JP3091594B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3091594B2
JP3091594B2 JP05029907A JP2990793A JP3091594B2 JP 3091594 B2 JP3091594 B2 JP 3091594B2 JP 05029907 A JP05029907 A JP 05029907A JP 2990793 A JP2990793 A JP 2990793A JP 3091594 B2 JP3091594 B2 JP 3091594B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
evaporator
liquid
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05029907A
Other languages
Japanese (ja)
Other versions
JPH06221730A (en
Inventor
曠 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05029907A priority Critical patent/JP3091594B2/en
Publication of JPH06221730A publication Critical patent/JPH06221730A/en
Application granted granted Critical
Publication of JP3091594B2 publication Critical patent/JP3091594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機を冷却するため
のリキッドインジェクション回路を具備すると共に、高
温冷媒によって蒸発器の除霜を実行する冷凍装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus having a liquid injection circuit for cooling a compressor and performing defrosting of an evaporator by using a high-temperature refrigerant.

【0002】[0002]

【従来の技術】近年この種冷凍装置においては、フロン
によるオゾン層破壊の問題から、フロンR−12等の所
謂特定冷媒の使用が規制されるに至り、代わってフロン
R−22が使用されるようになって来ている。しかしな
がら、係る冷媒は蒸発温度が低く(−40℃)、且つ、
圧縮機の吐出ガス温度が上昇する性質を有している。従
って、係る冷媒をそのまま使用すると、圧縮機の吐出ガ
ス温度が+150℃等の高温度を越え、圧縮機巻線温度
も限界温度以上となり、焼損する危険性が出てくる。そ
こで、係る圧縮機の温度上昇を防止するため、この種冷
凍装置では例えば出願人が先に出願した特願平4−56
12号の如きリキッドインジェクション回路が設けられ
ている。
2. Description of the Related Art In recent years, in this type of refrigeration system, the use of a so-called specific refrigerant such as Freon R-12 has been restricted due to the problem of destruction of the ozone layer by Freon, and Freon R-22 has been used instead. It is coming. However, such a refrigerant has a low evaporation temperature (−40 ° C.) and
It has the property that the temperature of the discharge gas of the compressor rises. Therefore, if such a refrigerant is used as it is, the temperature of the discharge gas of the compressor exceeds a high temperature such as + 150 ° C., and the temperature of the compressor winding becomes higher than the limit temperature. Therefore, in order to prevent the temperature of the compressor from rising, this type of refrigeration system is disclosed, for example, in Japanese Patent Application No. 4-56 filed by the applicant.
A liquid injection circuit as in No. 12 is provided.

【0003】即ち、前記出願では凝縮器からの液冷媒を
貯溜する受液器(レシーバ)の出口側から圧縮機に至る
リキッドインジェクション回路が設けられ、受液器内に
貯溜された液冷媒を圧縮機に戻して蒸発させることによ
って圧縮機を冷却し、その温度を低下させている。
That is, in the above-mentioned application, a liquid injection circuit is provided from an outlet of a liquid receiver (receiver) for storing liquid refrigerant from a condenser to a compressor, and compresses the liquid refrigerant stored in the liquid receiver. The compressor is cooled by returning it to the evaporator to reduce its temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
如き冷凍装置において圧縮機から吐出された高温冷媒
を、凝縮器ではなく蒸発器に直接流入させて蒸発器の除
霜を行う所謂ホットガス除霜を行うと、受液器に冷媒が
貯溜されなくなるため、リキッドインジェクション回路
へ流す液冷媒が枯渇する。
However, in a refrigeration system as described above, a high-temperature refrigerant discharged from a compressor flows directly into an evaporator, not a condenser, to defrost the evaporator. Is performed, the refrigerant is not stored in the liquid receiver, so that the liquid refrigerant flowing to the liquid injection circuit is depleted.

【0005】係る受液器内の冷媒枯渇によってリキッド
インジェクション回路に液冷媒が流れなくなると、圧縮
機の冷却が行われなくなって圧縮機の吐出ガス温度が上
昇する。よって、前述の如く故障を防止するために通常
圧縮機に設けられる保護装置(吐出ガスサーモ等)が働
いて、圧縮機が停止してしまう。圧縮機が停止すると当
然に蒸発器の除霜も行われなくなり、冷凍能力が著しく
低下してしまう問題があった。
[0005] When the liquid refrigerant stops flowing in the liquid injection circuit due to the depletion of the refrigerant in the liquid receiver, the cooling of the compressor is not performed, and the discharge gas temperature of the compressor rises. Therefore, as described above, the protection device (discharge gas thermostat or the like) normally provided in the compressor to prevent the failure works, and the compressor stops. When the compressor is stopped, the evaporator is naturally not defrosted, and the refrigeration capacity is significantly reduced.

【0006】本発明は係る従来の技術的課題を解決する
ために成されたものであり、リキッドインジェクション
回路によって圧縮機を冷却するものにおいて、所謂ホッ
トガス除霜を行う場合にも、圧縮機を冷却するための液
冷媒を確保することができる冷凍装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional technical problem. In the case where a compressor is cooled by a liquid injection circuit, the compressor can be used even when so-called hot gas defrosting is performed. It is an object of the present invention to provide a refrigeration apparatus capable of securing a liquid refrigerant for cooling.

【0007】[0007]

【課題を解決するための手段】請求項1の発明の冷凍装
置は、圧縮機1、凝縮器3、受液器4、減圧装置(膨張
弁)8及び蒸発器9を順次環状に接続すると共に、受液
器4から圧縮機1に液冷媒を供給するリキッドインジェ
クション回路16を設けたものであって、圧縮機1から
吐出された高温冷媒を蒸発器9に流入させる除霜回路1
4と、圧縮機1へ供給するための液冷媒を蒸発器9の出
口側から受液器4の入口側へと導くバイパス回路21と
を具備しており、バイパス回路21には蒸発器9の出口
側方向への冷媒流通を阻止する弁(逆止弁)22を介設
したことを特徴とする。
According to a first aspect of the present invention, there is provided a refrigerating apparatus in which a compressor 1, a condenser 3, a liquid receiver 4, a pressure reducing device (expansion valve) 8, and an evaporator 9 are sequentially connected in a ring shape. And a liquid injection circuit 16 for supplying liquid refrigerant from the liquid receiver 4 to the compressor 1, wherein the high-temperature refrigerant discharged from the compressor 1 flows into the evaporator 9.
4 and a bypass circuit 21 for guiding a liquid refrigerant to be supplied to the compressor 1 from the outlet side of the evaporator 9 to the inlet side of the receiver 4. It is characterized in that a valve (check valve) 22 for blocking refrigerant flow toward the outlet side is provided.

【0008】また、請求項2の発明の冷凍装置は、圧縮
機1、凝縮器3、受液器4、減圧装置(膨張弁)8及び
蒸発器9を順次環状に接続すると共に、受液器4から圧
縮機1に液冷媒を供給するリキッドインジェクション回
路16を設けたものであって、圧縮機1の吐出側と蒸発
器9の入口側を連通する除霜回路14と、凝縮器3と除
霜回路14への冷媒流通を制御する制御装置23を設
け、この制御装置23は蒸発器9の除霜開始から凝縮器
3への冷媒流通を阻止して除霜回路14に冷媒を流通さ
せると共に、除霜開始から所定期間経過した場合は、除
霜回路14と凝縮器3の双方に冷媒を流通させることを
特徴とする。
In the refrigeration apparatus according to the second aspect of the present invention, the compressor 1, the condenser 3, the liquid receiver 4, the pressure reducing device (expansion valve) 8, and the evaporator 9 are sequentially connected in a ring shape. 4, a liquid injection circuit 16 for supplying a liquid refrigerant from the compressor 1 to the compressor 1. The defrosting circuit 14 connects the discharge side of the compressor 1 and the inlet side of the evaporator 9, and the condenser 3 A control device 23 for controlling the flow of the refrigerant to the frost circuit 14 is provided. The control device 23 prevents the flow of the refrigerant to the condenser 3 from the start of the defrosting of the evaporator 9 and allows the refrigerant to flow to the defrosting circuit 14. When a predetermined period has elapsed from the start of defrosting, the refrigerant is circulated through both the defrosting circuit 14 and the condenser 3.

【0009】[0009]

【作用】請求項1の発明の冷凍装置によれば、蒸発器9
の除霜時、除霜回路14により圧縮機1から吐出された
高温冷媒が蒸発器9に流入されて蒸発器9の除霜が行わ
れる。蒸発器9に流入した高温冷媒は凝縮され、気液分
離されて圧縮機1に帰還する。係る除霜中、受液器4内
の圧力は蒸発器9の出口側の圧力よりも低くなり、これ
によって蒸発器9で凝縮液化した冷媒の一部はバイパス
回路21を通り、弁(逆止弁)22を経て受液器4に回
収される。受液器4に回収された液冷媒はリキッドイン
ジェクション回路16によって圧縮機1に供給され、圧
縮機1は冷却される。
According to the refrigeration apparatus of the first aspect, the evaporator 9 is provided.
At the time of the defrosting, the high-temperature refrigerant discharged from the compressor 1 by the defrosting circuit 14 flows into the evaporator 9 to defrost the evaporator 9. The high-temperature refrigerant flowing into the evaporator 9 is condensed, separated into gas and liquid, and returned to the compressor 1. During the defrosting, the pressure in the liquid receiver 4 becomes lower than the pressure on the outlet side of the evaporator 9, whereby a part of the refrigerant condensed and liquefied in the evaporator 9 passes through the bypass circuit 21 and passes through the valve (check valve). Through the valve 22). The liquid refrigerant collected in the liquid receiver 4 is supplied to the compressor 1 by the liquid injection circuit 16, and the compressor 1 is cooled.

【0010】また、請求項2の発明の冷凍装置によれ
ば、蒸発器9の除霜時、制御装置23によって凝縮器3
への冷媒流通が阻止され、代わりに除霜回路14により
圧縮機1から吐出された高温冷媒が蒸発器9に流入され
て蒸発器9の除霜が行われる。蒸発器9に流入した高温
冷媒は凝縮され、気液分離されて圧縮機1に帰還する。
係る除霜開始から所定期間が経過した場合、制御装置2
3は除霜回路14と凝縮器3の双方に冷媒を流すので、
蒸発器9の除霜を行いつつ、受液器4へも液冷媒が貯溜
される。この受液器4に貯溜された液冷媒はリキッドイ
ンジェクション回路16によって圧縮機1に供給され、
圧縮機1は冷却される。
According to the refrigeration apparatus of the second aspect, when the evaporator 9 is defrosted, the control device 23 controls the condenser 3.
The high-temperature refrigerant discharged from the compressor 1 is instead flown into the evaporator 9 by the defrost circuit 14 to defrost the evaporator 9. The high-temperature refrigerant flowing into the evaporator 9 is condensed, separated into gas and liquid, and returned to the compressor 1.
When a predetermined period has elapsed from the start of the defrosting, the control device 2
3 flows the refrigerant to both the defrost circuit 14 and the condenser 3,
The liquid refrigerant is stored in the liquid receiver 4 while the evaporator 9 is being defrosted. The liquid refrigerant stored in the liquid receiver 4 is supplied to the compressor 1 by a liquid injection circuit 16,
The compressor 1 is cooled.

【0011】[0011]

【実施例】次に図面に基づき本発明の実施例を説明す
る。図1は本発明の冷凍装置の冷媒回路図を示してい
る。冷凍装置は、例えばスーパーショーケースや業務用
プレハブ冷蔵庫等の冷却のために用いられるものであ
り、ロータリーコンプレッサ、スクロールコンプレッサ
等にて構成された圧縮機1の吐出側の配管2は電磁弁S
V2を介して凝縮器3に接続され、凝縮器3の出口側は
受液器4に接続されている。受液器4の出口側の配管6
は液管電磁弁7を介して減圧装置としての膨張弁8に接
続され、膨張弁8は蒸発器9に接続されている。蒸発器
9の出口側は吸入圧力調整弁11を介してアキュムレー
タ12に接続され、アキュムレータ12は圧縮機1の吸
込側の配管13に接続されて環状の冷媒回路を構成して
いる。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of the refrigeration apparatus of the present invention. The refrigerating apparatus is used for cooling, for example, a super showcase or a commercial prefabricated refrigerator, and a piping 2 on a discharge side of a compressor 1 including a rotary compressor, a scroll compressor, and the like is provided with an electromagnetic valve S.
The condenser 3 is connected to the condenser 3 via V 2, and the outlet side of the condenser 3 is connected to the liquid receiver 4. Outlet side pipe 6 of liquid receiver 4
Is connected via a liquid pipe solenoid valve 7 to an expansion valve 8 as a pressure reducing device, and the expansion valve 8 is connected to an evaporator 9. The outlet side of the evaporator 9 is connected to an accumulator 12 via a suction pressure regulating valve 11, and the accumulator 12 is connected to a pipe 13 on the suction side of the compressor 1 to form an annular refrigerant circuit.

【0012】前記膨張弁8には並列に電磁弁SV3が接
続されると共に、電磁弁SV2の上流側の配管2には除
霜回路14が接続され、この除霜回路14は電磁弁SV
1を介して膨張弁8と蒸発器9の間に接続されている。
受液器4と液管電磁弁7の間の配管6にはリキッドイン
ジェクション回路16が接続され、このリキッドインジ
ェクション回路16は電磁弁17及びキャピラリチュー
ブ18を介して圧縮機1に接続されている。
An electromagnetic valve SV3 is connected in parallel with the expansion valve 8, and a defrosting circuit 14 is connected to the pipe 2 on the upstream side of the electromagnetic valve SV2.
1 is connected between the expansion valve 8 and the evaporator 9.
A liquid injection circuit 16 is connected to the pipe 6 between the liquid receiver 4 and the liquid tube electromagnetic valve 7, and the liquid injection circuit 16 is connected to the compressor 1 via an electromagnetic valve 17 and a capillary tube 18.

【0013】更に、蒸発器9と吸入圧力調整弁11との
間にはバイパス回路21が接続され、バイパス回路21
は逆止弁22を介して受液器4の入口側に接続されてい
る。そして、前記逆止弁22は受液器4の方向が順方向
とされている。
Further, a bypass circuit 21 is connected between the evaporator 9 and the suction pressure regulating valve 11, and the bypass circuit 21
Is connected to the inlet side of the liquid receiver 4 via a check valve 22. In the check valve 22, the direction of the liquid receiver 4 is set to the forward direction.

【0014】19は例えばマイクロコンピュータによっ
て構成された制御装置であり、タイマーや前記ショーケ
ースの庫内温度及び蒸発器9の温度を検出するセンサー
等を具備しており、圧縮機1、電磁弁SV1、SV2及
びSV3の開閉を制御する。尚、以下の説明では液管電
磁弁7及び電磁弁17は開いているものとするが、電磁
弁17については制御装置19により、圧縮機1の温度
に基づいて、温度が上昇したら開き、降下したら閉じる
制御を行っても良い。また、制御装置19は圧縮機1の
温度を検知し、例えば+150℃等の高温度に上昇した
場合は、圧縮機1を停止させる保護機能を具備している
ものとする。
Reference numeral 19 denotes a control device constituted by a microcomputer, for example, which includes a timer, a sensor for detecting the temperature of the interior of the showcase and the temperature of the evaporator 9, and the like. The compressor 1 and the solenoid valve SV1 , SV2 and SV3. In the following description, it is assumed that the liquid pipe solenoid valve 7 and the solenoid valve 17 are open, but the solenoid valve 17 is opened by the control device 19 based on the temperature of the compressor 1 when the temperature rises and falls. Then, close control may be performed. The control device 19 detects the temperature of the compressor 1 and has a protection function of stopping the compressor 1 when the temperature rises to a high temperature such as + 150 ° C., for example.

【0015】次に、図1の冷凍装置の動作を説明する。
尚、図1の冷媒回路内には前記R−22冷媒が所定量封
入されているものとする。制御装置19は前記ショーケ
ースの庫内温度に基づいて圧縮機1の運転を制御し、冷
却運転時には電磁弁SV1及び電磁弁SV3を閉じ、電
磁弁SV2を開いている。これによって、圧縮機1から
吐出された高温高圧のガス冷媒は電磁弁SV2を経て凝
縮器3に流入し、冷媒はそこで放熱して凝縮液化された
後、受液器4に流入する。この受液器4に一旦貯溜され
た液冷媒は、配管6を経て膨張弁8に至り、そこで絞ら
れた後、蒸発器9に流入する。
Next, the operation of the refrigeration apparatus shown in FIG. 1 will be described.
It is assumed that a predetermined amount of the R-22 refrigerant is sealed in the refrigerant circuit of FIG. The control device 19 controls the operation of the compressor 1 based on the inside temperature of the showcase, and closes the solenoid valves SV1 and SV3 and opens the solenoid valve SV2 during the cooling operation. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 3 via the solenoid valve SV2, and the refrigerant radiates heat there to be condensed and liquefied, and then flows into the liquid receiver 4. The liquid refrigerant once stored in the liquid receiver 4 reaches the expansion valve 8 via the pipe 6, is throttled there, and flows into the evaporator 9.

【0016】蒸発器9に流入した冷媒はそこで蒸発し、
その時に周囲から熱を吸収することにより冷却作用を発
揮する。蒸発器9を出た冷媒は吸入圧力調整弁11を経
てアキュムレータ12に入り、そこで未蒸発液冷媒を気
液分離された後、ガス冷媒のみが圧縮機1に吸い込まれ
る。また、係る冷却運転中は蒸発器9の出口側よりも受
液器4の入口側の方が高圧となるから、逆止弁22によ
り蒸発器9からバイパス回路21への冷媒流入は阻止さ
れる。
The refrigerant flowing into the evaporator 9 evaporates there,
At that time, a cooling effect is exhibited by absorbing heat from the surroundings. The refrigerant leaving the evaporator 9 enters the accumulator 12 via the suction pressure regulating valve 11, where the unevaporated liquid refrigerant is gas-liquid separated, and then only the gas refrigerant is sucked into the compressor 1. During the cooling operation, the inlet side of the liquid receiver 4 has a higher pressure than the outlet side of the evaporator 9, so that the check valve 22 prevents the refrigerant from flowing from the evaporator 9 to the bypass circuit 21. .

【0017】一方、受液器4から出た液冷媒の一部はリ
キッドインジェクション回路16にも流入し、電磁弁1
7を経てキャピラリチューブ18にて絞られた後、圧縮
機1内に吐出される。液冷媒は圧縮機1内で蒸発し、吸
熱作用を発揮して圧縮機1を冷却する。これによって冷
却運転時、圧縮機1の温度上昇は防止されるので、制御
装置19の前記保護機能によって圧縮機1が停止される
ことはなくなる。
On the other hand, a part of the liquid refrigerant flowing out of the liquid receiver 4 also flows into the liquid injection circuit 16 and the electromagnetic valve 1
After being squeezed by the capillary tube 18 through 7, it is discharged into the compressor 1. The liquid refrigerant evaporates in the compressor 1 and exerts an endothermic effect to cool the compressor 1. This prevents the temperature of the compressor 1 from rising during the cooling operation, so that the compressor 1 is not stopped by the protection function of the control device 19.

【0018】ここで、制御装置19は前記タイマーによ
って例えば圧縮機1の運転時間を積算しており、所定の
時間となると蒸発器9の除霜運転に入る。この除霜運転
では、制御装置19は圧縮機1を運転すると共に、当初
電磁弁SVを開いて液冷媒をそのまま蒸発器9に導入
し、当該液冷媒の顕熱にて蒸発器9の除霜を開始する。
係る除霜を例えば30秒実行した後、制御装置19は電
磁弁SV2を閉じ、電磁弁SV1を開いて圧縮機1から
吐出された高温高圧ガス冷媒を除霜回路14に流し、蒸
発器9に流入させる。
Here, the control device 19 accumulates, for example, the operation time of the compressor 1 by the timer, and when a predetermined time is reached, the defrosting operation of the evaporator 9 is started. In this defrosting operation, the control device 19 operates the compressor 1 and initially opens the solenoid valve SV to introduce the liquid refrigerant directly into the evaporator 9, and defrosts the evaporator 9 by the sensible heat of the liquid refrigerant. To start.
After performing such defrosting, for example, for 30 seconds, the control device 19 closes the solenoid valve SV2 and opens the solenoid valve SV1 to flow the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to the defrost circuit 14 and to the evaporator 9 Let it flow in.

【0019】蒸発器9は係る高温高圧ガス冷媒の流入に
よって加熱され、その着霜は融解される。蒸発器9内に
流入した冷媒はそこで凝縮液化され、蒸発器9を出て吸
入圧力調整弁11にて減圧流量調整された後、アキュム
レータ12に入り、そこで気液分離されてガス冷媒のみ
が圧縮機1に吸引される。
The evaporator 9 is heated by the flow of the high-temperature and high-pressure gas refrigerant, and its frost is melted. The refrigerant that has flowed into the evaporator 9 is condensed and liquefied there, exits the evaporator 9, is depressurized and adjusted by the suction pressure control valve 11, enters the accumulator 12, where it is gas-liquid separated and only the gas refrigerant is compressed. It is sucked into the machine 1.

【0020】一方、係る除霜運転中は蒸発器9の出口側
の方が受液器4の入口側よりも高圧となる。従って、こ
の圧力差により蒸発器9から出た液冷媒の一部は、バイ
パス回路21に流入し、逆止弁22を経て受液器4に回
収されて行くので、受液器4内の液冷媒が枯渇すること
がなくなる。この受液器4内に回収された液冷媒は、配
管6から出てリキッドインジェクション回路16に流入
し、前述の説明同様に電磁弁17を経てキャピラリチュ
ーブ18にて絞られた後、圧縮機1内に吐出される。
On the other hand, during the defrosting operation, the outlet side of the evaporator 9 has a higher pressure than the inlet side of the liquid receiver 4. Therefore, a part of the liquid refrigerant that has flowed out of the evaporator 9 due to the pressure difference flows into the bypass circuit 21 and is collected by the liquid receiver 4 through the check valve 22. The refrigerant is not depleted. The liquid refrigerant collected in the receiver 4 exits from the pipe 6 and flows into the liquid injection circuit 16, and is throttled by the capillary tube 18 via the solenoid valve 17 in the same manner as described above. It is discharged into.

【0021】このように、除霜運転中にもリキッドイン
ジェクション回路16への液冷媒は確保されるので、係
る除霜運転中の圧縮機1の温度上昇も確実に防止され、
制御装置19の保護機能によって圧縮機1が停止される
ことはなくなる。従って、蒸発器9の除霜が確実に実行
されるようになり、霜残りによる冷却不良の発生も未然
に防止される。尚、制御装置19は蒸発器9の温度が所
定の除霜終了温度に上昇した時点で前記除霜運転を終了
し、冷却運転に復帰する。
As described above, since the liquid refrigerant is supplied to the liquid injection circuit 16 even during the defrosting operation, the temperature rise of the compressor 1 during the defrosting operation is also reliably prevented,
The compressor 1 is not stopped by the protection function of the control device 19. Therefore, the defrosting of the evaporator 9 is reliably performed, and the occurrence of cooling failure due to the remaining frost is also prevented. The controller 19 ends the defrosting operation when the temperature of the evaporator 9 rises to a predetermined defrosting end temperature, and returns to the cooling operation.

【0022】次に、図2はもう一つの冷凍装置の冷媒回
路図を示している。尚、図中図1と同一符号のものは同
一の機能を奏するものとする。この場合、図1の電磁弁
SV3及び、バイパス回路21、逆止弁22は削除され
ている。そして、制御装置23は、図1の制御装置19
とその除霜制御プログラムが異なっている。
Next, FIG. 2 shows a refrigerant circuit diagram of another refrigeration apparatus. In the figure, components having the same reference numerals as those in FIG. 1 perform the same functions. In this case, the solenoid valve SV3, the bypass circuit 21, and the check valve 22 in FIG. 1 are omitted. Then, the control device 23 is the control device 19 of FIG.
And its defrost control program are different.

【0023】以下、図2の冷凍装置の動作を説明する。
尚、図2の冷媒回路内にも前記R−22冷媒が所定量封
入されているものとする。制御装置23は前記ショーケ
ースの庫内温度に基づいて圧縮機1の運転を制御し、冷
却運転時には電磁弁SV1を閉じ、電磁弁SV2を開い
ている。これによって、圧縮機1から吐出された高温高
圧のガス冷媒は電磁弁SV2を経て凝縮器3に流入し、
そこで放熱して凝縮液化された後、受液器4に流入す
る。この受液器4に一旦貯溜された液冷媒は、配管6を
経て膨張弁8に至り、そこで絞られた後、蒸発器9に流
入する。
Hereinafter, the operation of the refrigeration apparatus of FIG. 2 will be described.
It is assumed that a predetermined amount of the R-22 refrigerant is also sealed in the refrigerant circuit of FIG. The control device 23 controls the operation of the compressor 1 based on the inside temperature of the showcase, and closes the solenoid valve SV1 and opens the solenoid valve SV2 during the cooling operation. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 3 via the solenoid valve SV2,
Then, the heat is released and condensed and liquefied, and then flows into the receiver 4. The liquid refrigerant once stored in the liquid receiver 4 reaches the expansion valve 8 via the pipe 6, is throttled there, and flows into the evaporator 9.

【0024】蒸発器9に流入した冷媒はそこで蒸発し、
その時に周囲から熱を吸収することにより冷却作用を発
揮する。蒸発器9を出た冷媒は吸入圧力調整弁11を経
てアキュムレータ12に入り、そこで未蒸発液冷媒を気
液分離された後、圧縮機1に吸い込まれる。
The refrigerant flowing into the evaporator 9 evaporates there,
At that time, a cooling effect is exhibited by absorbing heat from the surroundings. The refrigerant leaving the evaporator 9 enters the accumulator 12 via the suction pressure regulating valve 11, where the unevaporated liquid refrigerant is separated into gas and liquid, and then sucked into the compressor 1.

【0025】一方、受液器4から出た液冷媒の一部はリ
キッドインジェクション回路16にも流入し、電磁弁1
7を経てキャピラリチューブ18にて絞られた後、圧縮
機1内に吐出される。液冷媒は圧縮機1内で蒸発し、吸
熱作用を発揮して圧縮機1を冷却する。これによって冷
却運転時、圧縮機1の温度上昇は防止されるので、制御
装置23の前述同様の保護機能によって圧縮機1が停止
されることはなくなる。
On the other hand, a part of the liquid refrigerant flowing out of the liquid receiver 4 also flows into the liquid injection circuit 16 and the electromagnetic valve 1
After being squeezed by the capillary tube 18 through 7, it is discharged into the compressor 1. The liquid refrigerant evaporates in the compressor 1 and exerts an endothermic effect to cool the compressor 1. This prevents the temperature of the compressor 1 from rising during the cooling operation, so that the compressor 1 is not stopped by the protection function of the control device 23 similar to the above.

【0026】ここで、制御装置23は前述同様のタイマ
ーによって圧縮機1の運転時間を積算しており、所定の
時間となると蒸発器9の除霜運転を開始する。この除霜
運転では、制御装置23は圧縮機1を運転すると共に、
電磁弁SV2を閉じ、電磁弁SV1を開いて圧縮機1か
ら吐出された高温高圧ガス冷媒を除霜回路14に流し、
蒸発器9に流入させる。
Here, the controller 23 accumulates the operation time of the compressor 1 by the same timer as described above, and starts the defrosting operation of the evaporator 9 at a predetermined time. In this defrosting operation, the control device 23 operates the compressor 1 and
The solenoid valve SV2 is closed, the solenoid valve SV1 is opened, and the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the defrost circuit 14,
It flows into the evaporator 9.

【0027】蒸発器9は係る高温高圧ガス冷媒の流入に
よって加熱され、その着霜は融解される。蒸発器9内に
流入した冷媒はそこで凝縮液化され、蒸発器9を出て吸
入圧力調整弁11にて減圧流量調整された後、アキュム
レータ12に入り、そこで気液分離されてガス冷媒のみ
が圧縮機1に吸引される。
The evaporator 9 is heated by the flow of the high-temperature and high-pressure gas refrigerant, and its frost is melted. The refrigerant that has flowed into the evaporator 9 is condensed and liquefied there, exits the evaporator 9, is depressurized and adjusted by the suction pressure control valve 11, enters the accumulator 12, where it is gas-liquid separated and only the gas refrigerant is compressed. It is sucked into the machine 1.

【0028】また、制御装置23は係る除霜運転の開始
から所定期間経過した後、電磁弁SV2を開く。これに
よって圧縮機1から吐出された高温高圧ガス冷媒は、除
霜回路14に加えて、凝縮器3にも流入するようにな
る。この凝縮器3に流入した冷媒は凝縮液化されて受液
器4に貯溜されて行くので、受液器4内の液冷媒が枯渇
することがなくなる。この受液器4内に貯溜された液冷
媒は、配管6から出てリキッドインジェクション回路1
6に流入し、前述の説明同様に電磁弁17を経てキャピ
ラリチューブ18にて絞られた後、圧縮機1内に吐出さ
れる。
The controller 23 opens the solenoid valve SV2 after a lapse of a predetermined period from the start of the defrosting operation. Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 3 in addition to the defrost circuit 14. The refrigerant flowing into the condenser 3 is condensed and liquefied and stored in the receiver 4, so that the liquid refrigerant in the receiver 4 is not depleted. The liquid refrigerant stored in the liquid receiver 4 exits from the pipe 6 and is supplied to the liquid injection circuit 1.
6, is throttled by a capillary tube 18 via an electromagnetic valve 17 in the same manner as described above, and then discharged into the compressor 1.

【0029】このように、除霜運転中にもリキッドイン
ジェクション回路16への液冷媒は確保されるので、係
る除霜運転中の圧縮機1の温度上昇も確実に防止され、
制御装置23の前記保護機能によって圧縮機1が停止さ
れることはなくなり、従って、蒸発器9の除霜が確実に
実行されるようになる。尚、制御装置23は蒸発器9の
温度が所定の除霜終了温度に上昇した時点で前記除霜運
転を終了し、冷却運転に復帰するものとする。
As described above, the liquid refrigerant to the liquid injection circuit 16 is ensured even during the defrosting operation, so that the temperature rise of the compressor 1 during the defrosting operation is reliably prevented.
The compressor 1 is no longer stopped by the protection function of the control device 23, and therefore, the defrosting of the evaporator 9 is reliably performed. The controller 23 ends the defrosting operation when the temperature of the evaporator 9 rises to a predetermined defrosting end temperature, and returns to the cooling operation.

【0030】尚、実施例ではバイパス回路21に逆止弁
22を設けたが、それに限られず、電磁弁を設けて当該
電磁弁を冷却運転中は閉じ、除霜運転時に開いても良
い。また、実施例では制御装置をマイクロコンピュータ
にて構成し、当該マイクロコンピュータに圧縮機の保護
機能を具備させたが、圧縮機の温度を検出する吐出ガス
サーモ等を用いて圧縮機の保護を行っても差し支えな
い。更に、本発明の冷凍装置はショーケースに限らず、
他の種々の冷凍機器に対して有効であることは云うまで
もない。
In the embodiment, the check valve 22 is provided in the bypass circuit 21. However, the present invention is not limited to this. An electromagnetic valve may be provided and the electromagnetic valve may be closed during the cooling operation and opened during the defrosting operation. In the embodiment, the control device is configured by a microcomputer, and the microcomputer is provided with a compressor protection function.However, the compressor is protected by using a discharge gas thermo or the like that detects the temperature of the compressor. No problem. Furthermore, the refrigerator of the present invention is not limited to a showcase,
Needless to say, it is effective for various other refrigeration equipment.

【0031】[0031]

【発明の効果】以上詳述した如く請求項1の発明によれ
ば、高温冷媒による蒸発器の除霜中にも、蒸発器で凝縮
液化した冷媒がバイパス回路を通り、受液器に回収され
るので、受液器内の液冷媒の枯渇が防止される。従っ
て、リキッドインジェクション回路への液冷媒が確保さ
れるので、蒸発器の除霜中にも圧縮機の冷却を行うこと
ができるようになり、圧縮機の故障発生と、霜残りによ
り冷却不良の発生を未然に防止することができるもので
ある。
As described above, according to the first aspect of the present invention, even during the defrosting of the evaporator by the high-temperature refrigerant, the refrigerant condensed and liquefied by the evaporator passes through the bypass circuit and is collected in the receiver. Therefore, the depletion of the liquid refrigerant in the liquid receiver is prevented. Therefore, the liquid refrigerant to the liquid injection circuit is secured, so that the compressor can be cooled even during the defrosting of the evaporator, and the failure of the compressor occurs and the cooling failure occurs due to the remaining frost. Can be prevented beforehand.

【0032】また、請求項2の発明によれば、高温冷媒
による蒸発器の除霜開始から所定期間が経過した場合
は、制御装置が除霜回路と凝縮器の双方に冷媒を流すの
で、蒸発器の除霜を行いつつ、受液器へも液冷媒が貯溜
され、受液器内の液冷媒の枯渇が防止される。従って、
リキッドインジェクション回路への液冷媒が確保される
ので、蒸発器の除霜中にも圧縮機の冷却を行うことがで
きるようになり、圧縮機の故障発生と、霜残りにより冷
却不良の発生を未然に防止することができるものであ
る。
According to the second aspect of the present invention, when a predetermined period has elapsed from the start of the defrosting of the evaporator by the high-temperature refrigerant, the control device flows the refrigerant to both the defrosting circuit and the condenser. The liquid refrigerant is stored in the liquid receiver while the container is being defrosted, thereby preventing the liquid refrigerant in the liquid receiver from being depleted. Therefore,
Since the liquid refrigerant to the liquid injection circuit is secured, it is possible to cool the compressor even during defrosting of the evaporator. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus of the present invention.

【図2】本発明のもう一つの冷凍装置の冷媒回路図であ
る。
FIG. 2 is a refrigerant circuit diagram of another refrigeration apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 4 受液器 8 膨張弁 9 蒸発器 14 除霜回路 16 リキッドインジェクション回路 19 制御装置 21 バイパス回路 22 逆止弁 23 制御装置 SV1 電磁弁 SV2 電磁弁 SV3 電磁弁 DESCRIPTION OF SYMBOLS 1 Compressor 3 Condenser 4 Liquid receiver 8 Expansion valve 9 Evaporator 14 Defrost circuit 16 Liquid injection circuit 19 Control device 21 Bypass circuit 22 Check valve 23 Control device SV1 Solenoid valve SV2 Solenoid valve SV3 Solenoid valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−126554(JP,A) 特開 昭56−37460(JP,A) 特開 平1−159564(JP,A) 特開 平3−220355(JP,A) 実開 昭58−174660(JP,U) 実開 昭54−153050(JP,U) 実開 平2−81367(JP,U) 実開 平2−6970(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 47/02 530 F25B 1/00 311 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-126554 (JP, A) JP-A-56-37460 (JP, A) JP-A-1-159564 (JP, A) JP-A-3-3 220355 (JP, A) Japanese Utility Model Showa 58-174660 (JP, U) Japanese Utility Model Showa 54-153050 (JP, U) Japanese Utility Model 2-81367 (JP, U) Japanese Utility Model Utility Model 2-6970 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 47/02 530 F25B 1/00 311

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、受液器、減圧装置及び
蒸発器を順次環状に接続すると共に、前記受液器から前
記圧縮機に液冷媒を供給するリキッドインジェクション
回路を設けた冷凍装置において、前記圧縮機から吐出さ
れた高温冷媒を前記蒸発器に流入させる除霜回路と、圧
縮機へ供給するための液冷媒を前記蒸発器の出口側から
前記受液器の入口側へと導くバイパス回路とを具備して
成り、該バイパス回路には前記蒸発器の出口側方向への
冷媒流通を阻止する弁を介設したことを特徴とする冷凍
装置。
1. A refrigerating apparatus in which a compressor, a condenser, a liquid receiver, a pressure reducing device, and an evaporator are sequentially connected in a ring shape and a liquid injection circuit for supplying a liquid refrigerant from the liquid receiver to the compressor is provided. And a defrost circuit for flowing high-temperature refrigerant discharged from the compressor into the evaporator, and guiding a liquid refrigerant to be supplied to the compressor from an outlet side of the evaporator to an inlet side of the liquid receiver. A refrigerating apparatus comprising: a bypass circuit; and a valve for preventing refrigerant from flowing toward an outlet of the evaporator.
【請求項2】 圧縮機、凝縮器、受液器、減圧装置及び
蒸発器を順次環状に接続すると共に、前記受液器から前
記圧縮機に液冷媒を供給するリキッドインジェクション
回路を設けた冷凍装置において、前記圧縮機の吐出側と
前記蒸発器の入口側を連通する除霜回路と、前記凝縮器
と除霜回路への冷媒流通を制御する制御装置を設け、該
制御装置は前記蒸発器の除霜開始から前記凝縮器への冷
媒流通を阻止して前記除霜回路に冷媒を流通させると共
に、前記除霜開始から所定期間経過した場合は、前記除
霜回路と凝縮器の双方に冷媒を流通させることを特徴と
する冷凍装置。
2. A refrigerating apparatus in which a compressor, a condenser, a liquid receiver, a pressure reducing device, and an evaporator are sequentially connected in a ring shape, and a liquid injection circuit for supplying a liquid refrigerant from the liquid receiver to the compressor is provided. A defrost circuit that communicates between the discharge side of the compressor and the inlet side of the evaporator, and a control device that controls refrigerant flow to the condenser and the defrost circuit, wherein the control device is configured to control the evaporator. While preventing the circulation of the refrigerant to the condenser from the start of defrost and allowing the refrigerant to flow through the defrost circuit, when a predetermined period has elapsed from the start of the defrost, the refrigerant is supplied to both the defrost circuit and the condenser. A refrigeration system characterized by being distributed.
JP05029907A 1993-01-26 1993-01-26 Refrigeration equipment Expired - Fee Related JP3091594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05029907A JP3091594B2 (en) 1993-01-26 1993-01-26 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05029907A JP3091594B2 (en) 1993-01-26 1993-01-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH06221730A JPH06221730A (en) 1994-08-12
JP3091594B2 true JP3091594B2 (en) 2000-09-25

Family

ID=12289065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05029907A Expired - Fee Related JP3091594B2 (en) 1993-01-26 1993-01-26 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3091594B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116995A (en) * 2004-01-26 2004-04-15 Hitachi Ltd Refrigerating unit
JP6476445B2 (en) * 2013-06-04 2019-03-06 オリオン機械株式会社 Temperature control device
CN103307822B (en) * 2013-06-28 2015-06-03 南京平欧空调设备有限公司 Backheating high-pressure defrosting solution storing gas-liquid separator
CN113654264B (en) * 2021-08-05 2023-10-20 青岛海尔空调电子有限公司 Air source heat pump system and control method thereof

Also Published As

Publication number Publication date
JPH06221730A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
US7237405B2 (en) Refrigeration apparatus
US6397629B2 (en) Vapor compression system and method
US4833893A (en) Refrigerating system incorporating a heat accumulator and method of operating the same
JP2675459B2 (en) Refrigeration equipment
JP2002107014A (en) Air conditioner
JP3091594B2 (en) Refrigeration equipment
KR100503178B1 (en) Freezing cycle device
JP3147588B2 (en) Refrigeration equipment
JP3158787B2 (en) Operation control device for refrigeration equipment
JPH09318205A (en) Refrigerating device
JP3349251B2 (en) Refrigeration equipment
JP3437437B2 (en) Refrigerant refrigerating system with compressor refrigerant
JP3416897B2 (en) Air conditioner
JP3175709B2 (en) Binary refrigeration equipment
JP3642080B2 (en) Refrigeration equipment
JPH04217754A (en) Air conditioner
JPH06341741A (en) Defrosting controller for refrigerating device
JPH0320571A (en) Air conditioner
JP2500531B2 (en) Refrigeration system operation controller
JPH0429345Y2 (en)
JP2024040636A (en) Dual refrigeration cycle device and control method for dual refrigeration cycle device
JPS59217463A (en) Refrigeration cycle of air conditioner
JPH0518616A (en) Refrigerator
JPH06313636A (en) Refrigerating equipment
JPH0459546B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees