JP2015014373A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2015014373A
JP2015014373A JP2013139391A JP2013139391A JP2015014373A JP 2015014373 A JP2015014373 A JP 2015014373A JP 2013139391 A JP2013139391 A JP 2013139391A JP 2013139391 A JP2013139391 A JP 2013139391A JP 2015014373 A JP2015014373 A JP 2015014373A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
condensation prevention
way valve
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139391A
Other languages
Japanese (ja)
Other versions
JP6177605B2 (en
Inventor
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
大平 昭義
Akiyoshi Ohira
昭義 大平
真也 岩渕
Shinya Iwabuchi
真也 岩渕
大 板倉
Masaru Itakura
大 板倉
良二 河井
Ryoji Kawai
良二 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013139391A priority Critical patent/JP6177605B2/en
Publication of JP2015014373A publication Critical patent/JP2015014373A/en
Application granted granted Critical
Publication of JP6177605B2 publication Critical patent/JP6177605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator having high energy saving performance by controlling a heating amount by a dew condensation prevention pipe, a high temperature refrigerant inflow amount to an evaporator and an evaporation pressure.SOLUTION: A refrigerator includes: a dew condensation prevention pipe 43 which heats an opening edge of a heat insulating box 10; a first refrigerant flow passage A which flows a refrigerant discharged from a discharge port of a compressor 24 in heat radiation means 41, 42, the dew condensation prevention pipe 43, pressure reducing means 44, an evaporator 7 and a suction port of the compressor 24 in this order; and a second refrigerant flow passage B which flows the refrigerant discharged from the discharge port of the compressor 24 in the heat radiation means 41, 42, the pressure reducing means 44, the evaporator 7 and the suction port of the compressor 24 in this order. Between the heat radiation means 41, 42 and the dew condensation prevention pipe 43, and between the dew condensation prevention pipe 43 and the evaporator 7, refrigerant flow passage control means 110, 100 are provided. The refrigerant flow passage control means 110, 100 perform: switching between the first refrigerant flow passage A and the second refrigerant flow passage B; change of restriction of the pressure reducing means 44; and switching of communicating/blocking of the refrigerant flow passage between the dew condensation prevention pipe 43 and the evaporator 7.

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2000−65461号公報(特許文献1)及び特開平8−189753号公報(特許文献2)がある。   As background art in this technical field, there are JP-A-2000-65461 (Patent Document 1) and JP-A-8-189753 (Patent Document 2).

特許文献1の要約欄には、内部に複数の貯蔵室を形成し、断熱扉を備えた断熱箱体に、圧縮機、凝縮器、減圧器、蒸発器を取り付け、これらを配管により環状に接続して冷凍サイクルを構成し、この冷凍サイクルにより発生される冷気により貯蔵室を冷却する冷蔵庫において、凝縮器と減圧器の間の配管により断熱箱体フランジ部と仕切りフランジ部に埋設された結露防止配管を形成し、凝縮器からの高温冷媒を導くように構成するとともに、結露防止配管への配管に、この結露防止配管を迂回させて高温冷媒を導くための電磁三方弁(冷媒流路制御手段)を設けたことが記載されている。   In the summary column of Patent Document 1, a plurality of storage chambers are formed inside, a compressor, a condenser, a decompressor, and an evaporator are attached to a heat insulation box provided with a heat insulation door, and these are connected in a ring by piping. In a refrigerator that forms a refrigeration cycle and cools the storage room with the cold air generated by the refrigeration cycle, dew condensation prevention embedded in the heat insulating box flange part and the partition flange part by piping between the condenser and the decompressor An electromagnetic three-way valve (refrigerant flow path control means for guiding the high-temperature refrigerant by bypassing this dew-condensation piping to the piping to the dew-condensation piping as well as forming a pipe and guiding the high-temperature refrigerant from the condenser ) Is provided.

また、特許文献2の要約欄には、ドライヤとキャピラリチューブ(減圧手段)を備えた防露パイプと、第2のドライヤと第2のキャピラリチューブを備えたバイパス管と、冷蔵室の一画の温度を検知する温度センサと、外気温センサと、防露パイプとバイパス管を温度センサの温度が外気温センサで割り出した露点温度で冷媒を振り分ける切り替え弁を有する冷凍サイクルを備えた冷蔵庫が記載されている。   In the summary column of Patent Document 2, a dew-proof pipe provided with a dryer and a capillary tube (decompression unit), a bypass pipe provided with a second dryer and a second capillary tube, and a section of the refrigerator compartment A refrigerator having a temperature sensor that detects temperature, an outside air temperature sensor, and a refrigeration cycle having a switching valve that distributes refrigerant at a dew point temperature determined by the temperature sensor of the temperature sensor of the dew-proof pipe and bypass pipe is described. ing.

特開2000−65461号公報JP 2000-65461 A 特開平8−189753号公報Japanese Patent Laid-Open No. 8-189533

特許文献1及び2に記載の冷蔵庫では、結露防止配管(防露パイプ)に冷媒を流す冷媒流路と、結露防止配管をバイパスさせる冷媒流路を設けている。この構成により、結露防止配管から放熱される熱を利用して断熱箱体に形成された貯蔵室の開口縁を加熱し、結露の発生を抑制している。しかしながら、同時に開口縁と隣接する貯蔵室内にもその熱の一部が侵入して加熱することになる。   In the refrigerators described in Patent Documents 1 and 2, a refrigerant flow path for flowing a refrigerant through a dew condensation prevention pipe (dew condensation prevention pipe) and a refrigerant flow path for bypassing the dew condensation prevention pipe are provided. With this configuration, the opening edge of the storage chamber formed in the heat insulating box is heated using the heat radiated from the dew condensation prevention pipe, thereby suppressing the occurrence of dew condensation. However, at the same time, part of the heat enters the storage chamber adjacent to the opening edge and is heated.

従って、結露防止配管による開口縁の加熱は、冷凍サイクルで吸熱する貯蔵室内の熱を増やしてしまうので、省エネルギー性能の低下をもたらす要因の一つであった。そのため、結露防止配管を備える冷媒流路と、結露防止配管をバイパスさせる冷媒流路を、冷媒流路制御手段により切り換えて、結露防止配管による加熱量を適切に制御して、省エネルギー性能を高めている。   Therefore, the heating of the opening edge by the dew condensation prevention pipe increases the heat in the storage chamber that absorbs heat in the refrigeration cycle, which is one of the factors that cause a decrease in energy saving performance. Therefore, the refrigerant flow path provided with the dew condensation prevention pipe and the refrigerant flow path that bypasses the dew condensation prevention pipe are switched by the refrigerant flow path control means to appropriately control the heating amount by the dew condensation prevention pipe, thereby improving the energy saving performance. Yes.

一方、結露防止配管以外にも、圧縮機停止時に放熱側との圧力差で蒸発器に流入する冷媒によって貯蔵室内に熱が侵入するが、従来はこの現象は考慮されていなかった。   On the other hand, in addition to the condensation prevention pipe, heat enters the storage chamber by the refrigerant flowing into the evaporator due to the pressure difference from the heat radiation side when the compressor is stopped, but this phenomenon has not been considered in the past.

また、従来の冷蔵庫では、蒸発圧力(蒸発温度)への配慮が不十分であった。蒸発圧力は冷媒が蒸発器で蒸発する際の圧力で、蒸発器で冷媒と熱交換する空気の温度に対して、適切な蒸発温度にすることが省エネルギー性能の向上につながる。例えば、貯蔵室内が十分に冷えている状態では、扉の開閉に伴って貯蔵室内に流入する外気の影響が大きくなるので、貯蔵室内の空気温度に応じた蒸発圧力の制御が望ましい。   Moreover, in the conventional refrigerator, consideration to evaporation pressure (evaporation temperature) was insufficient. The evaporating pressure is a pressure at which the refrigerant evaporates in the evaporator, and an appropriate evaporating temperature with respect to the temperature of the air that exchanges heat with the refrigerant in the evaporator leads to an improvement in energy saving performance. For example, in a state where the storage chamber is sufficiently cooled, the influence of outside air flowing into the storage chamber increases with the opening and closing of the door. Therefore, it is desirable to control the evaporation pressure according to the air temperature in the storage chamber.

複数の減圧手段を備えてこれらを切り換えることで、蒸発圧力を制御することが考えられる。特許文献2に記載の冷蔵庫では、キャピラリチューブ(減圧手段)を2つ備えているが、キャピラリチューブの切り換えによる蒸発圧力の制御については考慮されていなかった。なお、特許文献1には、減圧手段に関しての詳細な記述はなされていない。   It is conceivable to control the evaporation pressure by providing a plurality of decompression means and switching between them. The refrigerator described in Patent Document 2 includes two capillary tubes (decompression means), but control of the evaporation pressure by switching the capillary tubes has not been considered. Patent Document 1 does not include a detailed description regarding the decompression means.

以上から、本発明は、結露防止配管による加熱量、蒸発器への高温冷媒の流入量、及び蒸発圧力を制御することで、省エネルギー性能の高い冷蔵庫を提供することを目的とする。   In view of the above, an object of the present invention is to provide a refrigerator with high energy saving performance by controlling the amount of heating by the condensation prevention pipe, the amount of high-temperature refrigerant flowing into the evaporator, and the evaporation pressure.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、前方に開口を形成する開口縁を有する断熱箱体と、前記開口を開閉する扉と、該扉と前記断熱箱体によって形成された貯蔵室と、圧縮機と、放熱手段と、前記開口縁を加熱する結露防止配管と、減圧手段と、蒸発器とを備えた冷蔵庫において、前記圧縮機の吐出口から吐出される前記冷媒を、前記放熱手段、前記結露防止配管、前記減圧手段、前記蒸発器、前記圧縮機の吸込口の順に流す第一の冷媒流路と、前記圧縮機の吐出口から吐出される前記冷媒を、前記放熱手段、前記減圧手段、前記蒸発器、前記圧縮機の吸込口の順に流す第二の冷媒流路と、を備え、前記放熱手段と前記結露防止配管の間と、前記結露防止配管と前記蒸発器の間に、冷媒流路制御手段を備え、該冷媒流路制御手段によって、前記第一の冷媒流路と前記第二の冷媒流路の切り換え、前記減圧手段の絞りの変更、及び前記結露防止配管と前記蒸発器との間の冷媒流路の連通と閉塞の切り換えを行うことを特徴とする。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. To give an example, a heat insulating box having an opening edge that forms an opening in the front, a door that opens and closes the opening, the door, and the heat insulation. In a refrigerator provided with a storage chamber formed by a box, a compressor, a heat radiating means, a dew condensation preventing pipe for heating the opening edge, a pressure reducing means, and an evaporator, discharge from the discharge port of the compressor The refrigerant to be discharged is discharged from a first refrigerant flow path that flows in the order of the heat dissipating means, the dew condensation prevention pipe, the pressure reducing means, the evaporator, and the suction port of the compressor, and the discharge port of the compressor. A second refrigerant flow path for causing the refrigerant to flow in the order of the heat radiation means, the pressure reduction means, the evaporator, and the suction port of the compressor, and between the heat radiation means and the dew condensation prevention pipe, The refrigerant flow path control means between the prevention piping and the evaporator A refrigerant between the first refrigerant flow path and the second refrigerant flow path, a change in a throttle of the pressure reducing means, and a refrigerant between the dew condensation prevention pipe and the evaporator. It is characterized by switching between communication and blockage of the flow path.

本発明によれば、結露防止配管による加熱量、蒸発器への高温冷媒の流入量、及び蒸発圧力を制御することで、省エネルギー性能の高い冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator with high energy saving performance can be provided by controlling the heating amount by dew condensation prevention piping, the inflow amount of the high temperature refrigerant | coolant to an evaporator, and evaporation pressure.

本発明の実施例1に関する冷蔵庫の正面図である。It is a front view of the refrigerator regarding Example 1 of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 本発明の実施例1に関する冷凍サイクル(冷媒流路)の構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle (refrigerant flow path) regarding Example 1 of this invention. 本発明の実施例1に関する機械室の内部を背面から見た場合の模式図である。It is a schematic diagram at the time of seeing the inside of the machine room regarding Example 1 of this invention from the back. 本発明の実施例1に関する壁面放熱配管と結露防止配管の配設位置を示す図である。It is a figure which shows the arrangement | positioning position of the wall surface thermal radiation piping and dew condensation prevention piping regarding Example 1 of this invention. 本発明の実施例1に関する冷凍室間仕切り壁の断面拡大図である。It is a cross-sectional enlarged view of the freezer compartment partition wall regarding Example 1 of this invention. 本発明の実施例1に関する熱交換部の概略を示す断面模式図である。It is a cross-sectional schematic diagram which shows the outline of the heat exchange part regarding Example 1 of this invention. 本発明の実施例1に関する冷凍サイクルの各部における冷媒の状態をモリエル線図上に示した図である。It is the figure which showed on the Mollier diagram the state of the refrigerant | coolant in each part of the refrigerating cycle regarding Example 1 of this invention. 本発明の実施例1に関する圧縮機からキャピラリチューブまでの配管内部の冷媒の状態を示した図である。It is the figure which showed the state of the refrigerant | coolant inside piping from the compressor regarding Example 1 of this invention to a capillary tube. 本発明の実施例1に関する冷媒流路を切り換える時間割合と相対湿度の関係である。It is the relationship between the time ratio which switches the refrigerant | coolant flow path regarding Example 1 of this invention, and relative humidity. 本発明の実施例1に関する熱負荷が小さい場合の冷却運転の一例を示すタイムチャートである。It is a time chart which shows an example of the cooling operation in case the heat load regarding Example 1 of this invention is small. 本発明の実施例1に関する熱負荷が大きい場合の冷却運転の一例を示すタイムチャートである。It is a time chart which shows an example of the cooling operation in case the heat load regarding Example 1 of this invention is large. 本発明の実施例1に関する蒸発圧力が低下した場合の冷媒の状態をモリエル線図上に示した図である。It is the figure which showed on the Mollier diagram the state of the refrigerant | coolant when the evaporation pressure regarding Example 1 of this invention fell. 本発明の実施例2に関する冷蔵庫の冷凍サイクル(冷媒流路)の構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle (refrigerant flow path) of the refrigerator regarding Example 2 of this invention. 本発明の実施例3に関する冷蔵庫の冷凍サイクル(冷媒流路)の構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle (refrigerant flow path) of the refrigerator regarding Example 3 of this invention. 本発明の実施例3の変形例1であって四方弁と三方弁を用いた冷凍サイクルの構成を説明する図である。It is the modification 1 of Example 3 of this invention, Comprising: It is a figure explaining the structure of the refrigerating cycle using a four-way valve and a three-way valve. 本発明の実施例3の変形例2であって五方弁を用いた冷凍サイクルの構成を説明する図である。It is the modification 2 of Example 3 of this invention, and is a figure explaining the structure of the refrigerating cycle using a five-way valve. 本発明の実施例3の変形例3であって四方弁と膨張弁を用いた冷凍サイクルの構成を説明する図である。It is the modification 3 of Example 3 of this invention, and is a figure explaining the structure of the refrigerating cycle using a four-way valve and an expansion valve.

以下、本発明の実施例について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
本発明の実施例1に関する冷蔵庫を、図1から図11を参照して説明する。
Example 1
The refrigerator regarding Example 1 of this invention is demonstrated with reference to FIGS.

図1は、本発明の実施例1に関する冷蔵庫の正面図である。図2は、図1のA−A断面図である。実施例1の冷蔵庫1は、貯蔵室として上方から冷蔵室2、製氷室3と上段冷凍室4、下段冷凍室5、野菜室6を備えている。製氷室3と上段冷凍室4は左右に配置されている。なお製氷室3、上段冷凍室4、下段冷凍室5は合わせて冷凍室60と呼ぶ。冷蔵室2は前面側に左右に分割された観音開きの冷蔵室扉2a、2bを備え、製氷室3と、上段冷凍室4と、下段冷凍室5と、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。   FIG. 1 is a front view of a refrigerator according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG. The refrigerator 1 according to the first embodiment includes a refrigerator room 2, an ice making room 3, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 as storage rooms from above. The ice making chamber 3 and the upper freezing chamber 4 are arranged on the left and right. The ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 60. The refrigerating room 2 is provided with doors 2a and 2b that are separated from each other on the front side, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer type ice making. The room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are provided.

冷蔵庫1は、開閉状態をそれぞれ検知する扉センサ(図示せず)や、冷蔵室2や野菜室6の温度設定や冷凍室60の温度設定をする温度設定器(図示せず)等を備えている。冷蔵室扉2a、2bを回動可能にするために、冷蔵庫1に固定する扉ヒンジ(図示せず)が冷蔵庫1の本体上部に設けてあり、扉ヒンジは扉ヒンジカバー39で覆われている。扉ヒンジカバー39の内部には貯蔵室外の温度及び湿度を検知する外気温度センサ37、外気湿度センサ38を設けている。   The refrigerator 1 includes a door sensor (not shown) that detects the open / closed state, a temperature setting device (not shown) that sets the temperature of the refrigerator compartment 2 and the vegetable compartment 6, and the temperature of the freezer compartment 60, and the like. Yes. A door hinge (not shown) that is fixed to the refrigerator 1 is provided in the upper part of the main body of the refrigerator 1 so that the refrigerator compartment doors 2 a and 2 b can be rotated, and the door hinge is covered with a door hinge cover 39. . Inside the door hinge cover 39, an outside air temperature sensor 37 and an outside air humidity sensor 38 for detecting the temperature and humidity outside the storage room are provided.

冷蔵庫1の貯蔵室内と貯蔵室外は、外箱1aと内箱1bの間に、一例として発泡ウレタンの発泡断熱材を充填することにより形成された断熱箱体10によって隔てられている。なお、貯蔵室に連通する蒸発器収納室8も内部が外部に対して断熱箱体10によって隔てられている。また、冷蔵庫1の断熱箱体10の内部には真空断熱材26を実装している。   The storage room and the outside of the storage room of the refrigerator 1 are separated by a heat insulating box 10 formed by filling a foam heat insulating material of urethane foam, for example, between the outer box 1a and the inner box 1b. Note that the evaporator storage chamber 8 communicating with the storage chamber is also separated from the outside by a heat insulating box 10. A vacuum heat insulating material 26 is mounted inside the heat insulating box 10 of the refrigerator 1.

冷蔵庫1の各貯蔵室は、冷蔵室−冷凍室仕切り壁28により、冷蔵室2と冷凍室60とが隔てられ、冷凍室−野菜室仕切り壁29により、冷凍室60と野菜室6とが隔てられている。製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室間を隔てる仕切りは設けられていないが、扉3a、4a、5aの隙間から貯蔵室外への冷凍室60内空気の漏れを防止する冷凍室間仕切り壁30が備えられている。これらの仕切り壁28、29、30により形成される冷凍室60の開口縁と、扉3a、4a、5aにより、冷凍室60と貯蔵室外とを隔てている。   In each storage room of the refrigerator 1, the refrigerator compartment 2 and the freezer compartment 60 are separated by the refrigerator compartment-freezer compartment partition wall 28, and the freezer compartment 60 and the vegetable compartment 6 are separated by the refrigerator compartment-vegetable compartment partition wall 29. It has been. There is no partition that separates the storage chambers of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, but leakage of the air in the freezing chamber 60 from the gaps of the doors 3a, 4a, and 5a to the outside of the storage chamber. A freezer compartment partition wall 30 to prevent is provided. The opening edge of the freezer compartment 60 formed by these partition walls 28, 29 and 30 and the doors 3a, 4a and 5a separate the freezer compartment 60 from the outside of the storage compartment.

冷蔵室2には、扉2a、2bの貯蔵室側に設けられた扉ポケット32と、冷蔵室2内を複数の貯蔵空間に区画する棚40を、それぞれ複数備えている。また冷蔵室2の下部には、内部を減圧することにより食品の保存性を高めている減圧貯蔵室20を備えている。   The refrigerator compartment 2 includes a plurality of door pockets 32 provided on the storage compartment side of the doors 2a and 2b and a plurality of shelves 40 that divide the refrigerator compartment 2 into a plurality of storage spaces. In the lower part of the refrigerator compartment 2, there is provided a reduced-pressure storage chamber 20 that enhances the storability of food by reducing the pressure inside.

上段冷凍室4、下段冷凍室5及び野菜室6には、それぞれ各貯蔵室の前方に備えられた扉と一体に引き出される収納容器4b、5b、6bを設けており、各扉の取手部(図示せず)に手を掛けて手前側に引き出すことにより収納容器4b、5b、6bを引き出せるようになっている。製氷室3も同様に、製氷室扉3aと一体に引き出される収納容器3bを設け、製氷室扉3aの取手部(図示せず)に手を掛けて手前側に引き出せるようになっている。   The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 4b, 5b, 6b that are pulled out integrally with the doors provided in front of the respective storage compartments. The storage containers 4b, 5b, and 6b can be pulled out by placing the hand on (not shown) and pulling it out to the front side. Similarly, the ice making chamber 3 is provided with a storage container 3b that is pulled out integrally with the ice making chamber door 3a so that the handle (not shown) of the ice making chamber door 3a can be pulled out to the front side.

後述する蒸発器7及び各貯蔵室の温度は、蒸発器7の上部に設けた蒸発器温度センサ36、冷蔵室2に設けた冷蔵室温度センサ33、野菜室6に設けた野菜室温度センサ34、下段冷凍室5に設けた冷凍室温度センサ35により検知している。さらに、前述のように、冷蔵庫1は貯蔵室外の温度と湿度を検知する外気温度センサ37と外気湿度センサ38も備えている。   The temperatures of the evaporator 7 and each storage room, which will be described later, are as follows: an evaporator temperature sensor 36 provided at the top of the evaporator 7, a refrigerator temperature sensor 33 provided in the refrigerator room 2, and a vegetable room temperature sensor 34 provided in the vegetable room 6. The temperature is detected by a freezer temperature sensor 35 provided in the lower freezer room 5. Furthermore, as described above, the refrigerator 1 also includes the outside air temperature sensor 37 and the outside air humidity sensor 38 that detect the temperature and humidity outside the storage room.

冷蔵庫1の天井壁面にはCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御装置の一例である制御基板31を配置している。制御基板31は、外気温度センサ37、外気湿度センサ38、蒸発器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ34、冷凍室温度センサ35、各扉の開閉状態をそれぞれ検知する前述した扉センサ(図示せず)等と接続されている。前述のCPUは、これらの出力値と前述のROMに予め記録したプログラムを基に、後述する圧縮機24や貯蔵室内ファン9のON/OFFや回転速度(時間当たりの回転数)等の制御、三方弁110、二方弁100の制御、冷蔵室ダンパ50、野菜室ダンパ(図示せず)、及び冷凍室ダンパ52を個別に開閉させるそれぞれのステッピングモータ(図示せず)の制御等を行っている。   A control board 31, which is an example of a control device on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted, is disposed on the ceiling wall surface of the refrigerator 1. The control board 31 detects the open / closed state of each door, as described above, for the outside air temperature sensor 37, the outside air humidity sensor 38, the evaporator temperature sensor 35, the refrigerating room temperature sensor 33, the vegetable room temperature sensor 34, the freezer room temperature sensor 35, respectively. It is connected to a door sensor (not shown). The aforementioned CPU controls the ON / OFF of the compressor 24 and the storage chamber fan 9, which will be described later, the rotational speed (the number of revolutions per hour), etc., based on these output values and the programs recorded in the ROM. Control of the three-way valve 110 and the two-way valve 100, control of the respective stepping motors (not shown) for individually opening and closing the refrigerator compartment damper 50, the vegetable compartment damper (not shown), and the freezer compartment damper 52 are performed. Yes.

冷蔵庫1内の空気を冷却する蒸発器7は、冷凍室60と断熱箱体10の背面壁との間に形成された蒸発器収納室8に備えられている。蒸発器7と熱交換して冷やされた空気は、蒸発器7の上方に設けられた貯蔵室内ファン9により、冷蔵室ダクト11を介して冷蔵室2に送られ、野菜室ダクト(図示せず)を介して野菜室6に送られる。同様に、蒸発器7で冷やされた空気は、冷凍室ダクト13を介して製氷室3と、上段冷凍室4と、下段冷凍室5の各貯蔵室へ送られる。各貯蔵室への送風は、各貯蔵室に設けた温度センサ33、34、35と連動して、冷蔵室ダンパ50、野菜室ダンパ(図示せず)、冷凍室ダンパ52の開閉により制御されている。冷蔵室2、冷凍室60、野菜室6を冷却した空気は、それぞれ冷蔵室戻りダクト(図示せず)、冷凍室戻りダクト17、野菜室戻りダクト18を介して蒸発器収納室8に戻り、再び蒸発器7で冷却される。   The evaporator 7 that cools the air in the refrigerator 1 is provided in an evaporator storage chamber 8 that is formed between the freezer compartment 60 and the back wall of the heat insulating box 10. The air cooled by exchanging heat with the evaporator 7 is sent to the refrigerating room 2 through the refrigerating room duct 11 by the storage room fan 9 provided above the evaporator 7, and the vegetable room duct (not shown). ) To the vegetable compartment 6. Similarly, the air cooled by the evaporator 7 is sent to the storage rooms of the ice making room 3, the upper freezing room 4, and the lower freezing room 5 through the freezing room duct 13. The air blowing to each storage room is controlled by opening and closing the refrigerator compartment damper 50, the vegetable compartment damper (not shown), and the freezer compartment damper 52 in conjunction with the temperature sensors 33, 34, 35 provided in each storage compartment. Yes. The air that has cooled the refrigerator compartment 2, the freezer compartment 60, and the vegetable compartment 6 returns to the evaporator storage compartment 8 via the refrigerator compartment return duct (not shown), the freezer compartment return duct 17, and the vegetable compartment return duct 18, respectively. It is cooled again by the evaporator 7.

また、除霜運転時に蒸発器7に付着した霜を加熱する除霜ヒータ22は、蒸発器7の下方に設置されている。除霜によって生じた除霜水は、蒸発器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後述する機械室19に配された蒸発皿21に排出される。   In addition, a defrost heater 22 that heats frost attached to the evaporator 7 during the defrosting operation is installed below the evaporator 7. The defrosted water generated by the defrosting flows into the eaves 23 provided in the lower part of the evaporator storage chamber 8 and then is discharged to the evaporating dish 21 disposed in the machine chamber 19 described later via the drain pipe 27. .

次に本実施例の冷凍サイクル構成を示す。図3は、実施例1に関わる冷蔵庫の冷凍サイクル(冷媒流路)の構成を説明する図である。本実施例の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である貯蔵室外放熱器41と壁面放熱配管42、仕切り壁28、29、30の前面部、すなわち開口縁への結露を抑制する結露防止配管43、冷媒を減圧させる減圧手段である第一のキャピラリチューブ44aと第二のキャピラリチューブ44b、冷媒と貯蔵室内の空気を熱交換させて、貯蔵室内の熱を吸熱する蒸発器7とを備え、これらにより貯蔵室内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ45と、液冷媒が圧縮機24に流入するのを防止する気液分離器46を備え、さらに冷媒合流部200と、冷媒流路を制御する二方弁100、三方弁110も備えており、これらを接続配管72,73,74,75,76,77,78,79,80,81,82,83,84によりそれぞれ接続することで冷凍サイクルを構成している。なお、本実施例の冷蔵庫1は、冷媒にイソブタンを用いている。また、本実施例の圧縮機24はインバータを備えて回転速度を変えることができるが、過度に低速で圧縮機24を駆動させると、圧縮機24内の潤滑油が流れ難くなるので、回転速度には下限を設けている。   Next, the configuration of the refrigeration cycle of this example is shown. FIG. 3 is a diagram illustrating the configuration of the refrigeration cycle (refrigerant flow path) of the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the compressor 24, the heat radiation means 41 that is a heat radiation means for radiating the refrigerant, the wall surface heat radiation pipe 42, and the condensation on the front surfaces of the partition walls 28, 29, and 30, that is, the opening edge. Condensation prevention piping 43 for suppressing, first capillary tube 44a and second capillary tube 44b as decompression means for decompressing the refrigerant, and evaporator for absorbing heat in the storage chamber by exchanging heat between the refrigerant and the air in the storage chamber 7 to cool the storage chamber. In addition, a dryer 45 that removes moisture in the refrigeration cycle, a gas-liquid separator 46 that prevents liquid refrigerant from flowing into the compressor 24, and a refrigerant junction 200 and two ways for controlling the refrigerant flow path are provided. A valve 100 and a three-way valve 110 are also provided, and these are connected by connecting pipes 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, respectively, thereby constituting a refrigeration cycle. doing. In addition, the refrigerator 1 of a present Example uses isobutane as a refrigerant | coolant. In addition, the compressor 24 of this embodiment includes an inverter and can change the rotation speed. However, if the compressor 24 is driven at an excessively low speed, the lubricating oil in the compressor 24 becomes difficult to flow. Has a lower limit.

本実施例の冷蔵庫1では、減圧手段として、断面積の小さい冷媒流路を通過させることで、冷媒と管内壁との間に生じる摩擦によって冷媒を減圧させる、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bの2つのキャピラリチューブを備えている。なお、これら第一のキャピラリチューブ44aと第二のキャピラリチューブ44bを合わせてキャピラリチューブ44と称する。実施例1では、第一のキャピラリチューブ44aと、第二のキャピラリチューブ44b共に負荷が小さい場合に適した絞りの強さにしている。ここで、絞りの強さとは、減圧のし易さを示すもので、キャピラリチューブ44では、管の内径が細いほど絞りが強く、また、長さが長いほど絞りが強くなる。   In the refrigerator 1 of the present embodiment, the first capillary tube 44a and the second capillary tube 44a and the second capillary tube depressurize the refrigerant by friction generated between the refrigerant and the inner wall of the pipe by passing through a refrigerant channel having a small cross-sectional area as a decompression unit. The capillary tube 44b is provided with two capillary tubes. The first capillary tube 44a and the second capillary tube 44b are collectively referred to as a capillary tube 44. In the first embodiment, both the first capillary tube 44a and the second capillary tube 44b have a diaphragm strength suitable for a case where the load is small. Here, the strength of the throttling indicates the ease of pressure reduction. In the capillary tube 44, the narrower the inner diameter of the tube, the stronger the throttling, and the longer the length, the stronger the throttling.

冷媒合流部200は、3つの接続配管80、81、82と接続し、この冷媒合流部200に接続された3つの接続配管80、81、82を常に連通状態とする部材である。   The refrigerant junction part 200 is a member that is connected to the three connection pipes 80, 81, and 82 and always connects the three connection pipes 80, 81, and 82 connected to the refrigerant junction part 200.

二方弁100は、流路の開閉を切り換えることができる部材で、前後の接続配管78,79を連通させた状態を開モード、接続配管78と接続配管79の間を閉塞させた状態を閉モードとする。   The two-way valve 100 is a member capable of switching the opening and closing of the flow path. The state where the front and rear connection pipes 78 and 79 are communicated with each other is an open mode, and the state where the connection pipe 78 and the connection pipe 79 are closed is closed. Mode.

三方弁110は、110iで示す流入口と、110o_A、110o_Bで示す2つの流出口を備え、流入口110iと、2つの流出口110o_A、110o_Bのうち何れか、又は両方とを連通させる部材である。なお、以下で記号iは流入口、記号oは流出口を表す。流入口110iと流出口110o_Aを連通とした状態をAモード、流入口110iと流出口110o_Bを連通とした状態をBモードとし、流入口110iと流出口110o_A、110o_Bの両方の流出口とを連通させている状態をOモードとする。   The three-way valve 110 is a member that includes an inflow port denoted by 110i and two outflow ports denoted by 110o_A and 110o_B, and communicates the inflow port 110i with either one or both of the two outflow ports 110o_A and 110o_B. . In the following, symbol i represents an inlet and symbol o represents an outlet. The state in which the inlet 110i and the outlet 110o_A are in communication with each other is A mode, the state in which the inlet 110i and the outlet 110o_B are in communication with each other is in B mode, and the inlet 110i and both outlets 110o_A and 110o_B are in communication with each other. Let the state which is made to be O mode.

ここで、各構成部材と各接続配管は次のように配設している。接続配管72は圧縮機24の流出口と貯蔵室外放熱器41を接続し、接続配管73は貯蔵室外放熱器41と壁面放熱配管42を接続し、接続配管74は壁面放熱配管42とドライヤ45を接続し、接続配管75はドライヤ45と三方弁110の流入口110iを接続している。三方弁110は、その他に、流出口110o_Aを接続配管76と接続し、流出口110o_Bを接続配管77と接続している。   Here, each component and each connection pipe are arranged as follows. The connection pipe 72 connects the outlet of the compressor 24 and the outdoor radiator 41, the connection pipe 73 connects the external radiator 41 and the wall surface radiation pipe 42, and the connection pipe 74 connects the wall surface radiation pipe 42 and the dryer 45. The connecting pipe 75 connects the dryer 45 and the inlet 110 i of the three-way valve 110. In addition, the three-way valve 110 has an outlet 110o_A connected to the connecting pipe 76 and an outlet 110o_B connected to the connecting pipe 77.

接続配管76における流出口110o_Aと接続された一端と反対側の他端は、結露防止配管43と接続している。そして、接続配管78により結露防止配管43と二方弁100を接続し、接続配管79により二方弁100と第一のキャピラリチューブ44aを接続し、接続配管80により第一のキャピラリチューブ44aと冷媒合流部200を接続している。また、三方弁110の流出口110o_Bと接続された接続配管77は、他端を第二のキャピラリチューブ44bと接続している。そして、接続配管81により第二のキャピラリチューブ44bと冷媒合流部200が接続されている。   The other end opposite to the one end connected to the outlet 110 o </ i> _A in the connection pipe 76 is connected to the dew condensation prevention pipe 43. The dew condensation prevention pipe 43 and the two-way valve 100 are connected by the connection pipe 78, the two-way valve 100 and the first capillary tube 44a are connected by the connection pipe 79, and the first capillary tube 44a and the refrigerant are connected by the connection pipe 80. The junction 200 is connected. The other end of the connection pipe 77 connected to the outlet 110o_B of the three-way valve 110 is connected to the second capillary tube 44b. Then, the second capillary tube 44 b and the refrigerant junction 200 are connected by the connection pipe 81.

冷媒合流部200は、前述の冷媒配管80、81と、冷媒配管82に接続され、冷媒配管82により蒸発器7に接続されている。そして、冷媒配管83により蒸発器7と気液分離器46を接続し、接続配管84により気液分離器46と圧縮機24を接続している。   The refrigerant junction 200 is connected to the refrigerant pipes 80 and 81 and the refrigerant pipe 82 described above, and is connected to the evaporator 7 through the refrigerant pipe 82. The evaporator 7 and the gas-liquid separator 46 are connected by the refrigerant pipe 83, and the gas-liquid separator 46 and the compressor 24 are connected by the connection pipe 84.

詳細は後述するが、蒸発器7の入口側に接続したキャピラリチューブ44と、蒸発器7の出口側に接続した冷媒配管84で構成される熱交換部47を設けている。   As will be described in detail later, a heat exchanging portion 47 is provided which is composed of a capillary tube 44 connected to the inlet side of the evaporator 7 and a refrigerant pipe 84 connected to the outlet side of the evaporator 7.

次に、三方弁110の流入口110iと流出口110o_Aを連通状態(Aモード)にして形成する、第一の冷媒流路Aについて説明する。   Next, the 1st refrigerant | coolant flow path A formed by making the inflow port 110i and the outflow port 110o_A of the three-way valve 110 into a communication state (A mode) is demonstrated.

圧縮機24により高温高圧となった冷媒は、接続配管72、73を介して、貯蔵室外放熱器41、壁面放熱配管42に流入し、これらにより放熱する。その後、冷媒は接続配管74、ドライヤ75、接続配管75を介して、三方弁110に流入する。三方弁110は、流入口110iと流出口101o_Aを連通状態にしているので、接続配管76を介して結露防止配管43を流れ、結露防止配管43においても放熱する。この結露防止配管43からの放熱によって、仕切り壁28、29、30の前面部である貯蔵室の開口縁(図2参照)が加熱される。その後、冷媒は接続配管79、二方弁100、接続配管80を介して、第一のキャピラリチューブ44aに流入する。   The refrigerant that has become high-temperature and high-pressure by the compressor 24 flows into the outside-storage-room radiator 41 and the wall surface radiation pipe 42 via the connection pipes 72 and 73 and radiates heat. Thereafter, the refrigerant flows into the three-way valve 110 through the connection pipe 74, the dryer 75, and the connection pipe 75. Since the three-way valve 110 communicates the inflow port 110i and the outflow port 101o_A, the three-way valve 110 flows through the dew condensation prevention pipe 43 via the connection pipe 76 and also radiates heat in the dew condensation prevention pipe 43. Due to the heat radiation from the dew condensation prevention pipe 43, the opening edge (see FIG. 2) of the storage chamber, which is the front surface of the partition walls 28, 29, and 30, is heated. Thereafter, the refrigerant flows into the first capillary tube 44a through the connection pipe 79, the two-way valve 100, and the connection pipe 80.

冷媒は、この第一のキャピラリチューブ44aにより減圧されて低圧となり、また低圧となることで、一部の冷媒が蒸発して気化熱が奪われるため低温となる。低温低圧となった冷媒は、冷媒合流部200、接続配管82を介して流入した蒸発器7にて、貯蔵室内の空気から吸熱する。この冷媒の吸熱により、貯蔵室内の空気は冷却され、冷媒はさらに蒸発する。蒸発器7から流出した冷媒は、接続配管83、気液分離器46、接続配管84を介して圧縮機24に戻る。   The refrigerant is depressurized by the first capillary tube 44a to become a low pressure, and becomes a low pressure because a part of the refrigerant evaporates and the heat of vaporization is taken away. The low-temperature and low-pressure refrigerant absorbs heat from the air in the storage chamber in the evaporator 7 that has flowed in through the refrigerant junction 200 and the connection pipe 82. Due to the heat absorption of the refrigerant, the air in the storage chamber is cooled and the refrigerant further evaporates. The refrigerant that has flowed out of the evaporator 7 returns to the compressor 24 via the connection pipe 83, the gas-liquid separator 46, and the connection pipe 84.

次に、三方弁110の流入口110iと流出口110o_Bを連通状態(Bモード)にして形成する、第二の冷媒流路Bについて説明する。   Next, a description will be given of the second refrigerant flow path B that is formed with the inflow port 110i and the outflow port 110o_B of the three-way valve 110 in a communication state (B mode).

第一の冷媒流路Aと同様に、圧縮機24により高温高圧となった冷媒は、各接続配管72,73,74,75を介し貯蔵室外放熱器41、壁面放熱配管42において放熱し、三方弁110に流入する。三方弁110は流入口110iと流出口110o_Bを連通状態にしているので、冷媒は接続配管77を介して第二のキャピラリチューブ44bに流れる。その後は第一の冷媒流路Aと同様に、接続配管81,82,83,84を介して、蒸発器7、気液分離器46に流入しながら、圧縮機24に戻る。   Similarly to the first refrigerant flow path A, the refrigerant that has become high temperature and high pressure by the compressor 24 dissipates heat in the outdoor radiator 41 and the wall surface heat radiation pipe 42 through the connection pipes 72, 73, 74, and 75. Flows into valve 110. Since the three-way valve 110 communicates the inflow port 110i and the outflow port 110o_B, the refrigerant flows to the second capillary tube 44b through the connection pipe 77. Thereafter, as in the first refrigerant flow path A, the refrigerant returns to the compressor 24 while flowing into the evaporator 7 and the gas-liquid separator 46 via the connection pipes 81, 82, 83, and 84.

次に、図3で示す冷凍サイクルを構成する各部材の設置箇所について説明する。   Next, the installation location of each member constituting the refrigeration cycle shown in FIG. 3 will be described.

図4は、機械室の内部を背面から見た場合の模式図である。冷蔵庫1は、図2に示すように断熱箱体10の外側で、冷蔵庫1の野菜室6背面下部、蒸発器収納室8の下部に機械室19を備えている。機械室19の両側面を構成する冷蔵庫1の壁面に機械室開口部19a、19bを形成しており、機械室19内に設けた貯蔵室外ファン41により、機械室開口部19aから外気が機械室19内に流入し、機械室開口部19bから流出できる構造になっている。機械室19内には、図中の右から順に、機械室開口部19a、貯蔵室外放熱器41、貯蔵室外ファン41a、圧縮機24、三方弁110、二方弁100、機械室開口部19bが配設されている。また、ドライヤ45は二方弁100と三方弁110の上部位置に配設され、蒸発皿21は圧縮機24の上部で排水管27の下部に配設されている。   FIG. 4 is a schematic diagram when the inside of the machine room is viewed from the back. As shown in FIG. 2, the refrigerator 1 includes a machine room 19 on the outside of the heat insulating box 10, below the back of the vegetable room 6 of the refrigerator 1 and below the evaporator storage room 8. Machine room openings 19 a and 19 b are formed on the wall surface of the refrigerator 1 constituting both sides of the machine room 19, and outside air is transferred from the machine room opening 19 a to the machine room by a fan 41 outside the storage room provided in the machine room 19. It has a structure that can flow into 19 and flow out from the machine room opening 19b. In the machine room 19, there are a machine room opening 19a, a storage room radiator 41, a storage room fan 41a, a compressor 24, a three-way valve 110, a two-way valve 100, and a machine room opening 19b in order from the right in the drawing. It is arranged. The dryer 45 is disposed at the upper position of the two-way valve 100 and the three-way valve 110, and the evaporating dish 21 is disposed above the compressor 24 and below the drain pipe 27.

冷却運転時、高温となる圧縮機24及び貯蔵室外放熱器41は、貯蔵室外ファン41aを駆動して機械室開口部19aから取り入れた外気と熱交換して放熱する。そのため、圧縮機24や貯蔵室外放熱器41の放熱量は、貯蔵室外ファン41aの回転速度や貯蔵室外ファン41aのON/OFFを変更することで調整可能である。圧縮機24や貯蔵室外放熱器41からの放熱により昇温された空気は、貯蔵室外ファン41aにより昇圧されているため、機械室開口部19bから、比較的低圧な機械室19の外部に排出される。また、除霜時に生じるドレン水は、排水管27から蒸発皿21に放出され、圧縮機24や貯蔵室外放熱器41からの熱によって蒸発される。   During the cooling operation, the compressor 24 and the outdoor storage room radiator 41 that are at a high temperature drive the external storage room fan 41a to exchange heat with the outside air taken in from the machine room opening 19a to radiate heat. Therefore, the heat radiation amount of the compressor 24 and the outdoor storage room radiator 41 can be adjusted by changing the rotational speed of the external storage room fan 41a and the ON / OFF of the external storage room fan 41a. Since the air heated by the heat radiation from the compressor 24 and the heat radiator 41 outside the storage room is pressurized by the fan 41a outside the storage room, it is discharged from the machine room opening 19b to the outside of the machine room 19 having a relatively low pressure. The Further, drain water generated at the time of defrosting is discharged from the drain pipe 27 to the evaporating dish 21 and evaporated by heat from the compressor 24 and the outdoor radiator 41.

図5は、壁面放熱配管42と結露防止配管43の配設位置を示す図である。図3で示したように、壁面放熱配管42及び結露防止配管43は、高温高圧の冷媒が流れる部材である。   FIG. 5 is a diagram showing the arrangement positions of the wall surface heat radiation pipe 42 and the dew condensation prevention pipe 43. As shown in FIG. 3, the wall surface heat radiation pipe 42 and the dew condensation prevention pipe 43 are members through which a high-temperature and high-pressure refrigerant flows.

壁面放熱配管42は、冷蔵庫1の外箱1aと内箱1bとの間(図2参照)で、外箱1aの外表面に接するように配設されている。外箱1aは鋼板製であり、壁面放熱配管42内の高温冷媒は、外箱1aの外表面を介して貯蔵室外の空気に放熱する。また、結露防止配管43は、冷蔵室−冷凍室仕切り壁28、冷凍室−野菜室仕切り壁29、冷凍室間仕切り壁30の前方に配設されている(図5中の一点鎖線の部分)。各仕切り壁28、29、30の前面部は、図1、2で示したように、製氷室3、上段冷凍室4、下段冷凍室5の開口縁を形成している。   The wall surface heat radiation pipe 42 is disposed between the outer box 1a and the inner box 1b of the refrigerator 1 (see FIG. 2) so as to be in contact with the outer surface of the outer box 1a. The outer box 1a is made of a steel plate, and the high-temperature refrigerant in the wall surface heat radiation pipe 42 radiates heat to the air outside the storage chamber via the outer surface of the outer box 1a. In addition, the dew condensation prevention pipe 43 is disposed in front of the refrigerator compartment / freezer compartment partition wall 28, the freezer compartment / vegetable compartment partition wall 29, and the compartment compartment wall 30 of the freezer compartment (part indicated by a one-dot chain line in FIG. 5). As shown in FIGS. 1 and 2, the front portions of the partition walls 28, 29, and 30 form the opening edges of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5.

次に冷凍室間仕切り壁30を代表に、結露防止配管43近傍の詳細を説明する。   Next, details of the vicinity of the dew condensation prevention pipe 43 will be described using the freezer compartment partition wall 30 as a representative.

図6は、冷凍室間仕切り壁30の断面拡大図である。冷凍室間仕切り壁30の内部には、圧縮機24で高温高圧となった冷媒が流れる結露防止配管43が設けられている。この結露防止配管43は、冷凍室間仕切り壁30の前面部に設けた仕切りカバー30aの近傍に設けられている。なお、本実施例に関わる冷蔵庫1の仕切りカバー30aは鋼板製であるが、これに限定されず、熱伝導性の高い金属等の材料で構成すればよい。冷凍室間仕切り壁30は、室内を冷凍温度帯(例えば約−18℃)に維持している冷凍室60に隣接しているので、加熱手段を備えていない場合、冷凍室間仕切り壁30は冷凍室60の低温空気により冷やされて、冷蔵庫1周囲の外気よりも低温となる。そのため、冷蔵庫1の周囲の外気が高湿であると、仕切りカバー30aの表面温度が露点温度を下回り易く、仕切りカバー30a近傍の空気中の水分によって仕切りカバー30aの表面に結露が発生することがある。それに対して、図3で示したように、キャピラリチューブ44で減圧される前の高温の冷媒が流れる結露防止配管43を、仕切りカバー30aの近傍に設けることで、図中の熱の流れ91で仕切りカバー30aを冷媒によって加熱して、仕切りカバー30aに発生する結露を抑制している。   FIG. 6 is an enlarged cross-sectional view of the freezer compartment partition wall 30. Inside the freezer compartment partition wall 30, a dew condensation prevention pipe 43 through which the refrigerant that has become high temperature and high pressure in the compressor 24 flows is provided. The dew condensation prevention pipe 43 is provided in the vicinity of the partition cover 30 a provided on the front surface portion of the freezer compartment partition wall 30. In addition, although the partition cover 30a of the refrigerator 1 in connection with a present Example is a product made from a steel plate, it is not limited to this, What is necessary is just to comprise with materials, such as a metal with high heat conductivity. Since the freezer compartment partition wall 30 is adjacent to the freezer compartment 60 that keeps the room in a freezing temperature zone (for example, about −18 ° C.), when the heating means is not provided, the freezer compartment partition wall 30 is a freezer compartment. It is cooled by 60 low-temperature air and becomes cooler than the outside air around the refrigerator 1. Therefore, if the outside air around the refrigerator 1 is highly humid, the surface temperature of the partition cover 30a is likely to be lower than the dew point temperature, and condensation may occur on the surface of the partition cover 30a due to moisture in the air near the partition cover 30a. is there. On the other hand, as shown in FIG. 3, by providing a condensation prevention piping 43 in the vicinity of the partition cover 30a through which the high-temperature refrigerant before being depressurized by the capillary tube 44 flows, the heat flow 91 in FIG. The partition cover 30a is heated with a refrigerant to suppress condensation generated on the partition cover 30a.

なお、冷蔵室―冷凍室仕切り壁28、冷凍室―野菜室仕切り壁29の前面部も、冷凍室間仕切り壁30と同様に冷凍室60の開口縁を形成する部材であるので、図6で示した冷凍室間仕切り壁30同様の構成で、各仕切り壁28、29の前面部に設けた仕切りカバー(図示せず)の近傍に結露防止配管43を設けて、この結露防止配管43により仕切りカバーを加熱している。   The front portions of the freezer compartment-freezer compartment partition wall 28 and the freezer compartment-vegetable compartment partition wall 29 are members that form the opening edge of the freezer compartment 60 in the same manner as the freezer compartment partition wall 30 and are shown in FIG. A dew condensation prevention pipe 43 is provided in the vicinity of a partition cover (not shown) provided on the front surface of each partition wall 28, 29 with the same configuration as the freezer compartment partition wall 30. Heating.

図7は、冷蔵庫の熱交換部47の概略を示す断面模式図である。本実施例の冷蔵庫1には、冷媒配管84の近傍に、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bを配設した、熱交換部47を設けている。第一のキャピラリチューブ44aと第二のキャピラリチューブ44bは、冷媒配管84を挟んでそれぞれ反対側に設けられている。なお、熱交換部47は断熱箱体10内部に形成されている。蒸発器7の出口側に接続された冷媒配管84には低温冷媒が流入し、一方、キャピラリチューブ44には放熱側からの高温冷媒が流入する。従って、第一のキャピラリチューブ44aを冷媒が流れる場合、第一のキャピラリチューブ44aから冷媒配管84に向かって熱の流れ93aが発生して熱交換が行なわれる。同様に、第二のキャピラリチューブ44bを冷媒が流れる場合、第二のキャピラリチューブ44bから、冷媒配管84に向かって熱の流れ93bが発生する。   FIG. 7 is a schematic cross-sectional view showing an outline of the heat exchanging portion 47 of the refrigerator. The refrigerator 1 of the present embodiment is provided with a heat exchanging portion 47 in which a first capillary tube 44 a and a second capillary tube 44 b are disposed in the vicinity of the refrigerant pipe 84. The first capillary tube 44a and the second capillary tube 44b are provided on opposite sides of the refrigerant pipe 84, respectively. The heat exchanging portion 47 is formed inside the heat insulating box 10. Low temperature refrigerant flows into the refrigerant pipe 84 connected to the outlet side of the evaporator 7, while high temperature refrigerant from the heat radiating side flows into the capillary tube 44. Therefore, when the refrigerant flows through the first capillary tube 44a, a heat flow 93a is generated from the first capillary tube 44a toward the refrigerant pipe 84 to perform heat exchange. Similarly, when the refrigerant flows through the second capillary tube 44b, a heat flow 93b is generated from the second capillary tube 44b toward the refrigerant pipe 84.

次に、この熱交換部47の作用と、圧縮機24からキャピラリチューブ44に至るまでの、放熱側の冷媒の状態変化について図8、図9を用いて説明する。   Next, the action of the heat exchanging portion 47 and the state change of the refrigerant on the heat radiation side from the compressor 24 to the capillary tube 44 will be described with reference to FIGS.

図8は、冷凍サイクルの各部における冷媒の状態をモリエル線図上に示した図である。図9は、圧縮機24からキャピラリチューブ44までの配管内部の冷媒の状態を示した図である。なお、図8、図9では、第一の冷媒流路A側を冷媒が循環している場合である。   FIG. 8 is a diagram showing the state of the refrigerant in each part of the refrigeration cycle on the Mollier diagram. FIG. 9 is a view showing the state of the refrigerant in the piping from the compressor 24 to the capillary tube 44. 8 and 9 show the case where the refrigerant circulates on the first refrigerant flow path A side.

図8の縦軸は冷媒の圧力、横軸は冷媒の比エンタルピーである。図8と図9に示す冷媒の状態BからE及びH、Iは、図8と図9で同一の状態を表す。   In FIG. 8, the vertical axis represents the refrigerant pressure, and the horizontal axis represents the specific enthalpy of the refrigerant. The refrigerant states B to E, H, and I shown in FIGS. 8 and 9 represent the same state in FIGS. 8 and 9.

圧縮機24に流入した状態Aの冷媒は、圧縮機24により圧縮されるので、冷媒の比エンタルピーはh1からh2、圧力はP1からP2に増加する(状態AからB)。圧縮されて高温高圧となった冷媒(状態B)は、貯蔵室外放熱器41(状態BからC)、壁面放熱器42(状態CからD)、結露防止配管43(状態DからE)の順に放熱して、冷媒の比エンタルピーはh2からh3に減少する。状態Eに至った冷媒は、第一のキャピラリチューブ44aを通過する際に減圧されながら、熱交換部47において接続配管84内の冷媒と熱交換するので、比エンタルピーはh3からh4に減少し、冷媒の圧力はP2からP1に減少する(状態EからF)。その後、蒸発器7の入口部の冷媒(状態F)は、貯蔵室内の空気と熱交換することによって吸熱し、冷媒の比エンタルピーはh4からh5に増加する(状態FからG)。蒸発器7の出口部の冷媒(状態G)は、熱交換部47において第一のキャピラリチューブ44aから移動する熱によって冷媒の比エンタルピーがh5からh1に増加した後、再び圧縮機24に戻る(状態GからA)。モリエル線図上に示す、状態A−B−C−D−E−F−Gの循環の間に、冷媒は大きく分けて気相域、気液二相域、液相域の3つの状態に変化する。   Since the refrigerant in the state A flowing into the compressor 24 is compressed by the compressor 24, the specific enthalpy of the refrigerant increases from h1 to h2, and the pressure increases from P1 to P2 (states A to B). The refrigerant (state B) that has been compressed to high temperature and high pressure is in the order of the outdoor radiator 41 (state B to C), the wall surface radiator 42 (state C to D), and the dew condensation prevention pipe 43 (state D to E). As a result of heat dissipation, the specific enthalpy of the refrigerant decreases from h2 to h3. The refrigerant that has reached the state E exchanges heat with the refrigerant in the connection pipe 84 in the heat exchange section 47 while being depressurized when passing through the first capillary tube 44a, so that the specific enthalpy decreases from h3 to h4, The refrigerant pressure decreases from P2 to P1 (states E to F). Thereafter, the refrigerant (state F) at the inlet of the evaporator 7 absorbs heat by exchanging heat with the air in the storage chamber, and the specific enthalpy of the refrigerant increases from h4 to h5 (states F to G). The refrigerant (state G) at the outlet of the evaporator 7 returns to the compressor 24 again after the specific enthalpy of the refrigerant increases from h5 to h1 due to the heat moving from the first capillary tube 44a in the heat exchange unit 47 ( State G to A). During the circulation of the state A-B-C-D-E-F-G shown on the Mollier diagram, the refrigerant is roughly divided into three states: a gas phase region, a gas-liquid two-phase region, and a liquid phase region. Change.

ここで、図9を用いて、冷凍サイクルの放熱側となる圧縮機24の流出口(B)から、第一のキャピラリチューブ44aの入口(E)までの冷媒の状態を考える。気相域から気液二相域に変化する点をH、気液二相域から液相域に変化する点をIとし、ガス冷媒を符号94、液冷媒を符号95として、ガス冷媒94のみの気相域は区間BH、ガス冷媒94と液冷媒95が混在する気液二相域は区間HI、液冷媒95のみの液相域は区間IEで表す。   Here, the state of the refrigerant from the outlet (B) of the compressor 24 on the heat radiation side of the refrigeration cycle to the inlet (E) of the first capillary tube 44a will be considered with reference to FIG. The point where the gas phase changes from the gas-liquid two-phase region is H, the point where the gas-liquid two-phase region changes from the liquid-phase region is I, the gas refrigerant is 94, the liquid refrigerant is 95, and the gas refrigerant 94 only. The gas phase region is represented by the section BH, the gas-liquid two-phase region where the gas refrigerant 94 and the liquid refrigerant 95 are mixed is represented by the section HI, and the liquid phase region of the liquid refrigerant 95 alone is represented by the section IE.

図9において、冷媒は記号BからEに向かって流れ、圧縮機24で圧縮されて高温高圧になったガス冷媒94は、貯蔵室外放熱器41、壁面放熱配管42、結露防止配管43の順に貯蔵室外に放熱し、気相域(区間BH)、気液二相域(区間HI)、液相域(区間IE)の順に冷媒の状態が変化する。本実施例の冷蔵庫1では、貯蔵室外放熱器41の途中で気相域から気液二相域に至り、結露防止配管43の途中で液相域に至る。そのため、貯蔵室外放熱器41ではガス冷媒94の割合が多く、結露防止配管43では液冷媒95の割合が多い。液冷媒95はガス冷媒94に比べて密度が高く、例えばイソブタンでは、凝縮温度30℃においてガス冷媒94と液冷媒95の密度の比は約1:50である。そのため、結露防止配管43では液冷媒95の割合が大きいので、配管内容積に対して、結露防止配管43内に含まれる冷媒量は多い。   In FIG. 9, the refrigerant flows from symbol B to E, and the gas refrigerant 94 compressed to the high temperature and high pressure by the compressor 24 is stored in the order of the outdoor heat radiator 41, the wall surface heat radiation pipe 42, and the dew condensation prevention pipe 43. Heat is radiated to the outside, and the state of the refrigerant changes in the order of the gas phase region (section BH), the gas-liquid two-phase region (section HI), and the liquid phase region (section IE). In the refrigerator 1 of the present embodiment, the gas-phase region reaches the gas-liquid two-phase region in the middle of the outdoor storage radiator 41, and reaches the liquid-phase region in the middle of the dew condensation prevention pipe 43. Therefore, the proportion of the gas refrigerant 94 is large in the outdoor radiator 41 and the proportion of the liquid refrigerant 95 is large in the dew condensation prevention pipe 43. The liquid refrigerant 95 has a higher density than the gas refrigerant 94. For example, in isobutane, the density ratio of the gas refrigerant 94 and the liquid refrigerant 95 is about 1:50 at a condensation temperature of 30 ° C. Therefore, since the ratio of the liquid refrigerant 95 is large in the dew condensation prevention pipe 43, the amount of refrigerant contained in the dew condensation prevention pipe 43 is larger than the pipe internal volume.

次に、図3、図7で示した熱交換部47の作用について図8を用いて説明する。蒸発器7の入口部の冷媒(状態F)は、熱交換部47によって比エンタルピーがh3からh4に減少し、蒸発器7での吸熱量(h5-h4)が増加することになる。蒸発器7での吸熱量の増加により、冷却効率(=吸熱量(h5-h4)/消費エネルギー(h2-h1))が向上するので、本実施例の冷蔵庫1では、熱交換部47を設けて省エネルギー性能を向上させている。   Next, the operation of the heat exchange unit 47 shown in FIGS. 3 and 7 will be described with reference to FIG. The specific enthalpy of the refrigerant (state F) at the inlet of the evaporator 7 is decreased from h3 to h4 by the heat exchanging unit 47, and the heat absorption amount (h5-h4) in the evaporator 7 is increased. Since the cooling efficiency (= endothermic amount (h5−h4) / consumed energy (h2−h1)) is improved by increasing the endothermic amount in the evaporator 7, the refrigerator 1 of the present embodiment is provided with a heat exchanging portion 47. Energy saving performance.

以上で、本実施例の冷蔵庫1の主要な構成について説明した。次に本実施例の冷蔵庫1における、三方弁110及び二方弁100の制御方法について説明する。   The main configuration of the refrigerator 1 according to the present embodiment has been described above. Next, the control method of the three-way valve 110 and the two-way valve 100 in the refrigerator 1 of the present embodiment will be described.

図10は、実施例1に関する冷蔵庫の第一の冷媒流路Aと第二の冷媒流路Bの時間割合と相対湿度の関係である。本実施例の冷蔵庫1では、前述した外気温度センサ37と外気湿度センサ38で得られた冷蔵庫1周囲の温度及び湿度によって、第一の冷媒流路Aと第二の冷媒流路Bを切り換えている。図10の横軸は相対湿度、縦軸は結露防止配管43の加熱割合、すなわち、冷媒流路を第一の冷媒流路A側に固定する時間の割合である。例えば、相対湿度が高いRH2の場合、三方弁110をAモードにして結露防止配管43に冷媒を流す時間の割合(tA2)を長くし、Bモードにして結露防止配管43をバイパスさせる時間の割合(tB2)を短くする。反対に相対湿度が低いRH1の場合、三方弁110をAモードにして結露防止配管43に冷媒を流す時間の割合(tA1)を短くし、三方弁110をBモードにして結露防止配管43をバイパスさせる時間の割合(tB1)を長くしている。実際の冷却運転では、冷蔵庫1周囲の温度と湿度の状況に合わせて、仕切り壁28、29、30の結露の発生を抑制するように第一の冷媒流路A側、第二の冷媒流路B側の切り換え時間を予め決めておき、圧縮機24がONの時に、その予め決められた切り換え時間に従って、三方弁110のAモードとBモードを切り換えて運転する。冷媒流路を切り換える時間は冷蔵庫1によって異なるが、例えば本実施例の冷蔵庫1では、外気が30℃、相対湿度が50%の場合、Aモードが10分、Bモードが20分で切り換えるようにし、外気が30℃、相対湿度が70%の場合は、結露が発生する可能性が高いため、Aモードで仕切り壁28、29、30を20分加熱して、Bモードは10分としている。   FIG. 10 is a relationship between the time ratio of the first refrigerant flow path A and the second refrigerant flow path B of the refrigerator and the relative humidity related to Example 1. In the refrigerator 1 of the present embodiment, the first refrigerant flow path A and the second refrigerant flow path B are switched according to the temperature and humidity around the refrigerator 1 obtained by the outside air temperature sensor 37 and the outside air humidity sensor 38 described above. Yes. The horizontal axis of FIG. 10 is the relative humidity, and the vertical axis is the heating rate of the dew condensation prevention pipe 43, that is, the rate of time for fixing the refrigerant channel to the first refrigerant channel A side. For example, in the case of RH2 where the relative humidity is high, the ratio of the time (tA2) in which the three-way valve 110 is set to the A mode and the refrigerant flows through the condensation prevention pipe 43 is increased, and the ratio of the time in which the condensation prevention pipe 43 is bypassed in the B mode. (TB2) is shortened. On the other hand, in the case of RH1 where the relative humidity is low, the three-way valve 110 is set to the A mode to shorten the ratio (tA1) of flowing the refrigerant through the condensation prevention piping 43, and the three-way valve 110 is set to the B mode to bypass the condensation prevention piping 43. The proportion of time (tB1) to be used is increased. In the actual cooling operation, the first refrigerant channel A side, the second refrigerant channel so as to suppress the occurrence of condensation on the partition walls 28, 29, and 30 according to the temperature and humidity conditions around the refrigerator 1. A switching time on the B side is determined in advance, and when the compressor 24 is ON, the three-way valve 110 is switched between the A mode and the B mode according to the predetermined switching time. For example, in the refrigerator 1 according to this embodiment, when the outside air is 30 ° C. and the relative humidity is 50%, the A mode is switched for 10 minutes and the B mode is switched for 20 minutes. When the outside air is 30 ° C. and the relative humidity is 70%, there is a high possibility that condensation occurs. Therefore, the partition walls 28, 29, and 30 are heated for 20 minutes in the A mode, and the B mode is set to 10 minutes.

図11aは、熱負荷が小さい場合の実施例1に関する冷蔵庫1の冷却運転の一例を示すタイムチャートである。   FIG. 11 a is a time chart showing an example of the cooling operation of the refrigerator 1 related to Example 1 when the heat load is small.

熱負荷が小さい場合、冷蔵室2を冷却する冷蔵運転、冷凍室60を冷却する冷凍運転、圧縮機24を停止したOFFからなる運転パターンを基本とし、外気の温度の変動や食品等の投入が行われない限り、これらの運転を繰り返す。具体的には、圧縮機24の停止中に冷凍室温度センサ34より得られる冷凍室温度がTF1まで上昇した時に圧縮機24がONになり、冷蔵運転を実施する。冷蔵室温度が低下して冷蔵室温度センサ33から得られる冷蔵室温度がTR2になると冷蔵運転が終了し、引き続き冷凍室温度がTF2になるまで冷凍運転を実施する。なお、冷凍運転中に冷蔵室温度が上昇し、温度TR1を超えた場合には、冷蔵・冷凍運転にして、冷蔵室2と冷凍室60を同時に冷却する。また、圧縮機24の回転速度は、後述する図11bの時に比べて低速にしている。   When the heat load is small, the refrigeration operation for cooling the refrigerator compartment 2, the refrigeration operation for cooling the freezer compartment 60, and the operation pattern of OFF in which the compressor 24 is stopped are basically used. Repeat these operations unless done. Specifically, when the freezer compartment temperature obtained from the freezer compartment temperature sensor 34 rises to TF1 while the compressor 24 is stopped, the compressor 24 is turned on and the refrigeration operation is performed. When the temperature of the refrigerator compartment decreases and the refrigerator compartment temperature obtained from the refrigerator compartment temperature sensor 33 reaches TR2, the refrigerator operation is terminated, and the refrigerator operation is continued until the freezer compartment temperature reaches TF2. When the temperature of the refrigerator compartment rises during the freezing operation and exceeds the temperature TR1, the refrigerator compartment 2 and the freezer compartment 60 are cooled at the same time in the refrigerator / freezer operation. Further, the rotational speed of the compressor 24 is set lower than that in FIG.

この時の二方弁100と三方弁110の制御を説明する。図10に示したように、圧縮機24が運転中の場合、温度及び湿度に応じて三方弁110のAモードとBモードの切り換え時間を予め決めておき、それに従って三方弁110を切り換える。また、三方弁110をAモードにして第一の冷媒流路Aに冷媒が流れるようにした場合には、二方弁100を開モードとし、三方弁110をBモードにして第二の冷媒流路Bに冷媒が流れるようにした場合には、二方弁100を閉モードとする。   Control of the two-way valve 100 and the three-way valve 110 at this time will be described. As shown in FIG. 10, when the compressor 24 is in operation, the switching time between the A mode and the B mode of the three-way valve 110 is determined in advance according to the temperature and humidity, and the three-way valve 110 is switched accordingly. When the three-way valve 110 is set to the A mode so that the refrigerant flows through the first refrigerant flow path A, the two-way valve 100 is set to the open mode and the three-way valve 110 is set to the B mode to set the second refrigerant flow. When the refrigerant flows in the path B, the two-way valve 100 is set to the closed mode.

また、三方弁110は圧縮機24が停止する前にAモードにして、圧縮機24の停止時まで第一の冷媒流路Aに冷媒を流す。圧縮機24の停止時には、三方弁110はAモードのままであるが、二方弁100は圧縮機24を停止させた後に閉モードにする。また、冷凍室温度がTF1となり、圧縮機24を再び運転させる際には、三方弁110をAモードで固定させたまま、冷媒が循環できるように二方弁100を開モードにして、その後に圧縮機24を駆動させる。   The three-way valve 110 is set to the A mode before the compressor 24 stops, and the refrigerant flows through the first refrigerant flow path A until the compressor 24 stops. When the compressor 24 is stopped, the three-way valve 110 remains in the A mode, but the two-way valve 100 is set to the closed mode after the compressor 24 is stopped. Further, when the freezer temperature becomes TF1 and the compressor 24 is operated again, the two-way valve 100 is set in the open mode so that the refrigerant can circulate while the three-way valve 110 is fixed in the A mode, and thereafter The compressor 24 is driven.

次に、図11bは、熱負荷が大きい場合の実施例1に関する冷蔵庫の冷却運転の一例を示すタイムチャートである。   Next, FIG. 11b is a time chart showing an example of the cooling operation of the refrigerator related to Example 1 when the heat load is large.

熱負荷が大きい場合として、冷蔵庫1を設置した際に最初に電源を入れる場合を想定する。貯蔵室内の温度は、外気温度TOと等しい温度から冷却される。冷蔵室2及び冷凍室60を同時に冷却し、圧縮機24の回転速度は図11aに比べて高速にしている。二方弁100は前後の接続配管78,79を連通させる開モードにして、三方弁110は流入口110iと流出口110o_A、110o_Bの両方の流出口とを連通させるOモードにして運転する。冷蔵室温度がTR2に到達した後は、冷凍室60を単独で冷却するようになる。その後、冷凍室温度がTF1に到達すると、冷蔵室温度もTR1以下、冷凍室温度もTF1以下になり、貯蔵室内の熱負荷は小さくなったと判断して、図11aと同様にAモードとBモードを切り換える運転に移行する。   Assuming that the heat load is large, assume that the power is first turned on when the refrigerator 1 is installed. The temperature in the storage chamber is cooled from a temperature equal to the outside air temperature TO. The refrigerator compartment 2 and the freezer compartment 60 are cooled at the same time, and the rotational speed of the compressor 24 is higher than that in FIG. The two-way valve 100 is operated in the open mode in which the front and rear connection pipes 78 and 79 are communicated, and the three-way valve 110 is operated in the O mode in which the inflow port 110i and both the outflow ports 110o_A and 110o_B are in communication. After the refrigerator compartment temperature reaches TR2, the freezer compartment 60 is cooled alone. Thereafter, when the freezer compartment temperature reaches TF1, it is determined that the refrigerator compartment temperature is TR1 or less, the freezer compartment temperature is TF1 or less, and the thermal load in the storage compartment is reduced, and the A mode and B mode are the same as in FIG. 11a. Moves to the operation of switching.

以上、本実施例の冷蔵庫1の主要な構成と制御について説明した。次に、本実施例の冷蔵庫1の奏する効果を説明する。   The main configuration and control of the refrigerator 1 according to the present embodiment has been described above. Next, the effect which the refrigerator 1 of a present Example show | plays is demonstrated.

本実施例の冷蔵庫1では、結露防止配管43に冷媒が流れる第一の冷媒流路Aと、結露防止配管43をバイパスさせる第二の冷媒流路Bとを備え、この2つの流路を三方弁110で切り換えられるようにしている。これにより、結露防止配管43による仕切り壁28、29、30の加熱量を制御し、結露の発生を抑制しながら省エネルギー性能を向上させることができる。図6、図10を用いて、この理由を説明する。   The refrigerator 1 according to the present embodiment includes a first refrigerant flow path A through which the refrigerant flows in the dew condensation prevention pipe 43 and a second refrigerant flow path B that bypasses the dew condensation prevention pipe 43. The valve 110 can be switched. Thereby, the heating amount of the partition walls 28, 29 and 30 by the dew condensation prevention pipe 43 is controlled, and the energy saving performance can be improved while suppressing the occurrence of dew condensation. The reason for this will be described with reference to FIGS.

図6で示したように、本実施例の冷蔵庫1では、結露防止配管43を流れる高温の冷媒により、熱の流れ91で冷凍室間仕切り壁30の前面部を加熱して、貯蔵室の開口縁への結露を防止している。しかしながら、冷凍室間仕切り壁30に隣接した冷凍室60に、結露防止配管43から放熱される熱の一部(熱の流れ92)が侵入し、貯蔵室内を加熱してしまう。貯蔵室内を所定の温度に維持するためには、冷蔵庫の貯蔵室外から侵入した熱に加えて、この結露防止配管43から貯蔵室内に侵入した熱も冷凍サイクルによって吸熱する必要が生じる。すなわち、結露防止配管43による冷凍室間仕切り壁30の前面部の加熱は、貯蔵室内の熱負荷を増やすことになり、省エネルギー性能を低下させる要因となる。冷凍室間仕切り壁30を用いて説明したが、仕切り壁28、29を結露防止配管43で加熱する際にも同様の現象が発生する。   As shown in FIG. 6, in the refrigerator 1 of the present embodiment, the front portion of the freezer compartment partition wall 30 is heated by the heat flow 91 by the high-temperature refrigerant flowing through the dew condensation prevention pipe 43, thereby opening the opening edge of the storage room Condensation is prevented. However, part of the heat radiated from the dew condensation prevention pipe 43 (heat flow 92) enters the freezer compartment 60 adjacent to the freezer compartment partition wall 30 and heats the storage compartment. In order to maintain the storage chamber at a predetermined temperature, in addition to the heat entering from the outside of the refrigerator storage chamber, the heat entering the storage chamber from the dew condensation prevention pipe 43 needs to be absorbed by the refrigeration cycle. That is, the heating of the front surface portion of the freezer compartment partition wall 30 by the dew condensation prevention pipe 43 increases the heat load in the storage chamber, which causes a reduction in energy saving performance. Although the description has been given by using the freezer compartment partition wall 30, the same phenomenon occurs when the partition walls 28 and 29 are heated by the dew condensation prevention pipe 43.

そこで、本実施例の冷蔵庫1では、結露防止配管43に冷媒が流れる第一の冷媒流路Aと、結露防止配管43をバイパスさせる第二の冷媒流路Bを備え、冷蔵庫1周囲の温度と湿度に応じて第一の冷媒流路Aと第二の冷媒流路Bとを切り換えている。具体的には、図10に示すように、冷凍室間仕切り壁30の前面部に結露を生じ易い高湿時には、三方弁110をAモードにする時間の割合(tA2)を大きくし、Bモードにする時間の割合(tB2)を小さくすることで、結露防止配管43の加熱量を増加させて結露を防止する。一方、結露を生じ難い低湿時には、Aモードの時間の割合(tA1)を小さくし、Bモードの時間の割合(tA2)を大きくすることで、結露防止配管43による貯蔵室内の加熱量を減少させている。このように、本実施例の冷蔵庫1では、湿度に応じて結露防止配管43による加熱量を調整することができるので、結露を防止しながら、結露防止配管43による貯蔵室内の過度な加熱を抑えることができる。   Therefore, the refrigerator 1 of the present embodiment includes the first refrigerant flow path A through which the refrigerant flows in the dew condensation prevention pipe 43 and the second refrigerant flow path B that bypasses the dew condensation prevention pipe 43, and the temperature around the refrigerator 1. The first refrigerant channel A and the second refrigerant channel B are switched according to the humidity. Specifically, as shown in FIG. 10, at the time of high humidity where condensation easily occurs on the front surface of the freezer compartment partition wall 30, the ratio (tA2) of setting the three-way valve 110 to the A mode is increased and the B mode is set. By reducing the time ratio (tB2) to be performed, the heating amount of the dew condensation prevention pipe 43 is increased to prevent dew condensation. On the other hand, at the time of low humidity where condensation is unlikely to occur, the amount of heating in the storage chamber by the condensation prevention piping 43 is reduced by decreasing the A mode time ratio (tA1) and increasing the B mode time ratio (tA2). ing. Thus, in the refrigerator 1 of the present embodiment, the amount of heating by the dew condensation prevention pipe 43 can be adjusted according to the humidity, so that excessive heating in the storage chamber by the dew condensation prevention pipe 43 is suppressed while preventing condensation. be able to.

以上のように、結露防止配管43に冷媒が流れる第一の冷媒流路Aと、結露防止配管43をバイパスさせる第二の冷媒流路Bを適切に切り換えることで、結露防止配管43による加熱量を制御して、結露を防止しながら省エネルギー性能を向上させることができる。   As described above, the heating amount by the dew condensation prevention pipe 43 is appropriately switched between the first refrigerant flow path A through which the refrigerant flows in the dew condensation prevention pipe 43 and the second refrigerant flow path B that bypasses the dew condensation prevention pipe 43. It is possible to improve the energy saving performance while preventing condensation.

また、本実施例の冷蔵庫1では、壁面放熱配管42と結露防止配管43の間に、三方弁110を設けていることに加え、結露防止配管43と第一のキャピラリチューブ44aの間に、二方弁100を設けている。これにより、蒸発器への高温冷媒の流入を抑制して、省エネルギー性能を向上させることができる。図3、図8、図11aを用いて、この理由を説明する。   Further, in the refrigerator 1 of the present embodiment, in addition to providing the three-way valve 110 between the wall surface heat radiation pipe 42 and the dew condensation prevention pipe 43, between the dew condensation prevention pipe 43 and the first capillary tube 44a, two A direction valve 100 is provided. Thereby, inflow of the high temperature refrigerant | coolant to an evaporator can be suppressed and energy saving performance can be improved. The reason for this will be described with reference to FIGS. 3, 8 and 11a.

熱負荷が小さい場合、本実施例の冷蔵庫1では、圧縮機24を低速で運転させることに加えて、貯蔵室内が冷え過ぎないように、圧縮機24を停止させて貯蔵室内の冷却を止めることで、貯蔵室内を所定の温度(例えば冷蔵室では4℃)に維持している。   When the heat load is small, in the refrigerator 1 of the present embodiment, in addition to operating the compressor 24 at a low speed, the compressor 24 is stopped to stop cooling the storage chamber so that the storage chamber is not overcooled. Thus, the storage room is maintained at a predetermined temperature (for example, 4 ° C. in the refrigerator room).

一方で、冷媒流路の制御手段を備えていない冷蔵庫では、圧縮機24を停止させると、以下のような課題が生じる。圧縮機24を駆動させている場合、図8で示したように、冷凍サイクルの放熱側、すなわち、貯蔵室外放熱器41、壁面放熱配管42、結露防止配管43内の冷媒の圧力P2は、蒸発器7内の冷媒の圧力P1よりも高くなっている。一方、圧縮機24を停止させた場合には、この放熱側の冷媒配管内の冷媒と蒸発器7内の冷媒との圧力差を解消するように、放熱側の冷媒配管内の冷媒が、蒸発器7内に流入することがある。冷蔵庫1の貯蔵室内に設置してある蒸発器7に、放熱側の高温の冷媒が流入すると、貯蔵室内を加熱するため、貯蔵室内の熱負荷が増えることになり、次の冷却運転でその熱を吸熱する必要が生じる。そのため、圧縮機24を停止させると、放熱側の高温冷媒が蒸発器7に流入して熱負荷が増加し、省エネルギー性能が低下するといった課題があった。   On the other hand, in a refrigerator that does not include a refrigerant flow path control unit, the following problems occur when the compressor 24 is stopped. When the compressor 24 is driven, as shown in FIG. 8, the refrigerant pressure P <b> 2 in the heat release side of the refrigeration cycle, i.e., the outdoor storage room heat sink 41, the wall surface heat radiation pipe 42, and the dew condensation prevention pipe 43 is evaporated. It is higher than the pressure P1 of the refrigerant in the vessel 7. On the other hand, when the compressor 24 is stopped, the refrigerant in the refrigerant pipe on the heat radiation side evaporates so as to eliminate the pressure difference between the refrigerant in the refrigerant pipe on the heat radiation side and the refrigerant in the evaporator 7. May flow into the vessel 7. When a high-temperature refrigerant on the heat radiation side flows into the evaporator 7 installed in the storage chamber of the refrigerator 1, the storage chamber is heated, so that the heat load in the storage chamber increases, and the heat is generated in the next cooling operation. It is necessary to absorb heat. For this reason, when the compressor 24 is stopped, there is a problem that the high-temperature refrigerant on the heat radiation side flows into the evaporator 7 to increase the heat load and the energy saving performance is lowered.

そこで本実施例の冷蔵庫1では、図11aに示すように、圧縮機24を停止中は、三方弁110をAモード、二方弁100を閉モードにすることで、結露防止配管43と蒸発器7との間の冷媒流路を閉塞している(図3参照)。これにより、圧縮機24から結露防止配管43までに存在する高温冷媒が、蒸発器7に流入することがなくなるので、省エネルギー性能を向上させることができる。   Therefore, in the refrigerator 1 of the present embodiment, as shown in FIG. 11 a, when the compressor 24 is stopped, the three-way valve 110 is set to the A mode and the two-way valve 100 is set to the closed mode, whereby the dew condensation prevention pipe 43 and the evaporator are set. The refrigerant | coolant flow path between 7 is obstruct | occluded (refer FIG. 3). Thereby, since the high temperature refrigerant | coolant which exists from the compressor 24 to the dew condensation prevention piping 43 does not flow into the evaporator 7, energy saving performance can be improved.

また、本実施例の冷蔵庫1に設けた三方弁110は、流入口110iと、流出口110o_A、110o_Bの何れかの流出口を連通させるAモードとBモードに加えて、流入口110iと、流出口110o_A、110o_Bの両方の流出口を連通させるOモードを備えている。三方弁110をOモードにすると、2つのキャピラリチューブ44a、44bの両方に冷媒を流すことができる。これにより、蒸発圧力を制御して、省エネルギー性能を向上させることができる。図11a、図11b、及び図12を参照しながら、この理由を説明する。   In addition, the three-way valve 110 provided in the refrigerator 1 of the present embodiment includes an inflow port 110i and an inflow port 110i in addition to the A mode and the B mode in which any of the outflow ports 110o_A and 110o_B communicates. An O mode is provided in which both the outlets 110o_A and 110o_B communicate with each other. When the three-way valve 110 is set to the O mode, the refrigerant can flow through both of the two capillary tubes 44a and 44b. Thereby, evaporation pressure can be controlled and energy saving performance can be improved. The reason for this will be described with reference to FIGS. 11a, 11b, and 12. FIG.

まず、蒸発圧力と省エネルギー性能の関係について説明する。   First, the relationship between the evaporation pressure and energy saving performance will be described.

図12に、図8で示した冷凍サイクル(点線)よりも、蒸発圧力が低下した場合の状態をモリエル線図上に実線で示した。蒸発圧力P1がP1’に低下すると、凝縮圧力P2と蒸発圧力P1’の差は、蒸発圧力が低下する前のP2とP1の差に比べて大きくなる。そのため、圧縮機24で消費するエネルギーは(h2−h1)から(h2’−h1)に増加する。そこで、熱負荷が大きい場合(図11b参照)、冷凍サイクルの絞りを弱くすることでP2とP1の差を小さくして、省エネルギー性能の高い運転を行う。   In FIG. 12, the state when the evaporation pressure is lower than the refrigeration cycle (dotted line) shown in FIG. 8 is indicated by a solid line on the Mollier diagram. When the evaporation pressure P1 decreases to P1 ', the difference between the condensation pressure P2 and the evaporation pressure P1' becomes larger than the difference between P2 and P1 before the evaporation pressure decreases. Therefore, the energy consumed by the compressor 24 increases from (h2−h1) to (h2′−h1). Therefore, when the heat load is large (see FIG. 11b), the difference between P2 and P1 is reduced by weakening the throttle of the refrigeration cycle, and the operation with high energy saving performance is performed.

一方、蒸発温度を低くした(蒸発圧力を低くした)冷却運転が必要な場合がある。例えば、図11aで示したように熱負荷が小さく、貯蔵室内が十分に低温となっている場合には、貯蔵室内温度の低下に応じて蒸発温度を下げる必要がある。蒸発温度(蒸発圧力)を下げる手段としては、絞りを強くして冷媒の減圧量を大きくすることと、圧縮機24の回転速度を高速にすることが考えられるが、絞りを強くして蒸発圧力を低くすると、圧縮機24を低速で駆動でき、圧縮機24の消費エネルギーを低減できるので、省エネルギー性能の高い運転が行える。   On the other hand, a cooling operation in which the evaporation temperature is lowered (evaporation pressure is lowered) may be necessary. For example, when the heat load is small and the storage chamber is sufficiently low as shown in FIG. 11a, it is necessary to lower the evaporation temperature in accordance with the decrease in the storage chamber temperature. As means for lowering the evaporation temperature (evaporation pressure), it is conceivable to increase the decompression amount of the refrigerant by increasing the throttle and to increase the rotational speed of the compressor 24. If the value is lowered, the compressor 24 can be driven at a low speed and the energy consumption of the compressor 24 can be reduced, so that the operation with high energy saving performance can be performed.

以上から、熱負荷に応じて冷凍サイクルの絞りの強さを変えることで、蒸発圧力を制御することが、省エネルギー性能の向上につながることがわかる。   From the above, it can be seen that controlling the evaporation pressure by changing the squeezing strength of the refrigeration cycle in accordance with the heat load leads to an improvement in energy saving performance.

本実施例の冷蔵庫1では、第一のキャピラリチューブ44a及び第一のキャピラリチューブ44bの絞りの強さを熱負荷の小さい条件に適する仕様のものを用い、後述する熱負荷の大きい場合に比べて強くている。これにより、熱負荷の小さい時には、何れか一方のキャピラリチューブ44に冷媒を流すことで適切な絞りの強さとすることができ、省エネルギー性能の高い冷却運転を行うことができる。   In the refrigerator 1 according to the present embodiment, the first capillary tube 44a and the first capillary tube 44b have a throttle strength suitable for conditions with a small heat load, as compared with a case where the heat load described later is large. It is strong. As a result, when the heat load is small, the refrigerant can be flowed through any one of the capillary tubes 44 to obtain an appropriate throttle strength, and a cooling operation with high energy saving performance can be performed.

また、本実施例の冷蔵庫1では、図11bで示したように、熱負荷の大きい場合には三方弁110をOモードにして、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bの両方に冷媒を流すようにしている。第一のキャピラリチューブ44aと第二のキャピラリチューブ44b共に、断面積の小さい冷媒流路を通過させることで冷媒を減圧させているので、両方のキャピラリチューブに冷媒を流せば、冷媒流路断面積が増えて減圧量は少なくなる。そのため、熱負荷の大きい場合には、三方弁110をOモードにして、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bに同時に冷媒を流すことで絞りを弱め、蒸発温度を高くして、省エネルギー性能の高い冷却運転を行う。   Further, in the refrigerator 1 of the present embodiment, as shown in FIG. 11b, when the heat load is large, the three-way valve 110 is set to the O mode so that both the first capillary tube 44a and the second capillary tube 44b are provided. A refrigerant is allowed to flow. In both the first capillary tube 44a and the second capillary tube 44b, the refrigerant is depressurized by passing through the refrigerant flow path having a small cross-sectional area. Therefore, if the refrigerant flows through both capillary tubes, the cross-sectional area of the refrigerant flow path Increases and the amount of decompression decreases. Therefore, when the heat load is large, the three-way valve 110 is set to the O mode, the refrigerant is made to flow simultaneously through the first capillary tube 44a and the second capillary tube 44b, the throttle is weakened, the evaporation temperature is increased, Perform cooling operation with high energy-saving performance.

以上のように、減圧手段は複数のキャピラリチューブ44により構成され、冷媒流路制御手段により、複数のキャピラリチューブ44のうちの何れか1つのキャピラリチューブ44に冷媒を流す場合と、複数のキャピラリチューブ44に冷媒を流す場合とを切換えることで、絞りの変更を行う。すなわち、三方弁110が、第一の冷媒流路Aと第二の冷媒流路Bの何れかに冷媒を流す、A、Bモードと、両方同時に冷媒を流すOモードを備えることで、熱負荷に応じた蒸発圧力の制御を行ない、省エネルギー性能を向上させることができる。   As described above, the decompression means is constituted by a plurality of capillary tubes 44, and the refrigerant flow control means causes the refrigerant to flow into any one of the plurality of capillary tubes 44 and the plurality of capillary tubes. The diaphragm is changed by switching between the case where the refrigerant is supplied to 44. That is, the three-way valve 110 includes an A mode and a B mode in which the refrigerant flows in either the first refrigerant flow path A or the second refrigerant flow path B, and an O mode in which both the refrigerant flows simultaneously. It is possible to improve the energy saving performance by controlling the evaporation pressure according to the above.

なお、圧縮機24にインバータを備えた本実施例の冷蔵庫1では、さらに省エネルギー性能の向上に効果的である。図11bのように、熱負荷が大きい場合には、貯蔵室内を素早く冷却できるように、圧縮機24の回転速度を高速にするが、この場合、冷媒の蒸発圧力は低下してしまう。すなわち、省エネルギー性能が低下してしまう。それに対して、本実施例の冷蔵庫1では、絞りを弱くすることで、蒸発圧力の低下を抑えることができる。一方、図11aのように熱負荷が小さい場合は、省エネルギー性能の観点から、圧縮機24の回転速度を低速にしているが、圧縮機24を低速にすると蒸発温度が高くなって、貯蔵室内の熱を吸熱できなくなることがある。そのため、本実施例では、絞りを強くして蒸発圧力を低下させることで、圧縮機24が低速でも庫内の熱を吸熱できるようにしている。   In addition, in the refrigerator 1 of a present Example provided with the inverter in the compressor 24, it is effective for the improvement of energy saving performance further. As shown in FIG. 11b, when the heat load is large, the rotation speed of the compressor 24 is increased so that the storage chamber can be quickly cooled. In this case, the evaporation pressure of the refrigerant is reduced. That is, energy saving performance will fall. On the other hand, in the refrigerator 1 of the present embodiment, it is possible to suppress a decrease in the evaporation pressure by weakening the throttle. On the other hand, when the heat load is small as shown in FIG. 11a, the rotational speed of the compressor 24 is set to a low speed from the viewpoint of energy saving performance. It may become impossible to absorb heat. Therefore, in this embodiment, the diaphragm is strengthened to reduce the evaporation pressure, so that the heat in the refrigerator can be absorbed even when the compressor 24 is at a low speed.

以上、これまでで示したように、本実施例は、前方に開口を形成する開口縁を有する断熱箱体10と、開口を開閉可能な扉(2a,2b,3a,4a,5a,6a)と、扉と断熱箱体10によって形成された貯蔵室(2,3,4,5,6)と、圧縮機24と、放熱手段41,42と、開口縁を加熱する結露防止配管43と、減圧手段44と、蒸発器7とを備えた冷蔵庫1において、圧縮機24の吐出口から吐出される冷媒を、放熱手段41,42、結露防止配管43、減圧手段44、蒸発器7、圧縮機24の吸込口の順に流す第一の冷媒流路Aと、圧縮機24の吐出口から吐出される冷媒を、放熱手段41,42、減圧手段44、蒸発器7、圧縮機24の吸込口の順に流す第二の冷媒流路Bと、を備え、放熱手段41,42と結露防止配管43の間と、結露防止配管43と蒸発器7の間に、冷媒流路制御手段110,100を備え、該冷媒流路制御手段110,100によって、第一の冷媒流路Aと第二の冷媒流路Bの切換え、減圧手段44の絞りの変更、及び結露防止配管43と蒸発器7との間の冷媒流路の連通と閉塞の切換えを行う。   As described above, in the present embodiment, the heat insulation box 10 having the opening edge that forms the opening in the front, and the doors (2a, 2b, 3a, 4a, 5a, 6a) that can open and close the opening. And a storage chamber (2, 3, 4, 5, 6) formed by the door and the heat insulating box 10, the compressor 24, the heat radiating means 41, 42, and a dew condensation preventing pipe 43 for heating the opening edge, In the refrigerator 1 including the decompression means 44 and the evaporator 7, the refrigerant discharged from the discharge port of the compressor 24 is radiated from the heat radiation means 41 and 42, the dew condensation prevention pipe 43, the decompression means 44, the evaporator 7, and the compressor. The refrigerant discharged from the first refrigerant flow path A flowing in the order of the 24 suction ports and the discharge port of the compressor 24 is supplied to the heat radiation means 41, 42, the decompression means 44, the evaporator 7, and the suction port of the compressor 24. A second refrigerant flow path B that flows in sequence, and the heat dissipating means 41 and 42 and the dew condensation prevention pipe 4. And between the dew condensation prevention pipe 43 and the evaporator 7, the refrigerant flow control means 110, 100 are provided, and the first refrigerant flow path A and the second refrigerant are provided by the refrigerant flow control means 110, 100. The switching of the flow path B, the change of the throttle of the decompression means 44, and the switching of the communication and blocking of the refrigerant flow path between the dew condensation prevention pipe 43 and the evaporator 7 are performed.

すなわち、結露防止配管43とそのバイパス流路、及び2つのキャピラリチューブを備え、さらに三方弁110と二方弁100により冷媒流路を制御して、結露防止配管43による加熱量の制御と、蒸発器7への高温冷媒流入の抑制と、蒸発圧力の制御を行うことで、省エネルギー性能の高い冷蔵庫を得ることができる。   In other words, the anti-condensation pipe 43, its bypass flow path, and two capillary tubes are provided. Further, the refrigerant flow path is controlled by the three-way valve 110 and the two-way valve 100 to control the heating amount by the dew condensation prevention pipe 43 and evaporation. A refrigerator with high energy saving performance can be obtained by suppressing the inflow of the high-temperature refrigerant into the container 7 and controlling the evaporation pressure.

以上の効果に加え、本実施例の冷蔵庫1には、様々な効果が得られるように工夫がなされており、以下に説明する。   In addition to the above effects, the refrigerator 1 of the present embodiment has been devised so as to obtain various effects, which will be described below.

前述したように、冷媒流路の制御手段を備えていない冷蔵庫では、圧縮機24の停止時に、放熱側の高温冷媒が蒸発器7に流入して、省エネルギー性能が低下することがある。同様に、三方弁110をBモードにした場合にも、三方弁110よりも下流(図3参照)にある結露防止配管43内の高温冷媒が蒸発器7に流入して、省エネルギー性能を低下させることがある。図9で示したように、結露防止配管43内の冷媒は密度の高い液冷媒95の割合が多いので、配管内容積に対して、結露防止配管43内の冷媒量は多い。そのため、結露防止配管43に滞留した冷媒のみでも、蒸発器7に流入した際の熱負荷の増加による省エネルギー性能を低下させる影響は大きい。そこで、本実施例の冷蔵庫1では、三方弁110がBモードの時には二方弁100を閉モードにして、結露防止配管43内の高温冷媒が蒸発器7に流入しないようにして、省エネルギー性能を向上させている。   As described above, in a refrigerator that does not include a refrigerant flow path control unit, when the compressor 24 is stopped, the high-temperature refrigerant on the heat radiation side flows into the evaporator 7 and the energy saving performance may be reduced. Similarly, even when the three-way valve 110 is set to the B mode, the high-temperature refrigerant in the dew condensation prevention pipe 43 downstream from the three-way valve 110 (see FIG. 3) flows into the evaporator 7 to reduce the energy saving performance. Sometimes. As shown in FIG. 9, since the refrigerant in the dew condensation prevention pipe 43 has a high proportion of the liquid refrigerant 95 having a high density, the refrigerant amount in the dew condensation prevention pipe 43 is larger than the pipe internal volume. Therefore, even the refrigerant staying in the dew condensation prevention pipe 43 has a great influence on the energy saving performance due to the increase in the heat load when it flows into the evaporator 7. Therefore, in the refrigerator 1 of the present embodiment, when the three-way valve 110 is in the B mode, the two-way valve 100 is set in the closed mode so that the high-temperature refrigerant in the dew condensation prevention pipe 43 does not flow into the evaporator 7, so that energy saving performance is achieved. It is improving.

次に、熱交換部47の効果について説明する。図3で示したように、本実施例の冷蔵庫1では、熱交換部47においてキャピラリチューブ44と接続配管84との間で熱交換させている。図8で示したように、キャピラリチューブ44を流れる際に冷媒の比エンタルピーをh3からh4に減少させて、冷媒による吸熱量(h5−h4)を大きくすることで、冷却効率(=吸熱量(h5−h4)/消費エネルギー(h2−h1))を向上させるためである。すなわち、キャピラリチューブ44と接続配管84とで熱交換させることで、省エネルギー性能を向上させている。   Next, the effect of the heat exchange unit 47 will be described. As shown in FIG. 3, in the refrigerator 1 of the present embodiment, heat exchange is performed between the capillary tube 44 and the connection pipe 84 in the heat exchange unit 47. As shown in FIG. 8, when the refrigerant flows through the capillary tube 44, the specific enthalpy of the refrigerant is decreased from h3 to h4, and the heat absorption amount (h5-h4) by the refrigerant is increased, so that the cooling efficiency (= the heat absorption amount (= h5-h4) / energy consumption (h2-h1)). That is, the energy saving performance is improved by exchanging heat between the capillary tube 44 and the connection pipe 84.

図7で示したように、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bとは、冷媒配管84を挟むように離して設けている。例えば、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bを近接させて設け、第一のキャピラリチューブ44aのみに冷媒を流すと、第一のキャピラリチューブ44a内を流れる冷媒は、接続配管84に加えて冷媒が流れていない第二のキャピラリチューブ44bとも熱交換を行う。第二のキャピラリチューブ44bの上流側は三方弁110によって閉塞され、下流側は蒸発器7と連通されているので(図3参照)、第二のキャピラリチューブ44bを加熱すると、その熱によって蒸発器7も加熱されてしまうことになる。また、第一のキャピラリチューブ44a内の冷媒は、第二のキャピラリチューブ44bと熱交換することで、接続配管84と熱交換する熱量が少なくなってしまう。そのため、本実施例の冷蔵庫1では、第一のキャピラリチューブ44aと第二のキャピラリチューブ44bを離して設けることで、キャピラリチューブ44間での熱交換を抑えて、熱交換部47による省エネルギー性能向上の効果を高めている。   As shown in FIG. 7, the first capillary tube 44a and the second capillary tube 44b are provided so as to sandwich the refrigerant pipe 84 therebetween. For example, when the first capillary tube 44a and the second capillary tube 44b are provided close to each other and the refrigerant is allowed to flow only through the first capillary tube 44a, the refrigerant flowing in the first capillary tube 44a is transferred to the connection pipe 84. In addition, heat exchange is performed with the second capillary tube 44b in which no refrigerant flows. Since the upstream side of the second capillary tube 44b is closed by the three-way valve 110 and the downstream side is connected to the evaporator 7 (see FIG. 3), when the second capillary tube 44b is heated, the heat causes the evaporator 7 will also be heated. The refrigerant in the first capillary tube 44a exchanges heat with the second capillary tube 44b, so that the amount of heat exchanged with the connection pipe 84 decreases. Therefore, in the refrigerator 1 of the present embodiment, the first capillary tube 44a and the second capillary tube 44b are provided apart from each other, thereby suppressing heat exchange between the capillary tubes 44 and improving the energy saving performance by the heat exchange unit 47. The effect is enhanced.

次に、図11aで示した、圧縮機24の停止前、停止中、運転再開後に、三方弁110をAモードにしている理由とその効果を説明する。   Next, the reason why the three-way valve 110 is set to the A mode and the effect thereof before the stop of the compressor 24 shown in FIG.

圧縮機24の停止中は冷媒が循環していないので、結露防止配管43による仕切り壁28、29、30の前面部の加熱ができない。そのため、仕切り壁28、29、30の前面部の温度が低下して、仕切り壁28、29、30の前面部に結露が生じ易くなる。そこで、圧縮機24の停止前に三方弁110をAモードで運転して、仕切り壁28、29、30の前面部の温度が高い状態で圧縮機24を停止させて、停止中に前面部の温度が低下しても比較的高い温度を維持できるようにしている。また、圧縮機24を停止させる際には、三方弁110をAモードにしたまま二方弁100を閉モードにしている。これにより、結露防止配管43の下流の冷媒流路が塞がれるので(図3参照)、圧縮機24停止中にも結露防止配管43内に高温の冷媒が残ったままとなる。さらに、結露防止配管43内の冷媒は、隣接する冷凍室60により冷やされて温度が低下しやすいが、温度が下がると圧力も下がるので、圧力差により三方弁111よりも上流側の高温の冷媒が結露防止配管43内に流れてくる。そのため、結露防止配管43内には比較的高温な冷媒が維持され易くなるので、仕切り壁28、29、30の前面部の温度低下を抑えることができる。さらに圧縮機24の運転再開後には三方弁110をAモードで冷媒を循環させて、結露防止配管43に冷媒を流すことで、仕切り壁28、29、30の前面部を素早く加熱し、それ以上温度が低下しないようにしている。   Since the refrigerant does not circulate while the compressor 24 is stopped, the front surfaces of the partition walls 28, 29, and 30 cannot be heated by the dew condensation prevention pipe 43. Therefore, the temperature of the front part of the partition walls 28, 29, and 30 is lowered, and condensation easily occurs on the front part of the partition walls 28, 29, and 30. Therefore, the three-way valve 110 is operated in the A mode before the compressor 24 is stopped, and the compressor 24 is stopped in a state where the temperature of the front portion of the partition walls 28, 29, and 30 is high. Even if the temperature drops, a relatively high temperature can be maintained. When the compressor 24 is stopped, the two-way valve 100 is in the closed mode while the three-way valve 110 is in the A mode. As a result, the refrigerant flow path downstream of the dew condensation prevention pipe 43 is blocked (see FIG. 3), so that the high temperature refrigerant remains in the dew condensation prevention pipe 43 even when the compressor 24 is stopped. Furthermore, although the refrigerant in the dew condensation prevention pipe 43 is cooled by the adjacent freezer compartment 60 and the temperature is likely to decrease, the pressure also decreases as the temperature decreases, so that the high temperature refrigerant upstream of the three-way valve 111 due to the pressure difference. Flows into the condensation prevention pipe 43. Therefore, a relatively high-temperature refrigerant is easily maintained in the dew condensation prevention pipe 43, so that a decrease in temperature at the front portions of the partition walls 28, 29, and 30 can be suppressed. Further, after restarting the operation of the compressor 24, the refrigerant is circulated through the three-way valve 110 in the A mode, and the refrigerant is caused to flow through the dew condensation prevention pipe 43, thereby quickly heating the front portions of the partition walls 28, 29, and 30. The temperature is not lowered.

さらに本実施例の冷蔵庫1では、二方弁100の設置箇所に関しても配慮している。図3で示したように、本実施例の冷蔵庫1では結露防止配管43と第一のキャピラリチューブ44aの間の冷媒流路中に二方弁100を設けているが、例えば、第一のキャピラリチューブ44aよりも下流の接続配管80中に二方弁100を設けても、これまで述べた効果と同様の効果は得られる。   Furthermore, in the refrigerator 1 of the present embodiment, consideration is also given to the installation location of the two-way valve 100. As shown in FIG. 3, in the refrigerator 1 of the present embodiment, the two-way valve 100 is provided in the refrigerant flow path between the dew condensation prevention pipe 43 and the first capillary tube 44a. Even if the two-way valve 100 is provided in the connection pipe 80 downstream of the tube 44a, the same effect as described above can be obtained.

一方、第一のキャピラリチューブ44aを通過した冷媒は低温低圧となっているので、この冷媒が流入する二方弁100も低温になる。高温の機械室19や、冷蔵室2、野菜室6に二方弁100を設けると、低温になった二方弁100に結露が生じる可能性があるので、二方弁100に防露対策が必要となる。さらに、二方弁100を機械室19内に設けると、低温冷媒と機械室19の空気とで熱交換してしまい、冷凍サイクルで貯蔵室外の空気を吸熱してしまうことになるので、省エネルギー性能の低下も招く。   On the other hand, since the refrigerant that has passed through the first capillary tube 44a has a low temperature and a low pressure, the two-way valve 100 into which the refrigerant flows also has a low temperature. If the two-way valve 100 is provided in the high-temperature machine room 19, the refrigerator room 2, or the vegetable room 6, condensation may occur in the two-way valve 100 that has become low temperature. Necessary. Furthermore, if the two-way valve 100 is provided in the machine room 19, heat exchange is performed between the low-temperature refrigerant and the air in the machine room 19, and the air outside the storage room is absorbed by the refrigeration cycle. This also leads to a decline.

一方で、低温の冷凍室60や蒸発器7の周辺に配設すると、周囲が低温でも正常に動作する二方弁が必要となるので、信頼性に対する要求は高いものとなる。そのため、本実施例の冷蔵庫1では、二方弁100は高温冷媒が流れる結露防止配管43と、第一のキャピラリチューブ44aの間の冷媒流路途中に設けている。   On the other hand, when it is arranged around the low temperature freezer compartment 60 or the evaporator 7, a two-way valve that operates normally even when the surroundings are at a low temperature is required, so that the demand for reliability is high. Therefore, in the refrigerator 1 of the present embodiment, the two-way valve 100 is provided in the middle of the refrigerant flow path between the dew condensation prevention pipe 43 through which the high-temperature refrigerant flows and the first capillary tube 44a.

また、本実施例のように二方弁100内を高温の冷媒が流れる場合、二方弁100を各貯蔵室に設けると、二方弁100の容積による貯蔵室内の収納スペースの減少といった課題とともに、低温の貯蔵室内の空気と高温冷媒とで熱交換して貯蔵室内を加熱してしまうといった課題が生じる。貯蔵室内の加熱は省エネルギー性能の低下を招くため、本実施例の冷蔵庫1では、断熱箱体10の外の機械室19に二方弁100を設置している。すなわち、冷媒流路制御手段の一種である二方弁100は、結露防止配管43から減圧手段の一種であるキャピラリチューブ44の間の冷媒流路中であって、貯蔵室の外に配設されている。   In addition, when a high-temperature refrigerant flows in the two-way valve 100 as in this embodiment, providing the two-way valve 100 in each storage chamber has a problem of reducing the storage space in the storage chamber due to the volume of the two-way valve 100. There arises a problem that heat is exchanged between the air in the low temperature storage chamber and the high temperature refrigerant to heat the storage chamber. Since heating in the storage chamber causes a decrease in energy saving performance, the two-way valve 100 is installed in the machine room 19 outside the heat insulating box 10 in the refrigerator 1 of the present embodiment. That is, the two-way valve 100, which is a kind of refrigerant flow control means, is disposed in the refrigerant flow path between the condensation prevention pipe 43 and the capillary tube 44, which is a kind of decompression means, and is disposed outside the storage chamber. ing.

(実施例2)
次に、実施例2の冷蔵庫1の冷媒流路構成に関し、図13を参照しながら説明する。実施例2の冷蔵庫1は、実施例1の二方弁100の代わりに、絞りの強さを制御できる膨張弁120により、第一の冷媒流路Aの絞りの強さを変えられる冷蔵庫である。なお、実施例1と同一の部材については、同一符号を付して説明を省略する。
(Example 2)
Next, the refrigerant flow path configuration of the refrigerator 1 of Example 2 will be described with reference to FIG. The refrigerator 1 of the second embodiment is a refrigerator that can change the throttle strength of the first refrigerant flow path A by using an expansion valve 120 that can control the strength of the throttle instead of the two-way valve 100 of the first embodiment. . In addition, about the member same as Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図13は、実施例2に関する冷蔵庫の冷凍サイクル(冷媒流路)構成を説明する図である。実施例1の冷蔵庫に対して実施例2の冷蔵庫では、第一のキャピラリチューブ44aの代わりに第三のキャピラリチューブ44c、二方弁100の代わりに膨張弁120を設けている。また実施例1の冷蔵庫1に設けていたA、B、Oの3つのモードを備えた三方弁110の代わりに、実施例2の冷蔵庫では、流入口111iと流出口111o_Aを連通させるAモード、流入口110iと流出口110o_Bを連通させるBモードの、2つのモードを備えた三方弁111を設けている。   FIG. 13 is a diagram illustrating a refrigeration cycle (refrigerant flow path) configuration of the refrigerator according to the second embodiment. In the refrigerator according to the second embodiment, the third capillary tube 44c is provided instead of the first capillary tube 44a, and the expansion valve 120 is provided instead of the two-way valve 100 as compared with the refrigerator according to the first embodiment. In addition, instead of the three-way valve 110 having the three modes A, B, and O provided in the refrigerator 1 of the first embodiment, the refrigerator of the second embodiment has an A mode in which the inlet 111i and the outlet 111o_A are communicated with each other. A three-way valve 111 having two modes, a B mode for communicating the inflow port 110i and the outflow port 110o_B, is provided.

結露防止配管43を備える第一の冷媒流路Aと、結露防止配管43をバイパスさせる第二の冷媒流路Bは、この三方弁111により切り換える。第一の冷媒流路Aでは、三方弁111の流出口111o_Aを通過した後、冷媒配管76、結露防止配管43、冷媒配管78を介して膨張弁120に流れ、膨張弁120から冷媒配管79を介して第三のキャピラリチューブ44cに流れ、第三のキャピラリチューブ44cから冷媒配管80を介して冷媒合流部200に冷媒が流れるように構成している。すなわち、減圧手段は、膨張弁120と、キャピラリチューブ44とを組み合わせて構成する。その他の冷凍サイクルの構成は実施例1と同様である。   The three-way valve 111 switches between the first refrigerant flow path A provided with the dew condensation prevention pipe 43 and the second refrigerant flow path B that bypasses the dew condensation prevention pipe 43. In the first refrigerant flow path A, after passing through the outlet 111o_A of the three-way valve 111, it flows to the expansion valve 120 via the refrigerant pipe 76, the dew condensation prevention pipe 43, and the refrigerant pipe 78, and from the expansion valve 120 to the refrigerant pipe 79. The refrigerant flows into the third capillary tube 44c through the refrigerant tube 80, and the refrigerant flows from the third capillary tube 44c through the refrigerant pipe 80 to the refrigerant junction 200. That is, the decompression means is configured by combining the expansion valve 120 and the capillary tube 44. Other configurations of the refrigeration cycle are the same as those in the first embodiment.

第三のキャピラリチューブ44cは、第二のキャピラリチューブ44bよりも絞りが弱く、熱負荷の大きい場合に適した絞りにしている。すなわち、複数のキャピラリチューブ44はそれぞれ絞りが異なる。膨張弁120は、実施例1の二方弁100と同様に冷媒流路の開閉を制御する冷媒流路制御手段であるとともに、冷媒を減圧させる減圧手段でもある。本実施例の膨張弁120には、冷媒配管79と冷媒配管80の間での減圧を極力抑えて連通させる開モードと、膨張弁120内に備えた弁体(図示せず)によって膨張弁120の流出口(図示せず)の一部を閉塞して、冷媒流路の断面積を小さくすることで減圧させる減圧モードを備えている。減圧モードには複数の段階を設けており、絞りの強さを細かく調整することができる。さらに、膨張弁120は冷媒流路を閉塞させる閉モードも備えている。   The third capillary tube 44c is narrower than the second capillary tube 44b, and is suitable for a large heat load. That is, the plurality of capillary tubes 44 have different apertures. The expansion valve 120 is a refrigerant flow path control means for controlling the opening and closing of the refrigerant flow path, as well as the two-way valve 100 of the first embodiment, and is also a pressure reducing means for reducing the pressure of the refrigerant. The expansion valve 120 of the present embodiment includes an open mode in which communication between the refrigerant pipe 79 and the refrigerant pipe 80 is suppressed as much as possible, and a valve body (not shown) provided in the expansion valve 120. A pressure reducing mode is provided in which a part of the outlet (not shown) is closed to reduce the cross-sectional area of the refrigerant flow path. A plurality of stages are provided in the decompression mode, and the strength of the diaphragm can be finely adjusted. Furthermore, the expansion valve 120 has a closed mode for closing the refrigerant flow path.

以上で示した実施例2の冷蔵庫1の構成により得られる効果を以下で説明する。   The effect acquired by the structure of the refrigerator 1 of Example 2 shown above is demonstrated below.

実施例2の冷蔵庫1では、膨張弁120を開モードにして、第三のキャピラリチューブ44cのみで冷媒を減圧させるモードと、膨張弁120を減圧モードにして、膨張弁120と第三のキャピラリチューブ44cの両方で冷媒を減圧させるモードを切り換えることで、絞りの強さを切り換えている。これにより、熱負荷の小さい場合と、大きい場合のそれぞれで最適な絞りの強さとなるように調整することができる。具体的には、熱負荷の大きい場合に最適な絞りの強さとなるように第三のキャピラリチューブ44cの仕様を決定した後に、膨張弁120内の冷媒流路の断面積が熱負荷の小さい場合に最適な絞りの強さとなるように、減圧モードの時の、膨張弁120内の弁体(図示せず)の位置を決定する。これにより、熱負荷の小さい場合は膨張弁120を減圧モードにすることで、熱負荷の大きい場合は膨張弁120を開モードにすることで、何れの場合も最適な絞りの強さとすることができる。すなわち、実施例2の冷蔵庫1では、熱負荷の大きい場合と小さい場合の両方で、最適な蒸発圧力となるように絞りの強さを調整することができるので、実施例1の冷蔵庫1より省エネルギー性能の高い冷蔵庫とすることができる。   In the refrigerator 1 of the second embodiment, the expansion valve 120 is set to the open mode, the refrigerant is decompressed only by the third capillary tube 44c, and the expansion valve 120 is set to the decompression mode, and the expansion valve 120 and the third capillary tube are set. The throttle strength is switched by switching the mode in which the refrigerant is depressurized by both 44c. Thereby, it can adjust so that it may become the optimal aperture | strength intensity | strength in each of the case where a thermal load is small and large. Specifically, after the specification of the third capillary tube 44c is determined so that the optimum throttle strength is obtained when the thermal load is large, the cross-sectional area of the refrigerant flow path in the expansion valve 120 is small. The position of a valve body (not shown) in the expansion valve 120 in the pressure reducing mode is determined so as to obtain an optimum throttle strength. Thus, when the heat load is small, the expansion valve 120 is set to the decompression mode, and when the heat load is large, the expansion valve 120 is set to the open mode, so that the optimum throttle strength can be obtained in any case. it can. That is, in the refrigerator 1 according to the second embodiment, the strength of the throttling can be adjusted so that the optimal evaporation pressure can be obtained both when the heat load is large and when the heat load is small. A high-performance refrigerator can be obtained.

また、実施例2の膨張弁120は、減圧モードに複数の段階を備えており、設定できる絞りの強さを開モードと減圧モードの2段階ではなく、細かく調整できるようにしている。そのため、本実施例の冷蔵庫1は、貯蔵室内の熱負荷に応じてより柔軟に絞りの強さを調整することができ、より多くの条件で最適な蒸発圧力に制御することができる。   In addition, the expansion valve 120 according to the second embodiment includes a plurality of stages in the decompression mode, and the throttle strength that can be set can be finely adjusted instead of the two stages of the open mode and the decompression mode. Therefore, the refrigerator 1 of the present embodiment can adjust the strength of the throttle more flexibly according to the heat load in the storage chamber, and can be controlled to the optimum evaporation pressure under more conditions.

次に、実施例2の冷蔵庫1では、第一の冷媒流路Aにおいて、膨張弁120のみでなく、膨張弁120と第三のキャピラリチューブ44cの2つの減圧手段によって冷媒を減圧させている理由を説明する。   Next, in the refrigerator 1 of the second embodiment, in the first refrigerant flow path A, the reason is that the refrigerant is decompressed not only by the expansion valve 120 but also by the two decompression means of the expansion valve 120 and the third capillary tube 44c. Will be explained.

キャピラリチューブ44は、減圧手段としての機能と共に、冷媒配管84の冷媒と熱交換する熱交換部47としての機能も備えている。実施例1で図8を用いて説明したように、熱交換部47を設けることによって蒸発器7での吸熱量が増え、省エネルギー性能が向上する。そのため、実施例2の冷蔵庫1は、膨張弁120に加えて第三のキャピラリチューブ44cを設けることで、熱交換部47による省エネルギー性能向上効果を得ることができる。   The capillary tube 44 also has a function as a heat exchanging unit 47 for exchanging heat with the refrigerant in the refrigerant pipe 84 in addition to the function as a decompression unit. As described with reference to FIG. 8 in the first embodiment, by providing the heat exchanging portion 47, the amount of heat absorbed in the evaporator 7 is increased, and the energy saving performance is improved. Therefore, the refrigerator 1 of Example 2 can obtain the energy saving performance improvement effect by the heat exchange unit 47 by providing the third capillary tube 44 c in addition to the expansion valve 120.

次に、結露防止配管43に冷媒が流れる第一の冷媒流路A側に、膨張弁120を設けた理由を以下で説明する。   Next, the reason why the expansion valve 120 is provided on the first refrigerant flow path A side where the refrigerant flows through the dew condensation prevention pipe 43 will be described below.

これまでに述べてきたように、熱負荷の大きい場合よりも熱負荷が小さい場合の絞りを強くするようにして、さらに、冷蔵庫1周囲の温度と湿度に応じて第一の冷媒流路Aと第二の冷媒流路Bを交互に切り換えることが省エネルギー性能の向上に有効である。そのため、熱負荷の小さい場合は、第一の冷媒流路Aと第二の冷媒流路Bのどちらも強い絞りにして、第一の冷媒流路Aと第二の冷媒流路Bを交互に切り換える方が良い。ここで、本実施例のように、冷媒流路の一方のみに膨張弁120を設けると、その冷媒流路のみが冷凍サイクルの絞りの強さを変えられる構成となるので、他方の流路における冷凍サイクルの絞りは、熱負荷の小さい場合に合わせた強い絞りの状態で固定される。すなわち、絞りを弱められる冷媒流路は、膨張弁120を通る側の冷媒流路のみとなる。そのため、熱負荷が大きく、絞りを弱めたい時には、膨張弁120を通る側の冷媒流路に冷媒を流す必要がある。仮に膨張弁120を第二の冷媒流路B側のみに設けた場合、絞りを弱めるためには常に第二の冷媒流路B側に冷媒を流すことになる。第二の冷媒流路Bに冷媒を流し続けると結露防止配管43により結露を抑制している仕切り壁28、29、30が加熱されず、これらの壁面に結露が生じる可能性が高まる。   As described so far, the throttle when the heat load is small is made stronger than the case where the heat load is large, and the first refrigerant flow path A according to the temperature and humidity around the refrigerator 1 is further increased. It is effective to improve the energy saving performance to switch the second refrigerant flow path B alternately. Therefore, when the heat load is small, both the first refrigerant flow path A and the second refrigerant flow path B are made strong throttles, and the first refrigerant flow path A and the second refrigerant flow path B are alternately arranged. It is better to switch. Here, as in this embodiment, when the expansion valve 120 is provided only in one of the refrigerant flow paths, only the refrigerant flow path can change the throttle strength of the refrigeration cycle. The throttle of the refrigeration cycle is fixed in a strong throttle state in accordance with a small heat load. That is, the refrigerant flow path whose diaphragm is weakened is only the refrigerant flow path on the side passing through the expansion valve 120. Therefore, when the heat load is large and it is desired to weaken the throttle, it is necessary to flow the refrigerant through the refrigerant flow path on the side passing through the expansion valve 120. If the expansion valve 120 is provided only on the second refrigerant flow path B side, the refrigerant is always flowed to the second refrigerant flow path B side in order to weaken the throttle. If the refrigerant continues to flow through the second refrigerant flow path B, the partition walls 28, 29, and 30 that suppress dew condensation by the dew condensation prevention pipe 43 are not heated, and the possibility that dew condensation occurs on these wall surfaces increases.

それに対して、本実施例のように、結露防止配管43を設けている第一の冷媒流路A側に膨張弁120を設けると、絞りを弱める場合には第一の冷媒流路A側に固定されるので、冷蔵庫1の貯蔵室内の熱負荷が大きく、冷蔵庫1の周囲の湿度も高い場合であっても結露を抑制することができる。   On the other hand, when the expansion valve 120 is provided on the first refrigerant flow path A side where the dew condensation prevention pipe 43 is provided as in this embodiment, the first refrigerant flow path A side is provided when the throttle is weakened. Since it is fixed, dew condensation can be suppressed even when the heat load in the storage chamber of the refrigerator 1 is large and the humidity around the refrigerator 1 is high.

また、第一の冷媒流路A側に膨張弁120を設け、さらに膨張弁120に閉モードを備えることで、実施例1の二方弁100の役割も兼ねることができる。すなわち、閉モードを備えた膨張弁120を結露防止配管43と第三のキャピラリチューブ44cの間に設けて、圧縮機24停止時等に、膨張弁120を閉モードにすることで、放熱側から蒸発器7への高温冷媒の流入を抑制して、省エネルギー性能を向上させる効果も得られる。   Further, by providing the expansion valve 120 on the first refrigerant flow path A side and further providing the expansion valve 120 with a closed mode, the two-way valve 100 of the first embodiment can also serve as the role. That is, the expansion valve 120 having the closed mode is provided between the dew condensation prevention pipe 43 and the third capillary tube 44c, and the expansion valve 120 is set to the closed mode when the compressor 24 is stopped. The effect of improving the energy saving performance by suppressing the inflow of the high-temperature refrigerant to the evaporator 7 is also obtained.

(実施例3)
次に、実施例3の冷蔵庫1の冷媒流路構成に関し、図14、図15a、図15b、図15cを参照して説明する。実施例3の冷蔵庫1は、第一の冷媒流路Aと第二の冷媒流路Bの何れにおいても、絞りの強さを変えられる冷蔵庫である。なお、実施例1と同一の部材については、同一符号を付して説明を省略する。
Example 3
Next, the refrigerant flow path configuration of the refrigerator 1 of Example 3 will be described with reference to FIGS. 14, 15a, 15b, and 15c. The refrigerator 1 of Example 3 is a refrigerator that can change the strength of the throttle in both the first refrigerant flow path A and the second refrigerant flow path B. In addition, about the member same as Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図14は、実施例3に関する冷蔵庫の冷凍サイクル(冷媒流路)の構成を説明する図である。本実施例の冷蔵庫1は、実施例2と同様の第一の三方弁111により第一の冷媒流路Aと第二の冷媒流路Bを切り換え、後述する第二の三方弁112により第四のキャピラリチューブ44dと第五のキャピラリチューブ44eを切り換える冷蔵庫である。第四のキャピラリチューブ44dは、実施例1の第一のキャピラリチューブ44a及び第二のキャピラリチューブ44bと同様に、熱負荷が小さい状態で適切な絞りの強さとなるように調整されている。第五のキャピラリチューブ44eは熱負荷が大きい状態で適切な絞りの強さとなるように調整されたもので、第四のキャピラリチューブ44dに比べて絞りの強さを弱くしている。   FIG. 14 is a diagram illustrating the configuration of the refrigeration cycle (refrigerant flow path) of the refrigerator according to the third embodiment. In the refrigerator 1 of the present embodiment, the first refrigerant flow path A and the second refrigerant flow path B are switched by the first three-way valve 111 similar to that of the second embodiment, and the fourth three-way valve 112 which will be described later is used for the fourth. This is a refrigerator that switches between the capillary tube 44d and the fifth capillary tube 44e. Similar to the first capillary tube 44a and the second capillary tube 44b of the first embodiment, the fourth capillary tube 44d is adjusted so as to have an appropriate throttle strength with a small thermal load. The fifth capillary tube 44e is adjusted so as to have an appropriate diaphragm strength in a state where the heat load is large, and the diaphragm strength is made weaker than that of the fourth capillary tube 44d.

第一の三方弁111は、流入口111iと流出口111o_Aとを連通させるAモードと、流入口111iと流出口111o_Bとを連通させるBモードの2つのモードを切り換える。一方、第二の三方弁112は、流入口112iと流出口112o_Dとを連通させるDモードと、流入口112iと流出口112o_Eとを連通させるEモードと、さらに、三方弁112の流出口112o_D、流出口112o_Eのどちらも閉塞させるXモードの3つのモードを備える。また、実施例3の冷蔵庫1は逆止弁210と冷媒合流部201を備えている。逆止弁210は、一方向のみ冷媒を通過させることができる部材である。冷媒合流部201は冷媒合流部200と同様に、3つの冷媒配管と接続し、それらを常に連通状態とする部材である。   The first three-way valve 111 switches between two modes: an A mode for communicating the inlet 111i and the outlet 111o_A and a B mode for communicating the inlet 111i and the outlet 111o_B. On the other hand, the second three-way valve 112 includes a D mode for communicating the inlet 112i and the outlet 112o_D, an E mode for communicating the inlet 112i and the outlet 112o_E, and an outlet 112o_D of the three-way valve 112. There are three modes of the X mode in which both of the outlets 112o_E are closed. The refrigerator 1 according to the third embodiment includes a check valve 210 and a refrigerant junction portion 201. The check valve 210 is a member that allows the refrigerant to pass only in one direction. Similarly to the refrigerant junction part 200, the refrigerant junction part 201 is a member that is connected to three refrigerant pipes and always makes them communicate.

次に、各構成部材と各接続配管の関係について説明する。実施例1と同様の構造は省略する。壁面放熱配管42と接続された接続配管74の他端は、第一の三方弁111の流入口111iと接続されている。第一の三方弁111の流出口111o_Aは接続配管76と、流出口110o_Bは接続配管77と接続されている。   Next, the relationship between each component member and each connection pipe will be described. A structure similar to that of the first embodiment is omitted. The other end of the connection pipe 74 connected to the wall surface heat radiation pipe 42 is connected to the inlet 111 i of the first three-way valve 111. The outlet 111o_A of the first three-way valve 111 is connected to the connecting pipe 76, and the outlet 110o_B is connected to the connecting pipe 77.

接続配管76は、結露防止配管43と接続されており、結露防止配管43の他端は接続配管78により逆止弁210と接続されている。そして、接続配管85により逆止弁210と冷媒合流部201が接続されている。また、第一の三方弁の流出口111o_Bと接続された接続配管77の他端も冷媒合流部201と接続されている。冷媒合流部201は、前述の冷媒配管85、77とともに冷媒配管86に接続されている。冷媒配管86の他端はドライヤ45と接続され、冷媒配管87によりこのドライヤ45と第二の三方弁112の流入口112iとが接続されている。第二の三方弁112の流出口112o_Dは、接続配管88により第四のキャピラリチューブ44dと接続され、流出口112o_Eは接続配管89により第五のキャピラリチューブ44eと接続されている。その他の構成は実施例1と同様である。   The connection pipe 76 is connected to the dew condensation prevention pipe 43, and the other end of the dew condensation prevention pipe 43 is connected to the check valve 210 by the connection pipe 78. The check valve 210 and the refrigerant merging portion 201 are connected by a connection pipe 85. The other end of the connection pipe 77 connected to the outlet 111o_B of the first three-way valve is also connected to the refrigerant junction portion 201. The refrigerant junction 201 is connected to the refrigerant pipe 86 together with the refrigerant pipes 85 and 77 described above. The other end of the refrigerant pipe 86 is connected to the dryer 45, and the dryer 45 and the inlet 112 i of the second three-way valve 112 are connected by the refrigerant pipe 87. The outflow port 112o_D of the second three-way valve 112 is connected to the fourth capillary tube 44d through a connection pipe 88, and the outflow port 112o_E is connected to the fifth capillary tube 44e through a connection pipe 89. Other configurations are the same as those of the first embodiment.

第一の三方弁111の制御については、図10に示した実施例1の三方弁110と同様に、冷蔵庫1の周囲の温度と湿度に応じて第一の三方弁111のAモードとBモードを切り換えて、適切な加熱量にすることで、結露防止配管43内の冷媒によって結露を抑制しつつ、加熱のし過ぎを抑えて省エネルギー性能の高い冷却運転を行う。第二の三方弁112は熱負荷の変化に応じて切り換えるもので、熱負荷の低い場合にはDモードにして、絞りの強い第四のキャピラリチューブ44dに冷媒が流れるようにし、熱負荷の高い場合にはEモードにして、絞りの弱い第五のキャピラリチューブ44eに冷媒が流れるようにしている。また、圧縮機24停止時には、実施例1の二方弁100の代わりに第二の三方弁112をXモードとし、第一の三方弁111はAモードにする。   As for the control of the first three-way valve 111, the A mode and the B mode of the first three-way valve 111 according to the ambient temperature and humidity of the refrigerator 1 as in the three-way valve 110 of the first embodiment shown in FIG. By switching to a proper heating amount, the refrigerant in the dew condensation prevention pipe 43 suppresses dew condensation, while suppressing excessive heating and performing a cooling operation with high energy saving performance. The second three-way valve 112 is switched according to a change in the heat load. When the heat load is low, the second three-way valve 112 is set to the D mode so that the refrigerant flows through the fourth capillary tube 44d having a strong throttle and the heat load is high. In this case, the mode is set to the E mode so that the refrigerant flows through the fifth capillary tube 44e having a weak throttle. When the compressor 24 is stopped, the second three-way valve 112 is set to the X mode instead of the two-way valve 100 of the first embodiment, and the first three-way valve 111 is set to the A mode.

以上に示した実施例3の冷蔵庫1により得られる効果を以下で説明する。   The effect obtained by the refrigerator 1 of Example 3 shown above is demonstrated below.

実施例3の冷蔵庫1では、第一の三方弁111により冷蔵庫1の周囲の温度と湿度に応じて結露防止配管43の加熱量を制御し、また、第二の三方弁112により熱負荷に応じて蒸発圧力を制御するので、加熱量と蒸発圧力を別々に制御することができる。そのため、熱負荷に影響されることなく、結露防止配管43による過度な加熱を抑えて省エネルギー性能を高めることができる。   In the refrigerator 1 of the third embodiment, the heating amount of the dew condensation prevention pipe 43 is controlled by the first three-way valve 111 according to the temperature and humidity around the refrigerator 1, and the second three-way valve 112 is used according to the heat load. Since the evaporation pressure is controlled, the heating amount and the evaporation pressure can be controlled separately. Therefore, the energy saving performance can be enhanced by suppressing excessive heating by the dew condensation prevention pipe 43 without being influenced by the heat load.

また、実施例3の冷蔵庫1では、2つのキャピラリチューブ44を熱負荷に応じて切り換えることができるので、第四のキャピラリチューブ44dの仕様は、熱負荷の小さい場合に適した絞りの強さにし、第5のキャピラリチューブ44eの仕様は、熱負荷の大きい場合に適した絞りの強さにしている。そのため、熱負荷の大きい場合や小さい場合でも、どちらも最適な蒸発圧力になるように絞りの強さを調整することができる。   In the refrigerator 1 according to the third embodiment, the two capillary tubes 44 can be switched according to the heat load. Therefore, the specification of the fourth capillary tube 44d is set to the strength of the throttle suitable for the case where the heat load is small. The specification of the fifth capillary tube 44e is set to a diaphragm strength suitable for a large heat load. Therefore, the strength of the throttle can be adjusted so that the optimal evaporation pressure is obtained in both cases where the heat load is large and small.

次に、第二の三方弁112の流出口112o_D、流出口112o_Eのどちらも閉塞させるXモードを設けた理由を説明する。第二の三方弁112は、結露防止配管43とキャピラリチューブ44の間に設けられており、圧縮機24停止時には第二の三方弁112をXモードにする。流出口112o_D、流出口112o_Eのどちらも閉塞されるので、第二の三方弁112よりも上流側と下流側の冷媒流路を閉塞することができる。そのため、圧縮機24から結露防止配管43までの高温冷媒が、圧縮機24停止時に蒸発器7に流入できなくなり、高温冷媒による貯蔵室内の熱負荷の増加を抑えることができる。すなわち、Xモードを備えた第二の三方弁112を使用することで、新たな弁を用いることなく、実施例1の二方弁100と同等の効果を得られる。機械室19のサイズは,基本的には冷蔵庫1の幅によって決まり,機械室19には弁の他に圧縮機24や貯蔵室外放熱器41等も設置するため,弁は2個以内が望ましい。また、弁の増加によって生じるコストの増加も抑えることができる。   Next, the reason for providing the X mode that closes both the outlet 112o_D and the outlet 112o_E of the second three-way valve 112 will be described. The second three-way valve 112 is provided between the dew condensation prevention pipe 43 and the capillary tube 44, and when the compressor 24 is stopped, the second three-way valve 112 is set to the X mode. Since both the outflow port 112o_D and the outflow port 112o_E are closed, the refrigerant flow path on the upstream side and the downstream side of the second three-way valve 112 can be closed. Therefore, the high-temperature refrigerant from the compressor 24 to the dew condensation prevention pipe 43 cannot flow into the evaporator 7 when the compressor 24 is stopped, and an increase in the heat load in the storage chamber due to the high-temperature refrigerant can be suppressed. That is, by using the second three-way valve 112 having the X mode, an effect equivalent to that of the two-way valve 100 of the first embodiment can be obtained without using a new valve. The size of the machine room 19 is basically determined by the width of the refrigerator 1, and in addition to the valves, the machine room 19 is provided with a compressor 24, a heat radiator 41 outside the storage room, and the like. Further, an increase in cost caused by an increase in valves can be suppressed.

また、本実施例の冷蔵庫1では、結露防止配管43と冷媒合流部201の間に、逆止弁210を備えている。第一の冷媒流路Aに冷媒を流す場合と、第二の冷媒流路Bに冷媒を流す場合の放熱量を比較すると、結露防止配管43で放熱も行う第一の冷媒流路Aの方が放熱量は多く、凝縮圧力が低くなり易い。そのため、第一の三方弁111をAモードからBモードに切り換えると、第一の冷媒流路Aの時の、比較的低い凝縮圧力になっている結露防止配管43に対し、冷媒が流れる冷媒合流部201内の圧力は、第二の冷媒流路Bの時の比較的高い凝縮圧力となる。また、結露防止配管43に冷媒を流さない場合には、結露防止配管43内に滞留する冷媒の温度は、隣接する冷凍室60によって低温となるので、さらに圧力が低下していく。そのため、逆止弁210を備えていないと、冷媒合流部201から、圧力の低い結露防止配管43側に冷媒が流れ、結露防止配管43に滞留する冷媒量が増えてしまう。その結果、循環できる冷媒が不足して冷却能力が低下するので、逆止弁210を備えて結露防止配管43に冷媒が流れ込まないようにしている。   Further, in the refrigerator 1 of the present embodiment, a check valve 210 is provided between the dew condensation prevention pipe 43 and the refrigerant junction portion 201. Comparing the amount of heat released when flowing the refrigerant through the first refrigerant flow path A and when flowing the refrigerant through the second refrigerant flow path B, the direction of the first refrigerant flow path A that also radiates heat in the dew condensation prevention pipe 43 However, the amount of heat release is large and the condensation pressure tends to be low. Therefore, when the first three-way valve 111 is switched from the A mode to the B mode, the refrigerant flows into the dew condensation prevention pipe 43 that has a relatively low condensation pressure in the first refrigerant flow path A. The pressure in the part 201 is a relatively high condensing pressure in the second refrigerant flow path B. Further, when no refrigerant flows through the dew condensation prevention pipe 43, the temperature of the refrigerant staying in the dew condensation prevention pipe 43 is lowered by the adjacent freezer compartment 60, and thus the pressure further decreases. For this reason, if the check valve 210 is not provided, the refrigerant flows from the refrigerant confluence portion 201 to the dew condensation prevention pipe 43 side where the pressure is low, and the amount of refrigerant staying in the dew condensation prevention pipe 43 increases. As a result, the refrigerant that can be circulated is insufficient and the cooling capacity is lowered. Therefore, the check valve 210 is provided so that the refrigerant does not flow into the dew condensation prevention pipe 43.

以上が図14に示した実施例3の冷蔵庫が有する効果である。次に、この効果と同様な効果が得られる冷凍サイクルの構成(冷媒流路)の変形例を図15a、図15b、図15cに示す。   The above is the effect which the refrigerator of Example 3 shown in FIG. 14 has. Next, FIG. 15a, FIG. 15b, and FIG. 15c show modifications of the configuration of the refrigeration cycle (refrigerant flow path) that can achieve the same effect as this effect.

(変形例1)
図15aは、四方弁130と三方弁113を用いた、実施例3の変形例1に関する冷凍サイクルを説明する図である。図15aに示す冷蔵庫1では、実施例3の冷蔵庫の第一の三方弁111と逆止弁120の代わりに四方弁130を設け、第二の三方弁112の代わりに三方弁113を設けている。四方弁130は流入口130_iと、流出口130_A1、流入口130_A2、流出口130_Cを備えている。四方弁130は3つのモードを備え、流入口130_iと流出口130_A1とを連通させ、流入口130_A2と流出口130_Cとを連通させるAモード、流出口130_A1と流入口130_A2とを閉塞させ、流入口130_iと流出口130_Cとを連通させるBモード、流出口130_A1と流入口130_A2の両方、又は何れか一方を流入口110iと連通させ、流出口130_Cを閉塞させたXモードを備えている。流入口130_iは冷媒配管74により壁面放熱管72と接続されている。流出口130_A1は冷媒配管90により結露防止配管43と接続され、流入口130_A2は冷媒配管91により結露防止配管43の他端と接続されている。流出口130_Cは冷媒配管86によりドライヤ45と接続されている。三方弁113は、流入口113iと、流出口113o_Dと、流出口113o_Eを備えており、流入口113iと流出口113o_Dとを連通させるDモードと、流入口113iと流出口113o_Eとを連通させるEモードの2つのモードを備えている。
(Modification 1)
FIG. 15 a is a diagram illustrating a refrigeration cycle related to the first modification of the third embodiment using the four-way valve 130 and the three-way valve 113. In the refrigerator 1 shown in FIG. 15a, a four-way valve 130 is provided instead of the first three-way valve 111 and the check valve 120 of the refrigerator of the third embodiment, and a three-way valve 113 is provided instead of the second three-way valve 112. . The four-way valve 130 includes an inlet 130_i, an outlet 130_A1, an inlet 130_A2, and an outlet 130_C. The four-way valve 130 has three modes, the A mode in which the inlet 130_i and the outlet 130_A1 are connected, the inlet 130_A2 and the outlet 130_C are connected, the outlet 130_A1 and the inlet 130_A2 are closed, and the inlet A B mode in which 130_i and the outlet 130_C are communicated, and an X mode in which both the outlet 130_A1 and the inlet 130_A2 are communicated with the inlet 110i and the outlet 130_C is closed are provided. The inflow port 130 — i is connected to the wall surface heat radiating pipe 72 by a refrigerant pipe 74. The outflow port 130_A1 is connected to the dew condensation prevention pipe 43 by the refrigerant pipe 90, and the inflow port 130_A2 is connected to the other end of the dew condensation prevention pipe 43 by the refrigerant pipe 91. The outlet 130 </ b> _C is connected to the dryer 45 by a refrigerant pipe 86. The three-way valve 113 includes an inflow port 113i, an outflow port 113o_D, and an outflow port 113o_E, and a D mode that allows the inflow port 113i and the outflow port 113o_D to communicate with each other, and an E that connects the inflow port 113i and the outflow port 113o_E. There are two modes.

四方弁130をAモードで運転する場合、流入口130_iから四方弁130に入った冷媒は、流出口130_A1から冷媒配管90を介して結露防止配管43に流れ、結露防止配管43から冷媒配管91を介して流入口130_A2、流出口130_Cの順に流れていく。一方、四方弁130をBモードで運転する場合、流入口130_iから四方弁130に入った冷媒は、流出口130_Cに直接流れ、結露防止配管43側には冷媒が流れない。   When the four-way valve 130 is operated in the A mode, the refrigerant that has entered the four-way valve 130 from the inflow port 130_i flows from the outflow port 130_A1 to the dew condensation prevention pipe 43 via the refrigerant pipe 90, and passes through the refrigerant pipe 91 from the dew condensation prevention pipe 43. Through the inflow port 130_A2 and the outflow port 130_C. On the other hand, when the four-way valve 130 is operated in the B mode, the refrigerant that has entered the four-way valve 130 from the inflow port 130_i flows directly to the outflow port 130_C, and no refrigerant flows to the dew condensation prevention piping 43 side.

以上の構成により、図15aに示す冷蔵庫では、結露防止配管43に冷媒を流す第一の冷媒流路Aと結露防止配管43をバイパスさせる第二の冷媒流路Bの切り換えを、四方弁130のAモードとBモードの切り換えにより実現している。また、Bモード時には流出口130_A1と流入口130_A2とを閉塞させることで、実施例3の逆止弁210と同様に、結露防止配管43に冷媒が滞留することによる冷媒不足を防いでいる。   With the above configuration, in the refrigerator shown in FIG. 15 a, the switching of the first refrigerant flow path A for flowing the refrigerant to the dew condensation prevention pipe 43 and the second refrigerant flow path B for bypassing the dew condensation prevention pipe 43 is performed by the four-way valve 130. This is realized by switching between A mode and B mode. Further, by closing the outlet 130_A1 and the inlet 130_A2 in the B mode, the refrigerant shortage due to the refrigerant staying in the dew condensation prevention pipe 43 is prevented as in the check valve 210 of the third embodiment.

さらに、四方弁130はXモードを備え、圧縮機24を停止した時には、四方弁130をXモードにしている。これにより、実施例1における二方弁110の閉モードや、実施例3における三方弁112のXモードと同様に、結露防止配管43とキャピラリチューブ44間の冷媒流路を閉塞できるので、放熱側の高温冷媒が、圧縮機24を停止した時に蒸発器7に流れることを抑える効果も得られる。   Further, the four-way valve 130 has an X mode, and when the compressor 24 is stopped, the four-way valve 130 is in the X mode. As a result, the refrigerant flow path between the dew condensation prevention pipe 43 and the capillary tube 44 can be closed as in the closed mode of the two-way valve 110 in the first embodiment and the X mode of the three-way valve 112 in the third embodiment. It is also possible to obtain an effect of preventing the high-temperature refrigerant from flowing into the evaporator 7 when the compressor 24 is stopped.

また、四方弁130は、Xモードの時に、流出口130_A1と流入口130_A2の両方又は何れか一方を流入口130_iと連通するように構成している。これにより、実施例3の冷蔵庫で、圧縮機24停止時に三方弁111をAモードにしているのと同様の効果を得ている。すなわち、結露防止配管43が低温になると、結露防止配管43内に四方弁130よりも上流側の高温の冷媒が流れてくることにより、結露を抑制し易くしている。   Further, the four-way valve 130 is configured to communicate both or one of the outlet 130_A1 and the inlet 130_A2 with the inlet 130_i in the X mode. Thereby, in the refrigerator of Example 3, the same effect as having made the three-way valve 111 into A mode when the compressor 24 stops is acquired. That is, when the dew condensation prevention pipe 43 becomes low temperature, the high temperature refrigerant on the upstream side of the four-way valve 130 flows into the dew condensation prevention pipe 43, thereby making it easy to suppress dew condensation.

なお四方弁130にXモードを備えない場合でも、三方弁113を図14で示した三方弁112と同様のXモードを備える三方弁とすれば、圧縮機24停止時に四方弁130をAモード、三方弁113をXモードとすることで同様の効果が得られる。   Even if the four-way valve 130 does not have the X mode, if the three-way valve 113 is a three-way valve having the same X mode as the three-way valve 112 shown in FIG. 14, the four-way valve 130 is in the A mode when the compressor 24 is stopped. The same effect can be obtained by setting the three-way valve 113 to the X mode.

(変形例2)
次に図15bの冷凍サイクル構成について説明する。図15bは、五方弁140を用いた、実施例3の変形例2に関する冷凍サイクルの構成を説明する図である。図15bに示す冷蔵庫では、図14に示した実施例3の冷蔵庫における第一の三方弁111、逆止弁120、第二の三方弁112の代わりに、五方弁140を備えている。五方弁140は流入口140_iと、流出口140_A1、流入口140_A2、流出口140_D、流出口140_Eを備えている。
(Modification 2)
Next, the refrigeration cycle configuration of FIG. 15b will be described. FIG. 15 b is a diagram illustrating the configuration of the refrigeration cycle in the second modification of the third embodiment using the five-way valve 140. The refrigerator shown in FIG. 15b includes a five-way valve 140 instead of the first three-way valve 111, the check valve 120, and the second three-way valve 112 in the refrigerator of the third embodiment shown in FIG. The five-way valve 140 includes an inlet 140_i, an outlet 140_A1, an inlet 140_A2, an outlet 140_D, and an outlet 140_E.

五方弁140は、A−Dモード、A−Eモード、B−Dモード、B−Eモード、さらにXモードの5つのモードを備えている。A−Dモードでは、流入口140_iと流出口140_A1とを連通させ、流入口140_A2と流出口140_Dとを連通させている。A−Eモードでは、流入口140_iと流出口140_A1とを連通させ、流入口140_A2と流出口140_Eとを連通させている。B−Dモードでは流入口140_iと流出口140_Dとを連通させ、B−Eモードでは流入口140_iと流出口140_Eとを連通させ、流出口140_A1と流出口140_A2はB−Dモード、B−Eモードのどちらのモードにおいても閉塞させている。またXモードは流出口140_A1と流入口140_A2の両方又は何れか一方を流入口140_iと連通させ、流出口140_Dと流出口140_Eは閉塞させている。   The five-way valve 140 has five modes: an A-D mode, an A-E mode, a BD mode, a BE mode, and an X mode. In the A-D mode, the inlet 140_i and the outlet 140_A1 are communicated with each other, and the inlet 140_A2 and the outlet 140_D are communicated with each other. In the AE mode, the inlet 140_i and the outlet 140_A1 are communicated, and the inlet 140_A2 and the outlet 140_E are communicated. In the BD mode, the inlet 140_i and the outlet 140_D are communicated. In the BE mode, the inlet 140_i and the outlet 140_E are communicated, and the outlet 140_A1 and the outlet 140_A2 are in the BD mode, BE It is blocked in both modes. In the X mode, the outlet 140_A1 and / or the inlet 140_A2 are communicated with the inlet 140_i, and the outlet 140_D and the outlet 140_E are closed.

流入口140_iは、冷媒配管75によりドライヤ45と接続されている。流出口140_A1は、冷媒配管90により結露防止配管43と接続されており、流入口140_A2は冷媒配管91により、同じく結露防止配管43と接続されている。流出口140_Dは冷媒配管88により第四のキャピラリチューブ44dと接続され、流出口140_Eは冷媒配管89により第五のキャピラリチューブ44eと接続されている。その他は、図14と同様である。   The inflow port 140 — i is connected to the dryer 45 by a refrigerant pipe 75. The outflow port 140_A1 is connected to the dew condensation prevention pipe 43 by the refrigerant pipe 90, and the inflow port 140_A2 is similarly connected to the dew condensation prevention pipe 43 by the refrigerant pipe 91. The outlet 140_D is connected to the fourth capillary tube 44d by the refrigerant pipe 88, and the outlet 140_E is connected to the fifth capillary tube 44e by the refrigerant pipe 89. Others are the same as FIG.

五方弁140をA−Dモード及びA−Eモードとした場合、流入口140_iから五方弁140内に流入した冷媒は、流出口140_A1から冷媒配管90を介して結露防止配管43に流れ、結露防止配管43から冷媒配管91を介して流入口140_A2から五方弁140内に再び流入する。そして、A−Dモードでは流出口140_Dから第四のキャピラリチューブ44dに流れ、A−Eモードでは流出口140_Eから第五のキャピラリチューブ44eに流れていく。   When the five-way valve 140 is set to the A-D mode and the AE mode, the refrigerant flowing into the five-way valve 140 from the inlet 140_i flows from the outlet 140_A1 to the condensation prevention pipe 43 via the refrigerant pipe 90, The dew condensation prevention pipe 43 flows again into the five-way valve 140 from the inlet 140_A2 through the refrigerant pipe 91. In the A-D mode, the gas flows from the outlet 140_D to the fourth capillary tube 44d, and in the A-E mode, the gas flows from the outlet 140_E to the fifth capillary tube 44e.

一方、五方弁140をB−Dモードとした場合、流入口140_iから五方弁140内に流入した冷媒は、流出口140_Dを介して直接第四のキャピラリチューブ44dに流れ、B−Eモードでは流入口140_iから流入した冷媒が流出口140_Eから直接第五のキャピラリチューブ44eに流れるので、B−Dモード及びB−Eモードでは結露防止配管43側に冷媒が流れない。   On the other hand, when the five-way valve 140 is set to the BD mode, the refrigerant flowing into the five-way valve 140 from the inflow port 140_i flows directly to the fourth capillary tube 44d through the outflow port 140_D, and is in the BE mode. Then, since the refrigerant flowing in from the inlet 140_i flows directly from the outlet 140_E to the fifth capillary tube 44e, the refrigerant does not flow to the dew condensation prevention pipe 43 side in the BD mode and BE mode.

以上の構成から、図15bの五方弁140は、一つの冷媒流路制御手段で、[A−Dモード又はA−Eモード]と、[B−Dモード又はB−Eモード]を切り換えることで、第一の冷媒流路Aと第二の冷媒流路Bを切り換える。また、[A−Dモード又はB−Dモード]と、[A−Eモード又はB−Eモード]を切り換えることで、絞りの異なる第四のキャピラリチューブ44dと第五のキャピラリチューブ44eを切り換える。これにより、加熱量と蒸発圧力を制御することができる。また、五方弁140にXモードを設けることで、結露防止配管43から蒸発器7への冷媒流路を閉塞することができるので、圧縮機24を停止した時には五方弁140をXモードにして、圧縮機24から結露防止配管43までの高温の冷媒が蒸発器7に流れないようにしている。したがって、五方弁140により、結露防止配管による加熱量の制御と、蒸発器への高温冷媒の流入抑制と、蒸発圧力の制御を行うことができ、図14に示した冷蔵庫と同様に、省エネルギー性能の高い冷蔵庫を得られる。   From the above configuration, the five-way valve 140 in FIG. 15b switches between [AD mode or AE mode] and [BD mode or BE mode] with one refrigerant flow path control means. Thus, the first refrigerant channel A and the second refrigerant channel B are switched. Further, by switching between [AD mode or BD mode] and [AE mode or BE mode], the fourth capillary tube 44d and the fifth capillary tube 44e having different diaphragms are switched. Thereby, the heating amount and the evaporation pressure can be controlled. Moreover, since the refrigerant flow path from the dew condensation prevention pipe 43 to the evaporator 7 can be closed by providing the X mode in the five-way valve 140, the five-way valve 140 is set to the X mode when the compressor 24 is stopped. Thus, the high-temperature refrigerant from the compressor 24 to the dew condensation prevention pipe 43 is prevented from flowing into the evaporator 7. Therefore, the five-way valve 140 can control the amount of heating by the anti-condensation piping, suppress the flow of the high-temperature refrigerant into the evaporator, and control the evaporation pressure. As in the refrigerator shown in FIG. A high-performance refrigerator can be obtained.

(変形例3)
次に、図15cの冷凍サイクル構成について説明する。図15cは、四方弁130と膨張弁121を用いた、実施例3の変形例3に関する冷凍サイクルの構成を説明する図である。図15cに示す冷蔵庫では、図14に示した冷蔵庫における第一の三方弁111と逆止弁120の代わりに、四方弁130を備え、第二の三方弁112と第四のキャピラリチューブ44d、第五のキャピラリチューブ44eの代わりに、膨張弁121と第三のキャピラリチューブ44cを備えている。膨張弁121は冷媒配管87と冷媒配管79によりドライヤ45と第三のキャピラリチューブ44cに接続され、第三のキャピラリチューブ44cの他端は冷媒配管82により蒸発器7と接続されている。その他の配管の接続と、四方弁130は図15aと同様のもので、説明は省略する。
(Modification 3)
Next, the configuration of the refrigeration cycle in FIG. 15c will be described. FIG. 15 c is a diagram illustrating the configuration of the refrigeration cycle according to the third modification of the third embodiment using the four-way valve 130 and the expansion valve 121. In the refrigerator shown in FIG. 15c, instead of the first three-way valve 111 and the check valve 120 in the refrigerator shown in FIG. 14, a four-way valve 130 is provided, a second three-way valve 112, a fourth capillary tube 44d, Instead of the fifth capillary tube 44e, an expansion valve 121 and a third capillary tube 44c are provided. The expansion valve 121 is connected to the dryer 45 and the third capillary tube 44 c by the refrigerant pipe 87 and the refrigerant pipe 79, and the other end of the third capillary tube 44 c is connected to the evaporator 7 by the refrigerant pipe 82. Other pipe connections and the four-way valve 130 are the same as in FIG.

本実施例の膨張弁121は、冷媒配管87と冷媒配管79との間での減圧を極力抑えて連通させる開モードと、冷媒流路を縮小させて冷媒配管79と冷媒配管80の間で減圧させる減圧モードを備えている。また、減圧モードには複数の段階を設けており、膨張弁121の絞りの強さを細かく調整することができる。第三のキャピラリチューブ44cの絞りの強さは熱負荷の大きい場合に適切な減圧量を得られるように調整されている。熱負荷が小さい場合には膨張弁121を減圧モードにして、膨張弁121と第三のキャピラリチューブ44cの二つの減圧手段で、適切な蒸発圧力になるようにしている。   The expansion valve 121 of the present embodiment has an open mode in which the pressure reduction between the refrigerant pipe 87 and the refrigerant pipe 79 is suppressed as much as possible, and a pressure reduction between the refrigerant pipe 79 and the refrigerant pipe 80 by reducing the refrigerant flow path. A decompression mode is provided. Further, the decompression mode is provided with a plurality of stages, and the throttle strength of the expansion valve 121 can be finely adjusted. The throttling strength of the third capillary tube 44c is adjusted so as to obtain an appropriate amount of pressure reduction when the heat load is large. When the thermal load is small, the expansion valve 121 is set in a pressure reduction mode, and an appropriate evaporation pressure is obtained by the two pressure reduction means of the expansion valve 121 and the third capillary tube 44c.

以上の構成から、結露防止配管43による加熱量を四方弁130のAモードとBモードの切り換えにより制御し、膨張弁121により冷媒の蒸発圧力を制御することができる。さらに、図15cに示す冷蔵庫は、四方弁130がXモードを備えており、圧縮機24を停止した時に四方弁130をXモードとすることで、圧縮機24から結露防止配管43までの高温の冷媒が、圧縮機24を停止した時に蒸発器7へと流入することを抑制することができる。すなわち、結露防止配管による加熱量の制御と、蒸発器への高温冷媒の流入抑制と、蒸発圧力の制御を行うことができ、図14に示した冷蔵庫と同様に、省エネルギー性能の高い冷蔵庫を得られる。なお、四方弁130がXモードを備えていない場合においても、膨張弁121に冷媒流路を閉鎖させる閉モードを設けて、圧縮機24停止時に四方弁130をAモード、膨張弁121を閉モードとすることで、同様の効果を得ることができる。   With the above configuration, the amount of heating by the dew condensation prevention pipe 43 can be controlled by switching between the A mode and the B mode of the four-way valve 130, and the evaporation pressure of the refrigerant can be controlled by the expansion valve 121. Further, in the refrigerator shown in FIG. 15c, the four-way valve 130 has an X mode, and when the compressor 24 is stopped, the four-way valve 130 is set to the X mode, so that the high temperature from the compressor 24 to the dew condensation prevention pipe 43 can be increased. The refrigerant can be prevented from flowing into the evaporator 7 when the compressor 24 is stopped. That is, it is possible to control the amount of heating by the dew condensation prevention pipe, to suppress the inflow of high-temperature refrigerant to the evaporator, and to control the evaporation pressure. As with the refrigerator shown in FIG. 14, a refrigerator with high energy saving performance is obtained. It is done. Even when the four-way valve 130 does not have the X mode, the expansion valve 121 is provided with a closed mode for closing the refrigerant flow path so that the four-way valve 130 is in the A mode and the expansion valve 121 is in the closed mode when the compressor 24 is stopped. By doing so, the same effect can be obtained.

以上が、実施例1から3の冷蔵庫である。   The above is the refrigerator of Examples 1 to 3.

なお、本発明は前述した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した各実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to each Example mentioned above, Various modifications are included. For example, each of the above-described embodiments has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、本明細書中で記載した実施例では、冷媒流路制御手段を2個以内と比較的少ない個数で前述の効果を得られる冷媒流路を形成している。同様の冷媒流路を形成できれば、必ずしもこの冷媒流路制御手段の個数、形態に限定するものではないが、冷媒流路制御手段を設置するスペースやコストなどを考えると、本実施例のように、できる限り少ない冷媒流路制御手段にすることが望ましい。また、逆止弁は二方弁等の冷媒流路制御手段で代用してもよい。また各実施例における各冷媒流路制御手段が備えるモードは、最小限のみを記載しており、例えば図13に示した実施例2の三方弁111は、Aモード、Bモード、2つのモードのみを備えているが、図3で示した三方弁110のOモードや、図14で示した三方弁112のXモードを備えていても構わない。   Further, in the embodiments described in the present specification, the refrigerant flow path capable of obtaining the above-described effect is formed with a relatively small number of refrigerant flow path control means within two. If the same refrigerant flow path can be formed, the number and form of the refrigerant flow path control means are not necessarily limited. However, considering the space and cost for installing the refrigerant flow path control means, as in this embodiment, It is desirable to use as few refrigerant flow path control means as possible. The check valve may be replaced with a refrigerant flow path control means such as a two-way valve. Further, only the minimum mode is described for each refrigerant flow path control means in each embodiment. For example, the three-way valve 111 of the embodiment 2 shown in FIG. 13 has only an A mode, a B mode, and two modes. However, the O mode of the three-way valve 110 shown in FIG. 3 and the X mode of the three-way valve 112 shown in FIG. 14 may be provided.

1 冷蔵庫
2 冷蔵室(貯蔵室)
3 製氷室(貯蔵室)
4 上段冷凍室(貯蔵室)
5 下段冷凍室(貯蔵室)
6 野菜室(貯蔵室)
7 蒸発器
9 貯蔵室内ファン
10 断熱箱体
24 圧縮機
28 冷蔵室−冷凍室仕切り壁(仕切部)
29 冷凍室−野菜室仕切り壁(仕切部)
30 冷凍室間仕切り壁(仕切部)
33 冷蔵室温度センサ
34 野菜室温度センサ
35 冷凍室温度センサ
36 蒸発器温度センサ
37 外気温度センサ
38 外気湿度センサ
41 貯蔵室外放熱器(放熱手段)
41a 貯蔵室外ファン
42 壁面放熱配管(放熱手段)
43 結露防止配管
44 キャピラリチューブ(減圧手段)
44a 第一のキャピラリチューブ
44b 第二のキャピラリチューブ
44c 第三のキャピラリチューブ
44d 第四のキャピラリチューブ
44e 第五のキャピラリチューブ
45 ドライヤ
46 気液分離器
47 熱交換部
50 冷蔵室ダンパ
52 冷凍室ダンパ
60 冷凍室
100 二方弁(冷媒流路制御手段)
110、111、112、113 三方弁(冷媒流路制御手段)
120、121 膨張弁(絞り量制御手段 兼 冷媒流路制御手段)
130 四方弁(冷媒流路制御手段)
140 五方弁(冷媒流路制御手段)
200、201 冷媒合流部
210 逆止弁(逆流防止手段)
1 Refrigerator 2 Cold room (storage room)
3 Ice making room (storage room)
4 Upper freezer room (storage room)
5 Lower freezer compartment (storage room)
6 Vegetable room (storage room)
7 Evaporator 9 Fan in storage room 10 Heat insulation box 24 Compressor 28 Refrigeration room-freezing room partition wall (partition)
29 Freezer compartment-vegetable compartment partition wall
30 Freezer compartment partition wall (partition)
33 Refrigerating room temperature sensor 34 Vegetable room temperature sensor 35 Freezer room temperature sensor 36 Evaporator temperature sensor 37 Outside air temperature sensor 38 Outside air humidity sensor 41 Storage room outdoor radiator (heat radiation means)
41a Fan outside storage room 42 Wall heat radiation pipe (heat radiation means)
43 Condensation prevention piping 44 Capillary tube (pressure reduction means)
44a First capillary tube 44b Second capillary tube 44c Third capillary tube 44d Fourth capillary tube 44e Fifth capillary tube 45 Dryer 46 Gas-liquid separator 47 Heat exchange section 50 Refrigeration chamber damper 52 Freezing chamber damper 60 Freezer compartment 100 Two-way valve (refrigerant flow path control means)
110, 111, 112, 113 Three-way valve (refrigerant flow path control means)
120, 121 expansion valve (throttle amount control means / refrigerant flow path control means)
130 Four-way valve (refrigerant flow path control means)
140 Five-way valve (refrigerant flow path control means)
200, 201 Refrigerant merging section 210 Check valve (backflow prevention means)

Claims (5)

前方に開口を形成する開口縁を有する断熱箱体と、前記開口を開閉する扉と、該扉と前記断熱箱体によって形成された貯蔵室と、圧縮機と、放熱手段と、前記開口縁を加熱する結露防止配管と、減圧手段と、蒸発器とを備えた冷蔵庫において、
前記圧縮機の吐出口から吐出される前記冷媒を、前記放熱手段、前記結露防止配管、前記減圧手段、前記蒸発器、前記圧縮機の吸込口の順に流す第一の冷媒流路と、
前記圧縮機の吐出口から吐出される前記冷媒を、前記放熱手段、前記減圧手段、前記蒸発器、前記圧縮機の吸込口の順に流す第二の冷媒流路と、を備え、
前記放熱手段と前記結露防止配管の間と、前記結露防止配管と前記蒸発器の間に、冷媒流路制御手段を備え、
該冷媒流路制御手段によって、前記第一の冷媒流路と前記第二の冷媒流路の切換え、前記減圧手段の絞りの変更、及び前記結露防止配管と前記蒸発器との間の冷媒流路の連通と閉塞の切換えを行うことを特徴とする冷蔵庫。
A heat insulating box having an opening edge that forms an opening in the front, a door that opens and closes the opening, a storage chamber formed by the door and the heat insulating box, a compressor, a heat radiating means, and the opening edge. In a refrigerator provided with a dew condensation prevention pipe for heating, a decompression means, and an evaporator,
A first refrigerant flow path through which the refrigerant discharged from the discharge port of the compressor flows in the order of the heat dissipating means, the dew condensation prevention pipe, the pressure reducing means, the evaporator, and the suction port of the compressor;
A second refrigerant flow path for causing the refrigerant discharged from the discharge port of the compressor to flow in the order of the heat dissipating means, the pressure reducing means, the evaporator, and the suction port of the compressor,
Between the heat dissipation means and the condensation prevention pipe, and between the condensation prevention pipe and the evaporator, a refrigerant flow path control means is provided,
The refrigerant flow path control means switches the first refrigerant flow path and the second refrigerant flow path, changes the throttle of the decompression means, and the refrigerant flow path between the dew condensation prevention pipe and the evaporator. A refrigerator characterized by switching between communication and blockage.
前記減圧手段は複数のキャピラリチューブにより構成され、前記冷媒流路制御手段により、前記複数のキャピラリチューブのうちの何れか1つのキャピラリチューブに冷媒を流す場合と、複数のキャピラリチューブに冷媒を流す場合とを切換えることで、絞りの変更を行うことを特徴とする、請求項1に記載の冷蔵庫。   The decompression means is composed of a plurality of capillary tubes, and the refrigerant flow control means causes the refrigerant to flow through any one of the plurality of capillary tubes and the refrigerant to flow through the plurality of capillary tubes. The refrigerator according to claim 1, wherein the aperture is changed by switching between the two. 前記複数のキャピラリチューブはそれぞれ絞りが異なることを特徴とする請求項2に記載の冷蔵庫。   The refrigerator according to claim 2, wherein the plurality of capillary tubes have different throttles. 前記減圧手段は、膨張弁と、キャピラリチューブとを組み合わせて構成することを特徴とする、請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the decompression unit is configured by combining an expansion valve and a capillary tube. 前記冷媒流路制御手段は、前記結露防止配管から前記減圧手段の間の冷媒流路中であって、前記貯蔵室の外に配設されていることを特徴とする、請求項1乃至4のいずれかに記載の冷蔵庫。   5. The refrigerant flow control means according to claim 1, wherein the refrigerant flow control means is disposed outside the storage chamber in a refrigerant flow path between the dew condensation prevention pipe and the decompression means. The refrigerator in any one.
JP2013139391A 2013-07-03 2013-07-03 refrigerator Expired - Fee Related JP6177605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139391A JP6177605B2 (en) 2013-07-03 2013-07-03 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139391A JP6177605B2 (en) 2013-07-03 2013-07-03 refrigerator

Publications (2)

Publication Number Publication Date
JP2015014373A true JP2015014373A (en) 2015-01-22
JP6177605B2 JP6177605B2 (en) 2017-08-09

Family

ID=52436208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139391A Expired - Fee Related JP6177605B2 (en) 2013-07-03 2013-07-03 refrigerator

Country Status (1)

Country Link
JP (1) JP6177605B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066110A (en) * 2015-04-20 2016-11-02 日立空调·家用电器株式会社 Refrigerator
EP3104105A3 (en) * 2015-06-12 2017-03-29 Lg Electronics Inc. Refrigerator
US20180187934A1 (en) * 2015-08-17 2018-07-05 Electrolux Appliances Aktiebolaget Control method for a cooling device
EP3441696A4 (en) * 2016-04-07 2019-04-17 Mitsubishi Electric Corporation Refrigeration cycle device
WO2019165518A1 (en) * 2018-03-02 2019-09-06 Electrolux Do Brasil S.A. Door warmer for a refrigerator
JP2020041769A (en) * 2018-09-12 2020-03-19 三菱電機株式会社 refrigerator
KR102258929B1 (en) * 2020-01-15 2021-05-31 고려대학교 산학협력단 Refrigerant system with adjustable system pressure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057173A (en) * 1983-09-06 1985-04-02 松下冷機株式会社 Refrigerator
JPH08189753A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
JP2000065461A (en) * 1998-08-20 2000-03-03 Hitachi Ltd Refrigerator and method for controlling dew condensation preventing operation in the refrigerator
JP2003014357A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp Refrigerator
JP2004085103A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator
JP2013061089A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
JP2013061083A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
JP2013096614A (en) * 2011-10-31 2013-05-20 Mitsubishi Electric Corp Refrigerator
JP6129627B2 (en) * 2013-04-18 2017-05-17 日立アプライアンス株式会社 Refrigerant switching valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057173A (en) * 1983-09-06 1985-04-02 松下冷機株式会社 Refrigerator
JPH08189753A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
JP2000065461A (en) * 1998-08-20 2000-03-03 Hitachi Ltd Refrigerator and method for controlling dew condensation preventing operation in the refrigerator
JP2003014357A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp Refrigerator
JP2004085103A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator
JP2013061089A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
JP2013061083A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
JP2013096614A (en) * 2011-10-31 2013-05-20 Mitsubishi Electric Corp Refrigerator
JP6129627B2 (en) * 2013-04-18 2017-05-17 日立アプライアンス株式会社 Refrigerant switching valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066110A (en) * 2015-04-20 2016-11-02 日立空调·家用电器株式会社 Refrigerator
JP2016205669A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 refrigerator
EP3104105A3 (en) * 2015-06-12 2017-03-29 Lg Electronics Inc. Refrigerator
US10082326B2 (en) 2015-06-12 2018-09-25 Lg Electronics Inc. Refrigerator with a plurality of capillaries
US20180187934A1 (en) * 2015-08-17 2018-07-05 Electrolux Appliances Aktiebolaget Control method for a cooling device
US10982886B2 (en) * 2015-08-17 2021-04-20 Electrolux Appliances AB Control method for a cooling device
EP3441696A4 (en) * 2016-04-07 2019-04-17 Mitsubishi Electric Corporation Refrigeration cycle device
WO2019165518A1 (en) * 2018-03-02 2019-09-06 Electrolux Do Brasil S.A. Door warmer for a refrigerator
JP2020041769A (en) * 2018-09-12 2020-03-19 三菱電機株式会社 refrigerator
KR102258929B1 (en) * 2020-01-15 2021-05-31 고려대학교 산학협력단 Refrigerant system with adjustable system pressure

Also Published As

Publication number Publication date
JP6177605B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6177605B2 (en) refrigerator
US10718560B2 (en) Refrigerator and control method thereof
JP6934603B2 (en) Refrigerator and cooling system
EP3287724B1 (en) Refrigerator
JP5198022B2 (en) refrigerator
JPWO2017038677A1 (en) Air conditioning system
JP2018136063A (en) Refrigerator and method for operating the same
KR20130083871A (en) Refrigerator and freezer
JP5492845B2 (en) refrigerator
JP2012017920A (en) Refrigerator
JP6469966B2 (en) refrigerator
JP2013155910A (en) Refrigerator
JP2013019598A (en) Refrigerator
JP2012042143A (en) Refrigerator
JP6101926B2 (en) refrigerator
JP4654539B2 (en) refrigerator
JP2016205669A (en) refrigerator
JP2017026210A (en) refrigerator
JP2014059110A (en) Refrigerator and cooling mechanism
JP6762149B2 (en) refrigerator
JP6197176B2 (en) refrigerator
JP6940424B2 (en) refrigerator
JP2017020753A (en) refrigerator
JP2018004170A (en) Refrigerator
JP5176874B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees