JPS63150567A - Refrigeration cycle device for heat pump type air conditioner - Google Patents

Refrigeration cycle device for heat pump type air conditioner

Info

Publication number
JPS63150567A
JPS63150567A JP29944386A JP29944386A JPS63150567A JP S63150567 A JPS63150567 A JP S63150567A JP 29944386 A JP29944386 A JP 29944386A JP 29944386 A JP29944386 A JP 29944386A JP S63150567 A JPS63150567 A JP S63150567A
Authority
JP
Japan
Prior art keywords
heat
bypass circuit
refrigerant
heat exchanger
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29944386A
Other languages
Japanese (ja)
Other versions
JPH0515949B2 (en
Inventor
宏治 室園
寿夫 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29944386A priority Critical patent/JPS63150567A/en
Publication of JPS63150567A publication Critical patent/JPS63150567A/en
Publication of JPH0515949B2 publication Critical patent/JPH0515949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蓄熱を利用したヒートポンプ式空調機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner that utilizes heat storage.

従来の技術 従来、空気熱源ヒートポンプ式空調機の室外熱交換器の
除霜方法は、大半が四方弁を切換えて冷房サイクルとし
、室外熱交換器を凝縮器、室内熱交換器を蒸発器とする
逆サイクル除霜方式で、この時コールドドラフト防止の
ために室内ファンを停止していた。この方式では、基本
的に冷凍サイクル中の冷媒循環量が少なく圧縮機入力の
増大がそれほど期待できないので、除霜時間が長くなる
こと、並びに除霜中の数分間は室内ファンが停止するの
で暖房感が欠如し快適性が損なわれること、さらには除
霜運転終了後、四方弁を切換えて暖房運転に復帰してか
らも室内熱交換器の温度が上昇するまでに時間を要する
など使用者からすれば満足できるものではなかった、 近年、このような欠点を有する逆サイクル除霜方式にか
わって、バイパス回路等を設けることで、除霜運転時に
も四方弁を暖房サイクルのままとし、室内熱交換器およ
び室外熱交換器の両方を凝縮器として作用させ、若干の
暖房能力を維持しながら除霜を行なう暖房継続除霜方法
が提案されている(例えば実開昭60−59042号公
報)。
Conventional technology Conventionally, the majority of defrosting methods for outdoor heat exchangers in air source heat pump air conditioners switch a four-way valve to create a cooling cycle, with the outdoor heat exchanger serving as a condenser and the indoor heat exchanger serving as an evaporator. It uses a reverse cycle defrosting method, and the indoor fan was turned off at this time to prevent cold drafts. With this method, the amount of refrigerant that circulates during the refrigeration cycle is basically small and it is not possible to expect much increase in compressor input, so the defrosting time becomes longer, and the indoor fan stops for several minutes during defrosting, so heating is not possible. Users complain that the temperature of the indoor heat exchanger takes a long time to rise even after the four-way valve is switched and heating operation is resumed after defrosting operation is completed. In recent years, in place of the reverse cycle defrosting system, which has these drawbacks, a bypass circuit has been installed, which allows the four-way valve to remain in the heating cycle even during defrosting operation, reducing indoor heat. A heating continuous defrosting method has been proposed in which both the exchanger and the outdoor heat exchanger function as condensers to defrost while maintaining a certain heating capacity (for example, Japanese Utility Model Application No. 60-59042).

以下、図面を参照しながら上記従来のヒートポンプ式空
調機について説明する。
The conventional heat pump air conditioner will be described below with reference to the drawings.

第3図は、従来のと一トポンプ式空調機の第1の例にお
ける冷凍サイクル図を示すものである。
FIG. 3 shows a refrigeration cycle diagram in a first example of a conventional pump type air conditioner.

同図において、1は容量制御可能な周波数可変圧縮機(
以下単に圧縮機と称す)、2は四方弁、3は室内熱交換
器、4はキャピラリ、5は室外熱交換器、6はホットガ
スバイパス回路、7は二方弁、8はバイパスキャピラリ
である。また、9は室外熱交換器温度センサ、1oはこ
のセンサ9からの信号を受けて圧縮機1、二方弁7、室
内外フナン(図示せず)等を制御して室外熱交換器5の
除霜制御コントローラである。ホットガスバイパス回路
6は、圧縮機1の吐出管と室外熱交換器5の暖房運転時
に入口側となる配管とを連結し、途中に二方弁7とバイ
パスキャピラリ8を備えて構成されている。
In the figure, 1 is a capacity-controllable frequency variable compressor (
2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a capillary, 5 is an outdoor heat exchanger, 6 is a hot gas bypass circuit, 7 is a two-way valve, and 8 is a bypass capillary. . In addition, 9 is an outdoor heat exchanger temperature sensor, and 1o receives a signal from this sensor 9 to control the compressor 1, two-way valve 7, indoor/outdoor fan (not shown), etc. to control the temperature of the outdoor heat exchanger 5. It is a defrost control controller. The hot gas bypass circuit 6 connects the discharge pipe of the compressor 1 and the pipe that becomes the inlet side during heating operation of the outdoor heat exchanger 5, and includes a two-way valve 7 and a bypass capillary 8 in the middle. .

通常の暖房運転時には、二方弁7は閉の状態で暖房サイ
クルを形成するが、低外気温時に室外熱交換器温度セン
サ9からの信号により室外熱交換器5の着霜を検知する
と、除霜制御コントローラ10より指令を発して圧縮機
10周波数を高め、圧縮機1の本体温度を上昇させ“C
蓄熱する。そして、所定時間経過後、除霜制御コントロ
ーラ10より指令を発し゛C1圧縮機1を最大周波数と
し、二方弁7を開いて高温の吐出ガスの大部分をホット
ガスバイパス回路6を経て室外熱交換器5の入口側へ導
く。同時に高温の吐出ガスの残りを暖房運転時と同様に
四方弁2、室内熱交換器3、キャピラリ4と流して若干
の暖房運転を継続して行い、室外熱交換器5の入口でホ
ットガスバイパス回路6を通過した冷媒と合流させる。
During normal heating operation, the two-way valve 7 is closed to form a heating cycle, but when frost is detected on the outdoor heat exchanger 5 by a signal from the outdoor heat exchanger temperature sensor 9 at low outside temperatures, the A command is issued from the frost control controller 10 to increase the frequency of the compressor 10, and the main body temperature of the compressor 1 is increased to "C".
Store heat. After a predetermined period of time has elapsed, a command is issued from the defrosting controller 10 to set the C1 compressor 1 to the maximum frequency, open the two-way valve 7, and direct most of the high temperature discharged gas through the hot gas bypass circuit 6 to the outdoor heat. It is guided to the inlet side of the exchanger 5. At the same time, the remainder of the high-temperature discharged gas is passed through the four-way valve 2, indoor heat exchanger 3, and capillary 4 in the same way as during heating operation to continue heating operation slightly, and hot gas bypass is performed at the inlet of outdoor heat exchanger 5. It is made to merge with the refrigerant that has passed through the circuit 6.

この合流後の冷媒は、自身のもつ凝縮熱で室外熱交換器
5を除霜した後、四方弁2を経て圧縮機1に戻り、除霜
サイクルを完結する。
After this combined refrigerant defrosts the outdoor heat exchanger 5 with its own heat of condensation, it returns to the compressor 1 via the four-way valve 2 and completes the defrosting cycle.

このように、暖房サイクルのままで除霜を行なうことが
できるので、除霜時の快適性の改善を図ることが可能と
なった。
In this way, defrosting can be performed while the heating cycle is still in progress, making it possible to improve comfort during defrosting.

また、第4図は従来のヒートポンプ式空調機の第2の例
における冷凍サイクル図を示す。この例においては、ホ
ットガスバイパス回路6のかわりにキャピラリ4をバイ
パスするバイパス回路11を設けている。そして、バイ
パス回路11には二方弁12、逆止弁13を備えている
。除霜時には、二方弁12を開いてほとんどの冷媒をバ
イパス回路11を通過させることで、室外熱交換器5の
冷媒圧力を上昇させ、室内熱交換器3および室外熱交換
器5の両方を凝縮器として作用させることで、第1の例
で説明した効果と同様の効果を得ることが可能である。
Moreover, FIG. 4 shows a refrigeration cycle diagram in a second example of a conventional heat pump type air conditioner. In this example, a bypass circuit 11 that bypasses the capillary 4 is provided in place of the hot gas bypass circuit 6. The bypass circuit 11 is equipped with a two-way valve 12 and a check valve 13. During defrosting, the two-way valve 12 is opened to allow most of the refrigerant to pass through the bypass circuit 11, thereby increasing the refrigerant pressure in the outdoor heat exchanger 5 and reducing both the indoor heat exchanger 3 and the outdoor heat exchanger 5. By acting as a condenser, it is possible to obtain the same effect as described in the first example.

さらに、蓄熱材を充填した蓄熱槽を冷媒回路と熱交換的
に接続し、暖房運転時に蓄熱槽に熱を蓄え、除霜運転時
に、その熱を利用して短時間で霜を融かすことができる
方式も提案されている(例えば特公昭54−38737
号公報)。
Furthermore, by connecting a heat storage tank filled with heat storage material to a refrigerant circuit for heat exchange, it is possible to store heat in the heat storage tank during heating operation, and use that heat to melt frost in a short time during defrosting operation. Some methods have also been proposed (for example, Japanese Patent Publication No. 54-38737
Publication No.).

発明が解決しようとする問題点 しかしながら、上記方法では以下のような問題点があっ
た。第5図は、第3図に示す従来のヒートポンプ式空調
機の第1の例におけるバイパスキャピラリの絞り量と除
霜時間および除霜運転時の暖房能力との関係を示すもの
である。同図より明らかなように、バイパスキャピラリ
8の絞り量を大きくすれば、除霜運転時に室内熱交換器
3を通過する冷媒の循環量が増加し、圧力も上昇するの
で暖房能力は増加するが、室外熱交換器5を通過する冷
媒の圧力が低下して凝縮能力が減少するので、除霜時間
が長くなってしまう。したがって、短時間に除霜を終え
るためには、暖房能力を大きくすることはできなかった
。例えば、1馬力クラスのヒートポンプ式空調機では、
はとんどのメーカーが総合電流を20A以下に押えるよ
うな制御装置を設けており、この場合、圧縮機入力のう
ち冷媒に与えられる熱量は、発明者らの実験の結果、最
大でも1300 Kcae、/hである。除霜を5分間
で終えるとすると、この間圧縮機入力より冷媒に与えら
れた熱量は108Kcaeである。圧縮機重量が10k
g、比熱が0.1で、圧縮機本体温度が除霜運転中に3
0°C降下したとすると、30Kca(1’の熱量が冷
媒に与えられる。主に、これら2つの熱量の合計138
 KcaeO熱が冷媒に与えられる。
Problems to be Solved by the Invention However, the above method has the following problems. FIG. 5 shows the relationship between the amount of restriction of the bypass capillary, the defrosting time, and the heating capacity during defrosting operation in the first example of the conventional heat pump type air conditioner shown in FIG. As is clear from the figure, if the amount of restriction of the bypass capillary 8 is increased, the amount of refrigerant circulated through the indoor heat exchanger 3 during defrosting operation will increase, and the pressure will also rise, so the heating capacity will increase. Since the pressure of the refrigerant passing through the outdoor heat exchanger 5 decreases and the condensing capacity decreases, the defrosting time becomes longer. Therefore, in order to finish defrosting in a short time, it was not possible to increase the heating capacity. For example, in a 1 horsepower class heat pump air conditioner,
Most manufacturers have a control device that keeps the total current below 20A, and in this case, the amount of heat given to the refrigerant out of the compressor input is at most 1300 Kcae, as a result of experiments by the inventors. /h. Assuming that defrosting is completed in 5 minutes, the amount of heat given to the refrigerant from the compressor input during this time is 108 Kcae. Compressor weight is 10k
g, the specific heat is 0.1, and the compressor body temperature is 3 during defrosting operation.
Assuming that the temperature drops to 0°C, 30Kca (1') of heat is given to the refrigerant.The sum of these two heats is 138
KcaeO heat is imparted to the refrigerant.

これに対して、着霜量が900gであるとすると、除霜
に72KcaeO熱が用いられ、残りの(138−72
)Kcaeの熱が暖房に利用可能である。これは単位時
間当り792 Kcae/hであり、この程度の暖房能
力では、除霜運転時の快適性の低下を十分に押えること
ができなかった。また、圧縮機本体を蓄熱体として利用
し、乾き度の低い冷媒を吸入して圧縮機本体の熱を奪っ
ているため、圧縮機信頼性も低かった。
On the other hand, if the frost amount is 900 g, 72 KcaeO heat is used for defrosting, and the remaining (138-72
) Kcae heat can be used for space heating. This was 792 Kcae/h per unit time, and with this level of heating capacity, it was not possible to sufficiently suppress the decrease in comfort during defrosting operation. Furthermore, the reliability of the compressor was also low because the compressor body was used as a heat storage body and the refrigerant with low dryness was sucked in to remove heat from the compressor body.

第4図に示す第2の例の場合も、除霜運転時の暖房能力
は低く、第1の例で示したのと同様の問題点を有してい
た。さらに、第2の例において室内機と室外機とを接続
配管で結ぶセパレートタイプのヒートポンプ式空調機の
場合、圧縮機1の周波数を上昇させて冷媒の循環量を増
加させたり、接続配管を長くしたりすると全冷啄が通過
するため室内熱交換器3の出口とバイパス回路の入口と
を結ぶ接続配管での圧力損失が増加し、室外熱交換器5
を通過する冷媒の圧力が低下し1、凝縮能力が低下して
除霜時間が長くなつ”Cしまったり、あるいは除霜でき
なくなってしまうという問題点があった。
The second example shown in FIG. 4 also had a low heating capacity during defrosting operation, and had the same problem as the first example. Furthermore, in the second example, in the case of a separate type heat pump air conditioner that connects the indoor unit and outdoor unit with connecting piping, the frequency of compressor 1 may be increased to increase the amount of refrigerant circulation, or the connecting piping may be made longer. If this occurs, the pressure loss in the connecting pipe connecting the outlet of the indoor heat exchanger 3 and the inlet of the bypass circuit will increase because the completely cooled air will pass through the outdoor heat exchanger 5.
There is a problem in that the pressure of the refrigerant passing through the refrigerant decreases, and the condensing capacity decreases, resulting in a longer defrosting time or inability to defrost.

さらに、蓄熱を利用する方式は、厚理的には逆サイクル
除霜方式で、室内熱交換器を蒸発器として作用させて室
内より吸熱するかわりに蓄熱された熱を取っていた。し
たがって、この方式では除霜時間の短縮および除霜運転
時の室内への冷風吹出しの防止は可能であるが、除霜運
転時に室内を暖房することはできないという問題点があ
った。
Furthermore, the method that utilizes heat storage is a reverse cycle defrosting method, in which the indoor heat exchanger acts as an evaporator and instead of absorbing heat from the room, the stored heat is taken. Therefore, although this method can shorten the defrosting time and prevent cold air from being blown into the room during the defrosting operation, there is a problem in that the indoor room cannot be heated during the defrosting operation.

本発明は上記問題点に鑑み、暖房運転時に蓄熱材を充填
した蓄熱槽に蓄熱し、除霜運転時にこの熱を利用するこ
とで、高い暖房能力を保ちながら除霜を行ない、かつ圧
縮機信頼性の高いヒートポンプ式空調機を提供するもの
である。
In view of the above problems, the present invention stores heat in a heat storage tank filled with heat storage material during heating operation, and utilizes this heat during defrosting operation, thereby defrosting while maintaining high heating capacity and ensuring compressor reliability. This provides a highly efficient heat pump air conditioner.

問題点を解決するための手段 上記問題点を解決するために本発明のと一トポンプ式空
調機の冷凍サイクル装置は、圧縮機、四方弁、室外熱交
換器、減圧器、室内熱交換器等を連結して主冷媒回路を
構成し、暖房運転時に高圧側となる前記冷媒回路の一部
をバイパスする第1バイパス回路を設け、前記減圧器を
バイパスし、前記第1バイパス回路と回路の一部を共有
する第2バイパス回路を設け、前記第1バイパス回路と
前記第2バイパス回路のうち、どちらか一方のみに冷媒
を流すことを可能とする流路制御手段を設け、前記第1
バイパス回路と第2バイパス回路との共有部分の少なく
とも一部と熱交換的に接続し、内部に蓄熱材を充填した
蓄熱槽を設けたものである。
Means for Solving the Problems In order to solve the above problems, the refrigeration cycle device for a pump type air conditioner of the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, etc. A first bypass circuit is provided that bypasses a part of the refrigerant circuit that becomes a high-pressure side during heating operation, and a first bypass circuit that bypasses the pressure reducer and connects the first bypass circuit and the circuit. a second bypass circuit that shares the same portion, a flow path control means that allows refrigerant to flow through only one of the first bypass circuit and the second bypass circuit;
A heat storage tank is provided, which is connected to at least a part of the shared portion of the bypass circuit and the second bypass circuit for heat exchange, and is filled with a heat storage material inside.

作  用 本発明は、上記手段により次のような作用を有する。For production The present invention has the following effects through the above means.

すなわち、暖房運転時に第1バイパス回路に冷媒を流し
て蓄熱槽内の蓄熱材と熱交換を行なって蓄熱し、除霜運
転時に第2バイパス回路に冷媒を流して蓄熱材より熱を
奪うことで、高い暖房能力を保ちながら除霜運転を行な
うことが可能である。
That is, during heating operation, the refrigerant is flowed through the first bypass circuit to exchange heat with the heat storage material in the heat storage tank to store heat, and during defrosting operation, the refrigerant is flowed through the second bypass circuit to remove heat from the heat storage material. It is possible to perform defrosting operation while maintaining high heating capacity.

また、第1バイパス回路および第2バイパス回路と蓄熱
槽との熱交換部を1つにすることで蓄熱槽を小型軽量と
し、かつ効率的に熱交換を行なうことが可能である。ま
た、圧縮機吸入冷媒の乾き度を高く保つことができるの
で、圧縮機信頼性も高い。さらに、セパレートタイプの
ヒートポンプ式空調機の場合で接続配管での圧力損失が
大きく、室外熱交換器を通過する冷媒の圧力が低くても
、過熱域にある冷媒を利用できるので除霜可能である。
Moreover, by integrating the heat exchange parts between the first bypass circuit, the second bypass circuit, and the heat storage tank, it is possible to make the heat storage tank smaller and lighter, and to perform heat exchange efficiently. Furthermore, since the dryness of the refrigerant sucked into the compressor can be kept high, the reliability of the compressor is also high. Furthermore, in the case of separate type heat pump air conditioners, there is a large pressure loss in the connecting piping, and even if the pressure of the refrigerant passing through the outdoor heat exchanger is low, defrosting is possible because the refrigerant in the superheat range can be used. .

実施例 以下、本発明をその一実施例を示す添付図面の第1図お
よび第2図を参考に説明する。なお、本実施例を説明す
るに当り、第3図および第4図に示す従来のものと同一
の機能をもつものには同一の番号を付して説明を省略す
る。
EXAMPLE Hereinafter, the present invention will be explained with reference to FIGS. 1 and 2 of the accompanying drawings, which show one example of the invention. In describing this embodiment, parts having the same functions as those of the conventional system shown in FIGS. 3 and 4 are given the same reference numerals and their explanations will be omitted.

同図において、14は圧縮機1の吐出管をパイパヌする
第1バイパス回路であり、15はキャピラリ4をバイパ
スする第2バイパス回路であり、この2つのバイパス回
路は管路の一部を共有しており、この共有部分16に熱
交換器17が設けられている。また、第1バイパス回路
14に開閉弁18.19が、共有部分16をはさんで設
けられ、第2バイパス回路15には開閉弁20.21が
、共有部分16をはさんで設けられ°〔いる。
In the figure, 14 is a first bypass circuit that pipes the discharge pipe of the compressor 1, and 15 is a second bypass circuit that bypasses the capillary 4. These two bypass circuits share a part of the pipe line. A heat exchanger 17 is provided in this shared portion 16. Further, on-off valves 18 and 19 are provided in the first bypass circuit 14 across the shared portion 16, and on-off valves 20 and 21 are provided in the second bypass circuit 15 and provided on both sides of the shared portion 16. There is.

また、22は蓄熱槽で、内部に潜熱蓄熱材(N a C
H3CO2−3H20)23が充填されており、この蓄
熱材23と熱交換可能なように前記熱交換器17が配設
されている。
In addition, 22 is a heat storage tank, inside which is a latent heat storage material (N a C
H3CO2-3H20) 23 is filled, and the heat exchanger 17 is disposed so as to be able to exchange heat with this heat storage material 23.

この冷媒回路におい〔、暖房運転時は開閉弁18.19
は開、開閉弁20.21は閉の状態をそれぞれ保つ。し
たがって、圧縮機1から吐出された冷媒の一部は主冷媒
回路を流れ、残りは第1バイパス回路14へ流入して開
閉弁18、熱交換器17、開閉弁19を通過して主冷媒
回路を流れてきた冷媒と合流して四方弁2へと流れ、さ
らに室内熱交換器a、キャピラリ4、室外熱交換器5、
四方弁2と流れて圧縮機1に吸入される。したがって、
冷媒が持つ熱の一部は熱交換器17を通して蓄熱材23
に与えられ、蓄熱される。
In this refrigerant circuit [, during heating operation, on-off valve 18.19
is open, and the on-off valves 20 and 21 remain closed. Therefore, a part of the refrigerant discharged from the compressor 1 flows through the main refrigerant circuit, and the rest flows into the first bypass circuit 14, passes through the on-off valve 18, the heat exchanger 17, and the on-off valve 19, and then passes through the main refrigerant circuit. It joins with the refrigerant that has flowed through and flows to the four-way valve 2, and then the indoor heat exchanger a, the capillary 4, the outdoor heat exchanger 5,
It flows through the four-way valve 2 and is sucked into the compressor 1. therefore,
A part of the heat possessed by the refrigerant is transferred to the heat storage material 23 through the heat exchanger 17.
heat is stored.

室外熱交換器5に着霜すると、除霜運転を開始する。除
霜運転時は、圧縮機1の周波数を最大とし、開閉弁18
.19を閉、開閉弁20.21を開とする。したがって
、圧縮機1より吐出された冷媒は、四方弁2、室内熱交
換器3へと流れ、はとんどの冷媒は第2バイパス回路1
5へ流入して開閉弁20、熱交換器17、開閉弁21を
通過して、キャピラリ4を通過したわずかの冷媒と合流
して室外熱交換器5、四方弁2と流れて圧縮機1に吸入
される。したがって、冷媒が熱交換器17を通過する際
に、蓄熱材23に蓄えられた熱を奪い、除霜に利用され
る。
When the outdoor heat exchanger 5 is frosted, defrosting operation is started. During defrosting operation, the frequency of the compressor 1 is set to the maximum, and the on-off valve 18 is
.. 19 is closed, and on-off valves 20 and 21 are opened. Therefore, the refrigerant discharged from the compressor 1 flows to the four-way valve 2 and the indoor heat exchanger 3, and most of the refrigerant flows to the second bypass circuit 1.
5, passes through the on-off valve 20, the heat exchanger 17, and the on-off valve 21, joins with a small amount of refrigerant that has passed through the capillary 4, flows through the outdoor heat exchanger 5, the four-way valve 2, and enters the compressor 1. Inhaled. Therefore, when the refrigerant passes through the heat exchanger 17, it removes the heat stored in the heat storage material 23 and is used for defrosting.

第2図は、第1図に示したヒートポンプ式空調機の除霜
運転時の冷凍サイクルをモリエル線図上に示した図であ
る。同図におけるa −’−gの記号は、第1図におけ
るa−gの位置における冷媒の状態を示す。まず、圧縮
機1で圧縮された冷媒は(a→b)、室内熱交換器3で
暖房に利用されて凝縮しくc−+d)、接続配管等を通
過の際の圧力損失で圧力が低下しくd−+e)、第2バ
イパス回路15に流入して熱交換器17で蓄熱材23よ
り熱を奪い(e−+f)、室外熱交換器5で除霜に利用
されて凝縮しくf−+g)、四方弁2を通過して圧縮機
1に吸入される(g−+1)。このように、暖房に用い
られ・〔凝縮した冷媒(dlは、蓄熱材23より熱を奪
うことで再び(1)までエンタルピが引き上げられるの
で、暖房能力を大きくとっ゛〔も短時間に除霜を終える
ことが可能である。
FIG. 2 is a diagram showing the refrigeration cycle of the heat pump air conditioner shown in FIG. 1 during defrosting operation on a Mollier diagram. Symbols a-'-g in the figure indicate the state of the refrigerant at positions a-g in FIG. First, the refrigerant compressed by the compressor 1 (a → b) is used for heating in the indoor heat exchanger 3 and condenses (c-+d), and the pressure does not decrease due to pressure loss when passing through connecting pipes etc. d-+e), flows into the second bypass circuit 15, removes heat from the heat storage material 23 in the heat exchanger 17 (e-+f), is used for defrosting in the outdoor heat exchanger 5, and is condensed (f-+g) , passes through the four-way valve 2 and is sucked into the compressor 1 (g-+1). In this way, when the condensed refrigerant (dl) is used for heating, the enthalpy is raised to (1) again by taking heat from the heat storage material 23, so the heating capacity can be increased and the defrosting can be done in a short time. It is possible to finish.

ここで、発明者らの実験結果の一例を示すと、蓄熱材2
3を2Kg蓄熱槽22に充填した場合、融解潜熱はs 
o Kca e/Kgであるからこれを全部利用できた
とすると、冷媒に与えられる熱量は従来例で説明した圧
縮機人力108Kca(lに潜熱・120Kcaeを加
えて228 Kcaeである。一方、除霜に用いられる
熱量は72 Kcaeであるから残りの156Kcae
の熱量が暖房に利用可能である。これは、単位時間当り
1ayoxcag/hであるので、十分に室内の快適性
を保つことができる。
Here, to show an example of the inventors' experimental results, the heat storage material 2
When the heat storage tank 22 is filled with 2 kg of 3, the latent heat of fusion is s
o Kca e/Kg, so assuming that all of this can be used, the amount of heat given to the refrigerant is 228 Kcae, which is the compressor manual power of 108 Kca (l plus latent heat and 120 Kcae) explained in the conventional example. Since the amount of heat used is 72 Kcae, the remaining 156 Kcae
of heat can be used for heating. Since this is 1 ayoxcag/h per unit time, sufficient indoor comfort can be maintained.

また、第1バイパス回路14と第2バイパス回路15は
管路の一部を共有しており、その共有部分16に熱交換
器17を配設しているので、冷媒から蓄熱材23への蓄
熱および蓄熱材23から熱の取出しの両方をこの1つの
熱交換器17を通して行なうことができ、蓄熱槽22を
小型軽量とすることが可能である。しかも、第1バイパ
ヌ回路14および第2バイパス回路15を独立した回路
とし、それぞれの回路に熱交換器を設ける構成とした場
合、蓄熱運転時(暖房運転時)には第2バイパス回路1
5に設けられた熱交換器は利用されず、除霜運転時には
第1バイバZ回路14に設けられた伸(交換器が利用さ
れず、したがっ°C蓄熱槽22に充填された蓄熱材23
と効率的な熱交換ができないのに対し、前述の構成にす
ることで蓄熱材23と効率的な熱交換が可能である。
In addition, the first bypass circuit 14 and the second bypass circuit 15 share a part of the pipe line, and the heat exchanger 17 is disposed in the common part 16, so that heat storage from the refrigerant to the heat storage material 23 is carried out. Both the heat exchanger 17 and the extraction of heat from the heat storage material 23 can be performed through this single heat exchanger 17, and the heat storage tank 22 can be made small and lightweight. Moreover, when the first bypass circuit 14 and the second bypass circuit 15 are made into independent circuits, and a heat exchanger is provided in each circuit, the second bypass circuit 14 during heat storage operation (heating operation)
5 is not used, and during defrosting operation, the heat storage material 23 provided in the first viva Z circuit 14 is
Whereas efficient heat exchange with the heat storage material 23 is not possible, the above-described configuration allows efficient heat exchange with the heat storage material 23.

また、室外熱交換器5で除霜に利用される冷媒は、はと
んど過熱ガスの状態であるので(f−+g)、圧縮機周
波数を上昇させて冷媒循環量を増加させたり、接続配管
を長くすることで(d−+e)の圧力損失が増加し、(
i→g)の冷媒の圧力が低下しても、除霜を行なうこと
が可能である。しかも、圧縮機吸入冷媒(a)の乾き度
を高く保つことができるので、圧縮機信頼性の高い除霜
運転を行なうことができる。
In addition, since the refrigerant used for defrosting in the outdoor heat exchanger 5 is mostly in the state of superheated gas (f-+g), it is necessary to increase the compressor frequency to increase the amount of refrigerant circulation or to connect By lengthening the piping, the pressure loss of (d-+e) increases, and (
Even if the pressure of the refrigerant in i→g) decreases, defrosting can be performed. Moreover, since the dryness of the refrigerant (a) sucked into the compressor can be maintained high, defrosting operation with high reliability of the compressor can be performed.

さらに、蓄熱運転時に蓄熱材2aへの蓄熱が十分に行な
われない時、除霜運転途中で蓄熱された熱を使いきって
しまって除霜できなくなる場合が考えられるが、除霜運
転開始後所定時間経過後に開閉弁18.21を開とし、
開閉弁19.20を閉とする制御を加えることで、圧縮
機1から吐出された高温の冷媒の一部を第1バイパヌ回
路14、第2バイパス回路15の一部を経て室外熱交換
器6の入口に導くことが可能となり、蓄熱された熱を利
用してしまっても除霜を行なうことができる。
Furthermore, if sufficient heat is not stored in the heat storage material 2a during heat storage operation, there is a possibility that the stored heat will be used up during defrosting operation and defrosting will not be possible. After the time has elapsed, open the on-off valve 18.21,
By controlling the on-off valves 19 and 20 to close, a portion of the high-temperature refrigerant discharged from the compressor 1 is passed through the first bypass circuit 14 and a portion of the second bypass circuit 15 to the outdoor heat exchanger 6. Even if the stored heat is used, defrosting can be performed.

なお、本実施例においては暖房運転時は常に開閉弁18
.19を開として第1バイパス回路14に冷媒を流して
いるが、立上りを早めるために運転開始後所定時間、開
閉弁18.19を閉とじて第1バイパス回路14に冷媒
を流さない等、その制御は任意であり、除霜運転開始ま
でに蓄熱槽22に必要な熱量を蓄熱できればよい。また
、流路制御手段は本実施例では開閉弁を用いて説明した
が、これに限定され−るものではなく三方弁等能の手段
を用いてもよい。また、圧縮機についても一定容量のも
のを用いてもよい。
In addition, in this embodiment, the on-off valve 18 is always turned on during heating operation.
.. 19 is opened to allow refrigerant to flow through the first bypass circuit 14, but in order to speed up the start-up, the on-off valves 18 and 19 are closed for a predetermined period of time after the start of operation to prevent refrigerant from flowing through the first bypass circuit 14. The control is arbitrary, and it is sufficient that the required amount of heat can be stored in the heat storage tank 22 before the defrosting operation starts. Further, although the flow path control means has been explained using an on-off valve in this embodiment, it is not limited to this, and means having functions such as a three-way valve may be used. Furthermore, a compressor with a constant capacity may be used.

さらに、蓄熱材は本実施例で用いたNaCH3COO・
3H20以外のものを用いてもよい。
Furthermore, the heat storage material used in this example was NaCH3COO.
Materials other than 3H20 may be used.

発明の効果 以上のように本発明のヒートポンプ式空調機は、除霜運
転時に第2バイパス回路に冷媒を流して蓄熱材より熱を
奪うことで、高い暖房能力を保ちながら除霜運転を行な
うことが可能であり、また第1バイパス回路および第2
バイパス回路と蓄熱槽との熱交換部を1つにすることで
蓄熱槽を小型軽量とし、かつ効率的に熱交換を行なうこ
とが可能である。また、圧縮機吸入冷媒の乾き度を高く
保つことができるので、圧縮機信頼性も高く、さらjぐ にセ角レートタイプのヒートポンプ式空調機の場合で接
続配管での圧力損失が大きく、室外熱交換器を通過する
冷媒の圧力が低くても、過熱域にある冷媒を利用できる
ので除霜可能である等の利点を有する。
Effects of the Invention As described above, the heat pump air conditioner of the present invention can perform defrosting operation while maintaining high heating capacity by flowing the refrigerant through the second bypass circuit to remove heat from the heat storage material during defrosting operation. is possible, and the first bypass circuit and the second
By integrating the heat exchange section between the bypass circuit and the heat storage tank, it is possible to make the heat storage tank smaller and lighter and to perform heat exchange efficiently. In addition, since the dryness of the refrigerant sucked into the compressor can be kept high, the reliability of the compressor is also high. Even if the pressure of the refrigerant passing through the exchanger is low, the refrigerant in the superheated region can be used, so it has advantages such as defrosting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空調
機の冷凍サイクル図、第2図は同ヒートポンプ式空調機
の除霜運転時の冷凍サイクルを示すモリエル線図、第3
図は従来のヒートポンプ式空調機の第1の例における冷
凍サイクル図、第4図は同ヒートポンプ式空調機の第2
の例における冷凍サイクル図、第5図は同ヒートポンプ
式空調機のバイパスキャピラリの絞り量と除霜時間、暖
房能力の関係を示す特性図である。 1・・・・・・周波数可変圧縮機(圧縮機)、2・・・
・・・四方弁、a・・・・・・室内熱交換器、4・・・
・・・キャピラリ(減圧器)、5・・・・・・室外熱交
換器、14・・・・・・第1バイパヌ回路、15・・・
・・・第2バイパヌ回路、16・・・・・・共有部分、
17・・・・・・熱交換器、18〜21・・・・・・開
閉弁(流路制御手段)、22・・・・・・蓄熱槽、23
・・・・・・蓄熱材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
一 周浪枚町双51:婦央(圧縮機)2・−V方弁 3− 室内P交換界 4− 午Vピラリ(l威圧界) 5− 望外P交慎界 /4−$1バイパス回路 15−  名2バイパス回路 I6− 甚青部分 17−  μ交換界 23−  蓄p、材 第2図 エレタルビ□大 第 3 図
FIG. 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, FIG. 2 is a Mollier diagram showing the refrigeration cycle of the heat pump air conditioner during defrosting operation, and FIG.
The figure shows the refrigeration cycle diagram for the first example of a conventional heat pump type air conditioner, and Figure 4 shows the second example of the same heat pump type air conditioner.
FIG. 5 is a characteristic diagram showing the relationship between the bypass capillary throttle amount, defrosting time, and heating capacity of the heat pump air conditioner. 1... Frequency variable compressor (compressor), 2...
...Four-way valve, a...Indoor heat exchanger, 4...
... Capillary (pressure reducer), 5... Outdoor heat exchanger, 14... First bipanu circuit, 15...
...Second bypass circuit, 16...Shared part,
17... Heat exchanger, 18-21... On-off valve (flow path control means), 22... Heat storage tank, 23
...Heat storage material. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
1 Shuronohiracho Sou 51: Fuo (compressor) 2 - V valve 3 - Indoor P exchange world 4 - O V Pillari (l coercion world) 5 - External P exchange world / 4 - $1 bypass circuit 15- Name 2 Bypass circuit I6- Deep blue part 17- μ exchange field 23- Storage p, material Fig. 2 Eletarby □ Large Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室外熱交換器、減圧器、室内熱
交換器を連結して主冷媒回路を構成し、暖房運転時に高
圧側となる前記主冷媒回路の一部をバイパスする第1バ
イパス回路を設け、前記減圧器をバイパスし、前記第1
バイパス回路と回路の一部を共有する第2バイパス回路
を設け、前記第1バイパス回路と前記第2バイパス回路
のうち、どちらか一方のみに冷媒を流すことを可能とす
る流路制御手段を設け、前記第1バイパス回路と第2バ
イパス回路との共有部分の少なくとも一部と熱交換的に
接続し、内部に蓄熱材を充填した蓄熱槽を設けたヒート
ポンプ式空調機の冷凍サイクル装置。
(1) The compressor, four-way valve, outdoor heat exchanger, pressure reducer, and indoor heat exchanger are connected to form a main refrigerant circuit, and a part of the main refrigerant circuit that becomes the high pressure side during heating operation is bypassed. 1 bypass circuit is provided to bypass the pressure reducer and
A second bypass circuit that shares a part of the circuit with the bypass circuit is provided, and flow path control means is provided that allows the refrigerant to flow through only one of the first bypass circuit and the second bypass circuit. A refrigeration cycle device for a heat pump air conditioner, comprising a heat storage tank filled with a heat storage material and connected for heat exchange to at least a part of a shared portion of the first bypass circuit and the second bypass circuit.
(2)主冷媒回路の高圧冷媒の少なくとも一部を第1バ
イパス回路および第2バイパス回路を経て主冷媒回路の
低圧側に導くことを可能とする流路制御手段を有する特
許請求の範囲第1項記載のヒートポンプ式空調機の冷凍
サイクル装置。
(2) Claim 1, which includes flow path control means that allows at least a portion of the high-pressure refrigerant in the main refrigerant circuit to be guided to the low-pressure side of the main refrigerant circuit via the first bypass circuit and the second bypass circuit. A refrigeration cycle device for a heat pump air conditioner as described in Section 1.
JP29944386A 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner Granted JPS63150567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29944386A JPS63150567A (en) 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29944386A JPS63150567A (en) 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS63150567A true JPS63150567A (en) 1988-06-23
JPH0515949B2 JPH0515949B2 (en) 1993-03-03

Family

ID=17872646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29944386A Granted JPS63150567A (en) 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63150567A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485452U (en) * 1977-11-29 1979-06-16
JPS5842841U (en) * 1981-09-17 1983-03-22 キヤノン株式会社 Image forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485452U (en) * 1977-11-29 1979-06-16
JPS5842841U (en) * 1981-09-17 1983-03-22 キヤノン株式会社 Image forming device

Also Published As

Publication number Publication date
JPH0515949B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
JP2008082589A (en) Air conditioner
JPS63169457A (en) Heat pump type air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP2667741B2 (en) Air conditioner
JP2001263848A (en) Air conditioner
JPS63150567A (en) Refrigeration cycle device for heat pump type air conditioner
JPS61262560A (en) Heat pump type air conditioner
US20230168013A1 (en) Heat pump system with flash defrosting mode
JPS63108173A (en) Defrostation method of heat pump type air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JP2737543B2 (en) Heat pump water heater
JP3242217B2 (en) Air conditioner
JPH0233108Y2 (en)
JP2842471B2 (en) Thermal storage type air conditioner
JPH04136669A (en) Multi-room air conditioner
JP2557940Y2 (en) Air heat source heat pump air conditioner
JPH08320172A (en) Air conditioner
JPS59195067A (en) Air heat-source heat pump device
JPH0578744B2 (en)
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPS63176970A (en) Heat pump type air conditioner
JPS63176971A (en) Heat pump type air conditioner
JPS6360305B2 (en)
JPS63153378A (en) Refrigerator
JPH01306782A (en) Heat pump type air-conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees