JP2675459B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP2675459B2
JP2675459B2 JP3220355A JP22035591A JP2675459B2 JP 2675459 B2 JP2675459 B2 JP 2675459B2 JP 3220355 A JP3220355 A JP 3220355A JP 22035591 A JP22035591 A JP 22035591A JP 2675459 B2 JP2675459 B2 JP 2675459B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
evaporator
receiver tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3220355A
Other languages
Japanese (ja)
Other versions
JPH0560402A (en
Inventor
努 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3220355A priority Critical patent/JP2675459B2/en
Priority to ES92112373T priority patent/ES2084224T3/en
Priority to DE69206352T priority patent/DE69206352T2/en
Priority to EP92112373A priority patent/EP0529293B1/en
Priority to KR1019920015346A priority patent/KR960004254B1/en
Priority to CN92110195A priority patent/CN1065618C/en
Publication of JPH0560402A publication Critical patent/JPH0560402A/en
Priority to US08/164,633 priority patent/US5381665A/en
Application granted granted Critical
Publication of JP2675459B2 publication Critical patent/JP2675459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高圧ガス冷媒を蒸発器
に供給することによって蒸発器の除霜を行うと共に、リ
キッドインジェクション回路によって圧縮機内部の低圧
側に液冷媒を供給し、圧縮機の冷却を行う冷凍装置に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a compressor for supplying high pressure gas refrigerant to an evaporator to defrost the evaporator and supplying a liquid refrigerant to a low pressure side inside the compressor by a liquid injection circuit. The present invention relates to a refrigerating device for cooling.

【0002】[0002]

【従来の技術】従来よりスーパーマーケット等の食品冷
凍・冷蔵設備として設置される冷凍・冷蔵ショーケース
においては、冷凍装置を構成する蒸発器の除霜に際して
圧縮機から吐出された高圧ガス冷媒を用いる方式が採ら
れており、また、圧縮機の吐出ガス温度上昇を抑える目
的として、液冷媒を圧縮機内部に供給し、そこで蒸発さ
せて圧縮機を冷却する所謂リキッドインジェクション方
式が採られている。
2. Description of the Related Art Conventionally, in a freezing / refrigerating showcase installed as a food freezing / refrigerating facility in a supermarket or the like, a high pressure gas refrigerant discharged from a compressor is used for defrosting an evaporator constituting a refrigerating apparatus. In addition, a so-called liquid injection method in which a liquid refrigerant is supplied to the inside of the compressor and evaporated there to cool the compressor is adopted for the purpose of suppressing a rise in the discharge gas temperature of the compressor.

【0003】図3乃至図5に従来の此の種冷凍装置の冷
媒回路図を示す。図3は空冷により冷媒凝縮を行うと共
に、除霜時に圧縮機から吐出された高圧ガス冷媒を直接
蒸発器に流す方式の冷凍装置、図4は水冷により冷媒凝
縮を行うと共に、同様に除霜時に圧縮機から吐出された
高圧ガス冷媒を直接蒸発器に流す方式の冷凍装置、図5
は空冷により冷媒凝縮を行うと共に、除霜時に凝縮器を
出た気液混合冷媒を蒸発器に流す方式の冷凍装置をそれ
ぞれ示している。尚、各図中同一符号で示すものは同一
のものとする。
3 to 5 show refrigerant circuit diagrams of a conventional refrigerating apparatus of this kind. Fig. 3 is a refrigeration system of a type in which the refrigerant is condensed by air cooling and the high-pressure gas refrigerant discharged from the compressor is directly flown to the evaporator at the time of defrosting. A refrigeration system of a type in which the high-pressure gas refrigerant discharged from the compressor is directly passed to the evaporator, FIG.
Shows a refrigerating apparatus of a system in which the refrigerant is condensed by air cooling and the gas-liquid mixed refrigerant discharged from the condenser at the time of defrosting is caused to flow to the evaporator. In addition, the same reference numerals are used in the drawings.

【0004】先ず図3において、スクロールコンプレッ
サまたは半密閉コンプレッサによって構成される圧縮機
1の冷媒吐出側1Dには吐出側配管2が接続され、この
吐出側配管2は空冷式の凝縮器3の冷媒入口側3Aに接
続されている。凝縮器3の冷媒出口側3Bには出口側配
管4が接続され、この出口側配管4はレシーバータンク
5の冷媒入口側5Aに接続される。レシーバータンク5
の冷媒出口側5Bに接続された出口側配管6には直列に
ドライヤ7、サイトグラス8、バルブ9、電磁弁10及
び11が接続されており、この電磁弁11が膨張弁12
を介して蒸発器13に接続される。
First, in FIG. 3, a discharge side pipe 2 is connected to a refrigerant discharge side 1D of a compressor 1 constituted by a scroll compressor or a semi-hermetic compressor, and this discharge side pipe 2 is a refrigerant of an air-cooled condenser 3. It is connected to the entrance side 3A. An outlet side pipe 4 is connected to the refrigerant outlet side 3B of the condenser 3, and the outlet side pipe 4 is connected to the refrigerant inlet side 5A of the receiver tank 5. Receiver tank 5
A dryer 7, a sight glass 8, a valve 9, and solenoid valves 10 and 11 are connected in series to the outlet side pipe 6 connected to the refrigerant outlet side 5B of the expansion valve 12
Is connected to the evaporator 13 via.

【0005】蒸発器13は冷凍・冷蔵ショーケースの内
層冷気通路に設置されるもので、その出口側は電磁弁1
4を介して低圧側配管15よりアキュムレータ16に接
続されている。電磁弁11と膨張弁12をバイパスする
バイパス管17には電磁弁18が介設され、電磁弁11
と膨張弁12の間から分岐した配管19は電磁弁20及
び膨張弁21を介して蒸発器22に接続される。蒸発器
22は前記冷凍・冷蔵ショーケースの外層冷気通路に設
置されるもので、その出口側は低圧側配管15に接続さ
れている。また、蒸発器13と電磁弁14の間から分岐
した配管24は逆止弁25を介して電磁弁20の入口側
に接続されている。更に、アキュムレータ16の出口側
に接続した吸込側配管26は圧縮機1の吸込側1Sに接
続される。
The evaporator 13 is installed in the cold air passage of the inner layer of the freezing / refrigerating showcase, and its outlet side is the solenoid valve 1
It is connected to the accumulator 16 from the low-pressure side pipe 15 via 4. A solenoid valve 18 is interposed in a bypass pipe 17 that bypasses the solenoid valve 11 and the expansion valve 12.
The pipe 19 branched from between the expansion valve 12 and the expansion valve 12 is connected to the evaporator 22 via the electromagnetic valve 20 and the expansion valve 21. The evaporator 22 is installed in the outer layer cold air passage of the freezing / refrigerating showcase, and its outlet side is connected to the low-pressure side pipe 15. The pipe 24 branched from between the evaporator 13 and the solenoid valve 14 is connected to the inlet side of the solenoid valve 20 via a check valve 25. Further, the suction side pipe 26 connected to the outlet side of the accumulator 16 is connected to the suction side 1S of the compressor 1.

【0006】レシーバータンク5の出口側配管6からは
リキッドインジェクション回路27が分岐し、キャピラ
リチューブ28及び電磁弁29を介して圧縮機1内部の
低圧側のリキッドインジェクション入口1Rに接続され
ている。また、圧縮機1の吐出側配管2から分岐した除
霜用配管30は電磁弁31を介して電磁弁10の出口側
に接続されており、更に、同様に吐出側配管2から分岐
した配管32は電磁弁33及び低圧圧力調整弁34を介
して低圧側配管15に接続されている。
A liquid injection circuit 27 branches from the outlet side pipe 6 of the receiver tank 5 and is connected to a low-pressure side liquid injection inlet 1R inside the compressor 1 via a capillary tube 28 and a solenoid valve 29. The defrosting pipe 30 branched from the discharge side pipe 2 of the compressor 1 is connected to the outlet side of the solenoid valve 10 via a solenoid valve 31, and the pipe 32 is also branched from the discharge side pipe 2. Is connected to the low pressure side pipe 15 via a solenoid valve 33 and a low pressure adjusting valve 34.

【0007】図3の冷凍装置の動作を説明すると、蒸発
器13による通常の冷却運転時には、電磁弁10、1
1、14及び29は開き、他の電磁弁は閉じている。圧
縮機1から吐出された高温高圧のガス冷媒は凝縮器3に
て放熱して凝縮し、気液混合冷媒となってレシーバータ
ンク5に流入する。レシーバータンク5内では冷媒が気
液分離され、液冷媒は下方に溜まって出口側5Aから図
中実線矢印で示す如く出口側配管6を通り、電磁弁10
及び11を通過して膨張弁12にて絞られた後蒸発器1
3に流入する。蒸発器13に流入した冷媒はそこで蒸発
し、電磁弁14を通過して低圧側配管15を通り、アキ
ュムレータ16に流入する。ここで未蒸発の液冷媒が分
離されてガス冷媒だけが吸込側配管26より圧縮機1に
吸い込まれる。
The operation of the refrigerating apparatus shown in FIG. 3 will be described. During normal cooling operation by the evaporator 13, the solenoid valves 10 and 1 are operated.
1, 14 and 29 are open and the other solenoid valves are closed. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 radiates heat in the condenser 3 to be condensed and becomes a gas-liquid mixed refrigerant and flows into the receiver tank 5. In the receiver tank 5, the refrigerant is separated into gas and liquid, and the liquid refrigerant accumulates downward and passes from the outlet side 5A through the outlet side pipe 6 as shown by the solid line arrow in the figure, and the solenoid valve 10
After passing through 11 and 11 and being throttled by the expansion valve 12, the evaporator 1
Flow into 3 The refrigerant flowing into the evaporator 13 is evaporated there, passes through the solenoid valve 14, passes through the low pressure side pipe 15, and flows into the accumulator 16. Here, the non-evaporated liquid refrigerant is separated and only the gas refrigerant is sucked into the compressor 1 through the suction side pipe 26.

【0008】係る冷却運転が所定時間(例えば3時間)
経過した後、蒸発器13の除霜運転を行う。しかしなが
ら係る除霜運転に入る前に、所定の短期間(例えば30
秒)だけ前記状態から更に電磁弁20を開き、図中破線
矢印の如く蒸発器22にも膨張弁21にて絞られた冷媒
を流入させて蒸発させる。即ち、内層冷気通路用蒸発器
13と外層冷気通路用蒸発器22の双方にてショーケー
ス内を冷却する。この冷却運転が終了した後、電磁弁3
1、18、20、29及び33を開き、他の電磁弁は閉
じる。これによって圧縮機1から吐出された高温高圧の
ガス冷媒が図中破線矢印の如く除霜用配管30を通り電
磁弁31、18を通過し、バイパス管17にて膨張弁1
2をバイパスして蒸発器13に流入する。この高圧ガス
冷媒の流入によって蒸発器13は加熱されて除霜され、
同時に内部で凝縮した冷媒は配管24から逆止弁25及
び電磁弁20を通過して膨張弁21にて絞られた後、蒸
発器22に流入して蒸発する。これによって蒸発器13
の除霜中にも蒸発器22によってショーケース内を冷却
できる。蒸発器22で蒸発した冷媒は同様にアキュムレ
ータ16に戻る。また、この除霜中は圧縮機1から吐出
された高温高圧ガス冷媒が電磁弁33及び低圧圧力調整
弁34を通って吸込側配管15に流入しており、それに
よって圧縮機1の低圧側圧力が下がり過ぎるのを防止し
ている。
The cooling operation is performed for a predetermined time (for example, 3 hours)
After the elapse, the defrosting operation of the evaporator 13 is performed. However, before starting the defrosting operation, a predetermined short period (for example, 30
For a second), the solenoid valve 20 is further opened from the above state, and the refrigerant throttled by the expansion valve 21 is caused to flow into the evaporator 22 as shown by the broken line arrow in the figure to be evaporated. That is, the inside of the showcase is cooled by both the evaporator 13 for the inner layer cool air passage and the evaporator 22 for the outer layer cool air passage. After this cooling operation is completed, the solenoid valve 3
1, 18, 20, 29 and 33 are opened and the other solenoid valves are closed. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the defrosting pipe 30 and the solenoid valves 31, 18 as indicated by the broken line arrow in the figure, and the bypass pipe 17 expands the expansion valve 1
2 is bypassed and flows into the evaporator 13. The evaporator 13 is heated and defrosted by the inflow of the high-pressure gas refrigerant,
At the same time, the refrigerant condensed inside passes through the check valve 25 and the electromagnetic valve 20 from the pipe 24, is throttled by the expansion valve 21, and then flows into the evaporator 22 to be evaporated. This allows the evaporator 13
The interior of the showcase can be cooled by the evaporator 22 even during defrosting. The refrigerant evaporated in the evaporator 22 similarly returns to the accumulator 16. Further, during the defrosting, the high-temperature high-pressure gas refrigerant discharged from the compressor 1 flows into the suction side pipe 15 through the electromagnetic valve 33 and the low-pressure pressure adjusting valve 34, whereby the low-pressure side pressure of the compressor 1 is reduced. Prevents it from falling too low.

【0009】蒸発器13の除霜終了温度は図示しないセ
ンサーによって検知され、除霜が終了すると、所定期間
(例えば3分間)今度は電磁弁20及び29のみを開
き、他の電磁弁は閉じることにより両蒸発器13、22
内の冷媒回収運転を行う。
The defrosting end temperature of the evaporator 13 is detected by a sensor (not shown), and when the defrosting is finished, only the solenoid valves 20 and 29 should be opened for a predetermined period (for example, 3 minutes), and the other solenoid valves should be closed. Both evaporators 13 and 22
The internal refrigerant recovery operation is performed.

【0010】以上の各運転期間に渡って電磁弁29は開
いており、従って、レシーバータンク5に溜まった液冷
媒はリキッドインジェクション回路27からキャピラリ
チューブ28にて絞られ、圧縮機1に流入して蒸発し、
圧縮機1を冷却する。
The solenoid valve 29 is open during the above-mentioned respective operation periods. Therefore, the liquid refrigerant accumulated in the receiver tank 5 is squeezed from the liquid injection circuit 27 by the capillary tube 28 and flows into the compressor 1. Evaporates,
Cool the compressor 1.

【0011】次に、図4の冷凍装置においては前記凝縮
器3は存在せず、圧縮機1の吐出側1Dに接続された吐
出側配管2はドライヤ36を介してレシーバータンク5
の冷媒入口側5Aに接続されており、一方レシーバータ
ンク5内には、内部に冷却用の水が流通する水冷管路3
7が導入されている。この場合レシーバータンク5内の
冷媒はこの水冷管路37によって冷却されて凝縮され
る。この水冷管路37への水の流通は圧縮機1の吐出圧
力によって制御され、圧力が上がると水が流され、下が
ると停止する構成となっている。他の構成及び動作は図
3の場合と同様である。
Next, in the refrigerating apparatus of FIG. 4, the condenser 3 does not exist, and the discharge side pipe 2 connected to the discharge side 1D of the compressor 1 is connected to the receiver tank 5 via the dryer 36.
, Which is connected to the refrigerant inlet side 5A, while the receiver tank 5 has a water-cooling conduit 3 through which cooling water flows.
7 has been introduced. In this case, the refrigerant in the receiver tank 5 is cooled and condensed by the water cooling conduit 37. The flow of water to the water cooling conduit 37 is controlled by the discharge pressure of the compressor 1. When the pressure rises, the water flows, and when it falls, it stops. Other configurations and operations are the same as in the case of FIG.

【0012】次に、図5の冷凍装置においては凝縮器3
の出口側配管4は逆止弁39を介してレシーバータンク
5の冷媒入口側5Aに接続され、除霜用配管30は凝縮
器3と逆止弁39の間の出口側配管4から分岐してい
る。また、低圧側配管15には補助アキュムレータ40
が介設される。この場合、除霜用配管30には凝縮器3
にて荒熱を取られて凝縮した後の気液混合冷媒が流入
し、蒸発器13の除霜に供されることになる。他の構成
及び動作は図3と同様である。
Next, in the refrigerating apparatus of FIG. 5, the condenser 3
The outlet side pipe 4 is connected to the refrigerant inlet side 5A of the receiver tank 5 via the check valve 39, and the defrosting pipe 30 branches from the outlet side pipe 4 between the condenser 3 and the check valve 39. There is. In addition, the auxiliary accumulator 40 is installed in the low-pressure side pipe 15.
Is interposed. In this case, the condenser 3 is attached to the defrosting pipe 30.
At this time, the gas-liquid mixed refrigerant, which has been subjected to rough heat and condensed, flows in and is used for defrosting the evaporator 13. Other configurations and operations are the same as those in FIG.

【0013】[0013]

【発明が解決しようとする課題】前記各冷凍装置の冷媒
回路内には所定量のR−22若しくはR−502冷媒が
封入されるが、いずれの冷凍装置においても除霜用配管
30がレシーバータンク5をバイパスしている。そのた
め、蒸発器13の除霜時にレシーバータンク5に流入す
る冷媒量が少なくなり、特に図5の冷凍装置においては
凝縮器3から出た気液混合冷媒が殆ど除霜用配管30に
流れる状態となり、除霜中にレシーバータンク5に溜ま
る液冷媒は1リットル乃至2リットルに低下してしま
う。
A predetermined amount of R-22 or R-502 refrigerant is enclosed in the refrigerant circuit of each refrigerating machine, and in any refrigerating machine, the defrosting pipe 30 is the receiver tank. Bypassing 5. Therefore, the amount of refrigerant flowing into the receiver tank 5 during defrosting of the evaporator 13 is small, and particularly in the refrigerating apparatus of FIG. 5, the gas-liquid mixed refrigerant flowing out of the condenser 3 almost flows into the defrosting pipe 30. The liquid refrigerant accumulated in the receiver tank 5 during defrosting drops to 1 to 2 liters.

【0014】しかしながら、圧縮機1を冷却するために
はリキッドインジェクション回路27に毎分600cc
程の液冷媒を流す必要がある。従って、蒸発器13の除
霜中にはレシーバータンク5内の液冷媒が早期に枯渇
し、そのためリキッドインジェクション回路27に供給
される液冷媒が不足して圧縮機1の温度が上昇する。圧
縮機1の温度が上昇すれば圧縮機1に損傷が発生するた
め、保護装置が働き圧縮機1は停止することになる。
However, in order to cool the compressor 1, the liquid injection circuit 27 has 600 cc / min.
It is necessary to flow an appropriate amount of liquid refrigerant. Therefore, during defrosting of the evaporator 13, the liquid refrigerant in the receiver tank 5 is depleted at an early stage, so that the liquid refrigerant supplied to the liquid injection circuit 27 is insufficient and the temperature of the compressor 1 rises. If the temperature of the compressor 1 rises, the compressor 1 will be damaged, so that the protective device will work and the compressor 1 will stop.

【0015】即ち、冷凍装置内に封入する冷媒量をサイ
トグラス8部分にてフラッシュガスが発生する程の少な
い量として実験した場合、図5の冷凍装置では除霜中の
圧縮機1のヘッド温度は+120℃を上回り、前記保護
装置が働いて圧縮機1は停止してしまった。このように
圧縮機1が停止すると、蒸発器13の除霜も行われなく
なる問題がある。
That is, when the amount of the refrigerant enclosed in the refrigerating apparatus was tested so that the flash gas was generated in the portion of the sight glass 8, the head temperature of the compressor 1 during defrosting in the refrigerating apparatus of FIG. Exceeds + 120 ° C, and the compressor 1 is stopped due to the protection device being activated. When the compressor 1 is stopped in this way, there is a problem that the defrosting of the evaporator 13 is not performed.

【0016】また、図3或いは図4の冷凍装置において
も圧縮機1から吐出された高温高圧ガス冷媒がレシーバ
ータンク5をバイパスして除霜用配管30に流れるた
め、リキッドインジェクション回路27に流れる液冷媒
が不足し、上記と同様の実験では圧縮機1の停止には至
らなかったものの、圧縮機1のヘッド温度はやはり+1
20℃以上になり、その状態で極めて不安定な状態とな
った。
In the refrigerating apparatus of FIG. 3 or 4, the high-temperature high-pressure gas refrigerant discharged from the compressor 1 bypasses the receiver tank 5 and flows into the defrosting pipe 30, so that the liquid flowing into the liquid injection circuit 27. Although the compressor 1 was not stopped in the same experiment as described above due to lack of refrigerant, the head temperature of the compressor 1 was still +1.
The temperature became 20 ° C or higher, and the state became extremely unstable.

【0017】ところで、高圧ガス冷媒にて蒸発器の除霜
を行う場合には、例えば特公昭49−20022号公報
の如くレシーバータンクにて気液分離した後のガス冷媒
を用いる方法もある。
When defrosting the evaporator with a high-pressure gas refrigerant, there is also a method of using the gas refrigerant after gas-liquid separation in a receiver tank, as in JP-B-49-20022.

【0018】本発明は以上の如き従来技術及び従来技術
の問題点を踏まえ、蒸発器の除霜を高圧ガス冷媒にて行
う場合にも、リキッドインジェクション回路による安定
した圧縮機の冷却を達成することができる冷凍装置を提
供することを目的とする。
In view of the above-mentioned conventional techniques and the problems of the conventional techniques, the present invention achieves stable cooling of the compressor by the liquid injection circuit even when the defrosting of the evaporator is performed by the high pressure gas refrigerant. An object is to provide a refrigeration system capable of

【0019】[0019]

【課題を解決するための手段】請求項1の発明の冷凍装
置は、冷媒吐出側1D及び吸込側1Sを有した圧縮機1
と、この圧縮機1の吐出側1Dに接続された凝縮器3
と、この凝縮器3の冷媒出口側3Bに接続され凝縮器3
からの冷媒をガス冷媒と液冷媒とに分離するレシーバー
タンク5と、このレシーバータンク5の冷媒出口側5B
と圧縮機1の吸込側1Sとの間に接続された蒸発器13
とを有する冷凍装置において、蒸発器13の除霜時に圧
縮機1を運転させると共に、レシーバータンク5内で気
液分離したガス冷媒を蒸発器13に供給する除霜回路
(除霜用配管)30と、レシーバータンク5内で気液分
離した液冷媒を蒸発器13の冷却時並びに除霜時に圧縮
機1内部の低圧側へ供給するリキッドインジェクション
回路27とを有しているものである。
A refrigerating apparatus according to a first aspect of the present invention is a compressor 1 having a refrigerant discharge side 1D and a suction side 1S.
And a condenser 3 connected to the discharge side 1D of this compressor 1.
And the condenser 3 connected to the refrigerant outlet side 3B of the condenser 3.
And a receiver tank 5 for separating the refrigerant from the refrigerant into a gas refrigerant and a liquid refrigerant, and a refrigerant outlet side 5B of the receiver tank 5.
13 connected between the suction side 1S of the compressor 1 and the compressor 1
In the refrigerating apparatus having, the defrosting circuit (defrosting pipe) 30 that drives the compressor 1 during defrosting of the evaporator 13 and that supplies the gas refrigerant separated in the receiver tank 5 to the evaporator 13 And a liquid injection circuit 27 that supplies the liquid refrigerant separated into gas and liquid in the receiver tank 5 to the low pressure side inside the compressor 1 when the evaporator 13 is cooled and defrosted.

【0020】請求項2の発明の冷凍装置は、冷媒吐出側
1D及び吸込側1Sを有した圧縮機1と、この圧縮機1
の吐出側1Dに接続され凝縮器3からの冷媒をガス冷媒
と液冷媒とに分離するレシーバータンク5と、このレシ
ーバータンク5を冷却するための水冷管路37と、レシ
ーバータンク5の冷媒出口側5Bと圧縮機1の吸込側1
Sとの間に接続された蒸発器13とを有する冷凍装置に
おいて、蒸発器13の除霜時に圧縮機1を運転させると
共に、レシーバータンク5内で気液分離したガス冷媒を
蒸発器13に供給する除霜回路(除霜用配管)30と、
レシーバータンク5内で気液分離した液冷媒を蒸発器1
3の冷却時並びに除霜時に圧縮機1内部の低圧側へ供給
するリキッドインジェクション回路27とを有している
ものである。
A refrigerating apparatus according to a second aspect of the present invention is a compressor 1 having a refrigerant discharge side 1D and a suction side 1S, and the compressor 1
Receiver tank 5 that is connected to the discharge side 1D of the condenser 3 and that separates the refrigerant from the condenser 3 into a gas refrigerant and a liquid refrigerant, a water cooling conduit 37 for cooling the receiver tank 5, and a refrigerant outlet side of the receiver tank 5. 5B and suction side 1 of compressor 1
In a refrigerating apparatus having an evaporator 13 connected between S and S, the compressor 1 is operated when the evaporator 13 is defrosted, and a gas refrigerant separated in the receiver tank 5 is supplied to the evaporator 13. A defrosting circuit (piping pipe for defrosting) 30
The liquid refrigerant separated into gas and liquid in the receiver tank 5 is evaporated by the evaporator 1.
3 has a liquid injection circuit 27 that supplies the low-pressure side inside the compressor 1 during cooling and defrosting.

【0021】[0021]

【作用】請求項1の冷凍装置では、圧縮機1から吐出さ
れて凝縮器3にて凝縮された冷媒は全て一旦レシーバー
タンク5に流入する。蒸発器13の除霜時に除霜用配管
30にはレシーバータンク5内にて気液分離された冷媒
の内のガス冷媒が流入し、除霜に供される。一方、レシ
ーバータンク5内にて気液分離された液冷媒はレシーバ
ータンク5内に溜まり、リキッドインジェクション回路
27から蒸発器13の除霜時にも運転している圧縮機1
の冷却をするために確保される。
In the refrigerating apparatus of the first aspect, all the refrigerant discharged from the compressor 1 and condensed in the condenser 3 once flows into the receiver tank 5. During defrosting of the evaporator 13, the gas refrigerant in the refrigerant separated into gas and liquid in the receiver tank 5 flows into the defrosting pipe 30 and is used for defrosting. On the other hand, the liquid refrigerant separated into gas and liquid in the receiver tank 5 accumulates in the receiver tank 5, and the compressor 1 is operated even when the evaporator 13 is defrosted from the liquid injection circuit 27.
Reserved for cooling.

【0022】請求項2の冷凍装置では、圧縮機1から吐
出された冷媒は全て一旦レシーバータンク5に流入す
る。蒸発器13の除霜時に除霜用配管30にはレシーバ
ータンク5内で水冷管路37によって凝縮されて気液分
離された冷媒の内のガス冷媒が流入し、除霜に供され
る。一方、レシーバータンク5内にて気液分離された液
冷媒はレシーバータンク5内に溜まり、リキッドインジ
ェクション回路27から蒸発器13の除霜時にも運転し
ている圧縮機1の冷却をするために確保される。
In the refrigerating apparatus of the second aspect, all the refrigerant discharged from the compressor 1 once flows into the receiver tank 5. When the evaporator 13 is defrosted, the defrosting pipe 30 is supplied with the gas refrigerant, which is the refrigerant that has been condensed by the water cooling pipe 37 in the receiver tank 5 and separated into gas and liquid, and is used for defrosting. On the other hand, the liquid refrigerant separated into gas and liquid in the receiver tank 5 collects in the receiver tank 5 and is secured for cooling the compressor 1 operating from the liquid injection circuit 27 even when the evaporator 13 is defrosted. To be done.

【0023】[0023]

【実施例】次に、図面において本発明の実施例を説明す
る。図1は請求項1の発明の実施例としての冷凍装置の
冷媒回路を示しており、図2は請求項2の発明の実施例
としての冷凍装置の冷媒回路を示している。尚、図1に
おいて図3と同一符号は同一のものを示し、図2におい
て図4と同一符号は同一のものを示すものとして説明を
省略する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a refrigerant circuit of a refrigerating apparatus as an embodiment of the invention of claim 1, and FIG. 2 shows a refrigerant circuit of a refrigerating apparatus as an embodiment of the invention of claim 2. In FIG. 1, the same reference numerals as those in FIG. 3 denote the same elements, and the same reference numerals as those in FIG. 4 denote the same elements in FIG.

【0024】図1と図3との相違点は、図3では除霜用
配管30及び配管32が吐出側配管2から分岐していた
のに対し、図1の発明においては吐出側配管2及び出口
側配管4には何ら分岐管を接続せず、レシーバータンク
5上部にガス冷媒出口5Cを新たに形成し、このガス冷
媒出口5Cに接続した配管41に除霜用配管30及び配
管32を接続していることである。他の構成及び前述の
蒸発器13による冷却、蒸発器13及び22双方による
冷却、蒸発器13の除霜及び冷媒回収の各運転動作は図
3と同様である。
The difference between FIG. 1 and FIG. 3 is that the defrosting pipe 30 and the pipe 32 are branched from the discharge side pipe 2 in FIG. 3, whereas in the invention of FIG. No branch pipe is connected to the outlet side pipe 4, a gas refrigerant outlet 5C is newly formed above the receiver tank 5, and the defrosting pipe 30 and the pipe 32 are connected to the pipe 41 connected to the gas refrigerant outlet 5C. Is what you are doing. Other configurations and the respective operation operations of the cooling by the evaporator 13, the cooling by both the evaporators 13 and 22, the defrosting of the evaporator 13 and the refrigerant recovery are the same as those in FIG.

【0025】図2と図4との相違点は、図4では除霜用
配管30及び配管32が吐出側配管2から分岐していた
のに対し、図2の発明においては吐出側配管2には何ら
分岐管を接続せず、図1同様にレシーバータンク5上部
にガス冷媒出口5Cを新たに形成し、このガス冷媒出口
5Cに接続した配管41に除霜用配管30及び配管32
を接続していることである。他の構成及び前述の各運転
動作は図4と同一である。
The difference between FIG. 2 and FIG. 4 is that the defrosting pipe 30 and the pipe 32 are branched from the discharge side pipe 2 in FIG. 4, whereas in the invention of FIG. Is not connected to any branch pipe, a gas refrigerant outlet 5C is newly formed in the upper portion of the receiver tank 5 as in FIG. 1, and the pipe 41 connected to this gas refrigerant outlet 5C is connected to the defrosting pipe 30 and the pipe 32.
Is connected. The other configurations and the above-mentioned respective driving operations are the same as those in FIG.

【0026】図1の冷凍装置においては、電磁弁31及
び33が開いている蒸発器13の除霜中にも、圧縮機1
から吐出された高温高圧のガス冷媒は凝縮器3にて凝縮
された後、全て一旦レシーバータンク5に流入する。レ
シーバータンク5に流入した冷媒の内の液冷媒は下部に
溜まり、ガス冷媒は上部に分離する。除霜用配管30に
はこのレシーバータンク5内の比較的温度の低いガス冷
媒が流入して蒸発器13の除霜に供される。また、この
ガス冷媒は配管32から低圧側配管15に流入して除霜
時に圧縮機1の低圧側圧力が下がり過ぎるのを防止する
が、図3の高温ガスに比して温度が低いので圧縮機1の
吸込側温度が高くなるのを防止できる。更に、配管32
を配管41に接続することによって除霜用配管30と共
に除霜回路を集約できる効果もある。
In the refrigerating apparatus of FIG. 1, the compressor 1 is operated even during defrosting of the evaporator 13 in which the solenoid valves 31 and 33 are open.
The high-temperature and high-pressure gas refrigerant discharged from the condenser 3 is condensed in the condenser 3 and then once flows into the receiver tank 5. The liquid refrigerant in the refrigerant flowing into the receiver tank 5 accumulates in the lower part, and the gas refrigerant separates in the upper part. The gas refrigerant having a relatively low temperature in the receiver tank 5 flows into the defrosting pipe 30 and is used for defrosting the evaporator 13. Further, this gas refrigerant flows into the low-pressure side pipe 15 from the pipe 32 to prevent the low-pressure side pressure of the compressor 1 from dropping too much during defrosting, but since the temperature is lower than that of the high temperature gas in FIG. It is possible to prevent the suction side temperature of the machine 1 from increasing. Further, the pipe 32
There is also an effect that the defrosting circuit can be integrated together with the defrosting pipe 30 by connecting to the pipe 41.

【0027】このように蒸発器13の除霜用冷媒として
レシーバータンク5内にて気液分離したガス冷媒を用い
たことにより、圧縮機1から吐出された冷媒が全て凝縮
器3に流入し、そこで凝縮された液冷媒が全てレシーバ
ータンク5内に確保される。従って、蒸発器13の除霜
中、レシーバータンク5内の液冷媒が冷媒出口側5Bよ
りリキッドインジェクション回路27に流入して圧縮機
1の冷却に供されても(この時、電磁弁10は閉じてい
る)、レシーバータンク5内の液冷媒が枯渇することは
なく、圧縮機1の冷却を確実に達成することができる。
By using the gas refrigerant separated in the receiver tank 5 as the refrigerant for defrosting the evaporator 13 in this way, all the refrigerant discharged from the compressor 1 flows into the condenser 3, Therefore, all the condensed liquid refrigerant is secured in the receiver tank 5. Therefore, during defrosting of the evaporator 13, even if the liquid refrigerant in the receiver tank 5 flows into the liquid injection circuit 27 from the refrigerant outlet side 5B to cool the compressor 1 (at this time, the solenoid valve 10 is closed). However, the liquid refrigerant in the receiver tank 5 is not exhausted, and the cooling of the compressor 1 can be reliably achieved.

【0028】図2の冷凍装置においても、電磁弁31及
び33が開いている蒸発器13の除霜中、圧縮機1から
吐出された高温高圧のガス冷媒は全て一旦レシーバータ
ンク5に流入する。レシーバータンク5に流入した冷媒
は水冷管路37からの冷却によって凝縮し、その内の液
冷媒は下部に溜まり、ガス冷媒は上部に分離する。除霜
用配管30にはこのレシーバータンク5内の比較的温度
の低いガス冷媒が流入して蒸発器13の除霜に供され
る。また、配管32から低圧側配管15に流入して除霜
時に圧縮機1の低圧側圧力が下がり過ぎるのを防止する
が、同様にこのガス冷媒は図4の高温ガスに比して温度
が低いので圧縮機1の吸込側温度が高くなるのを防止で
きる。更に、同様に配管32を配管41に接続すること
によって除霜用配管30と共に除霜回路を集約できる効
果もある。
Also in the refrigerating apparatus of FIG. 2, all the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 once flows into the receiver tank 5 during defrosting of the evaporator 13 in which the solenoid valves 31 and 33 are open. The refrigerant that has flowed into the receiver tank 5 is condensed by the cooling from the water cooling pipe line 37, the liquid refrigerant therein is accumulated in the lower portion, and the gas refrigerant is separated into the upper portion. The gas refrigerant having a relatively low temperature in the receiver tank 5 flows into the defrosting pipe 30 and is used for defrosting the evaporator 13. Further, the low pressure side pressure of the compressor 1 is prevented from dropping too much during defrosting by flowing from the pipe 32 into the low pressure side pipe 15, but similarly, this gas refrigerant has a lower temperature than the high temperature gas in FIG. Therefore, the suction side temperature of the compressor 1 can be prevented from increasing. Further, similarly, by connecting the pipe 32 to the pipe 41, there is also an effect that the defrosting circuit can be integrated together with the defrosting pipe 30.

【0029】また、図1と同様に蒸発器13の除霜用冷
媒としてレシーバータンク5内にて気液分離したガス冷
媒を用いたことにより、圧縮機1から吐出された冷媒は
全てレシーバータンク5に流入し、そこで凝縮された液
冷媒が全てレシーバータンク5内に確保される。従っ
て、蒸発器13の除霜中、レシーバータンク5内の液冷
媒が冷媒出口側5Bよりリキッドインジェクション回路
27に流入して圧縮機1の冷却に供されても(この時、
電磁弁10は閉じている)、レシーバータンク5内の液
冷媒が枯渇することはなく、圧縮機1の冷却を確実に達
成することができる。
Further, as in the case of FIG. 1, since the gas refrigerant which has been gas-liquid separated in the receiver tank 5 is used as the defrosting refrigerant for the evaporator 13, all the refrigerant discharged from the compressor 1 is received by the receiver tank 5. All the liquid refrigerant that has flowed into and is condensed therein is secured in the receiver tank 5. Therefore, during defrosting of the evaporator 13, even if the liquid refrigerant in the receiver tank 5 flows into the liquid injection circuit 27 from the refrigerant outlet side 5B and is used for cooling the compressor 1 (at this time,
(The electromagnetic valve 10 is closed), the liquid refrigerant in the receiver tank 5 is not exhausted, and cooling of the compressor 1 can be reliably achieved.

【0030】即ち、冷凍装置内に封入する冷媒量をサイ
トグラス8部分にてフラッシュガスが発生する程の少な
い量として実験した場合でも(冷媒は同様にR−22或
いはR−502)、図1或いは図2の冷凍装置では除霜
中の圧縮機1のヘッド温度は+116℃程であって、保
護装置が働いて圧縮機1が停止することもなく、また、
その温度も安定していた。
That is, even when the amount of the refrigerant filled in the refrigerating apparatus is tested so that the flash gas is generated in the portion of the sight glass 8 (the refrigerant is also R-22 or R-502), FIG. Alternatively, in the refrigerating apparatus of FIG. 2, the head temperature of the compressor 1 during defrosting is about + 116 ° C., and the compressor 1 does not stop due to the protection device working.
The temperature was also stable.

【0031】尚、実施例では内層冷気通路用蒸発器と外
層冷気通路用蒸発器とを有した冷凍・冷蔵ショーケース
に本発明を適用したが、それに限らず、冷凍・冷蔵庫や
プレハブ冷蔵庫のクーリングユニット等にも本発明は有
効である。また、使用した冷媒や圧縮機の種類に限定さ
れるものでもない。
Although the present invention is applied to the freezing / refrigerating showcase having the evaporator for the inner-layer cold air passage and the evaporator for the outer-layer cold air passage in the embodiment, the present invention is not limited to this, and cooling of a freezer / refrigerator or a prefabricated refrigerator is also possible. The present invention is also effective for units and the like. Further, it is not limited to the type of refrigerant or compressor used.

【0032】[0032]

【発明の効果】以上本発明によれば、蒸発器の除霜用冷
媒としてレシーバータンク内にて気液分離された冷媒の
内のガス冷媒を用い、レシーバータンク内にて気液分離
された液冷媒はリキッドインジェクション回路による圧
縮機の冷却のためにレシーバータンク内に貯溜確保する
ので、蒸発器の除霜時にも運転している圧縮機を冷却す
るためのリキッドインジェクション回路への液冷媒は枯
渇することなく、安定した圧縮機の冷却を実現すること
ができると共に、蒸発器の除霜も確実に達成することが
可能となるものである。
As described above, according to the present invention, the gas refrigerant in the refrigerant separated in the receiver tank is used as the refrigerant for defrosting the evaporator, and the liquid separated in the receiver tank is used. Refrigerant is reserved in the receiver tank for cooling the compressor by the liquid injection circuit, so the liquid refrigerant to the liquid injection circuit for cooling the operating compressor is exhausted even when the evaporator is defrosted. Without this, stable cooling of the compressor can be realized, and defrosting of the evaporator can be surely achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明の冷凍装置の冷媒回路図であ
る。
FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus according to a first aspect of the invention.

【図2】請求項2の発明の冷凍装置の冷媒回路図であ
る。
FIG. 2 is a refrigerant circuit diagram of the refrigerating apparatus of the invention of claim 2.

【図3】従来の空冷により冷媒凝縮を行い除霜時に圧縮
機から吐出された高圧ガス冷媒を直接蒸発器に流す方式
の冷凍装置の冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram of a conventional refrigeration system of a type in which a refrigerant is condensed by air cooling and a high-pressure gas refrigerant discharged from a compressor is directly flown to an evaporator during defrosting.

【図4】従来の水冷により冷媒凝縮を行い除霜時に圧縮
機から吐出された高圧ガス冷媒を直接蒸発器に流す方式
の冷凍装置の冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram of a conventional refrigeration system of a type in which a refrigerant is condensed by water cooling and a high-pressure gas refrigerant discharged from a compressor is directly flown to an evaporator during defrosting.

【図5】従来の空冷により冷媒凝縮を行い除霜時に凝縮
器を出た気液混合冷媒を蒸発器に流す方式の冷凍装置の
冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram of a conventional refrigeration system of a type in which a refrigerant is condensed by air cooling and a gas-liquid mixed refrigerant discharged from a condenser at the time of defrosting is caused to flow to an evaporator.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 5 レシーバータンク 13 蒸発器 27 リキッドインジェクション回路 30 除霜用配管 37 水冷管路 1 Compressor 3 Condenser 5 Receiver Tank 13 Evaporator 27 Liquid Injection Circuit 30 Defrosting Pipe 37 Water Cooling Pipeline

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒吐出側及び吸込側を有した圧縮機
と、該圧縮機の吐出側に接続された凝縮器と、該凝縮器
の冷媒出口側に接続され前記凝縮器からの冷媒をガス冷
媒と液冷媒とに分離するレシーバータンクと、該レシー
バータンクの冷媒出口側と前記圧縮機の吸込側との間に
接続された蒸発器とを有する冷凍装置において、前記蒸
発器の除霜時に前記圧縮機を運転させると共に、前記レ
シーバータンク内で気液分離したガス冷媒を前記蒸発器
に供給する除霜回路と、前記レシーバータンク内で気液
分離した液冷媒を蒸発器の冷却時並びに除霜時に前記圧
縮機内部の低圧側へ供給するリキッドインジェクション
回路とを有する冷凍装置
1. A compressor having a refrigerant discharge side and a suction side, a condenser connected to the discharge side of the compressor, and a refrigerant discharged from the condenser connected to a refrigerant outlet side of the condenser. cold
In a refrigerating apparatus having a receiver tank for separating a medium and a liquid refrigerant, and an evaporator connected between a refrigerant outlet side of the receiver tank and a suction side of the compressor ,
While defrosting the generator, the compressor is operated and
The gas refrigerant separated into gas and liquid in the sea bar tank is added to the evaporator.
Defrosting circuit to supply the gas and liquid in the receiver tank.
When the separated liquid refrigerant is cooled in the evaporator and defrosted,
Liquid injection that supplies to the low pressure side inside the compressor
And a refrigeration device having a circuit .
【請求項2】 冷媒吐出側及び吸込側を有した圧縮機
と、該圧縮機の吐出側に接続され前記凝縮器からの冷媒
をガス冷媒と液冷媒とに分離するレシーバータンクと、
該レシーバータンクを冷却するための水冷管路と、前記
レシーバータンクの冷媒出口側と前記圧縮機の吸込側と
の間に接続された蒸発器とを有する冷凍装置において、
前記蒸発器の除霜時に前記圧縮機を運転させると共に、
前記レシーバータンク内で気液分離したガス冷媒を前記
蒸発器に供給する除霜回路と、前記レシーバータンク内
で気液分離した液冷媒を蒸発器の冷却時並びに除霜時に
前記圧縮機内部の低圧側へ供給するリキッドインジェク
ション回路とを有する冷凍装置。
2. A compressor having a refrigerant discharge side and a suction side, and a refrigerant from the condenser connected to the discharge side of the compressor.
A receiver tank for separating the gas refrigerant and the liquid refrigerant ,
In a refrigerating apparatus having a water cooling pipeline for cooling the receiver tank, and an evaporator connected between a refrigerant outlet side of the receiver tank and a suction side of the compressor ,
While operating the compressor when defrosting the evaporator,
The gas refrigerant separated into gas and liquid in the receiver tank is
Defrost circuit to supply to the evaporator and inside the receiver tank
The liquid refrigerant that has been separated into gas and liquid at the time of cooling and defrosting the evaporator
Liquid injection to be supplied to the low pressure side inside the compressor
And a refrigeration device having an application circuit.
JP3220355A 1991-08-30 1991-08-30 Refrigeration equipment Expired - Fee Related JP2675459B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3220355A JP2675459B2 (en) 1991-08-30 1991-08-30 Refrigeration equipment
DE69206352T DE69206352T2 (en) 1991-08-30 1992-07-20 Refrigeration system.
EP92112373A EP0529293B1 (en) 1991-08-30 1992-07-20 Refrigerating system
ES92112373T ES2084224T3 (en) 1991-08-30 1992-07-20 REFRIGERATION SYSTEM.
KR1019920015346A KR960004254B1 (en) 1991-08-30 1992-08-26 Refrigerating system with compressor cooled by liquid refrigerant
CN92110195A CN1065618C (en) 1991-08-30 1992-08-28 Refrigerating system
US08/164,633 US5381665A (en) 1991-08-30 1993-12-07 Refrigerating system with compressor cooled by liquid refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3220355A JP2675459B2 (en) 1991-08-30 1991-08-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0560402A JPH0560402A (en) 1993-03-09
JP2675459B2 true JP2675459B2 (en) 1997-11-12

Family

ID=16749842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3220355A Expired - Fee Related JP2675459B2 (en) 1991-08-30 1991-08-30 Refrigeration equipment

Country Status (7)

Country Link
US (1) US5381665A (en)
EP (1) EP0529293B1 (en)
JP (1) JP2675459B2 (en)
KR (1) KR960004254B1 (en)
CN (1) CN1065618C (en)
DE (1) DE69206352T2 (en)
ES (1) ES2084224T3 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
US5440894A (en) * 1993-05-05 1995-08-15 Hussmann Corporation Strategic modular commercial refrigeration
JP3275559B2 (en) * 1994-09-20 2002-04-15 株式会社日立製作所 Refrigeration equipment
US5634515A (en) * 1995-12-28 1997-06-03 Lambert; Kenneth W. Geothermal heat-pump system and installation of same
US6196007B1 (en) 1998-10-06 2001-03-06 Manitowoc Foodservice Group, Inc. Ice making machine with cool vapor defrost
KR100641732B1 (en) * 2000-12-29 2006-11-06 엘지.필립스 엘시디 주식회사 Fabricating Method of X-ray Detecting Device
US20030029208A1 (en) * 2001-08-13 2003-02-13 Ralph Merrem Portable electronic device physical security
US7159409B2 (en) * 2004-03-01 2007-01-09 Tecumseh Products Company Method and apparatus for controlling the load placed on a compressor
US20060083626A1 (en) * 2004-10-19 2006-04-20 Manole Dan M Compressor and hermetic housing with minimal housing ports
US7997092B2 (en) * 2007-09-26 2011-08-16 Carrier Corporation Refrigerant vapor compression system operating at or near zero load
CN101965492B (en) * 2008-05-15 2015-02-25 Xdx创新制冷有限公司 Surged vapor compression heat transfer system with reduced defrost
GB2469616B (en) * 2009-02-11 2013-08-28 Star Refrigeration A refrigeration system operable under transcritical conditions
CN102019361B (en) * 2009-09-15 2012-12-05 蔡欲期 Ceramic shell rapid drying method and ceramic shell
AU2011258052B2 (en) 2010-05-27 2016-06-16 XDX Global, LLC Surged heat pump systems
CN102346448B (en) * 2010-08-03 2014-11-12 曼尼托沃食品服务有限公司 Low pressure control for signaling a time delay for ice making cycle start up
US8522564B2 (en) 2011-06-07 2013-09-03 Thermo King Corporation Temperature control system with refrigerant recovery arrangement
CN102691652A (en) * 2012-06-04 2012-09-26 大连交通大学 Endurance test device of piston type refrigerant compressor
CN103542570B (en) * 2013-10-30 2016-02-10 上海交通大学 There is the spraying cycle of automatic defrosting and oil return function
EP3392589B1 (en) * 2015-12-17 2023-09-06 Mitsubishi Electric Corporation Heat exchanger and freezing cycle device
KR101962878B1 (en) * 2017-09-04 2019-03-27 주식회사 신진에너텍 Chilling system using waste heat recovery by chiller discharge gas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2745255A (en) * 1952-07-30 1956-05-15 American Motors Corp Defrosting refrigerating apparatus
DE1401496A1 (en) * 1962-07-12 1968-11-28 Danfoss As Fa Cooling system
US3343375A (en) * 1965-06-23 1967-09-26 Lester K Quick Latent heat refrigeration defrosting system
US3427819A (en) * 1966-12-22 1969-02-18 Pet Inc High side defrost and head pressure controls for refrigeration systems
US3580006A (en) * 1969-04-14 1971-05-25 Lester K Quick Central refrigeration system with automatic standby compressor capacity
US4167102A (en) * 1975-12-24 1979-09-11 Emhart Industries, Inc. Refrigeration system utilizing saturated gaseous refrigerant for defrost purposes
JPS53155749U (en) * 1977-05-13 1978-12-07
JPS5521011U (en) * 1978-07-21 1980-02-09
JPS6021715U (en) * 1983-07-20 1985-02-14 科学技研株式会社 stereoscopic image fluoroscope
US4621505A (en) * 1985-08-01 1986-11-11 Hussmann Corporation Flow-through surge receiver
JPH01159564A (en) * 1987-12-16 1989-06-22 Sanyo Electric Co Ltd Refrigerator
JPH02101368A (en) * 1988-10-06 1990-04-13 Sanyo Electric Co Ltd Method of operating low temperature show case
US4899555A (en) * 1989-05-19 1990-02-13 Carrier Corporation Evaporator feed system with flash cooled motor
US4959971A (en) * 1989-09-29 1990-10-02 Hoshizaki Electric Co., Ltd. Refrigerant piping system for refrigeration equipment
US4974427A (en) * 1989-10-17 1990-12-04 Copeland Corporation Compressor system with demand cooling
US4979371A (en) * 1990-01-31 1990-12-25 Hi-Tech Refrigeration, Inc. Refrigeration system and method involving high efficiency gas defrost of plural evaporators

Also Published As

Publication number Publication date
EP0529293B1 (en) 1995-11-29
KR930004724A (en) 1993-03-23
CN1065618C (en) 2001-05-09
ES2084224T3 (en) 1996-05-01
US5381665A (en) 1995-01-17
DE69206352T2 (en) 1996-06-27
DE69206352D1 (en) 1996-01-11
CN1070256A (en) 1993-03-24
KR960004254B1 (en) 1996-03-28
JPH0560402A (en) 1993-03-09
EP0529293A1 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
JP2675459B2 (en) Refrigeration equipment
US6775993B2 (en) High-speed defrost refrigeration system
US20040103681A1 (en) Method and arrangement for defrosting a vapor compression system
US7028494B2 (en) Defrosting methodology for heat pump water heating system
KR101220583B1 (en) Freezing device
JPH09318169A (en) Refrigerating apparatus
KR101220741B1 (en) Freezing device
US4286435A (en) Hot gas defrost system
JP2009109110A (en) Refrigeration system
US6000231A (en) Reverse liquid defrost apparatus and method
JP4082435B2 (en) Refrigeration equipment
JP3152454B2 (en) Two-stage compression refrigeration system
US4279129A (en) Hot gas defrost system
JP2008128570A (en) Refrigerating apparatus
JP4274250B2 (en) Refrigeration equipment
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JPH09318205A (en) Refrigerating device
JP2019100603A (en) Hot gas defrosting operation method of refrigeration circuit
JP2008014560A (en) Refrigeration system
JP2008032391A (en) Refrigerating unit
JP3091594B2 (en) Refrigeration equipment
JP3349251B2 (en) Refrigeration equipment
JPH07151399A (en) Refrigerant circuit
JP2007315637A (en) Refrigerating machine with standby
JP4111241B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees