JP2019100603A - Hot gas defrosting operation method of refrigeration circuit - Google Patents

Hot gas defrosting operation method of refrigeration circuit Download PDF

Info

Publication number
JP2019100603A
JP2019100603A JP2017230854A JP2017230854A JP2019100603A JP 2019100603 A JP2019100603 A JP 2019100603A JP 2017230854 A JP2017230854 A JP 2017230854A JP 2017230854 A JP2017230854 A JP 2017230854A JP 2019100603 A JP2019100603 A JP 2019100603A
Authority
JP
Japan
Prior art keywords
pressure
compressor
condenser
expander
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017230854A
Other languages
Japanese (ja)
Inventor
基孝 田近
Mototaka Tachika
基孝 田近
一仁 向
Kazuhito Mukai
一仁 向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Retail Systems Corp
Original Assignee
Sanden Retail Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Retail Systems Corp filed Critical Sanden Retail Systems Corp
Priority to JP2017230854A priority Critical patent/JP2019100603A/en
Publication of JP2019100603A publication Critical patent/JP2019100603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

To provide a defrosting operation method of a refrigeration circuit capable of preventing excessive load from acting on a compressor in restoration to normal operation.SOLUTION: A defrosting operation method is applied to a refrigerant circuit comprising: a bypass pipe conduit connecting between a pipe conduit between a compressor and a condenser, and a pipe conduit between an expander and an evaporator; a bypass pipe conduit opening/closing valve arranged on the bypass pipe conduit; and a main pipe conduit opening/closing valve arranged on the pipe conduit between the condenser and the expander. The defrosting operation method comprises: when ending defrosting performed in a state the bypass pipe conduit opening/closing valve is opened and the main pipe conduit opening/closing valve is closed, stopping the compressor and opening the main pipe conduit opening/closing valve; and keeping the bypass pipe conduit opening/closing valve into an open state until a predetermined condition is established.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍回路のホットガス除霜運転方法に関する。   The present invention relates to a hot gas defrosting operation method of a refrigeration circuit.

自動販売機、冷凍/冷蔵ショーケース等の冷却機器に内蔵される冷凍回路は、冷媒が循環する管路上に、冷媒の流れる方向に順に、蒸発器、アキュムレータ、圧縮機、凝縮器及び膨張器を配置したものである。   Refrigerant circuits built in cooling equipment such as vending machines and refrigerated / refrigerated showcases include an evaporator, an accumulator, a compressor, a condenser, and an expander sequentially in the flow direction of the refrigerant on a pipe line on which the refrigerant circulates. It is arranged.

冷凍回路の運転中、低温低圧の液相冷媒は、蒸発器において、蒸発器ファンにより導入される冷却機器の庫内の空気から吸熱して定圧の下で蒸発(気化)し、その際、庫内の空気を冷却する。蒸発器を流出した低圧の冷媒は、アキュムレータにおいて気液分離され、気相冷媒のみが圧縮機に流入して圧縮され、高温高圧の気相冷媒として凝縮器へ送出される。高温高圧の気相冷媒は、凝縮器において、凝縮器ファンにより導入される大気に放熱して定圧の下で凝縮(液化)する。高圧の液相冷媒は、凝縮器の液溜め部に一旦貯留された後、膨張器(キャピラリ、電子膨張弁等)において等エンタルピ的に膨張し、低温低圧の液相冷媒となって、蒸発器に還流する。   During operation of the refrigeration circuit, the low-temperature and low-pressure liquid-phase refrigerant absorbs heat from the air in the refrigerator of the cooling device introduced by the evaporator fan in the evaporator and evaporates (vaporizes) under a constant pressure. Cool the air inside. The low pressure refrigerant flowing out of the evaporator is separated into gas and liquid in the accumulator, and only the gas phase refrigerant flows into the compressor to be compressed, and is delivered to the condenser as the high temperature and pressure gas phase refrigerant. The high temperature and high pressure gas phase refrigerant releases heat to the atmosphere introduced by the condenser fan in the condenser and condenses (liquefies) under constant pressure. The high-pressure liquid-phase refrigerant is temporarily stored in the liquid reservoir of the condenser, and then isenthalpically expanded in an expander (capillary, electronic expansion valve, etc.) to become a low-temperature low-pressure liquid-phase refrigerant, and the evaporator To reflux.

冷凍回路の運転中、蒸発器は、その内部を低温の冷媒が流れているため、表面温度が低くなっており、冷却機器の庫内の空気が水分を含有している場合には、その水分が蒸発器の表面に付着して凍結し、霜となることがある(着霜)。   During operation of the refrigeration circuit, the evaporator is low in surface temperature because a low temperature refrigerant is flowing inside, and if the air in the cold storage of the cooling device contains moisture, the moisture is contained in the evaporator. May adhere to the surface of the evaporator and freeze, resulting in frost (frost formation).

このように蒸発器に着霜が発生すると、着霜部分における熱伝導抵抗の増大と、着霜部分の周辺において空気通路が部分的に閉塞されることによる空気流量の減少により、蒸発器の熱交換効率が低下し、ひいては冷凍回路の成績係数も低下する。   Thus, when frost forms on the evaporator, the heat of the evaporator is increased due to an increase in the heat transfer resistance in the frosted area and a decrease in the air flow rate due to partial blocking of the air passage around the frosted area. The exchange efficiency is reduced, which in turn reduces the coefficient of performance of the refrigeration circuit.

これを防止するため、冷凍回路においては、着霜が検知された時点で、あるいは、着霜の発生が予想される所定時間ごとに、付着した霜を取り除くための除霜運転が行われる。   In order to prevent this, in the refrigeration circuit, a defrosting operation is performed to remove the adhered frost when frost formation is detected or at predetermined time intervals at which occurrence of frost formation is expected.

除霜運転には種々の方法があるが、圧縮機の下流(圧縮機と凝縮器の間)の管路と、膨張器の下流(膨張器と蒸発器の間)の管路とを接続するバイパス管路を設け、圧縮機から吐出された高温の気相冷媒を、バイパス管路を経て蒸発器へ還流させることにより、その顕熱及び潜熱を利用して蒸発器の表面に付着した霜を融解させる、いわゆるホットガス除霜が知られている。   There are various methods for defrosting operation, but the pipe line downstream of the compressor (between the compressor and the condenser) and the pipe line downstream of the expander (between the expander and the evaporator) are connected A bypass line is provided, and the high temperature gas phase refrigerant discharged from the compressor is returned to the evaporator through the bypass line, thereby utilizing the sensible heat and latent heat to deposit frost adhering to the surface of the evaporator. It is known to melt, so-called hot gas defrosting.

ホットガス除霜を行うためには、バイパス管路、及び、圧縮機下流のバイパス管路分岐点から凝縮器及び膨張器を経て膨張器下流のバイパス管路合流点へ至る管路(メイン管路)のそれぞれに開閉弁を設け、メイン管路上の開閉弁を閉、バイパス管路上の開閉弁を開とすることにより、圧縮機から吐出された高温の気相冷媒が、バイパス管路のみを流れるようにする。   In order to perform hot gas defrosting, a bypass line and a line from the bypass line branch point downstream of the compressor to the bypass line joint point downstream of the expander through the condenser and the expander (main line The high temperature gas-phase refrigerant discharged from the compressor flows only in the bypass line by providing the on / off valve in each of the two), closing the on / off valve on the main line, and opening the on / off valve on the bypass line. Let's do it.

しかしながら、バイパス管路上の開閉弁を開く際、これと同時にメイン管路上の開閉弁を閉じると、大量の気相冷媒がバイパス管路を経て蒸発器に流入して凝縮(液化)し、大量の液相冷媒が発生する。この液相冷媒の量がアキュムレータの気液分離能力を超えると、一部の液相冷媒はアキュムレータで分離・除去されないまま圧縮機に流入し、圧縮機を破損させる虞がある。これを防止するためには、アキュムレータを大型化して気液分離能力を高めればよいが、一般的に設置場所やコストの制約から必要最小限の大きさとすることが求められるアキュムレータを大型化することは、好ましくない。   However, when the on-off valve on the bypass pipeline is opened, if the on-off valve on the main pipeline is closed at the same time, a large amount of gas phase refrigerant flows into the evaporator through the bypass pipeline and condenses (liquefies). Liquid phase refrigerant is generated. When the amount of the liquid phase refrigerant exceeds the gas-liquid separation capacity of the accumulator, a part of the liquid phase refrigerant may flow into the compressor without being separated and removed by the accumulator and may damage the compressor. In order to prevent this, it is sufficient to increase the size of the accumulator to enhance the gas-liquid separation capacity, but generally, the size of the accumulator that is required to have the minimum necessary size due to restrictions on the installation location and cost is increased. Is not desirable.

そこで、ホットガス除霜運転の開始時に、メイン管路上の開閉弁を、バイパス管路上の開閉弁を開いた後も開いたままにしておき、所定時間経過後に閉じることが提案されている(特許文献1)。   Therefore, it has been proposed that, at the start of the hot gas defrosting operation, the on-off valve on the main pipeline be kept open even after opening the on-off valve on the bypass pipeline and closed after a predetermined time has elapsed (Patent Literature 1).

この方法によれば、ホットガス除霜運転の開始後、所定時間が経過するまでは、気相冷媒が凝縮器に流入して凝縮(液化)して液溜め部に貯留されるため、所定時間が経過してメイン管路上の開閉弁が閉じられた後においては、バイパス管路を経て蒸発器に流入する冷媒の量が大幅に少なくなる。これにより、蒸発器において発生する液相冷媒の量をアキュムレータの気液分離能力以内に収め、液相冷媒の圧縮機への流入を防止することができる。   According to this method, after the hot gas defrosting operation is started, the gas phase refrigerant flows into the condenser to be condensed (liquefied) and stored in the liquid reservoir until the predetermined time elapses, so the predetermined time After the on-off valve on the main pipeline is closed and the amount of refrigerant flowing into the evaporator through the bypass pipeline is significantly reduced. Thus, the amount of liquid phase refrigerant generated in the evaporator can be contained within the gas-liquid separation capacity of the accumulator, and the inflow of liquid phase refrigerant into the compressor can be prevented.

特開昭62−223570号公報Japanese Patent Application Laid-Open No. 62-223570

しかしながら、特許文献1は、上述した方法によるホットガス除霜運転が終了した後、通常運転に復帰する際の操作には言及していない。   However, patent document 1 does not mention the operation at the time of returning to normal operation, after the hot gas defrosting operation by the method mentioned above is completed.

上述した方法によれば、ホットガス除霜運転の終了時点では、凝縮器の液溜め部に大量の液相冷媒が貯留されている。この状態では、冷凍回路の高圧側(圧縮機から凝縮器を経て膨張器へ至る部分の管路)の圧力が、冷凍回路の低圧側(膨張器から蒸発器を経て圧縮機へ至る部分の管路)の圧力と比較して、非常に高くなっている。即ち、冷凍回路の高圧側と低圧側との差圧が非常に大きい状態となっている。この状態で、バイパス管路上の開閉弁を閉じると同時にメイン管路上の開閉弁を開くと、圧縮機に過大な負荷が掛かることになる。そのため、圧縮機の駆動源である電動機を大型化する必要がある、あるいは、電動機の消費電力が大きくなる、といった問題がある。また、冷却機器の小型化・省エネ化を目的として、小型の圧縮機が採用されている場合には、上述した過大な負荷に起因して、圧縮機や当該圧縮機の駆動源である電動機が破損する虞がある。   According to the method described above, a large amount of liquid-phase refrigerant is stored in the liquid reservoir of the condenser at the end of the hot gas defrosting operation. In this state, the pressure on the high pressure side of the refrigeration circuit (pipe line from the compressor to the condenser to the expander) is the pressure on the low pressure side of the refrigeration circuit (pipe from the expander to the evaporator to the compressor) It is very high compared to the pressure of the road). That is, the differential pressure between the high pressure side and the low pressure side of the refrigeration circuit is in a very large state. In this state, if the on-off valve on the main conduit is opened at the same time as the on-off valve on the bypass conduit is closed, an excessive load is applied to the compressor. Therefore, there is a problem that it is necessary to increase the size of the motor which is a drive source of the compressor, or power consumption of the motor is increased. In addition, when a small-sized compressor is adopted for the purpose of downsizing and energy saving of the cooling device, the compressor and the electric motor which is a driving source of the compressor are caused due to the above-mentioned excessive load. There is a risk of damage.

本発明は、以上のような問題点に鑑みてなされたものであって、除霜運転の終了後、冷凍回路が通常運転に復帰する際に、圧縮機に過大な負荷が作用することを防止し得る除霜運転方法を提供することを目的とする。   The present invention has been made in view of the above problems, and prevents an excessive load from acting on the compressor when the refrigeration circuit returns to the normal operation after the end of the defrosting operation. It is an object of the present invention to provide a defrosting operation method that can be performed.

上記課題を解決するために、本発明の除霜運転方法は、冷媒が循環する管路上に、当該冷媒の流れる方向に順に配置された蒸発器、圧縮機、凝縮器及び膨張器と、前記圧縮機と前記凝縮器の間の前記管路と、前記膨張器と前記蒸発器の間の前記管路とを接続するバイパス管路と、前記バイパス管路上に配置されたバイパス管路開閉弁と、前記凝縮器と前記膨張器の間の前記管路上に配置されたメイン管路開閉弁と、を備える冷凍回路に適用されるものであって、前記バイパス管路開閉弁を開き、前記メイン管路開閉弁を閉じた状態で行われる除霜が終了すると、前記圧縮機を停止すると共に前記メイン管路開閉弁を開く一方、所定の条件が成立するまでの間、前記バイパス管路開閉弁を開いた状態に維持することを特徴とする。   In order to solve the above-mentioned subject, the defrosting operation method of the present invention comprises: an evaporator, a compressor, a condenser, and an expander, which are sequentially disposed in a flowing direction of the refrigerant on a pipe line through which the refrigerant circulates A bypass line connecting the pipeline between the compressor and the condenser, the pipeline between the expander and the evaporator, and a bypass pipeline on-off valve disposed on the bypass pipeline; It is applied to a refrigeration circuit provided with a main pipeline on-off valve disposed on the pipeline between the condenser and the expander, wherein the bypass pipeline on-off valve is opened, and the main pipeline is opened. When the defrosting performed with the on-off valve closed is finished, the compressor is stopped and the main line on-off valve is opened, while the bypass line on-off valve is opened until a predetermined condition is satisfied. It is characterized by being maintained in

好ましくは、前記管路のうち前記圧縮機から前記凝縮器を経て前記膨張器へ至る部分における前記冷媒の圧力を高圧側圧力、前記管路のうち前記膨張器から前記蒸発器を経て前記圧縮機へ至る部分における前記冷媒の圧力を低圧側圧力と称するとき、前記所定の条件は、前記除霜が終了してから、前記高圧側圧力と前記低圧側圧力との差圧が、前記圧縮機が起動可能な最大差圧まで低下する均圧化時間であるとよい。   Preferably, the pressure of the refrigerant in a portion of the pipe leading from the compressor to the condenser through the condenser is a high pressure side pressure, and the pipe from the expander to the evaporator through the evaporator. When the pressure of the refrigerant in the portion leading to the pressure side is referred to as the low pressure side pressure, the predetermined condition is that the differential pressure between the high pressure side pressure and the low pressure side pressure is the compressor after the defrosting is completed. The pressure equalization time may be reduced to the maximum differential pressure that can be activated.

好ましくは、前記均圧化時間は、予め求められているとよい。   Preferably, the pressure equalization time may be determined in advance.

好ましくは、前記管路のうち前記圧縮機から前記凝縮器を経て前記膨張器へ至る部分における前記冷媒の圧力を高圧側圧力、前記管路のうち前記膨張器から前記蒸発器を経て前記圧縮機へ至る部分における前記冷媒の圧力を低圧側圧力と称するとき、前記冷凍回路は、さらに、前記高圧側圧力及び前記低圧側圧力のそれぞれを検知する圧力センサを備え、前記所定の条件は、前記圧力センサにより検知される前記高圧側圧力と前記低圧側圧力との差圧が、前記圧縮機が起動可能な最大差圧以下に低下することであるとよい。   Preferably, the pressure of the refrigerant in a portion of the pipe leading from the compressor to the condenser through the condenser is a high pressure side pressure, and the pipe from the expander to the evaporator through the evaporator. When the pressure of the refrigerant in the portion leading to the pressure side is referred to as a low pressure side pressure, the refrigeration circuit further includes pressure sensors for detecting the high pressure side pressure and the low pressure side pressure, and the predetermined condition is the pressure It is preferable that a differential pressure between the high pressure side pressure and the low pressure side pressure detected by a sensor be lower than a maximum differential pressure which the compressor can start.

好ましくは、前記膨張器はキャピラリであるとよい。   Preferably, the expander is a capillary.

好ましくは、前記除霜の終了時点から停止した状態を維持する前記圧縮機は、前記所定の条件が成立して前記バイパス管路開閉弁が閉じられた後に、再起動されるとよい。   Preferably, the compressor maintaining a stopped state from the end point of the defrosting may be restarted after the predetermined condition is satisfied and the bypass pipe open / close valve is closed.

本発明によれば、ホットガス除霜運転の終了後、冷凍回路が通常運転に復帰する際に、圧縮機に過大な負荷が作用することを防止することができるので、圧縮機の小型化及び圧縮機の駆動源である電動機の消費電力低減を通じて、冷凍回路を内蔵する冷却機器の小型化・省エネ化に寄与することができるという優れた効果を得ることができる。また、圧縮機として当初から小型のものを採用している場合にも、除霜運転から通常運転への円滑な移行が可能になるという優れた効果を得ることができる。   According to the present invention, it is possible to prevent an excessive load from acting on the compressor when the refrigeration circuit returns to the normal operation after the end of the hot gas defrosting operation, so the compressor can be miniaturized and By reducing the power consumption of the motor which is the drive source of the compressor, it is possible to obtain an excellent effect that it can contribute to the downsizing and energy saving of the cooling device incorporating the refrigeration circuit. In addition, even when a small compressor is adopted from the beginning, an excellent effect of enabling smooth transition from the defrosting operation to the normal operation can be obtained.

本発明のホットガス除霜運転方法が適用される冷凍回路を示す概略説明図である。It is a schematic explanatory drawing which shows the refrigerating circuit to which the hot gas defrosting driving | operation method of this invention is applied. 本発明のホットガス除霜運転方法における各機器の動作を時系列的に示す説明図である。It is an explanatory view showing operation of each apparatus in the hot gas defrost operation method of the present invention in time series.

以下、本発明の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明のホットガス除霜運転方法が適用される冷凍回路を示す概略説明図である。   FIG. 1 is a schematic explanatory view showing a refrigeration circuit to which a hot gas defrosting operation method of the present invention is applied.

冷凍回路1は、例えば自動販売機、冷凍/冷蔵ショーケース等の冷却機器に内蔵されるものであって、冷媒が循環する管路上に、冷媒の流れる方向に順に、蒸発器10、圧縮機20、凝縮器30及び膨張器40を配置したものである。なお、Dは冷媒に混入した水分を除去するためのドライヤである。   The refrigeration circuit 1 is incorporated in a cooling device such as, for example, a vending machine or a freezer / refrigerated showcase, and the evaporator 10 and the compressor 20 are sequentially arranged in the flow direction of the refrigerant on a conduit along which the refrigerant circulates. , The condenser 30 and the expander 40 are arranged. D is a dryer for removing the water mixed in the refrigerant.

冷凍回路1の運転中、低温低圧の液相冷媒は、蒸発器10において、蒸発器ファン10Fにより導入される冷却機器の庫内の空気から吸熱して定圧の下で蒸発(気化)し、その際、庫内の空気を冷却する。蒸発器10を流出した低圧の冷媒は、アキュムレータ15において気液分離され、気相冷媒のみが圧縮機20に流入して圧縮され、高温高圧の気相冷媒として凝縮器30へ送出される。高温高圧の気相冷媒は、凝縮器30において、凝縮器ファン30Fにより導入される冷却媒体(大気、冷却水等)へ放熱して定圧の下で凝縮(液化)する。高圧の液相冷媒は、凝縮器30の液溜め部(図示省略)に一旦貯留された後、膨張器40(キャピラリ、電子膨張弁等)において等エンタルピ的に膨張し、低温低圧の液相冷媒となって、蒸発器10に還流する(図1中の実線矢印参照)。   During operation of the refrigeration circuit 1, the low-temperature low-pressure liquid-phase refrigerant absorbs heat from the air in the refrigerator of the cooling device introduced by the evaporator fan 10F in the evaporator 10 and evaporates (vaporizes) under constant pressure, When cooling the air in the refrigerator. The low pressure refrigerant flowing out of the evaporator 10 is separated into gas and liquid in the accumulator 15, and only the gas phase refrigerant flows into the compressor 20 to be compressed, and is delivered to the condenser 30 as a high temperature and pressure gas phase refrigerant. The high temperature and high pressure gas phase refrigerant releases heat to the cooling medium (atmospheric air, cooling water, etc.) introduced by the condenser fan 30F in the condenser 30, and condenses (liquefies) under a constant pressure. The high-pressure liquid-phase refrigerant is temporarily stored in a liquid reservoir (not shown) of the condenser 30, and then is isenthalpically expanded in the expander 40 (capillary, electronic expansion valve, etc.) to obtain a low-temperature low-pressure liquid-phase refrigerant And return to the evaporator 10 (see the solid arrow in FIG. 1).

そして、冷凍回路1においては、ホットガス除霜運転を行うために、圧縮機20の下流(圧縮機20と凝縮器30の間)の管路と、膨張器40の下流(膨張器40と蒸発器10の間)の管路とを接続するバイパス管路Bが設けられている。   Then, in the refrigeration circuit 1, in order to perform the hot gas defrosting operation, the pipe line downstream of the compressor 20 (between the compressor 20 and the condenser 30) and the downstream of the expander 40 (the expander 40 and the evaporation) A bypass line B is provided which connects the lines between the vessels 10).

ここで、圧縮機20の下流の管路からバイパス管路Bが分岐する点をバイパス管路分岐点BB、バイパス管路Bが膨張器40の下流の管路へ合流する点をバイパス管路合流点BM、バイパス管路分岐点BBから凝縮器30及び膨張器40を経てバイパス管路合流点BMへ至る管路を、メイン管路Mと称することにする。また、冷凍回路1の管路のうち、圧縮機20から凝縮器30を経て膨張器40へ至る部分における冷媒の圧力を高圧側圧力PH、膨張器40から蒸発器10を経て圧縮機20へ至る部分における冷媒の圧力を低圧側圧力PLと称することにする。   Here, a point at which the bypass pipe line B branches from the pipe line downstream of the compressor 20 is a bypass pipe line branch point BB, and a point at which the bypass pipe line B joins a pipe line downstream of the expander 40 is a bypass pipe line merging The line from the point BM and the bypass line branch point BB to the bypass line joint BM through the condenser 30 and the expander 40 will be referred to as a main line M. Further, the pressure of the refrigerant in the portion from the compressor 20 through the condenser 30 to the expander 40 in the pipe line of the refrigeration circuit 1 is the high-pressure side pressure PH, from the expander 40 through the evaporator 10 to the compressor 20 The pressure of the refrigerant in the portion is referred to as the low pressure side pressure PL.

冷凍回路1は、さらに、バイパス管路B上にバイパス管路開閉弁BVを、凝縮器30(の液溜め部)と膨張器40の間のメイン管路M上にメイン管路開閉弁MVを、それぞれ備えている。   The refrigeration circuit 1 further includes a bypass pipeline on-off valve BV on the bypass pipeline B, and a main pipeline on-off valve MV on the main pipeline M between (the liquid reservoir of the condenser 30) and the expander 40. , Each has.

このように構成された冷凍回路1におけるホットガス除霜運転の手順を、図2を参照して説明する。   The procedure of the hot gas defrosting operation in the refrigeration circuit 1 configured as described above will be described with reference to FIG.

図2は、本発明のホットガス除霜運転方法における各機器の動作を時系列的に示す説明図である。   FIG. 2 is an explanatory view showing the operation of each device in the hot gas defrosting operation method of the present invention in time series.

冷凍回路1が通常運転を行っている間(時刻T1までの間)、圧縮機20、凝縮器ファン30F及び蒸発器ファン10Fはいずれも作動しており、メイン管路開閉弁MVが開いている一方、バイパス管路開閉弁BVは閉じている。   While the refrigeration circuit 1 is in normal operation (until time T1), the compressor 20, the condenser fan 30F and the evaporator fan 10F are all operating, and the main line on-off valve MV is open. On the other hand, the bypass line on-off valve BV is closed.

時刻T1においてホットガス除霜運転が開始されると、まず凝縮器ファン30F及び蒸発器ファン10Fが停止される。   When the hot gas defrosting operation is started at time T1, first, the condenser fan 30F and the evaporator fan 10F are stopped.

その後、所定時間経過後の時刻T2において、バイパス管路開閉弁BVが開かれるが、この時点では、メイン管路開閉弁MVは開かれた状態を維持している。この状態において、圧縮機20から吐出された高温の気相冷媒は、メイン管路Mを経て凝縮器30に流入して凝縮(液化)し、液溜め部に液相冷媒として貯留される。これによって、次のステップにおいてメイン管路開閉弁MVが閉じられ、圧縮機20から吐出される高温の気相冷媒がバイパス管路Bにのみ流入するようになった場合にも、蒸発器10へ流入する冷媒の量を大幅に少なくすることができる。   Thereafter, at time T2 after a predetermined time has elapsed, the bypass conduit on-off valve BV is opened, but at this time, the main conduit on-off valve MV is maintained in the opened state. In this state, the high temperature gas phase refrigerant discharged from the compressor 20 flows into the condenser 30 through the main pipe line M to be condensed (liquefied) and stored in the liquid reservoir as liquid phase refrigerant. As a result, in the next step, even when the main pipeline open / close valve MV is closed and the high temperature gas phase refrigerant discharged from the compressor 20 flows only into the bypass pipeline B, The amount of refrigerant flowing in can be significantly reduced.

バイパス管路開閉弁BVが開かれてから所定時間経過後の時刻T3において、メイン管路開閉弁MVが閉じられる。これにより、圧縮機20から吐出された高温の気相冷媒は全て、バイパス管路Bを経て蒸発器10へ流入するようになり(図1中の破線矢印参照)、蒸発器10における除霜が本格的に進行する。   At time T3 after a predetermined time has elapsed since the bypass conduit on-off valve BV was opened, the main conduit on-off valve MV is closed. As a result, all the high-temperature gas-phase refrigerant discharged from the compressor 20 flows into the evaporator 10 through the bypass pipeline B (refer to the broken arrow in FIG. 1), and defrosting in the evaporator 10 Proceed in earnest.

その後、例えば蒸発器10の出口に設置された温度センサで検知される冷媒温度が所定値以上となる、所定の時間が経過するなど、除霜が終了したと判断されると(時刻T4)、圧縮機20が一旦停止されると共にメイン管路開閉弁MVが開かれる一方、バイパス管路開閉弁BVは開かれた状態に維持される。   Thereafter, if it is determined that the defrosting is completed, for example, the refrigerant temperature detected by the temperature sensor installed at the outlet of the evaporator 10 becomes equal to or higher than a predetermined value, or a predetermined time passes (time T4), While the compressor 20 is temporarily stopped and the main line on-off valve MV is opened, the bypass line on-off valve BV is maintained in the open state.

除霜終了の時点(時刻T4)においては、凝縮器30の液溜め部に大量の液相冷媒が貯留されており、冷凍回路1の高圧側圧力PHは、低圧側圧力PLと比較して非常に高くなっている。即ち、冷凍回路1の高圧側と低圧側との差圧ΔPが非常に大きい状態となっている。   At the time of completion of the defrosting (time T4), a large amount of liquid phase refrigerant is stored in the liquid reservoir of the condenser 30, and the high pressure side pressure PH of the refrigeration circuit 1 is very high compared to the low pressure side pressure PL. It is high. That is, the differential pressure ΔP between the high pressure side and the low pressure side of the refrigeration circuit 1 is in a very large state.

そこで、上述したように、圧縮機20を一旦停止させ、メイン管路開閉弁MVを開く一方、バイパス管路開閉弁BVを開いた状態に維持することにより、冷凍回路1の高圧側に存在する冷媒は、膨張器40及びバイパス管路Bを経て徐々に低圧側へ移動し、上述した高圧側と低圧側との差圧ΔPは徐々に低下してゆく。即ち、冷凍回路1の管路の均圧化が進行してゆく。   Therefore, as described above, the compressor 20 is temporarily stopped, the main pipeline open / close valve MV is opened, and the bypass pipeline open / close valve BV is maintained open, thereby existing on the high pressure side of the refrigeration circuit 1 The refrigerant gradually moves to the low pressure side through the expander 40 and the bypass line B, and the above-described differential pressure ΔP between the high pressure side and the low pressure side gradually decreases. That is, pressure equalization of the pipe line of the refrigeration circuit 1 proceeds.

この冷凍回路1の管路の均圧化は、冷凍回路1を通常運転に復帰させるために圧縮機20を再起動させる際、圧縮機20に過大な負荷が作用すること(即ち、入口側と出口側の差圧に相当する上記差圧ΔPが過大であること)を回避するために行われるものである。
この均圧化は、メイン管路開閉弁MVのみが開いた(即ち、バイパス管路開閉弁BVは閉じた)状態においても実行可能であるが、この場合、冷凍回路1の高圧側に存在する冷媒は、膨張器40のみを経て低圧側へ移動することになる。膨張器40として電子膨張弁が採用されている場合には、均圧化の過程の間、その絞りを最小(開度を最大)にすることにより、均圧化に要する時間を短縮することができる。一方、膨張器40としてキャピラリが採用されている場合、当該キャピラリは通常運転に適合するような大きな絞り(小さな開度)を有するものとして構成されているため、均圧化に要する時間は非常に長くなる。そこで、上述したように、バイパス管路開閉弁BVを開いた状態に維持することにより、膨張器40として電子膨張弁、キャピラリのいずれが採用されている場合にも、均圧化に要する時間を大幅に短縮することができる。この均圧化に要する時間の短縮効果は、上述したように、膨張器40としてキャピラリが採用されている場合に特に顕著である。
In the pressure equalization of the pipe line of the refrigeration circuit 1, when the compressor 20 is restarted to return the refrigeration circuit 1 to the normal operation, an excessive load is applied to the compressor 20 (ie, the inlet side This is carried out to avoid that the above-mentioned differential pressure .DELTA.P corresponding to the differential pressure on the outlet side is excessive.
This equalization can also be performed in a state where only the main line open / close valve MV is open (ie, the bypass line open / close valve BV is closed), but in this case, it exists on the high pressure side of the refrigeration circuit 1 The refrigerant moves to the low pressure side only through the expander 40. When an electronic expansion valve is employed as the expander 40, the time required for pressure equalization may be shortened by minimizing the aperture (maximum opening) during the pressure equalization process. it can. On the other hand, when a capillary is employed as the expander 40, since the capillary is configured to have a large throttle (small opening) suitable for normal operation, the time required for pressure equalization is very long. become longer. Therefore, as described above, by maintaining the bypass pipe open / close valve BV in the open state, the time required for pressure equalization can be obtained even when either the electronic expansion valve or the capillary is adopted as the expander 40. It can be greatly shortened. The effect of shortening the time required for pressure equalization is particularly remarkable when a capillary is employed as the expander 40, as described above.

上述したように、圧縮機20が停止しており、メイン管路開閉弁MV及びバイパス管路開閉弁BVが開いている状態は、所定の条件が成立するまで、即ち冷凍回路1の高圧側と低圧側との差圧ΔPが、圧縮機20が起動可能な最大差圧ΔPc以下に低下するまで維持される。所定の条件が成立すると、時刻T5においてバイパス管路開閉弁BVが閉じられるのに続いて、圧縮機20が再起動される。これにより、冷凍回路1は通常運転に復帰する。なお、図2においては、簡略化のため、所定の条件が成立してバイパス管路開閉弁BVが閉じられる時刻と圧縮機20が再起動される時刻とが同一であるように図示しているが、実際には、バイパス管路開閉弁BVが閉じた後に圧縮機20が再起動される。   As described above, when the compressor 20 is stopped and the main line on-off valve MV and the bypass line on-off valve BV are open, a predetermined condition is satisfied, ie, the high pressure side of the refrigeration circuit 1. The differential pressure ΔP with the low pressure side is maintained until it falls below the maximum differential pressure ΔPc that the compressor 20 can start. When the predetermined condition is satisfied, the compressor 20 is restarted following the closing of the bypass pipeline on-off valve BV at time T5. Thus, the refrigeration circuit 1 returns to the normal operation. In FIG. 2, for the sake of simplification, the time when the predetermined condition is satisfied and the bypass pipe open / close valve BV is closed is illustrated as being the same as the time when the compressor 20 is restarted. However, in practice, the compressor 20 is restarted after the bypass line on-off valve BV is closed.

このように、除霜終了の時点で一旦停止された圧縮機20が、冷凍回路1を通常運転に復帰させるために再起動される際、当該圧縮機20に過大な負荷が作用すること(即ち、入口側と出口側の差圧に相当する上記差圧ΔPが過大であること)はない。したがって、圧縮機20としてより小型のものを採用することができ、あるいは、圧縮機20の駆動源である電動機の消費電力を低く抑えることができ、冷凍回路1を内蔵する冷却機器の小型化・省エネ化を図ることができる。また、圧縮機20として当初から小型のものを採用している場合にも、当該圧縮機20やその駆動源である電動機が過大な負荷に起因して破損する虞がなく、除霜運転から通常運転への円滑な移行が可能となる。   As described above, when the compressor 20, which has been temporarily stopped at the end of defrosting, is restarted to return the refrigeration circuit 1 to the normal operation, an excessive load acts on the compressor 20 (ie, The pressure difference .DELTA.P corresponding to the pressure difference between the inlet side and the outlet side is not excessive. Therefore, a smaller compressor can be adopted as the compressor 20. Alternatively, the power consumption of the motor which is a drive source of the compressor 20 can be suppressed low, and the miniaturization of the cooling device incorporating the refrigeration circuit 1 Energy saving can be achieved. In addition, even when a small compressor is adopted from the beginning as the compressor 20, there is no possibility that the compressor 20 and the motor as a drive source of the compressor 20 may be damaged due to an excessive load, and usually from the defrosting operation A smooth transition to driving is possible.

なお、所定の条件が成立したこと、即ち冷凍回路1の高圧側と低圧側との差圧ΔPが、圧縮機20が起動可能な最大差圧ΔPc以下に低下したことは、例えば圧縮機20の入口側と出口側の差圧を計測するための圧力センサを用いて検知してもよい。ただし、冷却機器全体のコスト低減の観点から圧力センサの設置が好ましくない場合には、冷凍回路1の高圧側と低圧側との差圧ΔPが、圧縮機20が起動可能な最大差圧ΔPc以下に低下するまでの時間(均圧化時間)を実験等により予め求めておき、当該均圧化時間が経過したことを以って、上述した所定の条件の成立としてもよい。   It should be noted that the fact that the predetermined condition is satisfied, that is, the fact that the differential pressure ΔP between the high pressure side and the low pressure side of the refrigeration circuit 1 has fallen below the maximum differential pressure ΔPc that can start the compressor 20 It may be detected using a pressure sensor for measuring the pressure difference between the inlet side and the outlet side. However, when installation of a pressure sensor is not preferable from the viewpoint of cost reduction of the entire cooling device, the differential pressure ΔP between the high pressure side and the low pressure side of the refrigeration circuit 1 is less than the maximum differential pressure ΔPc at which the compressor 20 can start. The time (pressure equalization time) until it falls to may be obtained in advance by experiment or the like, and the above-mentioned predetermined condition may be satisfied when the pressure equalization time has elapsed.

1 冷凍回路
10 蒸発器
20 圧縮機
30 凝縮器
40 膨張器
B バイパス管路
BV バイパス管路開閉弁
MV メイン管路開閉弁
PH 高圧側圧力
PL 低圧側圧力
ΔP 高圧側圧力と低圧側圧力との差圧
ΔPc 圧縮機が起動可能な最大差圧
Reference Signs List 1 refrigeration circuit 10 evaporator 20 compressor 30 condenser 40 expander B bypass pipeline BV bypass pipeline on-off valve MV main pipeline on-off valve PH high pressure side pressure PL low pressure side pressure ΔP difference between high pressure pressure and low pressure pressure Pressure ΔPc Maximum differential pressure that can be activated by the compressor

Claims (6)

冷媒が循環する管路上に、当該冷媒の流れる方向に順に配置された蒸発器、圧縮機、凝縮器及び膨張器と、
前記圧縮機と前記凝縮器の間の前記管路と、前記膨張器と前記蒸発器の間の前記管路とを接続するバイパス管路と、
前記バイパス管路上に配置されたバイパス管路開閉弁と、
前記凝縮器と前記膨張器の間の前記管路上に配置されたメイン管路開閉弁と、
を備える冷凍回路の除霜運転方法において、
前記バイパス管路開閉弁を開き、前記メイン管路開閉弁を閉じた状態で行われる除霜が終了すると、前記圧縮機を停止すると共に前記メイン管路開閉弁を開く一方、所定の条件が成立するまでの間、前記バイパス管路開閉弁を開いた状態に維持することを特徴とする方法。
An evaporator, a compressor, a condenser, and an expander, which are sequentially disposed in the flow direction of the refrigerant on a pipe line through which the refrigerant circulates;
A bypass line connecting the line between the compressor and the condenser, and the line between the expander and the evaporator;
A bypass line on-off valve disposed on the bypass line;
A main line on-off valve disposed on the pipe between the condenser and the expander;
In a defrosting operation method of a refrigeration circuit comprising:
When the defrosting performed in a state in which the bypass line on-off valve is opened and the main line on-off valve is closed is finished, the compressor is stopped and the main line on-off valve is opened, and a predetermined condition is satisfied. And maintaining the bypass line on-off valve in an open state until then.
前記管路のうち前記圧縮機から前記凝縮器を経て前記膨張器へ至る部分における前記冷媒の圧力を高圧側圧力、前記管路のうち前記膨張器から前記蒸発器を経て前記圧縮機へ至る部分における前記冷媒の圧力を低圧側圧力と称するとき、
前記所定の条件は、前記除霜が終了してから、前記高圧側圧力と前記低圧側圧力との差圧が、前記圧縮機が起動可能な最大差圧まで低下する均圧化時間であることを特徴とする、請求項1に記載の方法。
The pressure of the refrigerant in the portion of the pipe extending from the compressor to the condenser through the condenser is referred to as the high pressure side, and the portion of the pipe from the expander to the compressor through the evaporator to the compressor When the pressure of the refrigerant at the
The predetermined condition is a pressure equalization time in which a differential pressure between the high-pressure side pressure and the low-pressure side pressure decreases to the maximum differential pressure at which the compressor can start after the defrosting is completed. The method according to claim 1, characterized in that
前記均圧化時間は、予め求められていることを特徴とする、請求項2に記載の方法。   The method according to claim 2, wherein the equalization time is determined in advance. 前記管路のうち前記圧縮機から前記凝縮器を経て前記膨張器へ至る部分における前記冷媒の圧力を高圧側圧力、前記管路のうち前記膨張器から前記蒸発器を経て前記圧縮機へ至る部分における前記冷媒の圧力を低圧側圧力と称するとき、
前記冷凍回路は、さらに、前記高圧側圧力及び前記低圧側圧力のそれぞれを検知する圧力センサを備え、
前記所定の条件は、前記圧力センサにより検知される前記高圧側圧力と前記低圧側圧力との差圧が、前記圧縮機が起動可能な最大差圧以下に低下することであることを特徴とする、請求項1に記載の方法。
The pressure of the refrigerant in the portion of the pipe extending from the compressor to the condenser through the condenser is referred to as the high pressure side, and the portion of the pipe from the expander to the compressor through the evaporator to the compressor When the pressure of the refrigerant at the
The refrigeration circuit further includes pressure sensors that detect the high pressure side pressure and the low pressure side pressure, respectively.
The predetermined condition is characterized in that a differential pressure between the high-pressure side pressure and the low-pressure side pressure detected by the pressure sensor is reduced to less than or equal to a maximum differential pressure which can be started by the compressor. The method according to claim 1.
前記膨張器はキャピラリであることを特徴とする、請求項1〜4のいずれか1項に記載の方法。   5. A method according to any one of the preceding claims, characterized in that the expander is a capillary. 前記除霜の終了時点から停止した状態を維持する前記圧縮機は、前記所定の条件が成立して前記バイパス管路開閉弁が閉じられた後に、再起動されることを特徴とする、請求項1〜5のいずれか1項に記載の方法。   The compressor, which maintains a stopped state from the end of the defrosting, is restarted after the predetermined condition is satisfied and the bypass pipe open / close valve is closed. The method according to any one of 1 to 5.
JP2017230854A 2017-11-30 2017-11-30 Hot gas defrosting operation method of refrigeration circuit Pending JP2019100603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230854A JP2019100603A (en) 2017-11-30 2017-11-30 Hot gas defrosting operation method of refrigeration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230854A JP2019100603A (en) 2017-11-30 2017-11-30 Hot gas defrosting operation method of refrigeration circuit

Publications (1)

Publication Number Publication Date
JP2019100603A true JP2019100603A (en) 2019-06-24

Family

ID=66976699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230854A Pending JP2019100603A (en) 2017-11-30 2017-11-30 Hot gas defrosting operation method of refrigeration circuit

Country Status (1)

Country Link
JP (1) JP2019100603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283970A (en) * 2020-09-23 2021-01-29 杨吉 Frostless air source heat pump system
CN115183499A (en) * 2022-06-21 2022-10-14 青岛海尔空调电子有限公司 Heat pump type drying system and defrosting method for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161258U (en) * 1980-04-29 1981-12-01
JPS6249176A (en) * 1985-08-26 1987-03-03 三菱電機株式会社 Method of controlling operation of refrigerator
JPS62123262A (en) * 1985-11-22 1987-06-04 三菱電機株式会社 Control circuit for refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161258U (en) * 1980-04-29 1981-12-01
JPS6249176A (en) * 1985-08-26 1987-03-03 三菱電機株式会社 Method of controlling operation of refrigerator
JPS62123262A (en) * 1985-11-22 1987-06-04 三菱電機株式会社 Control circuit for refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283970A (en) * 2020-09-23 2021-01-29 杨吉 Frostless air source heat pump system
CN115183499A (en) * 2022-06-21 2022-10-14 青岛海尔空调电子有限公司 Heat pump type drying system and defrosting method for same
CN115183499B (en) * 2022-06-21 2024-05-14 青岛海尔空调电子有限公司 Heat pump type drying system and defrosting method for heat pump type drying system

Similar Documents

Publication Publication Date Title
JP5595245B2 (en) Refrigeration equipment
US11479082B2 (en) System and method for refrigerant management in an electric vehicle
JP2675459B2 (en) Refrigeration equipment
JPH09318169A (en) Refrigerating apparatus
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP5062039B2 (en) Refrigeration equipment
JP2009036502A (en) Air conditioner
JP2009293899A (en) Refrigerating device
JP2019100603A (en) Hot gas defrosting operation method of refrigeration circuit
JP2009109110A (en) Refrigeration system
CN105556221B (en) Refrigerating plant
JP2008128570A (en) Refrigerating apparatus
WO2016046927A1 (en) Refrigeration cycle device and air-conditioning device
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP3993540B2 (en) Refrigeration equipment
JPH09318205A (en) Refrigerating device
JP4274250B2 (en) Refrigeration equipment
JP4375393B2 (en) Refrigeration equipment
JP2005214442A (en) Refrigerator
JP2000180026A (en) Refrigerating unit for refrigerator
JP2018173195A (en) Refrigerator
JP4284823B2 (en) Refrigeration equipment
JP3836092B2 (en) Refrigeration equipment
JPH1163709A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220302