 (う)エバポレータ6への着霜が軽減されると、着霜に
よるフィンの閉塞が減少し、通風抵抗の低下が抑制さ
れ、同一ファンで高風量が確保でき、実動時の冷凍能力
が高くなる。
The effects of the refrigerator R will be described below. (A) The amount of frost that attaches to the evaporator 6 and the cool box 5 is 1/3 or less (in the case of summer) compared to a refrigerator that cools to -20 ° C at once. Therefore, the time from defrost to the next defrost can be tripled or longer (in the case of summer). (Ii) It is stable because the frost does not easily form on the evaporator 6.
Highly efficient refrigeration operation is possible. (V) When the frost formation on the evaporator 6 is reduced, the fin blockage due to the frost formation is reduced, the reduction of the ventilation resistance is suppressed, a high air volume can be secured with the same fan, and the refrigeration capacity during operation is high. Become.

【0016】本発明の第2実施例を図4に基づいて説明
する。冷凍機Sは、レシーバ3を除去し、エキスパンシ
ョンバルブ4がCTD(複合絞り装置)4aになり、コ
ンプレッサ1の手前にアキュームレータタンク3aを配
設している点以外は、冷凍機Rと同じ構成である。本実
施例の冷凍機Sも冷凍機Rと同じ効果を奏する。
A second embodiment of the present invention will be described with reference to FIG. The refrigerator S has the same configuration as the refrigerator R except that the receiver 3 is removed, the expansion valve 4 becomes a CTD (composite expansion device) 4a, and an accumulator tank 3a is arranged in front of the compressor 1. is there. The refrigerator S of this embodiment also has the same effect as the refrigerator R.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る冷凍機の構造説明図
である。
FIG. 1 is a structural explanatory view of a refrigerator according to a first embodiment of the present invention.

【図2】その冷凍機の制御器の動作を説明するフローチ
ャートである。
FIG. 2 is a flowchart illustrating the operation of a controller of the refrigerator.

【図3】その冷凍機の作用効果を説明するための湿り空
気線図である。
FIG. 3 is a moist air diagram for explaining the effect of the refrigerator.

【図4】本発明の第2実施例に係る冷凍機の構造説明図
である。
FIG. 4 is a structural explanatory view of a refrigerator according to a second embodiment of the present invention.

【図5】従来の冷凍機の構造説明図である。FIG. 5 is a structural explanatory view of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 2 コンデンサ 3 レシーバ 4 エキスパンションバルブ 5 保冷庫 6 エバポレータ 7 電磁弁(ホットガス除霜手段) 8 定圧膨張弁 9 副エバポレータ 10 電磁弁 3a アキュームレータタンク(アキュームレータ) 4a CTD(固定絞り) 102 吸入空気(進入空気) R、S 冷凍機 1 compressor 2 capacitors 3 receiver 4 expansion valve 5 cold storage 6 evaporator 7 Solenoid valve (hot gas defrosting means) 8 constant pressure expansion valve 9 Deputy evaporator 10 Solenoid valve 3a Accumulator tank (accumulator) 4a CTD (fixed diaphragm) 102 Intake air (ingress air) R, S refrigerator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低温低圧の冷媒ガスを断熱圧縮して高温
高圧の冷媒ガスにするコンプレッサと、 前記高温高圧の冷媒ガスを冷却して液化させるコンデン
サと、 該コンデンサに連設され、液冷媒を排出するとともに、
冷媒を気液二相状態で貯えるレシーバと、 該レシーバから排出した前記液冷媒を膨張させて低温低
圧の液冷媒にするエキスパンションバルブと、 この低温低圧の液冷媒を蒸発させて保冷庫内を氷点を下
回る所定温度に冷却し、気化した低温低圧の冷媒ガスを
前記コンプレッサに戻すエバポレータと、 除霜時に、前記コンプレッサの高温高圧の冷媒ガスを前
記エバポレータの入口側にバイパスするホットガス除霜
手段と、 前記レシーバの排出側から排出される液冷媒を導入し、
この液冷媒を膨張させて低温低定圧の液冷媒にする定圧
膨張弁と、 この低温低定圧の液冷媒を蒸発させ、前記保冷庫内への
進入空気を、略0℃の凝縮水不凍結温度に冷却する副エ
バポレータと、 該副エバポレータの冷媒ガスを前記コンプレッサの低圧
側に戻す管路間に配設され、前記進入空気が略0℃の設
定温度を越える場合に開弁する、絞り付の電磁弁と を有する冷凍機。
1. A compressor for adiabatically compressing a low-temperature low-pressure refrigerant gas into a high-temperature high-pressure refrigerant gas, a condenser for cooling the high-temperature high-pressure refrigerant gas and liquefying it, and a liquid refrigerant connected in series to the condenser. As well as discharging
A receiver that stores the refrigerant in a gas-liquid two-phase state, an expansion valve that expands the liquid refrigerant discharged from the receiver to a low-temperature low-pressure liquid refrigerant, and an evaporator valve that evaporates the low-temperature low-pressure liquid refrigerant and freezes the inside of the cool box. An evaporator that cools the vaporized low-temperature low-pressure refrigerant gas to the compressor, and a hot gas defroster that bypasses the high-temperature high-pressure refrigerant gas of the compressor to the inlet side of the evaporator during defrosting. Introducing a liquid refrigerant discharged from the discharge side of the receiver,
A constant-pressure expansion valve that expands this liquid refrigerant to a low-temperature low-constant-pressure liquid refrigerant, and evaporates this low-temperature low-constant-pressure liquid refrigerant so that the air that enters the cold storage box has a condensed water antifreezing temperature of approximately 0 ° C. And a sub-evaporator for cooling the sub-evaporator and a pipe provided with a throttle, which is arranged between the pipes for returning the refrigerant gas of the sub-evaporator to the low pressure side of the compressor and opens when the incoming air exceeds a set temperature of approximately 0 ° C. A refrigerator having a solenoid valve.
【請求項2】 低温低圧の冷媒ガスを断熱圧縮して高温
高圧の冷媒ガスにするコンプレッサと、 前記高温高圧の冷媒ガスを冷却して液化させるコンデン
サと、 この液冷媒を膨張させて低温低圧の液冷媒にする固定絞
りと、 この低温低圧の液冷媒を蒸発させて保冷庫内を氷点を下
回る所定温度に冷却し、気化した低温低圧の冷媒ガスを
排出するエバポレータと、 前記コンプレッサの手前に配設され、冷媒ガスの圧力変
動を緩衝するアキュームレータと、 除霜時に、前記コンプレッサの高温高圧の冷媒ガスを前
記エバポレータの入口側にバイパスするホットガス除霜
手段と、 前記コンデンサから排出される液冷媒を導入し、この液
冷媒を膨張させて低温低定圧の液冷媒にする定圧膨張弁
と、 この低温低定圧の液冷媒を蒸発させ、前記保冷庫内への
進入空気を、略0℃の凝縮水不凍結温度に冷却する副エ
バポレータと、 該副エバポレータの冷媒ガスを前記アキュームレータの
入口側に戻す管路間に配設され、前記進入空気が略0℃
の設定温度を越える場合に開弁する、絞り付の電磁弁と
を有する冷凍機。
2. A compressor for adiabatically compressing a low-temperature low-pressure refrigerant gas into a high-temperature high-pressure refrigerant gas, a condenser for cooling the high-temperature high-pressure refrigerant gas and liquefying it, and expanding the liquid refrigerant for low-temperature low-pressure refrigerant gas. A fixed throttle that turns into a liquid refrigerant, an evaporator that evaporates the low-temperature and low-pressure liquid refrigerant to cool the inside of the cool box to a predetermined temperature below the freezing point, and discharges the vaporized low-temperature and low-pressure refrigerant gas, and an evaporator in front of the compressor. An accumulator installed to buffer pressure fluctuations of the refrigerant gas, a hot gas defrosting means for bypassing the high temperature and high pressure refrigerant gas of the compressor to the inlet side of the evaporator during defrosting, and a liquid refrigerant discharged from the condenser. And a constant pressure expansion valve that expands the liquid refrigerant into a low temperature low constant pressure liquid refrigerant, and evaporates the low temperature low constant pressure liquid refrigerant, The ingress air, a secondary evaporator for cooling the condensed water not freezing temperature of about 0 ℃, is disposed refrigerant gas sub evaporator between conduit for returning to the inlet side of the accumulator, the approach air substantially 0 ℃
A refrigerator having a solenoid valve with a throttle that opens when the temperature exceeds the set temperature.
JP18630891A 1991-07-25 1991-07-25 Freezer Pending JPH0534027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18630891A JPH0534027A (en) 1991-07-25 1991-07-25 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18630891A JPH0534027A (en) 1991-07-25 1991-07-25 Freezer

Publications (1)

Publication Number Publication Date
JPH0534027A true JPH0534027A (en) 1993-02-09

Family

ID=16186058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18630891A Pending JPH0534027A (en) 1991-07-25 1991-07-25 Freezer

Country Status (1)

Country Link
JP (1) JPH0534027A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875282A (en) * 1994-09-09 1996-03-19 Kobe Steel Ltd Separate type heat pump
JP2001221531A (en) * 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner
KR100669257B1 (en) * 2005-10-26 2007-01-16 주식회사 바이오크라이오스 Apparatus and method for freeze-drying using heat pump system
CN111102773A (en) * 2019-10-23 2020-05-05 珠海格力电器股份有限公司 Circulating system capable of continuously heating, control method thereof and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875282A (en) * 1994-09-09 1996-03-19 Kobe Steel Ltd Separate type heat pump
JP2001221531A (en) * 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner
KR100669257B1 (en) * 2005-10-26 2007-01-16 주식회사 바이오크라이오스 Apparatus and method for freeze-drying using heat pump system
CN111102773A (en) * 2019-10-23 2020-05-05 珠海格力电器股份有限公司 Circulating system capable of continuously heating, control method thereof and air conditioner

Similar Documents

Publication Publication Date Title
US5406805A (en) Tandem refrigeration system
US4197716A (en) Refrigeration system with auxiliary heat exchanger for supplying heat during defrost cycle and for subcooling the refrigerant during a refrigeration cycle
US6327871B1 (en) Refrigerator with thermal storage
US6185958B1 (en) Vapor compression system and method
WO1995013510A9 (en) Tandem refrigeration system
US6581398B2 (en) Vapor compression system and method
JPH09318169A (en) Refrigerating apparatus
US6314747B1 (en) Vapor compression system and method
JPH09318166A (en) Refrigerating apparatus
JPH0534027A (en) Freezer
JPH09318205A (en) Refrigerating device
JP3237867B2 (en) Ammonia refrigeration equipment
CN213089945U (en) Air conditioner
JP2019100603A (en) Hot gas defrosting operation method of refrigeration circuit
JP4284823B2 (en) Refrigeration equipment
JP3836092B2 (en) Refrigeration equipment
JP3036519B2 (en) Refrigeration equipment
JPH0225096Y2 (en)
JPH06185836A (en) Freezer
JPH05106943A (en) Heat pump
JP3107001B2 (en) Refrigeration equipment for refrigeration containers
JPH0566071A (en) Refrigeration cold store
JPH04353374A (en) Refrigerating cycle device
JPH11142044A (en) Multiple refrigerator
JPH109727A (en) Freezer