JP2015094536A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2015094536A
JP2015094536A JP2013234691A JP2013234691A JP2015094536A JP 2015094536 A JP2015094536 A JP 2015094536A JP 2013234691 A JP2013234691 A JP 2013234691A JP 2013234691 A JP2013234691 A JP 2013234691A JP 2015094536 A JP2015094536 A JP 2015094536A
Authority
JP
Japan
Prior art keywords
dew
flow path
pipe
temperature
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013234691A
Other languages
Japanese (ja)
Inventor
境 寿和
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013234691A priority Critical patent/JP2015094536A/en
Publication of JP2015094536A publication Critical patent/JP2015094536A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To eliminate loss of recovering a refrigerant staying in a dew-proofing pipe when lowering temperature by intermittently using the dew-proofing pipe connected to a downstream side of a main condenser.SOLUTION: A refrigerator includes a refrigeration cycle at least including a compressor 19, an evaporator 20, a main condenser 21, a dew-proofing pipe 41, and a throttle 44. The refrigerator includes: the main condenser 21; the dew-proofing pipe 41 located on a downstream side of the main condenser 21; and a resistance switching mechanism which is connected between the main condenser 21 and the dew-proofing pipe 41 and which changes flow passage resistance of a refrigerant. When the refrigeration cycle operates under a normal condition, by increasing the resistance of the resistance switching mechanism, the temperature of the dew-proofing pipe 41 can be made to be lower than that of the main condenser 21. Thus, reduction in an amount of invasion heat due to the dew-proofing pipe 41 is achieved, a recovery operation of the refrigerant staying in the dew-proofing pipe 41 can be eliminated, and an amount of power consumption of the refrigerator can be reduced.

Description

本発明は、防露パイプを断続的に使用しながら冷凍サイクルを運転することにより、防露パイプに起因する熱負荷量を低減する冷蔵庫に関するものである。   The present invention relates to a refrigerator that reduces a heat load caused by a dew-proof pipe by operating a refrigeration cycle while intermittently using the dew-proof pipe.

省エネルギーの観点から、家庭用冷蔵庫においては、防露パイプを断続的に使用しながら冷凍サイクルを運転することにより、防露パイプに起因する熱負荷量を低減する冷蔵庫がある。これは、冷蔵庫周囲の温度及び湿度が比較的低い軽負荷条件において、一部の防露パイプを断続的に使用し、筐体の表面が発汗しない程度に防露パイプとその周辺の温度を下げることで筐体内部に伝熱する侵入熱量を低減するものであり、結果として冷蔵庫の熱負荷量を削減して省エネルギー化を図るものである。   From the viewpoint of energy saving, there are refrigerators for household use that reduce the heat load caused by the dew-proof pipe by operating the refrigeration cycle while intermittently using the dew-proof pipe. This is because some dew-proof pipes are intermittently used under light load conditions where the temperature and humidity around the refrigerator are relatively low, and the temperature of the dew-proof pipe and its surroundings is lowered to the extent that the surface of the housing does not sweat. In this way, the amount of intrusion heat transferred to the inside of the casing is reduced, and as a result, the heat load of the refrigerator is reduced to save energy.

さらに、一時的に不使用とする複数の防露パイプをそれぞれキャピラリチューブを介して蒸発器に接続する構成が提案されている(例えば、特許文献1参照)。これは、一時的に不使用となった防露パイプ内を低圧に維持することで、使用中に内部に滞留している冷媒を回収するものであり、結果として冷媒循環量の低下を回避することで、冷凍サイクル効率の低下を抑制するものである。   Furthermore, a configuration has been proposed in which a plurality of dew-proof pipes that are temporarily unused are connected to an evaporator via capillary tubes, respectively (see, for example, Patent Document 1). This is to keep the inside of the dew protection pipe, which is temporarily not used, at a low pressure, thereby recovering the refrigerant staying inside during use, and as a result, avoiding a decrease in the circulation rate of the refrigerant Thus, a decrease in the refrigeration cycle efficiency is suppressed.

以下、図面を参照しながら従来の冷蔵庫を説明する。   Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図8は従来の冷蔵庫の縦断面図、図9は従来の冷蔵庫の冷凍サイクル構成図、図10は従来の冷蔵庫の流路切換バルブの動作を示した図である。   FIG. 8 is a longitudinal sectional view of a conventional refrigerator, FIG. 9 is a configuration diagram of a refrigeration cycle of the conventional refrigerator, and FIG. 10 is a diagram showing the operation of the flow path switching valve of the conventional refrigerator.

図8および図9において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有している。また、冷凍サイクルを構成する部品として、下部機械室15に収められた圧縮機56、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に収められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、圧縮機56の上部に設置された蒸発皿57、下部機械室15の底板25を有している。   8 and 9, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided in the lower part of the housing 12, and a refrigerator that is disposed in the upper part of the housing 12. It has the freezer compartment 18 arrange | positioned at the chamber 17 and the lower part of the housing | casing 12. FIG. Further, as components constituting the refrigeration cycle, a compressor 56 housed in the lower machine room 15, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser 21 housed in the lower machine room 15 are provided. Have. Further, it has a partition wall 22 that partitions the lower machine chamber 15, a fan 23 that is attached to the partition wall 22 to air-cool the main condenser 21, an evaporating dish 57 installed on the top of the compressor 56, and a bottom plate 25 of the lower machine chamber 15. Yes.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と筐体12の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収めている。   Also, a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper part of the housing 12 are provided. Have. Here, the lower machine chamber 15 is divided into two chambers by the partition wall 22, and the main condenser 21 is housed on the windward side of the fan 23, and the compressor 56 and the evaporating dish 57 are housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ60、防露パイプ60の下流側に位置し、循環する冷媒を乾燥するドライヤ37、ドライヤ37と蒸発器20を結合し、循環する冷媒を減圧する絞り44を有している。そして、防露パイプ60を一時的に不使用とするために、防露パイプ60の上流側を分岐する流路切換バルブ40、流路切換バルブ61と蒸発器20の間を防露パイプ60と並列に接続するバイパス46、ドライヤ39、絞り47を有する。   Further, as the components constituting the refrigeration cycle, the dew-proof pipe 60 and the dew-proof pipe 60 which are located on the downstream side of the main condenser 21 and are thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18. It is located downstream, and has a dryer 37 that dries the circulating refrigerant, and a throttle 44 that combines the dryer 37 and the evaporator 20 and depressurizes the circulating refrigerant. Further, in order to temporarily disable the dew proof pipe 60, the dew proof pipe 60 is connected between the flow path switching valve 40, the flow path switching valve 61 and the evaporator 20, which branches upstream of the dew proof pipe 60. A bypass 46, a dryer 39, and an aperture 47 are connected in parallel.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52、冷蔵室17に冷気を供給するダクト53、冷凍室
18の温度を検知するFCC温度センサ54、冷蔵室17の温度を検知するPCC温度センサ55、蒸発器20の温度を検知するDEF温度センサ58を有している。
In addition, an evaporator fan 50 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 51 that shuts off the cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 The refrigerator compartment damper 52 to be shut off, the duct 53 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 54 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 55 for detecting the temperature of the refrigerator compartment 17, and the temperature of the evaporator 20 are set. It has a DEF temperature sensor 58 for detection.

以上のように構成された従来の冷蔵庫について以下にその動作を説明する。   The operation of the conventional refrigerator configured as described above will be described below.

ファン23、圧縮機56、蒸発器ファン50をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ54の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ55の検知する温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として、圧縮機56とファン23、蒸発器ファン50を駆動する(以下、この動作を「PC冷却モード」という)。   In the cooling stop state in which all of the fan 23, the compressor 56, and the evaporator fan 50 are stopped (hereinafter, this operation is referred to as “OFF mode”), the temperature detected by the FCC temperature sensor 54 rises to a predetermined FCC_ON temperature. Or when the temperature detected by the PCC temperature sensor 55 rises to a predetermined PCC_ON temperature, the freezer damper 51 is closed, the refrigerator compartment damper 52 is opened, the compressor 56, the fan 23, and the evaporator fan 50. (Hereinafter, this operation is referred to as “PC cooling mode”).

PC冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   In the PC cooling mode, when the fan 23 is driven, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of air inlets 26, and the compressor 56 and the evaporating dish 57 side becomes a positive pressure, and the air in the lower machine room 15 is discharged to the outside through the plurality of discharge ports 27.

一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ60へ供給される。防露パイプ60を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ60を通過した液冷媒は、ドライヤ37で水分除去され、絞り44で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する。   On the other hand, the refrigerant discharged from the compressor 56 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21 and then supplied to the dewproof pipe 60. The refrigerant that has passed through the dewproof pipe 60 dissipates heat through the housing 12 and condenses while warming the opening of the freezer compartment 18. The liquid refrigerant that has passed through the dew-proof pipe 60 is dehydrated by the dryer 37, depressurized by the throttle 44, and is evaporated by the evaporator 20 while exchanging heat with the air in the refrigerator compartment 17 to cool the refrigerator compartment 17. Then, it returns to the compressor 56 as a gaseous refrigerant.

ここで、流路切換バルブ61の動作について説明する。   Here, the operation of the flow path switching valve 61 will be described.

図10において、p1、p2、p3は冷凍サイクルの稼動区間を示し、q1、q2は冷凍サイクルの停止区間を示す。区間p1、区間p2、区間p3の各区間において、圧縮機56を運転するとともに、流路切換バルブ61を切り換えて防露パイプ60を断続的に使用する。また、防露パイプ60で暖められる冷凍室18の開口部の代表温度を筐体の表面温度として示している。流路切換バルブ61の動作「開閉」は防露パイプ60側の流路を開とし、バイパス46側の流路を閉とすることで、主凝縮器21の冷媒を防露パイプ60に流す。同様に、「閉開」は防露パイプ60側の流路を閉とし、バイパス46側の流路を開とすることで、主凝縮器21の冷媒をバイパス46に流すとともに、防露パイプ60内に滞留している冷媒を蒸発器20へ回収する。また、「閉閉」は防露パイプ60側の流路を閉とし、バイパス46側の流路を閉とすることで、圧縮機56が停止する区間q1、区間q2において主凝縮器21の冷媒が蒸発器20に圧力差で流入することを防止するものである。   In FIG. 10, p1, p2, and p3 indicate operating sections of the refrigeration cycle, and q1 and q2 indicate stop sections of the refrigeration cycle. In each of the sections p1, p2, and p3, the compressor 56 is operated, and the flow path switching valve 61 is switched to intermittently use the dew-proof pipe 60. Moreover, the representative temperature of the opening part of the freezer compartment 18 heated by the dewproof pipe 60 is shown as the surface temperature of the housing. The operation “open / close” of the flow path switching valve 61 opens the flow path on the dew prevention pipe 60 side and closes the flow path on the bypass 46 side, thereby allowing the refrigerant in the main condenser 21 to flow through the dew prevention pipe 60. Similarly, “closed open” closes the flow path on the dew-proof pipe 60 side and opens the flow path on the bypass 46 side, thereby allowing the refrigerant in the main condenser 21 to flow into the bypass 46 and the dew-proof pipe 60. The refrigerant staying inside is collected into the evaporator 20. “Closed” means that the flow path on the dewproof pipe 60 side is closed and the flow path on the bypass 46 side is closed, so that the refrigerant of the main condenser 21 in the sections q1 and q2 where the compressor 56 stops. Is prevented from flowing into the evaporator 20 due to a pressure difference.

このように従来の冷蔵庫においては、冷凍サイクルの稼動中に防露パイプ60とバイパス46を交互に切り換えることにより、防露パイプ60によって暖められる筐体の表面温度を低下させて侵入熱量を低減する。このとき、防露パイプ60を使用する時間rと使用しない時間sを固定して、1区間に複数回の切換を実施することで、防露パイプ60の不使用割合を制御し、防露パイプ60によって暖められる筐体の表面温度の平均値が所定のレベルになるように調整する。例えば、湿度センサ(図示せず)によって検知された冷蔵庫周囲の湿度に基づいて前記した防露パイプ60を使用する時間rと使用しない時間sとの割合を調整することにより、湿度が高い場合は防露パイプ60を使用する時間rを増やして筐体の表面温度を上げるとともに、湿度が低い場合は防露パイプ60を使用する時間rを減らして筐体の表面温度を下げることで、発汗防止と省エネルギーを両立させることができる。   As described above, in the conventional refrigerator, the surface temperature of the casing heated by the dew prevention pipe 60 is lowered by alternately switching the dew prevention pipe 60 and the bypass 46 during the operation of the refrigeration cycle, thereby reducing the amount of intrusion heat. . At this time, by fixing the time r during which the dew proof pipe 60 is used and the time s during which the dew proof pipe 60 is not used, by performing switching several times in one section, the non-use ratio of the dew proof pipe 60 is controlled, and The average value of the surface temperature of the casing heated by 60 is adjusted to a predetermined level. For example, when the humidity is high by adjusting the ratio between the time r when the dew-proof pipe 60 is used and the time s when it is not used based on the humidity around the refrigerator detected by a humidity sensor (not shown). By increasing the time r for using the dew-proof pipe 60 to increase the surface temperature of the housing, and when the humidity is low, the time r for using the dew-proof pipe 60 is decreased to lower the surface temperature of the housing to prevent sweating. And energy saving.

PC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。   During the PC cooling mode, when the temperature detected by the FCC temperature sensor 54 decreases and rises to a predetermined value of FCC_OFF temperature, and when the temperature detected by the PCC temperature sensor 55 decreases to a predetermined value of PCC_OFF temperature, the mode transits to the OFF mode.

また、PC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ55の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー51を開とし、冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。   In addition, when the temperature detected by the FCC temperature sensor 54 is higher than the predetermined FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 falls to the predetermined PCC_OFF temperature during the PC cooling mode, the freezer damper 51 is opened, the refrigerator compartment damper 52 is closed, and the compressor 56, the fan 23, and the evaporator fan 50 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is heat-exchanged with the inside air of the freezer compartment 18 and the evaporator 20 to cool the freezer compartment 18 (this operation is hereinafter referred to as “FC cooling mode”). .

FC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度以上を示すと、PC冷却モードに遷移する。   During the FC cooling mode, when the temperature detected by the FCC temperature sensor 54 falls to the FCC_OFF temperature of the predetermined value and the temperature detected by the PCC temperature sensor 55 indicates the PCC_ON temperature of the predetermined value or more, the PC cooling mode is entered. .

また、FC冷却モード中に、FCC温度センサ54の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ55の検知する温度が所定値のPCC_ON温度より低い温度を示すと、OFFモードに遷移する。  Further, when the temperature detected by the FCC temperature sensor 54 falls to a predetermined FCC_OFF temperature and the temperature detected by the PCC temperature sensor 55 indicates a temperature lower than the predetermined PCC_ON temperature during the FC cooling mode, the OFF mode Transition to.

以上のように説明した動作によって、冷凍サイクルの稼動中に防露パイプ60とバイパス46を交互に切り換えることにより、防露パイプ60によって暖められる筐体の表面温度を低下させて侵入熱量を低減することにより、発汗防止性能を維持しながら省エネルギー化を図ることができる。   By the operation described above, by alternately switching between the dew-proof pipe 60 and the bypass 46 during the operation of the refrigeration cycle, the surface temperature of the casing warmed by the dew-proof pipe 60 is lowered to reduce the amount of intrusion heat. As a result, it is possible to save energy while maintaining perspiration prevention performance.

特開平8−189753号公報Japanese Patent Laid-Open No. 8-189533

しかしながら、従来の冷蔵庫の構成では、防露パイプ60とバイパス46を交互に切り換える際、特に、防露パイプ60を使用した後にバイパス46に切り換えて、防露パイプ60の内部に滞留する冷媒を回収する時に、防露パイプ60の内部で気化した冷媒が蒸発器20に流入することにより、冷凍サイクルの効率が低下して冷蔵庫の消費電力量が増大する原因となる。   However, in the conventional refrigerator configuration, when the dew-proof pipe 60 and the bypass 46 are alternately switched, the refrigerant is accumulated in the dew-proof pipe 60 by switching to the bypass 46 after the dew-proof pipe 60 is used. In doing so, the refrigerant evaporated inside the dew-proof pipe 60 flows into the evaporator 20, thereby reducing the efficiency of the refrigeration cycle and increasing the power consumption of the refrigerator.

従って、防露パイプ60とバイパス46の切換回数を削減するとともに、使用中に防露パイプ60の内部に滞留する冷媒量の変動を抑制することが課題であった。   Accordingly, it has been a problem to reduce the number of times of switching between the dew-proof pipe 60 and the bypass 46 and to suppress fluctuations in the amount of refrigerant that stays inside the dew-proof pipe 60 during use.

本発明は、従来の課題を解決するもので、冷凍サイクルを運転する際に防露パイプの温度を調整することにより、防露パイプ内に滞留する冷媒量の変動を抑制するとともに、防露パイプ内の冷媒の回収動作を不要とすることを目的とする。   The present invention solves the conventional problem, and by adjusting the temperature of the dew prevention pipe when operating the refrigeration cycle, the fluctuation of the amount of refrigerant staying in the dew prevention pipe is suppressed, and the dew prevention pipe The purpose is to eliminate the operation of collecting the refrigerant inside.

従来の課題を解決するために、本発明の冷蔵庫は、主凝縮器と防露パイプの間に設けた抵抗切換機構により、防露パイプの温度を主凝縮器よりも低下することを特徴とするものである。   In order to solve the conventional problems, the refrigerator of the present invention is characterized in that the temperature of the dew prevention pipe is lowered than that of the main condenser by a resistance switching mechanism provided between the main condenser and the dew prevention pipe. Is.

これによって、防露パイプに起因する侵入熱量の低減を図るとともに、防露パイプに滞
留する冷媒の回収動作をなくすことができる。
As a result, it is possible to reduce the amount of intrusion heat caused by the dew prevention pipe and to eliminate the operation of collecting the refrigerant staying in the dew prevention pipe.

本発明の冷蔵庫は、防露パイプの温度を主凝縮器よりも低下することにより、防露パイプに起因する侵入熱量の低減を図るとともに、防露パイプに滞留する冷媒の回収動作をなくすことができ、冷蔵庫の消費電力量を低減することができる。   The refrigerator of the present invention can reduce the amount of intrusion heat caused by the dew prevention pipe by reducing the temperature of the dew prevention pipe from that of the main condenser, and can eliminate the recovery operation of the refrigerant staying in the dew prevention pipe. This can reduce the power consumption of the refrigerator.

また、主凝縮器と防露パイプの間に設けた抵抗切換機構の流路抵抗と、キャピラリチューブなどから構成される冷凍サイクルの絞り機構の流路抵抗との合成により、特に圧縮機を低速駆動する際に生じる冷凍サイクルの絞り不足による損失を抑制することができるので、通常運転時の冷凍サイクル効率を向上することで、冷蔵庫のさらなる省エネルギー化を実現できる。   In addition, by combining the flow resistance of the resistance switching mechanism provided between the main condenser and the dew-proof pipe and the flow resistance of the throttle mechanism of the refrigeration cycle composed of capillary tubes, the compressor is driven at a low speed. Since the loss due to insufficient throttling of the refrigeration cycle that occurs during the operation can be suppressed, further energy saving of the refrigerator can be realized by improving the refrigeration cycle efficiency during normal operation.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の流路切換バルブの動作を示した図The figure which showed operation | movement of the flow-path switching valve of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態2における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in embodiment 2 of the present invention 本発明の実施の形態2における冷蔵庫の流路切換バルブの動作を示した図The figure which showed operation | movement of the flow-path switching valve of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態3における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in embodiment 3 of the present invention 本発明の実施の形態3における冷蔵庫の流路切換バルブの動作を示した図The figure which showed operation | movement of the flow-path switching valve of the refrigerator in Embodiment 3 of this invention 従来の冷蔵庫の縦断面図Vertical section of a conventional refrigerator 従来の冷蔵庫のサイクル構成図Cycle configuration diagram of a conventional refrigerator 従来の冷蔵庫の流路切換バルブの動作を示した図The figure which showed the operation of the flow-path switching valve of the conventional refrigerator

第1の発明は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプ、絞りを有する冷凍サイクルを備え、前記主凝縮器と、前記主凝縮器の下流側にある防露パイプと、前記主凝縮器と前記防露パイプとの間に接続され、冷媒の流路抵抗を可変する抵抗切換機構を有するものである。   The first invention comprises a refrigeration cycle having at least a compressor, an evaporator, a main condenser, a dew proof pipe, and a throttle, the main condenser, a dew proof pipe on the downstream side of the main condenser, It has a resistance switching mechanism that is connected between the main condenser and the dew-proof pipe and that changes the flow path resistance of the refrigerant.

これによって、冷凍サイクルが通常条件で運転する場合は前記抵抗切換機構の抵抗を大きくすることで、前記防露パイプの温度を前記主凝縮器よりも低くすることができ、防露パイプに起因する侵入熱量の低減を図るとともに、防露パイプに滞留する冷媒の回収動作をなくすことができ、冷蔵庫の消費電力量を低減することができる。また、主凝縮器と防露パイプの間に設けた抵抗切換機構の流路抵抗と、絞りの流路抵抗との合成により、特に圧縮機を低速駆動する際に生じる冷凍サイクルの絞り不足による損失を抑制することができるので、通常運転時の冷凍サイクル効率を向上することで、冷蔵庫のさらなる省エネルギー化を実現できる。   As a result, when the refrigeration cycle is operated under normal conditions, the resistance of the resistance switching mechanism is increased so that the temperature of the dew proof pipe can be made lower than that of the main condenser. While reducing the amount of intrusion heat, it is possible to eliminate the operation of collecting the refrigerant staying in the dew-proof pipe, and the power consumption of the refrigerator can be reduced. Loss due to insufficient throttling of the refrigeration cycle, especially when the compressor is driven at low speed, by combining the flow resistance of the resistance switching mechanism provided between the main condenser and the dew proof pipe and the flow resistance of the throttle. Therefore, further energy saving of the refrigerator can be realized by improving the refrigeration cycle efficiency during normal operation.

第2の発明は、第1の発明において、ニードルバルブを用いて流路断面積を無段階に切換える流路切換バルブからなる抵抗切換機構を有し、主凝縮器と防露パイプとの間に、前記抵抗切換機構を接続したことを特徴とするものである。   According to a second invention, in the first invention, there is provided a resistance switching mechanism comprising a flow path switching valve that switches the flow path cross-sectional area steplessly using a needle valve, and is provided between the main condenser and the dew-proof pipe. The resistance switching mechanism is connected.

これによって、流路構成を簡素化し省スペース化が図れるとともに、冷凍サイクルの運転条件に合わせて最適な流路抵抗に調整することができる。   As a result, the flow path configuration can be simplified and the space can be saved, and the flow path resistance can be adjusted to the optimum according to the operating conditions of the refrigeration cycle.

第3の発明は、第1の発明において、細径管からなる中間抵抗器と、前記中間抵抗器をバイパスするバイパス配管と、前記中間抵抗器と前記バイパス配管とを切換える流路切換バルブからなる抵抗切換機構を有し、主凝縮器と防露パイプとの間に、前記抵抗切換機構
を接続したことを特徴とするものである。
According to a third invention, in the first invention, the intermediate resistor comprises a small-diameter pipe, a bypass pipe that bypasses the intermediate resistor, and a flow path switching valve that switches the intermediate resistor and the bypass pipe. It has a resistance switching mechanism, and the resistance switching mechanism is connected between the main condenser and the dew-proof pipe.

これによって、流路切換バルブを通過する冷媒の温度が主凝縮器と略同等とするこができるので、機構部品である流路切換バルブの結露を抑制することができる。また、細径管を用いて流路抵抗を形成することにより、ニードルバルブなどを用いて流路抵抗を形成する場合に比べて流路断面積を大きく取ることができるので、冷媒流速を抑制して冷媒流動音の発生を抑制することができる。   As a result, the temperature of the refrigerant passing through the flow path switching valve can be substantially equal to that of the main condenser, so that dew condensation on the flow path switching valve, which is a mechanical component, can be suppressed. In addition, since the flow path resistance is formed using a small-diameter tube, the flow path cross-sectional area can be increased as compared with the case where the flow path resistance is formed using a needle valve or the like. Thus, generation of refrigerant flow noise can be suppressed.

第4の発明は、第3の発明において、内径0.8mm以上の細径管からなる中間抵抗器を備えたことを特徴とするものである。   The fourth invention is characterized in that, in the third invention, an intermediate resistor comprising a thin tube having an inner diameter of 0.8 mm or more is provided.

これによって、乾き度が大きく流速の速い主凝縮器出口の冷媒が通過する際の冷媒流動音を抑制することができる。なお、冷蔵庫の冷凍サイクルの絞りは通常、内径0.5〜0.8mmの細径管からなるキャピラリチューブで構成しており、乾き度の大きい中間抵抗器の内径は、冷凍サイクルの絞りより大きい内径を選定することが望ましい。   Thereby, it is possible to suppress the refrigerant flow noise when the refrigerant at the outlet of the main condenser having a high dryness and a high flow velocity passes. The throttle of the refrigeration cycle of the refrigerator is usually constituted by a capillary tube made of a thin tube having an inner diameter of 0.5 to 0.8 mm, and the inner diameter of the intermediate resistor having a large dryness is larger than that of the refrigeration cycle. It is desirable to select an inner diameter.

第5の発明は、第1から第4のいずれかの発明において、冷凍サイクルが通常条件で運転する場合に、抵抗切換機構の抵抗を大きくすることで、防露パイプの温度を主凝縮器よりも低くすることを特徴とするものである。   According to a fifth invention, in any one of the first to fourth inventions, when the refrigeration cycle is operated under normal conditions, the resistance of the resistance switching mechanism is increased so that the temperature of the dew-proof pipe is higher than that of the main condenser. It is also characterized by lowering.

これによって、防露パイプに起因する侵入熱量の低減を図るとともに、抵抗切換機構の流路抵抗と絞りの流路抵抗との合成により、冷凍サイクル効率を向上することができる。なお、冷蔵庫の通常運転時の主凝縮器の温度は通常、周囲温度よりも3〜6℃程度高いので、防露パイプの温度を周囲温度〜周囲の露点温度に調整するために、防露パイプの温度を主凝縮器よりも3〜9℃程度下げることが望ましい。また、防露パイプの温度を主凝縮器よりも10℃以上低下させると、抵抗切換機構の流路抵抗と絞りの流路抵抗との合成により冷凍サイクルの冷媒循環量が低下して冷凍能力不足となる懸念が生じる。   Accordingly, the amount of intrusion heat caused by the dew-proof pipe can be reduced, and the refrigeration cycle efficiency can be improved by combining the flow path resistance of the resistance switching mechanism and the flow path resistance of the throttle. In addition, since the temperature of the main condenser at the time of normal operation of a refrigerator is usually about 3-6 degreeC higher than ambient temperature, in order to adjust the temperature of a dew condensation pipe to ambient temperature-ambient dew point temperature, a dew prevention pipe It is desirable to lower the temperature of the main condenser by about 3 to 9 ° C. Also, if the temperature of the dew-proof pipe is lowered by 10 ° C or more from the main condenser, the refrigerant circulation rate of the refrigeration cycle is reduced due to the combination of the flow path resistance of the resistance switching mechanism and the flow path resistance of the throttle, resulting in insufficient refrigeration capacity This raises concerns.

第6の発明は、第1から第5のいずれかの発明において、抵抗切換機構、防露パイプおよび絞りと並列に接続され、前記抵抗切換機構と前記防露パイプをバイパスするバイパス配管と、前記バイパス配管と蒸発器を接続し、流路抵抗を有する第二の絞りと、前記抵抗切換機構と前記バイパス配管の流路を切換える流路切換バルブとを有し、冷凍サイクルの起動時にバイパス配管を使用することを特徴とするものである。   A sixth invention is the invention according to any one of the first to fifth inventions, wherein the resistance switching mechanism, the dew proof pipe and the throttle are connected in parallel, and the bypass pipe bypassing the resistance switching mechanism and the dew proof pipe, The bypass pipe and the evaporator are connected, the second throttle having a flow path resistance, the resistance switching mechanism and a flow path switching valve for switching the flow path of the bypass pipe, and the bypass pipe is connected at the start of the refrigeration cycle. It is characterized by being used.

これによって、特に周囲の温度低い時に、防露パイプよりも内容積の小さいバイパス配管を使用することで冷凍サイクルの立ち上がり特性を向上することができる。通常、冷凍サイクルの停止時に抵抗切換機構を閉塞すると、防露パイプ及びバイパス配管内の冷媒が圧力差で流出するため、冷凍サイクルの起動時に絞りの入口側が冷媒不足となって冷媒循環量の立ち上がりが遅くなる懸念が生じる。そこで、冷凍サイクルの起動時に防露パイプよりも内容積の小さいバイパス配管を使用することで、絞りの入口側が冷媒不足となることを抑制して冷凍サイクルの立ち上がり特性を向上する。   Thereby, particularly when the ambient temperature is low, the start-up characteristics of the refrigeration cycle can be improved by using a bypass pipe having a smaller internal volume than the dew-proof pipe. Normally, if the resistance switching mechanism is closed when the refrigeration cycle is stopped, the refrigerant in the dew proof pipe and the bypass pipe flows out due to a pressure difference. Therefore, when the refrigeration cycle starts, the inlet side of the throttle becomes insufficient and the refrigerant circulation rate rises. There is a concern that will be delayed. Therefore, by using a bypass pipe having a smaller internal volume than the dew-proof pipe at the start of the refrigeration cycle, it is possible to suppress a refrigerant shortage on the inlet side of the throttle and improve the rising characteristics of the refrigeration cycle.

第7の発明は、第1から第6のいずれかの発明において、上部機械室と下部機械室とを備え、前記上部機械室に圧縮機を配置するとともに、前記下部機械室に抵抗切換機構を配置することを特徴とするものである。   According to a seventh invention, in any one of the first to sixth inventions, an upper machine room and a lower machine room are provided, a compressor is disposed in the upper machine room, and a resistance switching mechanism is provided in the lower machine room. It is characterized by arranging.

これによって、抵抗切換機構の接続配管と圧縮機の共振を抑制することにより、冷蔵庫の騒音を低減することができる。   Thereby, the noise of the refrigerator can be reduced by suppressing the resonance between the connecting pipe of the resistance switching mechanism and the compressor.

第8の発明は、第7の発明において、複数の防露パイプの合流点を上部機械室に配置す
るとともに、前記防露パイプの流れ方向を略上方とするものである。
According to an eighth invention, in the seventh invention, a confluence of a plurality of dew prevention pipes is disposed in the upper machine room, and a flow direction of the dew prevention pipe is set substantially upward.

これによって、複数の防露パイプの流れ方向を一方向とすることで防露パイプに滞留する冷媒量を低減することができ、循環冷媒量の低下に伴う冷凍サイクルの効率低下を抑制することができる。   This makes it possible to reduce the amount of refrigerant staying in the dew prevention pipe by setting the flow direction of the plurality of dew prevention pipes to one direction, and to suppress the efficiency reduction of the refrigeration cycle accompanying the decrease in the amount of circulating refrigerant. it can.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same components as those of the conventional example, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は本発明の実施の形態1における冷蔵庫のサイクル構成図、図3は実施の形態1における冷蔵庫の流路切換バルブの動作を示した図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cycle configuration diagram of the refrigerator according to Embodiment 1 of the present invention, and FIG. 3 is an operation of a flow path switching valve of the refrigerator according to Embodiment 1. FIG.

図1および図2において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有する。また、冷凍サイクルを構成する部品として、上部機械室16に収められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に収められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、下部機械室15の底板25を有している。   In FIG. 1 and FIG. 2, the refrigerator 11 includes a housing 12, a door 13, legs 14 that support the housing 12, a lower machine room 15 provided in the lower portion of the housing 12, and an upper portion provided in the upper portion of the housing 12. It has a machine room 16, a refrigeration room 17 disposed at the upper part of the casing 12, and a freezing room 18 disposed at the lower part of the casing 12. Further, as components constituting the refrigeration cycle, a compressor 19 housed in the upper machine chamber 16, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser 21 housed in the lower machine chamber 15 are provided. Have. In addition, it has a partition wall 22 that partitions the lower machine chamber 15, a fan 23 that is attached to the partition wall 22 and cools the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and a bottom plate 25 of the lower machine chamber 15. Yes.

ここで、圧縮機19は可変速圧縮機であり、20〜80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速〜高速の6段階に切り換えて冷凍能力を調整するためである。圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立に、圧縮機19の回転数を制御するが、蒸発温度が高く比較的冷凍能力が大きいPC冷却モードの起動時の回転数をFC冷却モードよりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。   Here, the compressor 19 is a variable speed compressor, and uses six stages of rotation speed selected from 20 to 80 rps. This is because the refrigerating capacity is adjusted by switching the rotational speed of the compressor 19 to six stages from low speed to high speed while avoiding resonance of piping and the like. The compressor 19 operates at a low speed at the time of start-up, and increases as the operation time for cooling the refrigerator compartment 17 or the freezer compartment 18 becomes longer. This is because the most efficient low speed is mainly used, and an appropriate relatively high rotational speed is used against an increase in load of the refrigerator compartment 17 or the freezer compartment 18 due to high outside air temperature, door opening / closing, or the like. . At this time, the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, but the rotation speed at the start of the PC cooling mode with a high evaporation temperature and a relatively large refrigerating capacity is set to be higher than that in the FC cooling mode. It may be set low. Further, the refrigeration capacity may be adjusted while decelerating the compressor 19 as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases.

また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。   In addition, a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided. doing. Here, the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.

また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ40、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、冷凍サイクルの減圧機構である絞り44、蒸発器20を有している。流路切換バルブ40は、ニードルバルブ機構を用いて流路断面積を無段階に切換えて流路抵抗を制御することにより、防露パイプ41の凝縮温度を主凝縮器21に比べて0〜10℃下げることができる。また、防露パイプ41と主凝縮器21の凝縮温度差を決める流路切換バルブ40の流路抵抗は、凝縮温度の差がほとんどない「抵抗小」と、凝縮温度の差が3〜6℃となる「抵抗大」、流路を全閉する「閉」の3段階の既定値で使用される。   Further, as components constituting the refrigeration cycle, the refrigerant is positioned on the downstream side of the main condenser 21, the dryer 38 for drying the circulating refrigerant, and the downstream of the dryer 38, the flow path switching valve 40 for controlling the refrigerant flow. , A dew-proof pipe 41 that is located downstream of the flow path switching valve 40 and is thermally coupled to the outer surface of the casing 12 around the opening of the freezer compartment 18, a throttle 44 that is a decompression mechanism of the refrigeration cycle, and the evaporator 20. have. The flow path switching valve 40 switches the flow path cross-sectional area steplessly using a needle valve mechanism to control the flow path resistance, so that the condensation temperature of the dew prevention pipe 41 is 0-10 compared to the main condenser 21. The temperature can be lowered. The flow path resistance of the flow path switching valve 40 that determines the condensation temperature difference between the dew proof pipe 41 and the main condenser 21 is “low resistance” with little difference in condensation temperature, and the difference in condensation temperature is 3 to 6 ° C. It is used with a default value in three stages: “High resistance” and “Closed” to fully close the flow path.

ここで、流路切換バルブ40は下部機械室15に収められ、上部機械室16にある圧縮機19の振動に起因する配管の共振を抑制している。また、流路切換バルブ40を筐体12の下部に配置し、圧縮機19を筐体12の上部に配置するとともに、防露パイプ41の流路をトラップ構造がほとんどない略上昇流とすることで、使用中に内部に滞留する冷媒量を削減することができる。また、防露パイプ41は、冷蔵庫11の周囲が高湿度環境となる場合に合わせて冷凍室18の開口部周辺の結露を防止するために必要な放熱量に設計されている。   Here, the flow path switching valve 40 is housed in the lower machine chamber 15 to suppress the resonance of the piping caused by the vibration of the compressor 19 in the upper machine chamber 16. In addition, the flow path switching valve 40 is disposed at the lower part of the casing 12, the compressor 19 is disposed at the upper part of the casing 12, and the flow path of the dew prevention pipe 41 is set to a substantially upward flow with almost no trap structure. Thus, the amount of refrigerant staying inside during use can be reduced. Further, the dew-proof pipe 41 is designed to have a heat radiation amount necessary for preventing condensation around the opening of the freezer compartment 18 when the periphery of the refrigerator 11 is in a high humidity environment.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、蒸発器20の温度を検知するDEF温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。   In addition, an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 The refrigerator compartment damper 32 to be shut off, the duct 33 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 34 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 35 for detecting the temperature of the refrigerator compartment 17, and the temperature of the evaporator 20 are set. It has a DEF temperature sensor 36 for detection. Here, the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.

以上のように構成された実施の形態1の冷蔵庫について以下にその動作を説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。   The operation of the refrigerator according to the first embodiment configured as described above will be described below, but the same reference numerals are given to the same components as those of the conventional example, and the detailed description thereof will be omitted.

ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。   In a cooling stop state in which all of the fan 23, the compressor 19 and the evaporator fan 30 are stopped (hereinafter, this operation is referred to as "OFF mode"), the temperature detected by the FCC temperature sensor 34 rises to a predetermined FCC_ON temperature. Or when the temperature detected by the PCC temperature sensor 35 rises to a predetermined PCC_ON temperature, the freezer damper 31 is closed, the refrigerator compartment damper 32 is opened, the compressor 19, the fan 23, and the evaporator fan 30. (Hereinafter, this operation is referred to as “PC cooling mode”).

PC冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   In the PC cooling mode, when the fan 23 is driven, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure. Then, the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ40を介して防露パイプ41へ供給される。防露パイプ41を通過する冷媒は冷凍室18の開口部を暖めながら放熱して凝縮した後、絞り44で減圧されて蒸発器20で蒸発する。このとき、冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却した後、気体冷媒として圧縮機19に還流する。   On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21. Then, the moisture is removed by the dryer 38, and the refrigerant is prevented via the flow path switching valve 40. Supplied to the dew pipe 41. The refrigerant passing through the dew-proof pipe 41 dissipates heat while condensing the opening of the freezer compartment 18, and is then decompressed by the throttle 44 and evaporated by the evaporator 20. At this time, heat is exchanged with the air in the refrigerator compartment 17 to cool the refrigerator compartment 17, and then it is returned to the compressor 19 as a gaseous refrigerant.

ここで、流路切換バルブ40の動作について説明する。   Here, the operation of the flow path switching valve 40 will be described.

図3において、g1、g2、g3は冷凍サイクルの稼動区間を示し、h1、h2は冷凍サイクルの停止区間を示す。区間g1、区間g2、区間g3の各区間において、圧縮機19を運転するとともに、流路切換バルブ40を「抵抗大」に切換えて防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃低下させて使用する。また、区間h1、区間h2の各区間において、流路切換バルブ40を「閉」に切換えて流路を閉塞し、主凝縮器21の冷媒が蒸発器20に圧力差で流入することを防止する。また、冷凍サイクルが停止した直後の所定時間tの間、流路切換バルブ40を「閉」の状態で圧縮機19を運転する。これによって、防露パイプ41内に滞留する冷媒を回収し、冷凍サイクルの停止中に防露パイプ41内の高温の冷媒が圧力差で蒸発器20に流入することを防止する。   In FIG. 3, g1, g2, and g3 indicate operating sections of the refrigeration cycle, and h1 and h2 indicate stop sections of the refrigeration cycle. In each of the sections g 1, g 2, and g 3, the compressor 19 is operated, and the flow path switching valve 40 is switched to “high resistance” so that the condensation temperature of the dew prevention pipe 41 is 3 as compared with the main condenser 21. Reduced by ~ 6 ° C before use. Further, in each of the sections h1 and h2, the flow path switching valve 40 is switched to “closed” to close the flow path, thereby preventing the refrigerant in the main condenser 21 from flowing into the evaporator 20 due to a pressure difference. . Further, during a predetermined time t immediately after the refrigeration cycle is stopped, the compressor 19 is operated with the flow path switching valve 40 in the “closed” state. As a result, the refrigerant staying in the dew prevention pipe 41 is recovered, and the high temperature refrigerant in the dew prevention pipe 41 is prevented from flowing into the evaporator 20 due to a pressure difference while the refrigeration cycle is stopped.

また、図3において、防露パイプ41で暖められる冷凍室18の開口部の代表温度を筐体の表面温度として示している。このように、流路切換バルブ40を「抵抗大」に切換えると、防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃低下させた状態で安定に運転することができる。この結果、外気温度の上下に従って防露パイプ41の温度も上下することで、所定の相対湿度においては、冷凍室18の開口部周辺の筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができる。   In FIG. 3, the representative temperature of the opening of the freezer compartment 18 heated by the dew proof pipe 41 is shown as the surface temperature of the housing. As described above, when the flow path switching valve 40 is switched to “large resistance”, the condensation temperature of the dew proof pipe 41 can be stably operated in a state of being reduced by 3 to 6 ° C. compared to the main condenser 21. As a result, the temperature of the dew prevention pipe 41 is also raised and lowered according to the rise and fall of the outside air temperature, so that dew prevention is achieved while suppressing condensation on the outer surface of the casing 12 around the opening of the freezer compartment 18 at a predetermined relative humidity. The amount of heat entering due to the pipe 41 can be reduced.

また、周囲の相対湿度が所定値を長時間超えた場合は、例えば、湿度センサ(図示せず)によって検知された冷蔵庫周囲の相対湿度に基づいて、流路切換バルブ40を「抵抗小」に切換えることで、防露パイプ41の凝縮温度を主凝縮器21とほぼ同等に維持することができるので、冷凍室18の開口部周辺の筐体12の外表面の結露を回避することができる。   Further, when the ambient relative humidity exceeds a predetermined value for a long time, for example, the flow path switching valve 40 is set to “low resistance” based on the relative humidity around the refrigerator detected by a humidity sensor (not shown). By switching, the condensation temperature of the dew proof pipe 41 can be maintained substantially equal to that of the main condenser 21, so that condensation on the outer surface of the casing 12 around the opening of the freezer compartment 18 can be avoided.

また、扉開閉や高温の食品の投入などがなく、冷蔵室17及び冷凍室18の負荷が小さい場合、冷凍サイクルを高効率で稼動するために圧縮機19を低速運転する。このとき、流路切換バルブ40と絞り44の流路抵抗の合成により、圧縮機19を低速運転する際に生じる冷凍サイクルの絞り不足による損失を抑制することができるので、冷凍サイクル効率をさらに向上することができる。   Further, when there is no door opening / closing or high temperature food input, and the loads in the refrigerator compartment 17 and the freezer compartment 18 are small, the compressor 19 is operated at a low speed in order to operate the refrigerating cycle with high efficiency. At this time, by combining the flow path resistances of the flow path switching valve 40 and the throttle 44, loss due to insufficient throttling of the refrigeration cycle that occurs when the compressor 19 is operated at a low speed can be suppressed, thus further improving the refrigeration cycle efficiency. can do.

なお、本実施の形態1において、流路切換バルブ40は「抵抗小」と「抵抗大」の2水準で流路抵抗を切換えたが、防露パイプ41に起因する侵入熱量の低減と冷凍サイクルの絞り不足による損失の抑制を考慮して、当該運転条件に最適な流路抵抗値に無段階に調整してもよい。   In the first embodiment, the flow path switching valve 40 switches the flow path resistance at two levels of “low resistance” and “high resistance”. However, the intrusion heat amount due to the dew prevention pipe 41 is reduced and the refrigeration cycle is switched. In consideration of suppression of loss due to insufficient throttling, the flow path resistance value may be adjusted steplessly to the optimum operating conditions.

このように、流路切換バルブ40を用いて、防露パイプ41の温度を制御することにより、冷凍サイクルの稼働中に防露パイプ41に滞留する冷媒の回収動作を行う必要がなく、冷媒の回収動作に伴う電力量の増大と筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができる。また、防露パイプ41内の流路を略上昇流とし、滞留する冷媒量を削減することにより、流路切換バルブ40を閉塞して圧縮機19を運転して冷媒回収する負荷を低減することができる。   In this way, by controlling the temperature of the dew prevention pipe 41 using the flow path switching valve 40, it is not necessary to perform the recovery operation of the refrigerant staying in the dew prevention pipe 41 during the operation of the refrigeration cycle. The amount of intrusion heat caused by the dew prevention pipe 41 can be reduced while suppressing an increase in the amount of electric power accompanying the recovery operation and condensation on the outer surface of the housing 12. Moreover, the flow path in the dew prevention pipe 41 is made substantially upward, and the amount of refrigerant that remains is reduced, so that the flow path switching valve 40 is closed and the compressor 19 is operated to reduce the load for refrigerant recovery. Can do.

PC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、OFFモードに遷移する。   During the PC cooling mode, when the temperature detected by the FCC temperature sensor 34 rises to a predetermined value FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 falls to a predetermined value PCC_OFF temperature, a transition is made to the OFF mode.

また、PC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉として、圧縮機19とファン23、蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。   In addition, when the temperature detected by the FCC temperature sensor 34 is higher than the predetermined FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 falls to the predetermined PCC_OFF temperature during the PC cooling mode, the freezer damper 31 is opened, the refrigerator compartment damper 32 is closed, and the compressor 19, the fan 23, and the evaporator fan 30 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is heat-exchanged with the inside air of the freezer compartment 18 and the evaporator 20 to cool the freezer compartment 18 (this operation is hereinafter referred to as “FC cooling mode”). .

FC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度以上を示すと、PC冷却モードに遷移する。   During the FC cooling mode, when the temperature detected by the FCC temperature sensor 34 falls to a predetermined FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 is equal to or higher than the predetermined PCC_ON temperature, the PC cooling mode is entered. .

また、FC冷却モード中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度より低い温度を示すと、OFFモードに遷移する。   Further, when the temperature detected by the FCC temperature sensor 34 falls to a predetermined FCC_OFF temperature and the temperature detected by the PCC temperature sensor 35 indicates a temperature lower than the predetermined PCC_ON temperature during the FC cooling mode, the OFF mode Transition to.

(実施の形態2)
図4は本発明の実施の形態2における冷蔵庫のサイクル構成図、図5は実施の形態2における冷蔵庫の流路切換バルブの動作を示した図である。以下、本発明の実施の形態2について、図面を参照しながら説明するが、実施の形態1と同一構成については同一符号を付して、その詳細な説明は省略する。
(Embodiment 2)
FIG. 4 is a cycle configuration diagram of the refrigerator according to the second embodiment of the present invention, and FIG. 5 is a diagram illustrating the operation of the flow path switching valve of the refrigerator according to the second embodiment. Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. The same components as those of the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted.

図4において、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ42、流路切換バルブ42の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、冷凍サイクルの減圧機構である絞り44、蒸発器20を有している。流路切換バルブ42は、ドライヤ38から流入する冷媒を直接、防露パイプ41に供給するか、中間抵抗器43を介して防露パイプ41に供給するかを切換えるものである。中間抵抗器43は内径0.9mm長さ1200mmの細径管からなり、流路抵抗を有することで防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃下げることができる。また、防露パイプ41への流路を決める流路切換バルブ42は、直接流通する「流路A」と、中間抵抗器43を介して流通する「流路B」、流路を全閉する「閉」の3段階に切換ることができる。   In FIG. 4, the components constituting the refrigeration cycle are located downstream of the main condenser 21, the dryer 38 for drying the circulating refrigerant, the downstream of the dryer 38, and the flow path switching for controlling the refrigerant flow A dew-proof pipe 41 that is located downstream of the valve 42 and the flow path switching valve 42 and is thermally coupled to the outer surface of the casing 12 around the opening of the freezer 18, a throttle 44 that is a refrigeration cycle decompression mechanism, and evaporation A container 20 is provided. The flow path switching valve 42 switches whether the refrigerant flowing from the dryer 38 is supplied directly to the dew prevention pipe 41 or supplied to the dew prevention pipe 41 via the intermediate resistor 43. The intermediate resistor 43 is formed of a thin tube having an inner diameter of 0.9 mm and a length of 1200 mm, and has a flow path resistance, so that the condensation temperature of the dew prevention pipe 41 can be lowered by 3 to 6 ° C. compared to the main condenser 21. The flow path switching valve 42 that determines the flow path to the dew proof pipe 41 fully closes the “flow path A” that flows directly, the “flow path B” that flows via the intermediate resistor 43, and the flow path. It is possible to switch to three stages of “closed”.

ここで、流路切換バルブ42は下部機械室15に収められ、上部機械室16にある圧縮機19の振動に起因する配管の共振を抑制している。また、流路切換バルブ42を筐体12の下部に配置し、圧縮機19を筐体12の上部に配置するとともに、防露パイプ41の流路をトラップ構造がほとんどない略上昇流とすることで、使用中に内部に滞留する冷媒量を削減することができる。また、防露パイプ41は、冷蔵庫11の周囲が高湿度環境となる場合に合わせて冷凍室18の開口部周辺の結露を防止するために必要な放熱量に設計されている。   Here, the flow path switching valve 42 is housed in the lower machine chamber 15 and suppresses the resonance of the piping caused by the vibration of the compressor 19 in the upper machine chamber 16. In addition, the flow path switching valve 42 is disposed at the lower part of the casing 12, the compressor 19 is disposed at the upper part of the casing 12, and the flow path of the dew proof pipe 41 is set to a substantially upward flow having almost no trap structure. Thus, the amount of refrigerant staying inside during use can be reduced. Further, the dew-proof pipe 41 is designed to have a heat radiation amount necessary for preventing condensation around the opening of the freezer compartment 18 when the periphery of the refrigerator 11 is in a high humidity environment.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、蒸発器20の温度を検知するDEF温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。   In addition, an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 The refrigerator compartment damper 32 to be shut off, the duct 33 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 34 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 35 for detecting the temperature of the refrigerator compartment 17, and the temperature of the evaporator 20 are set. It has a DEF temperature sensor 36 for detection. Here, the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.

以上のように構成された実施の形態2の冷蔵庫について以下にその動作を説明するが、実施の形態1と同一構成については同一符号を付して、その詳細な説明は省略する。   The operation of the refrigerator according to the second embodiment configured as described above will be described below, but the same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。   In a cooling stop state in which all of the fan 23, the compressor 19 and the evaporator fan 30 are stopped (hereinafter, this operation is referred to as "OFF mode"), the temperature detected by the FCC temperature sensor 34 rises to a predetermined FCC_ON temperature. Or when the temperature detected by the PCC temperature sensor 35 rises to a predetermined PCC_ON temperature, the freezer damper 31 is closed, the refrigerator compartment damper 32 is opened, the compressor 19, the fan 23, and the evaporator fan 30. (Hereinafter, this operation is referred to as “PC cooling mode”).

PC冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   In the PC cooling mode, when the fan 23 is driven, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure. Then, the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ42を介して防露パイプ41へ供給される。防露パイプ41を通過する冷媒は冷凍室18の開口部を暖めながら放熱して凝縮した後、絞り44で減圧されて蒸発器20で蒸発する。このとき、冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却した後、気体冷媒として圧縮機19に還流する。   On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21. Then, the moisture is removed by the dryer 38 and is prevented through the flow path switching valve 42. Supplied to the dew pipe 41. The refrigerant passing through the dew-proof pipe 41 dissipates heat while condensing the opening of the freezer compartment 18, and is then decompressed by the throttle 44 and evaporated by the evaporator 20. At this time, heat is exchanged with the air in the refrigerator compartment 17 to cool the refrigerator compartment 17, and then it is returned to the compressor 19 as a gaseous refrigerant.

ここで、流路切換バルブ42の動作について説明する。   Here, the operation of the flow path switching valve 42 will be described.

図5において、g1、g2、g3は冷凍サイクルの稼動区間を示し、h1、h2は冷凍サイクルの停止区間を示す。区間g1、区間g2、区間g3の各区間において、圧縮機19を運転するとともに、流路切換バルブ42を「流路B」に切換えて防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃低下させて使用する。また、区間h1、区間h2の各区間において、流路切換バルブ42を「閉」に切換えて流路を閉塞し、主凝縮器21の冷媒が蒸発器20に圧力差で流入することを防止する。また、冷凍サイクルが停止した直後の所定時間tの間、流路切換バルブ42を「閉」の状態で圧縮機19を運転する。これによって、防露パイプ41内に滞留する冷媒を回収し、冷凍サイクルの停止中に防露パイプ41内の高温の冷媒が圧力差で蒸発器20に流入することを防止する。   In FIG. 5, g1, g2, and g3 indicate operating sections of the refrigeration cycle, and h1 and h2 indicate stop sections of the refrigeration cycle. In each of the sections g 1, g 2, and g 3, the compressor 19 is operated, and the flow path switching valve 42 is switched to “flow path B” so that the condensation temperature of the dew prevention pipe 41 is compared with that of the main condenser 21. Reduce the temperature by 3-6 ° C and use. In each of the sections h1 and h2, the flow path switching valve 42 is switched to “closed” to close the flow path, thereby preventing the refrigerant in the main condenser 21 from flowing into the evaporator 20 due to a pressure difference. . Further, during a predetermined time t immediately after the refrigeration cycle is stopped, the compressor 19 is operated with the flow path switching valve 42 in the “closed” state. As a result, the refrigerant staying in the dew prevention pipe 41 is recovered, and the high temperature refrigerant in the dew prevention pipe 41 is prevented from flowing into the evaporator 20 due to a pressure difference while the refrigeration cycle is stopped.

また、図5において、防露パイプ41で暖められる冷凍室18の開口部の代表温度を筐体の表面温度として示している。このように、流路切換バルブ42を「流路B」に切換えると、防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃低下させた状態で安定に運転することができる。この結果、外気温度の上下に従って防露パイプ41の温度も上下することで、所定の相対湿度においては、冷凍室18の開口部周辺の筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができる。   In FIG. 5, the representative temperature of the opening of the freezer compartment 18 heated by the dew proof pipe 41 is shown as the surface temperature of the housing. As described above, when the flow path switching valve 42 is switched to “flow path B”, the condensation temperature of the dew proof pipe 41 can be stably operated in a state in which the condensation temperature is lowered by 3 to 6 ° C. compared to the main condenser 21. . As a result, the temperature of the dew prevention pipe 41 is also raised and lowered according to the rise and fall of the outside air temperature, so that dew prevention is achieved while suppressing condensation on the outer surface of the casing 12 around the opening of the freezer compartment 18 at a predetermined relative humidity. The amount of heat entering due to the pipe 41 can be reduced.

また、周囲の相対湿度が所定値を長時間超えた場合は、例えば、湿度センサ(図示せず)によって検知された冷蔵庫周囲の相対湿度に基づいて、流路切換バルブ42を「流路A」に切換えることで、防露パイプ41の凝縮温度を主凝縮器21とほぼ同等に維持することができるので、冷凍室18の開口部周辺の筐体12の外表面の結露を回避することができる。   Further, when the ambient relative humidity exceeds a predetermined value for a long time, for example, based on the relative humidity around the refrigerator detected by a humidity sensor (not shown), the channel switching valve 42 is set to “channel A”. By switching to, the condensation temperature of the dew proof pipe 41 can be maintained substantially the same as that of the main condenser 21, so that condensation on the outer surface of the casing 12 around the opening of the freezer compartment 18 can be avoided. .

また、扉開閉や高温の食品の投入などがなく、冷蔵室17及び冷凍室18の負荷が小さい場合、冷凍サイクルを高効率で稼動するために圧縮機19を低速運転する。このとき、中間抵抗器43と絞り44の流路抵抗の合成により、圧縮機19を低速運転する際に生じる冷凍サイクルの絞り不足による損失を抑制することができるので、冷凍サイクル効率をさらに向上することができる。   Further, when there is no door opening / closing or high temperature food input, and the loads in the refrigerator compartment 17 and the freezer compartment 18 are small, the compressor 19 is operated at a low speed in order to operate the refrigerating cycle with high efficiency. At this time, by combining the flow resistance of the intermediate resistor 43 and the throttle 44, loss due to insufficient throttling of the refrigeration cycle that occurs when the compressor 19 is operated at a low speed can be suppressed, so that the refrigeration cycle efficiency is further improved. be able to.

なお、本実施の形態2において、内径0.9mm長さ1200mmの細径管からなる中間抵抗器43を用いたが、同様の流路抵抗を得るために内径と長さを調整してもよい。ただし、中間抵抗器43出口の乾き度は絞り44の入口よりも大きいため、絞り44よりも大きな流路断面積、望ましくは内径0.8mm以上の細径管と同程度の流路断面積を確保することが望ましい。   In the second embodiment, the intermediate resistor 43 made of a thin tube having an inner diameter of 0.9 mm and a length of 1200 mm is used. However, the inner diameter and the length may be adjusted in order to obtain the same flow path resistance. . However, since the dryness of the outlet of the intermediate resistor 43 is larger than that of the inlet of the throttle 44, the flow path cross-sectional area larger than that of the throttle 44, preferably a flow path cross-sectional area similar to that of a small diameter pipe having an inner diameter of 0.8 mm or more. It is desirable to ensure.

このように、流路切換バルブ42を用いて、防露パイプ41の温度を制御することにより、冷凍サイクルの稼働中に防露パイプ41に滞留する冷媒の回収動作を行う必要がなく、冷媒の回収動作に伴う電力量の増大と筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができる。また、防露パイプ41内の流路を略上昇流とし、滞留する冷媒量を削減することにより、流路切換バルブ42を閉塞して圧縮機19を運転して冷媒回収する負荷を低減することができる。   In this way, by controlling the temperature of the dew prevention pipe 41 using the flow path switching valve 42, it is not necessary to perform a recovery operation of the refrigerant staying in the dew prevention pipe 41 during the operation of the refrigeration cycle. The amount of intrusion heat caused by the dew prevention pipe 41 can be reduced while suppressing an increase in the amount of electric power accompanying the recovery operation and condensation on the outer surface of the housing 12. Further, by reducing the amount of refrigerant that stays in the flow path in the dew-proof pipe 41 and reducing the amount of refrigerant that remains, the load that collects the refrigerant by operating the compressor 19 by closing the flow path switching valve 42 is reduced. Can do.

(実施の形態3)
図6は本発明の実施の形態3における冷蔵庫のサイクル構成図、図7は実施の形態3における冷蔵庫の流路切換バルブの動作を示した図である。以下、本発明の実施の形態3について、図面を参照しながら説明するが、実施の形態1あるいは実施の形態2と同一構成については同一符号を付して、その詳細な説明は省略する。
(Embodiment 3)
6 is a cycle configuration diagram of the refrigerator in the third embodiment of the present invention, and FIG. 7 is a diagram showing the operation of the flow path switching valve of the refrigerator in the third embodiment. Hereinafter, Embodiment 3 of the present invention will be described with reference to the drawings. The same components as those in Embodiment 1 or Embodiment 2 are given the same reference numerals, and detailed description thereof will be omitted.

図6において、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ45、流路切換バルブ45の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、冷凍サイクルの減圧機構である絞り44、蒸発器20を有している。流路切換バルブ45は、ドライヤ38から流入する冷媒を直接、防露パイプ41に供給するか、中間抵抗器43を介して防露パイプ41に供給するか、バイパス46と絞り47とからなるバイパス回路に供給するかを切換えるものである。中間抵抗器43は内径0.9mm長さ1200mmの細径管からなり、流路抵抗を有することで防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃下げることができる。   In FIG. 6, the components constituting the refrigeration cycle are located on the downstream side of the main condenser 21 and are located on the downstream side of the dryer 38 for drying the circulating refrigerant and the flow path switching for controlling the flow of the refrigerant. A dew pipe 41 that is located downstream of the valve 45, the flow path switching valve 45, and is thermally coupled to the outer surface of the housing 12 around the opening of the freezing chamber 18, a throttle 44 that is a decompression mechanism of the refrigeration cycle, and evaporation A container 20 is provided. The flow path switching valve 45 supplies the refrigerant flowing from the dryer 38 directly to the dew prevention pipe 41, or supplies the refrigerant to the dew prevention pipe 41 through the intermediate resistor 43, or a bypass composed of a bypass 46 and a restriction 47. It is to switch whether to supply to the circuit. The intermediate resistor 43 is formed of a thin tube having an inner diameter of 0.9 mm and a length of 1200 mm, and has a flow path resistance, so that the condensation temperature of the dew prevention pipe 41 can be lowered by 3 to 6 ° C. compared to the main condenser 21.

バイパス46は流路切換バルブ45と絞り47を最短で接続する配管であり、防露パイプ41よりも内容積が小さく、かつ外部と断熱されたものである。絞り47は絞り44と同等の流路抵抗を有し、バイパス46と蒸発器20を接続する配管である。   The bypass 46 is a pipe that connects the flow path switching valve 45 and the throttle 47 in the shortest distance, and has a smaller internal volume than the dew proof pipe 41 and is insulated from the outside. The restrictor 47 is a pipe having a flow path resistance equivalent to that of the restrictor 44 and connecting the bypass 46 and the evaporator 20.

また、流路切換バルブ45は、防露パイプ41へ直接流通する「流路A」と、中間抵抗器43を介して防露パイプ41へ流通する「流路B」、バイパス46から絞り47へ流通する「流路C」、流路を全閉する「閉」の4段階に切換えることができる。   In addition, the flow path switching valve 45 includes a “flow path A” that flows directly to the dew prevention pipe 41, a “flow path B” that flows to the dew prevention pipe 41 via the intermediate resistor 43, and the bypass 46 to the throttle 47. It is possible to switch to four stages of “flow path C” that circulates and “closed” that fully closes the flow path.

ここで、流路切換バルブ45は下部機械室15に収められ、上部機械室16にある圧縮機19の振動に起因する配管の共振を抑制している。また、流路切換バルブ45を筐体12の下部に配置し、圧縮機19を筐体12の上部に配置するとともに、防露パイプ41の流路をトラップ構造がほとんどない略上昇流とすることで、使用中に内部に滞留する冷媒量を削減することができる。また、防露パイプ41は、冷蔵庫11の周囲が高湿度環境となる場合に合わせて冷凍室18の開口部周辺の結露を防止するために必要な放熱量に設計されている。   Here, the flow path switching valve 45 is housed in the lower machine chamber 15 to suppress the resonance of the piping caused by the vibration of the compressor 19 in the upper machine chamber 16. In addition, the flow path switching valve 45 is disposed at the lower part of the casing 12, the compressor 19 is disposed at the upper part of the casing 12, and the flow path of the dew proof pipe 41 is set to a substantially upward flow with almost no trap structure. Thus, the amount of refrigerant staying inside during use can be reduced. Further, the dew-proof pipe 41 is designed to have a heat radiation amount necessary for preventing condensation around the opening of the freezer compartment 18 when the periphery of the refrigerator 11 is in a high humidity environment.

また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、蒸発器20の温度を検知するDEF温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。   In addition, an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17 The refrigerator compartment damper 32 to be shut off, the duct 33 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 34 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 35 for detecting the temperature of the refrigerator compartment 17, and the temperature of the evaporator 20 are set. It has a DEF temperature sensor 36 for detection. Here, the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.

以上のように構成された実施の形態3の冷蔵庫について以下にその動作を説明するが、実施の形態1あるいは実施の形態2と同一構成については同一符号を付して、その詳細な説明は省略する。   The operation of the refrigerator according to the third embodiment configured as described above will be described below, but the same reference numerals are given to the same components as those of the first or second embodiment, and the detailed description thereof is omitted. To do.

ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35の検知す
る温度が所定値のPCC_ON温度まで上昇すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。
In a cooling stop state in which all of the fan 23, the compressor 19 and the evaporator fan 30 are stopped (hereinafter, this operation is referred to as "OFF mode"), the temperature detected by the FCC temperature sensor 34 rises to a predetermined FCC_ON temperature. Or when the temperature detected by the PCC temperature sensor 35 rises to a predetermined PCC_ON temperature, the freezer damper 31 is closed, the refrigerator compartment damper 32 is opened, the compressor 19, the fan 23, and the evaporator fan 30. (Hereinafter, this operation is referred to as “PC cooling mode”).

PC冷却モードにおいては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。   In the PC cooling mode, when the fan 23 is driven, the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side has a positive pressure. Then, the air in the lower machine chamber 15 is discharged to the outside from the plurality of discharge ports 27.

一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ45を介して防露パイプ41へ供給される。防露パイプ41を通過する冷媒は冷凍室18の開口部を暖めながら放熱して凝縮した後、絞り44で減圧されて蒸発器20で蒸発する。このとき、冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却した後、気体冷媒として圧縮機19に還流する。   On the other hand, the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21, and then moisture is removed by the dryer 38 and is prevented via the flow path switching valve 45. Supplied to the dew pipe 41. The refrigerant passing through the dew-proof pipe 41 dissipates heat while condensing the opening of the freezer compartment 18, and is then decompressed by the throttle 44 and evaporated by the evaporator 20. At this time, heat is exchanged with the air in the refrigerator compartment 17 to cool the refrigerator compartment 17, and then it is returned to the compressor 19 as a gaseous refrigerant.

ここで、流路切換バルブ45の動作について説明する。   Here, the operation of the flow path switching valve 45 will be described.

図7において、g1、g2、g3は冷凍サイクルの稼動区間を示し、h1、h2は冷凍サイクルの停止区間を示す。区間g1、区間g2、区間g3の各区間において、圧縮機19を運転するとともに、冷凍サイクルが起動した直後の所定時間sの間、流路切換バルブ45を「流路C」に切換えて圧縮機19を運転する。これによって、防露パイプ41よりも内容積の小さいバイパス46を使用することで冷凍サイクルの立ち上がり特性を向上することができる。その後、流路切換バルブ45を「流路B」に切換えて防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃低下させて使用する。   In FIG. 7, g1, g2, and g3 indicate operating sections of the refrigeration cycle, and h1 and h2 indicate stop sections of the refrigeration cycle. In each of the sections g1, g2, and g3, the compressor 19 is operated, and the flow path switching valve 45 is switched to “flow path C” for a predetermined time s immediately after the start of the refrigeration cycle. Drive 19. Accordingly, the use of the bypass 46 having a smaller internal volume than the dew proof pipe 41 can improve the rising characteristics of the refrigeration cycle. Thereafter, the flow path switching valve 45 is switched to “flow path B”, and the condensation temperature of the dew proof pipe 41 is lowered by 3 to 6 ° C. compared to the main condenser 21.

また、区間h1、区間h2の各区間において、流路切換バルブ45を「閉」に切換えて流路を閉塞し、主凝縮器21の冷媒が蒸発器20に圧力差で流入することを防止する。また、冷凍サイクルが停止した直後の所定時間tの間、流路切換バルブ45を「閉」の状態で圧縮機19を運転する。これによって、防露パイプ41内に滞留する冷媒を回収し、冷凍サイクルの停止中に防露パイプ41内の高温の冷媒が圧力差で蒸発器20に流入することを防止する。   Further, in each of the sections h1 and h2, the flow path switching valve 45 is switched to “closed” to close the flow path, thereby preventing the refrigerant in the main condenser 21 from flowing into the evaporator 20 due to a pressure difference. . Further, during a predetermined time t immediately after the refrigeration cycle is stopped, the compressor 19 is operated with the flow path switching valve 45 in the “closed” state. As a result, the refrigerant staying in the dew prevention pipe 41 is recovered, and the high temperature refrigerant in the dew prevention pipe 41 is prevented from flowing into the evaporator 20 due to a pressure difference while the refrigeration cycle is stopped.

また、図7において、防露パイプ41で暖められる冷凍室18の開口部の代表温度を筐体の表面温度として示している。このように、流路切換バルブ45を「流路B」に切換えると、防露パイプ41の凝縮温度を主凝縮器21に比べて3〜6℃低下させた状態で安定に運転することができる。この結果、外気温度の上下に従って防露パイプ41の温度も上下することで、所定の相対湿度においては、冷凍室18の開口部周辺の筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができる。   Moreover, in FIG. 7, the representative temperature of the opening part of the freezer compartment 18 heated by the dew prevention pipe 41 is shown as the surface temperature of the housing. As described above, when the flow path switching valve 45 is switched to “flow path B”, the condensation temperature of the dew proof pipe 41 can be stably operated in a state in which the condensation temperature is lowered by 3 to 6 ° C. compared to the main condenser 21. . As a result, the temperature of the dew prevention pipe 41 is also raised and lowered according to the rise and fall of the outside air temperature, so that dew prevention is achieved while suppressing condensation on the outer surface of the casing 12 around the opening of the freezer compartment 18 at a predetermined relative humidity. The amount of heat entering due to the pipe 41 can be reduced.

また、周囲の相対湿度が所定値を長時間超えた場合は、例えば、湿度センサ(図示せず)によって検知された冷蔵庫周囲の相対湿度に基づいて、流路切換バルブ45を「流路A」に切換えることで、防露パイプ41の凝縮温度を主凝縮器21とほぼ同等に維持することができるので、冷凍室18の開口部周辺の筐体12の外表面の結露を回避することができる。   Further, when the ambient relative humidity exceeds a predetermined value for a long time, for example, the channel switching valve 45 is set to “channel A” based on the relative humidity around the refrigerator detected by a humidity sensor (not shown). By switching to, the condensation temperature of the dew proof pipe 41 can be maintained substantially the same as that of the main condenser 21, so that condensation on the outer surface of the casing 12 around the opening of the freezer compartment 18 can be avoided. .

なお、本実施の形態3においては、絞り47の流路抵抗を絞り44と同等としたが、冷凍サイクルの起動性をさらに改善するために、絞り47の流路抵抗を絞り44よりも小さくしてもよい。   In the third embodiment, the flow path resistance of the throttle 47 is equal to that of the throttle 44, but the flow path resistance of the throttle 47 is made smaller than that of the throttle 44 in order to further improve the startability of the refrigeration cycle. May be.

このように、流路切換バルブ45を用いて、防露パイプ41の温度を制御することによ
り、冷凍サイクルの稼働中に防露パイプ41に滞留する冷媒の回収動作を行う必要がなく、冷媒の回収動作に伴う電力量の増大と筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができる。また、防露パイプ41内の流路を略上昇流とし、滞留する冷媒量を削減することにより、流路切換バルブ45を閉塞して圧縮機19を運転して冷媒回収する負荷を低減することができる。
In this way, by controlling the temperature of the dew prevention pipe 41 using the flow path switching valve 45, it is not necessary to perform a recovery operation of the refrigerant staying in the dew prevention pipe 41 during the operation of the refrigeration cycle. The amount of intrusion heat caused by the dew prevention pipe 41 can be reduced while suppressing an increase in the amount of electric power accompanying the recovery operation and condensation on the outer surface of the housing 12. Further, by reducing the amount of refrigerant that stays in the flow path in the dew prevention pipe 41 and reducing the amount of refrigerant that remains, the load that collects the refrigerant by operating the compressor 19 by closing the flow path switching valve 45 is reduced. Can do.

以上のように、本発明の冷蔵庫は、主凝縮器21と防露パイプ41の間に、冷媒の流路抵抗を可変する抵抗切換機構を有し、必要に応じて防露パイプ41の凝縮温度を主凝縮器21よりも低下させることにより、冷凍サイクルの稼働中に防露パイプ41に滞留する冷媒の回収動作を行う必要がなく、冷媒の回収動作に伴う電力量の増大と筐体12の外表面の結露を抑制しながら、防露パイプ41に起因する侵入熱量を低減することができ、冷蔵庫の省エネルギー化を図ることができる。   As described above, the refrigerator of the present invention has a resistance switching mechanism that varies the flow path resistance of the refrigerant between the main condenser 21 and the dew prevention pipe 41, and the condensation temperature of the dew prevention pipe 41 as necessary. Is lower than that of the main condenser 21, so that it is not necessary to perform the recovery operation of the refrigerant staying in the dew prevention pipe 41 during the operation of the refrigeration cycle. While suppressing dew condensation on the outer surface, the amount of intrusion heat caused by the dew prevention pipe 41 can be reduced, and energy saving of the refrigerator can be achieved.

また、本発明の冷蔵庫は、最も侵入熱量の大きい防露パイプ41内の流れを略上昇流とすることにより、使用中に防露パイプ41の内部に滞留する冷媒量を抑制することができ、停止中の冷媒回収動作を抑制することでさらなる省エネルギー化を図ることができる。   In addition, the refrigerator of the present invention can suppress the amount of refrigerant staying inside the dew prevention pipe 41 during use by making the flow in the dew prevention pipe 41 having the largest amount of intrusion heat a substantially upward flow. Further energy saving can be achieved by suppressing the refrigerant recovery operation during stoppage.

以上のように、本発明にかかる冷蔵庫は、抵抗切換機構を用いて防露パイプの凝縮温度を主凝縮器よりも低下させることで、冷蔵庫の設置環境や運転状態によって防露パイプ発汗防止性能を維持しながら省エネルギー化を図ることができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。   As described above, the refrigerator according to the present invention uses the resistance switching mechanism to lower the condensation temperature of the dew proof pipe from the main condenser, thereby preventing the dew proof pipe sweating performance depending on the installation environment and operating state of the refrigerator. Energy conservation can be achieved while maintaining it, so it can also be applied to other refrigerated products such as commercial refrigerators.

11 冷蔵庫
12 筐体
15 下部機械室
16 上部機械室
19 圧縮機
20 蒸発器
21 主凝縮器
30 蒸発器ファン
31 冷凍室ダンパー
32 冷蔵室ダンパー
33 ダクト
34 FCC温度センサ
35 PCC温度センサ
40、42、45 流路切換バルブ
43 中間抵抗器
41 防露パイプ
44 絞り
46 バイパス
47 絞り
DESCRIPTION OF SYMBOLS 11 Refrigerator 12 Case 15 Lower machine room 16 Upper machine room 19 Compressor 20 Evaporator 21 Main condenser 30 Evaporator fan 31 Freezer damper 32 Refrigerator damper 33 Duct 34 FCC temperature sensor 35 PCC temperature sensor 40, 42, 45 Flow path switching valve 43 Intermediate resistor 41 Dew proof pipe 44 Restriction 46 Bypass 47 Restriction

Claims (8)

少なくとも圧縮機、蒸発器、主凝縮器、防露パイプ、絞りを有する冷凍サイクルを備え、前記主凝縮器と、前記主凝縮器の下流側にある防露パイプと、前記主凝縮器と前記防露パイプとの間に接続され、冷媒の流路抵抗を可変する抵抗切換機構を有することを特徴とする冷蔵庫。 A refrigeration cycle having at least a compressor, an evaporator, a main condenser, a dew proof pipe, and a throttle, the main condenser, a dew proof pipe downstream of the main condenser, the main condenser and the proof A refrigerator having a resistance switching mechanism that is connected to a dew pipe and varies a flow path resistance of the refrigerant. ニードルバルブを用いて流路断面積を無段階に切換える流路切換バルブからなる抵抗切換機構を有し、主凝縮器と防露パイプとの間に、前記抵抗切換機構を接続したことを特徴とする請求項1に記載の冷蔵庫。 It has a resistance switching mechanism consisting of a flow path switching valve that switches the cross-sectional area of the flow path steplessly using a needle valve, and the resistance switching mechanism is connected between the main condenser and the dew-proof pipe. The refrigerator according to claim 1. 細径管からなる中間抵抗器と、前記中間抵抗器をバイパスするバイパス配管と、前記中間抵抗器と前記バイパス配管とを切換える流路切換バルブからなる抵抗切換機構を有し、主凝縮器と防露パイプとの間に、前記抵抗切換機構を接続したことを特徴とする請求項1に記載の冷蔵庫。 A resistance switching mechanism comprising an intermediate resistor composed of a small-diameter tube, a bypass pipe that bypasses the intermediate resistor, and a flow path switching valve that switches between the intermediate resistor and the bypass pipe. The refrigerator according to claim 1, wherein the resistance switching mechanism is connected to a dew pipe. 内径0.8mm以上の細径管からなる中間抵抗器を備えたことを特徴とする請求項3に記載の冷蔵庫。 The refrigerator according to claim 3, further comprising an intermediate resistor made of a thin tube having an inner diameter of 0.8 mm or more. 冷凍サイクルが通常条件で運転する場合に、抵抗切換機構の抵抗を大きくすることで、防露パイプの温度を主凝縮器よりも低くすることを特徴とする請求項1から4のいずれか一項に記載の冷蔵庫。 5. The temperature of the dew proof pipe is made lower than that of the main condenser by increasing the resistance of the resistance switching mechanism when the refrigeration cycle is operated under normal conditions. Refrigerator. 抵抗切換機構、防露パイプおよび絞りと並列に接続され、前記抵抗切換機構と前記防露パイプをバイパスするバイパス配管と、前記バイパス配管と蒸発器を接続し、流路抵抗を有する第二の絞りと、前記抵抗切換機構と前記バイパス配管の流路を切換える流路切換バルブとを有し、冷凍サイクルの起動時にバイパス配管を使用することを特徴とする請求項1から5のいずれか一項に記載の冷蔵庫。 A resistance switching mechanism, a dew proof pipe and a throttle connected in parallel to each other, a bypass pipe bypassing the resistance switching mechanism and the dew proof pipe, the bypass pipe and the evaporator connected, and a second throttle having a flow path resistance And a flow path switching valve for switching the flow path of the resistance switching mechanism and the bypass piping, and the bypass piping is used at the start of the refrigeration cycle. The refrigerator described. 上部機械室と下部機械室とを備え、前記上部機械室に圧縮機を配置するとともに、前記下部機械室に抵抗切換機構を配置することを特徴とする請求項1から6のいずれか一項に記載の冷蔵庫。 An upper machine room and a lower machine room are provided, a compressor is arranged in the upper machine room, and a resistance switching mechanism is arranged in the lower machine room. The refrigerator described. 防露パイプの出口を上部機械室に配置するとともに、前記防露パイプの流れ方向を略上方とすることを特徴とする請求項7記載の冷蔵庫。 8. The refrigerator according to claim 7, wherein an outlet of the dew proof pipe is disposed in the upper machine room, and a flow direction of the dew proof pipe is set substantially upward.
JP2013234691A 2013-11-13 2013-11-13 Refrigerator Pending JP2015094536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234691A JP2015094536A (en) 2013-11-13 2013-11-13 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234691A JP2015094536A (en) 2013-11-13 2013-11-13 Refrigerator

Publications (1)

Publication Number Publication Date
JP2015094536A true JP2015094536A (en) 2015-05-18

Family

ID=53197049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234691A Pending JP2015094536A (en) 2013-11-13 2013-11-13 Refrigerator

Country Status (1)

Country Link
JP (1) JP2015094536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241949A (en) * 2011-05-18 2012-12-10 Panasonic Corp Refrigerator
CN106766479A (en) * 2016-12-09 2017-05-31 青岛海尔股份有限公司 The simple gate refrigerator and its control method of a kind of temperature-changeable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421660A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Refrigerator
JPS5860168U (en) * 1981-10-16 1983-04-22 三洋電機株式会社 Refrigeration equipment
JPH08189753A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
JPH08285426A (en) * 1995-04-13 1996-11-01 Matsushita Refrig Co Ltd Refrigerator
JPH11211241A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
US20130192285A1 (en) * 2012-01-31 2013-08-01 Lg Electronics Inc. Refrigerator
JP2013210180A (en) * 2012-02-29 2013-10-10 Panasonic Corp Refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421660A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Refrigerator
JPS5860168U (en) * 1981-10-16 1983-04-22 三洋電機株式会社 Refrigeration equipment
JPH08189753A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
JPH08285426A (en) * 1995-04-13 1996-11-01 Matsushita Refrig Co Ltd Refrigerator
JPH11211241A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
US20130192285A1 (en) * 2012-01-31 2013-08-01 Lg Electronics Inc. Refrigerator
JP2013210180A (en) * 2012-02-29 2013-10-10 Panasonic Corp Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241949A (en) * 2011-05-18 2012-12-10 Panasonic Corp Refrigerator
CN106766479A (en) * 2016-12-09 2017-05-31 青岛海尔股份有限公司 The simple gate refrigerator and its control method of a kind of temperature-changeable
CN106766479B (en) * 2016-12-09 2019-11-26 青岛海尔股份有限公司 A kind of the simple gate refrigerator and its control method of temperature-changeable

Similar Documents

Publication Publication Date Title
JP6744830B2 (en) refrigerator
WO2017179500A1 (en) Refrigerator and cooling system
JP6074596B2 (en) refrigerator
WO2020015407A1 (en) Dual-system air-cooled refrigerator having deep-freezing function and cooling control method therefor
US20220333843A1 (en) Three-pipe multi-split air conditioning system and control method thereof
JP2012017920A (en) Refrigerator
WO2019107066A1 (en) Refrigerator
JP4303062B2 (en) refrigerator
JP6101926B2 (en) refrigerator
JP6197176B2 (en) refrigerator
JP2015094536A (en) Refrigerator
JP4654539B2 (en) refrigerator
JP2018096646A (en) Refrigerator
JP2012241949A (en) Refrigerator
JP6846599B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP6340586B2 (en) refrigerator
JP5931329B2 (en) refrigerator
JP5783790B2 (en) Refrigeration equipment
WO2018147113A1 (en) Refrigerator
JP2014059110A (en) Refrigerator and cooling mechanism
JP2012082985A (en) Refrigerator
JP2012251682A (en) Refrigerator
JP6543811B2 (en) refrigerator
JP2019074233A (en) refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905