JP2016044875A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2016044875A
JP2016044875A JP2014169184A JP2014169184A JP2016044875A JP 2016044875 A JP2016044875 A JP 2016044875A JP 2014169184 A JP2014169184 A JP 2014169184A JP 2014169184 A JP2014169184 A JP 2014169184A JP 2016044875 A JP2016044875 A JP 2016044875A
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerator
dew condensation
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014169184A
Other languages
Japanese (ja)
Inventor
野口 明裕
Akihiro Noguchi
明裕 野口
林 秀竹
Hidetake Hayashi
秀竹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Corp
Priority to JP2014169184A priority Critical patent/JP2016044875A/en
Publication of JP2016044875A publication Critical patent/JP2016044875A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator enabling dew condensation proof with low power consumption.SOLUTION: A refrigerator includes: a compressor 20 compressing refrigerant; a heat radiation pipe increasing an ambient temperature by passing refrigerant compressed by the compressor 20; temperature sensors 24, 25, 26 detecting an in-box temperature; and an operation control unit 33 controlling the compressor 20 on the basis of detection temperatures in the temperature sensors 24, 25, 26. The refrigerator performs dew condensation prevention control with which a temperature of the heat radiation pipe is increased before stopping the compressor 20 with the operation control unit 33.SELECTED DRAWING: Figure 3

Description

本発明の実施形態は、冷蔵庫に関する。   Embodiments of the present invention relate to a refrigerator.

冷蔵庫には冷却貯蔵室の開口部近傍の露付対策として、冷凍サイクルにおける高温ガス冷媒が流れる放熱パイプを冷蔵庫の前面開口部周縁などの露付を防止したい箇所に配設し、高温の放熱パイプからの熱伝導により、冷蔵庫本体における開口部周縁の温度を露点温度以上の高い温度にすることで露付の防止を実現している。   In the refrigerator, as a countermeasure against dew condensation in the vicinity of the opening of the cooling storage room, a heat dissipating pipe through which high-temperature gas refrigerant flows in the refrigeration cycle is installed at a location where it is desired to prevent dew condensation such as the periphery of the front opening of the refrigerator. Prevention of dew condensation is realized by setting the temperature of the peripheral edge of the opening in the refrigerator body to a temperature higher than the dew point temperature by heat conduction from the refrigerator.

ただし、上記の構成では、冷凍サイクルを構成する圧縮機が運転状態の場合には、放熱パイプに温度の上昇した冷媒が流れるため防露が実現されるが、冷却貯蔵室が所定温度以下に冷却されると圧縮機が運転を停止し、この状態が長く続くと、放熱パイプに高温冷媒が長時間流れないため、放熱パイプの温度が下がって開口部周縁の温度が低下し、露点温度以下になった場合は、露付が引き起こされてしまう。   However, in the above configuration, when the compressor constituting the refrigeration cycle is in operation, dew prevention is realized because the refrigerant whose temperature has increased flows through the heat radiating pipe, but the cooling storage chamber is cooled below a predetermined temperature. If this happens, the compressor will stop operating, and if this condition continues for a long time, the high-temperature refrigerant will not flow through the heat radiating pipe for a long time, so the temperature of the heat radiating pipe will drop and the temperature at the periphery of the opening will drop to below the dew point temperature. If this happens, dew will be caused.

この問題への対策として、防露を実現しつつ省エネ性能を高めるために、温度センサや湿度センサといった庫外の情報から露付を起こしやすい条件下では動作温度幅(圧縮機の運転を開始する庫内温度と圧縮機の運転を停止する庫内温度との温度差)を小さくする構成が提案されている(特許文献1参照)。   As countermeasures against this problem, in order to improve the energy saving performance while realizing dew prevention, the operating temperature range (start the compressor operation under conditions where condensation easily occurs from outside information such as temperature sensor and humidity sensor) The structure which makes small the temperature difference between the internal temperature and the internal temperature which stops operation | movement of a compressor is proposed (refer patent document 1).

しかし、露付を防止するために動作温度幅を小さくすると圧縮機の運転と停止とを頻繁に繰り返すため、圧縮機の消費電力量が高くなるという問題が生じていた。   However, if the operating temperature range is reduced in order to prevent dew, the operation and stop of the compressor are frequently repeated, resulting in a problem that the power consumption of the compressor increases.

特開2014−81107号公報JP 2014-81107 A

本発明は上記の問題を考慮してなされたものであり、低消費電力の防露を実現することができる冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above problems, and an object thereof is to provide a refrigerator capable of realizing dew prevention with low power consumption.

上記課題を達成するために、本実施形態の冷蔵庫は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒が通過することで周辺温度を上昇させる放熱パイプと庫内温度を検出する温度センサと、前記温度センサでの検出温度に基づき圧縮機を制御する運転制御部と、前記運転制御部で前記圧縮機を停止させる前に前記放熱パイプの温度を上昇させる結露防止制御を行う冷蔵庫。   In order to achieve the above object, the refrigerator of the present embodiment detects a compressor that compresses refrigerant, a heat radiating pipe that raises the ambient temperature by passing the refrigerant compressed by the compressor, and the internal temperature of the refrigerator. A temperature sensor, an operation control unit that controls the compressor based on a temperature detected by the temperature sensor, and a refrigerator that performs dew condensation prevention control for increasing the temperature of the heat radiating pipe before the operation control unit stops the compressor .

本実施形態の冷蔵庫全体の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the whole refrigerator of this embodiment. 本実施形態の冷蔵庫における冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle in the refrigerator of this embodiment. 本実施形態の圧縮機の運転制御機構のブロック図である。It is a block diagram of the operation control mechanism of the compressor of this embodiment. 本実施形態の庫外湿度に基づく動作温度幅制御のフローチャート図である。It is a flowchart figure of the operating temperature width control based on the external humidity of this embodiment. 本実施形態の庫外湿度と外気温とに基づく動作温度幅制御のフローチャート図である。It is a flowchart figure of the operating temperature width control based on the external humidity and external temperature of this embodiment. 本実施形態の湿度変化に応じた動作温度幅変化と放熱パイプの平均温度変化のタイミングチャート図である。It is a timing chart figure of the operating temperature width change according to the humidity change of this embodiment, and the average temperature change of a thermal radiation pipe. 第一実施形態のタイミングチャート図である。It is a timing chart figure of a first embodiment. 第二実施形態のタイミングチャート図である。It is a timing chart figure of 2nd embodiment. 第三実施形態のタイミングチャート図である。It is a timing chart figure of 3rd embodiment.

(第一実施形態)
以下、実施形態を図面に基づき説明する。冷蔵庫の概略的な全体構成を示す図1に示すように、冷蔵庫本体1は鋼板製の外箱2aと真空成形により設けられる合成樹脂製の内箱2bとの間隙にウレタンフォームなどの断熱材2cを発泡充填し、前面を開口し内部を貯蔵空間とした縦長の断熱箱体2からなり、貯蔵空間を上方の冷蔵貯蔵空間と下方の冷凍貯蔵空間に断熱区画している。
(First embodiment)
Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1 showing a schematic overall configuration of the refrigerator, the refrigerator main body 1 has a heat insulating material 2c such as urethane foam in a gap between a steel plate outer box 2a and a synthetic resin inner box 2b provided by vacuum forming. Is formed of a vertically long heat insulating box 2 having a front opening and a storage space inside, and the storage space is thermally insulated into an upper refrigerated storage space and a lower refrigerated storage space.

単一の内箱2bで形成された冷蔵貯蔵空間には、複数の載置棚を設けた冷蔵室3と貯蔵容器である下部ケースと上部ケースを備えた野菜室4とを隣接状態で上下に区分配置している。   In a refrigerated storage space formed by a single inner box 2b, a refrigerated room 3 provided with a plurality of mounting shelves, a lower case as a storage container, and a vegetable room 4 provided with an upper case in an adjacent state up and down. It is divided and arranged.

野菜室4の下方には断熱壁を介して自動製氷装置と貯氷箱を設けた製氷室5と、図示しない小冷凍室とを左右に併置するとともに、最下段には、貯蔵容器である下部ケースと上部ケースを備えた主冷凍室6を配置して、−18〜−20℃に冷却保持する冷凍貯蔵空間としている。   Below the vegetable compartment 4, an ice making chamber 5 provided with an automatic ice making device and an ice storage box and a small freezer compartment (not shown) are juxtaposed side by side through a heat insulating wall. The main freezer compartment 6 provided with the upper case is arranged to provide a frozen storage space that is cooled and held at −18 to −20 ° C.

前記各貯蔵室の前面開口部は各々独立した断熱扉で閉塞されており、冷蔵室3の前面開口部は左右両側の上下部に設けたヒンジにより観音開き式の冷蔵室扉3aが回動自在に支持されている。野菜室4および製氷室5と小冷凍室、主冷凍室6は、貯蔵容器を引き出し式の扉4a、5a、6aに連結保持し、貯蔵室内に設けたレール機構により引き出し式で閉塞されている。また、冷蔵室扉3aの前面中央には操作パネル7と外気温センサ8を設置し、冷蔵室扉3aの前面下部には庫外の湿度を検出する湿度センサ9を設置している。   The front opening of each storage room is closed by an independent heat insulating door, and the front opening of the refrigerating room 3 is pivotable by a hinged refrigerating room door 3a by hinges provided on the upper and lower sides of both sides. It is supported. The vegetable compartment 4, the ice making compartment 5, the small freezer compartment, and the main freezer compartment 6 hold the storage container connected to the drawer type doors 4a, 5a, 6a, and are closed by a rail mechanism provided in the storage room. . In addition, an operation panel 7 and an outside air temperature sensor 8 are installed at the front center of the refrigerator compartment door 3a, and a humidity sensor 9 for detecting the humidity outside the refrigerator is installed at the lower front part of the refrigerator compartment door 3a.

冷蔵室3と野菜室4に跨る冷蔵貯蔵空間の背部には、冷蔵用冷却器10と冷蔵用送風機11が配設されるとともに、冷気ダクト12と冷却器カバー13と送風機カバー14によって冷却貯蔵室内と区画している。また、製氷室5や小冷凍室および主冷凍室6の背面にわたっては、冷凍用冷却器15と冷凍用送風機16が配設され、冷気ダクトを形成するカバー体17によって冷却貯蔵室内と区画している。   A refrigeration cooler 10 and a refrigeration blower 11 are disposed on the back of the refrigeration storage space that spans the refrigerator compartment 3 and the vegetable compartment 4, and the cold storage duct is provided with a cooler duct 12, a cooler cover 13, and a blower cover 14. And compartmentalized. Further, a refrigeration cooler 15 and a refrigeration blower 16 are disposed over the ice making chamber 5, the small freezer compartment, and the main freezer compartment 6 and separated from the cooling storage chamber by a cover body 17 that forms a cold air duct. Yes.

なお、冷蔵用冷却器10の除霜は、冷蔵用冷却器10への冷媒の流入を停止させた状態で、冷蔵用送風機11を運転することで、冷蔵室3並びに野菜室4の0℃以上の温度の空気を循環させて行う。   In addition, defrosting of the refrigerator 10 for refrigeration is 0 degreeC or more of the refrigerator compartment 3 and the vegetable compartment 4 by driving the refrigerator fan 11 in the state which stopped the inflow of the refrigerant | coolant to the refrigerator 10 for refrigerators. This is done by circulating air at a temperature of.

また、冷凍用冷却器15の下方には、除霜ヒータ18と除霜水を受ける排水樋が配設される。冷凍用冷却器15の除霜は、除霜ヒータ18による輻射熱で冷凍用冷却器15を加熱することで行う。この時、融解した除霜水は排水樋により、外部に排出される。   Further, below the refrigeration cooler 15, a defrost heater 18 and a drainage tub that receives defrost water are disposed. The refrigeration cooler 15 is defrosted by heating the refrigeration cooler 15 with radiant heat from the defrost heater 18. At this time, the melted defrost water is discharged to the outside by the drain.

断熱箱体2の背面下部の外側には内方に凹陥する機械室19を形成し、冷凍サイクルの一環をなす圧縮機20や凝縮器21、冷却ファン200、除霜水を蒸発させる蒸発皿22を配設している。   A machine chamber 19 that is recessed inward is formed outside the lower rear portion of the heat insulating box 2, and a compressor 20 and a condenser 21 that form part of the refrigeration cycle, a cooling fan 200, and an evaporating dish 22 that evaporates defrost water. Is arranged.

また機械室19の上部には、冷蔵庫の運転を制御するマイコンなどを実装した制御装置23を設置している。   Further, a control device 23 equipped with a microcomputer or the like for controlling the operation of the refrigerator is installed in the upper part of the machine room 19.

制御装置23には、外気温センサ8と湿度センサ9からの検出信号と、冷蔵室3、野菜室4、主冷凍室6の各室内に設けた庫内温度センサ24、25、26からの検出信号と、冷蔵室3や主冷凍室6の扉開閉を検出する各検出スイッチからの検出信号が入力される。また、冷蔵室扉3aの前面に設置した操作パネル7への使用者の操作による冷却モードの切換えなどの信号が入力され、事前に備えた制御プログラムに基づき、圧縮機20や冷蔵用送風機11、冷凍用送風機16、冷却ファン200の運転や、冷蔵用冷却器10と冷凍用冷却器15への冷媒切換え、操作パネル7の表示などの制御をおこなう。   The control device 23 includes detection signals from the outside air temperature sensor 8 and the humidity sensor 9, and detection from inside temperature sensors 24, 25, and 26 provided in the refrigerator compartment 3, the vegetable compartment 4, and the main freezer compartment 6. A signal and a detection signal from each detection switch that detects opening and closing of the doors of the refrigerator compartment 3 and the main freezer compartment 6 are input. In addition, a signal such as switching of a cooling mode by a user operation is input to the operation panel 7 installed on the front surface of the refrigerator compartment door 3a, and the compressor 20 and the refrigeration blower 11, based on a control program prepared in advance, Controls such as operation of the refrigeration blower 16 and the cooling fan 200, switching of the refrigerant to the refrigeration cooler 10 and the refrigeration cooler 15, and display on the operation panel 7 are performed.

次に冷凍サイクルについて説明する。図2に示すように、圧縮機20を起動することで冷媒が圧縮され、高温高圧となった冷媒ガスは蒸発皿22の下面に配した蒸発パイプ27に導かれる。高温となった蒸発パイプ27は、蒸発皿22に溜まっている除霜水の蒸発を促す。さらに、蒸発パイプ27には凝縮器21が接続され、高温のガス冷媒は凝縮器21でその熱を放出させながら冷却される。この時、機械室19内に配した冷却ファン200を運転することで、その送風作用により凝縮器21の放熱を促進させることができる。なお、冷却ファン200での冷却対象は凝縮器21だけに限られず、圧縮機20により圧縮された高温高圧の冷媒が流れる配管や、圧縮機20そのものも冷却対象に含まれる。   Next, the refrigeration cycle will be described. As shown in FIG. 2, the refrigerant is compressed by starting the compressor 20, and the refrigerant gas that has become high temperature and high pressure is guided to an evaporation pipe 27 disposed on the lower surface of the evaporation dish 22. The evaporating pipe 27 that has reached a high temperature promotes evaporation of the defrosted water accumulated in the evaporating dish 22. Further, a condenser 21 is connected to the evaporation pipe 27, and the high-temperature gas refrigerant is cooled by the condenser 21 while releasing its heat. At this time, by operating the cooling fan 200 disposed in the machine room 19, the heat radiation of the condenser 21 can be promoted by the air blowing action. The object to be cooled by the cooling fan 200 is not limited to the condenser 21, and a pipe through which the high-temperature and high-pressure refrigerant compressed by the compressor 20 flows and the compressor 20 itself are also included in the object to be cooled.

その後、冷却ファン200の送風作用により温度が低下した冷媒は冷蔵庫本体1背面の周縁に配された凝縮器21の一部を成す放熱パイプ28aに導かれ、さらに、冷蔵庫側面下部を通って冷蔵庫前面下部に回りこみ、最下段に位置する主冷凍室6の開口部周縁から順に各冷却貯蔵室の開口部周縁における外箱2aの鍔部の裏面などの露付を防止したい箇所に配した放熱パイプ28を流れる。なお、各冷却貯蔵室の仕切部においては、放熱パイプ28をU字状に折り返すことで、開口部周縁に連続する加熱体を形成する。したがって、冷凍サイクルを運転する間、放熱パイプ28には室温よりも高温の冷媒が流れるため、熱伝導により放熱パイプ28近傍の外箱2aの温度が上昇し、露点以上の温度を保持することで防露を実現する。   Thereafter, the refrigerant whose temperature has been lowered by the air blowing action of the cooling fan 200 is guided to a heat radiating pipe 28a that forms part of the condenser 21 disposed on the peripheral edge of the refrigerator main body 1, and further passes through the lower part of the side of the refrigerator. A heat radiating pipe that wraps around the lower part and is arranged at a position where it is desired to prevent dew condensation, such as the back of the flange of the outer box 2a, at the periphery of the opening of each cooling storage chamber in order from the periphery of the opening of the main freezer compartment 6 positioned at the bottom. 28 flows. In addition, in the partition part of each cooling storage chamber, the heating body which continues to an opening part periphery is formed by folding the thermal radiation pipe 28 in U shape. Accordingly, during operation of the refrigeration cycle, a refrigerant having a temperature higher than room temperature flows through the heat radiating pipe 28. Therefore, the temperature of the outer box 2a in the vicinity of the heat radiating pipe 28 rises due to heat conduction, and the temperature above the dew point is maintained. Realize dew protection.

放熱パイプ28を通過した冷媒は機械室19に位置する三方弁29に導かれ、制御装置23の指令に基づき、この三方弁29によって冷蔵用キャピラリチューブ30と冷凍用キャピラリチューブ31のそれぞれに冷媒流路を切換える。キャピラリチューブを通過することで減圧され、液状となった冷媒は冷蔵庫奥面に配される冷蔵用冷却器10と冷凍用冷却器15のそれぞれの冷却器へと向かい、冷却器で気化することで気化熱によって冷蔵用と冷凍用冷却器10、15を低温化し、冷気を生成して冷却室を冷却する。この熱交換により冷媒は気体となる。その後、冷却器を通過したガス冷媒がサクションパイプ32を通って再び圧縮機20に吸入され、一連の冷凍サイクルが繰り返される。   The refrigerant that has passed through the heat radiating pipe 28 is guided to a three-way valve 29 located in the machine room 19, and the refrigerant flows to the refrigeration capillary tube 30 and the freezing capillary tube 31 by the three-way valve 29 based on a command from the control device 23. Switch the road. The refrigerant that has been depressurized by passing through the capillary tube and turned into a liquid is directed to the respective coolers of the refrigeration cooler 10 and the refrigeration cooler 15 disposed on the back of the refrigerator, and is vaporized by the cooler. The refrigeration and refrigeration coolers 10 and 15 are cooled by the heat of vaporization to generate cold air and cool the cooling chamber. The refrigerant becomes a gas by this heat exchange. Thereafter, the gas refrigerant that has passed through the cooler is again sucked into the compressor 20 through the suction pipe 32, and a series of refrigeration cycles is repeated.

次に冷却運転の制御機構について説明する。図3は、圧縮機20の運転制御機構のブロック図であって、制御装置23は、圧縮機20の運転制御を行う運転制御部33と、冷蔵室3内あるいは主冷凍室6内の冷却目標温度に対して設定される動作温度幅を、庫外湿度または庫外湿度と外気温の両方の情報から変更制御する動作温度幅制御部34と、動作温度幅を記憶する記憶手段35とを備えている。   Next, the cooling operation control mechanism will be described. FIG. 3 is a block diagram of the operation control mechanism of the compressor 20. The control device 23 includes an operation control unit 33 that controls the operation of the compressor 20, and a cooling target in the refrigerator compartment 3 or the main freezer compartment 6. An operating temperature range control unit 34 that changes and controls the operating temperature range set for the temperature from information on the outside humidity or both the outside humidity and the outside air temperature, and a storage unit 35 that stores the operating temperature range. ing.

さらに、制御装置23には各庫内温度センサ24、25、26と外気温センサ8と湿度センサ9が接続され各検出信号が送られるとともに、制御対象である圧縮機20が接続される。   Further, the inside temperature sensors 24, 25 and 26, the outside air temperature sensor 8 and the humidity sensor 9 are connected to the control device 23, and each detection signal is sent, and the compressor 20 which is a control target is connected.

運転制御部33による圧縮機20の制御は、記憶手段35に記憶された動作温度幅に基づいて行う。すなわち、冷蔵室3の庫内温度が設定された動作温度幅の上限であるオン点に達すると、圧縮機20を駆動して冷蔵用冷却器10により冷蔵室3内を冷却し、冷蔵室3の庫内温度が動作温度幅の下限であるオフ点に達すると冷蔵冷却を停止する。同様に、主冷凍室6の庫内温度が設定された動作温度幅の上限であるオン点に達すると、圧縮機20を駆動して冷凍用冷却器15により主冷凍室6内を冷却し、主冷凍室6の庫内温度が動作温度幅の下限であるオフ点に達すると冷凍冷却を停止する。冷蔵室3と主冷凍室6の庫内温度が動作温度幅内におさまるように圧縮機20を運転し、両室とも冷却不要の場合は圧縮機20を停止して、冷却貯蔵室の庫内温度を目標とする温度範囲内に保持するように運転制御する。   The compressor 20 is controlled by the operation control unit 33 based on the operating temperature range stored in the storage unit 35. That is, when the inside temperature of the refrigerator compartment 3 reaches the ON point that is the upper limit of the set operating temperature range, the compressor 20 is driven to cool the inside of the refrigerator compartment 3 by the refrigerator 10 for refrigeration. Refrigeration cooling is stopped when the internal temperature of the chamber reaches the off point which is the lower limit of the operating temperature range. Similarly, when the internal temperature of the main freezer compartment 6 reaches the ON point which is the upper limit of the set operating temperature range, the compressor 20 is driven to cool the inside of the main freezer compartment 6 by the freezer cooler 15, When the internal temperature of the main freezer compartment 6 reaches the off point which is the lower limit of the operating temperature range, the freezing and cooling are stopped. The compressor 20 is operated so that the inside temperature of the refrigerator compartment 3 and the main freezer compartment 6 falls within the operating temperature range. When both chambers do not require cooling, the compressor 20 is stopped and the inside of the cooling storage compartment is stored. Operation control is performed so that the temperature is maintained within a target temperature range.

例えば、冷蔵室3内の冷却目標温度が2℃で、設定される動作温度幅が±1℃の場合、運転制御される動作温度の範囲は1℃から3℃となる。従って、庫内温度が動作温度の上限である3℃に達すると、運転制御部33により圧縮機20を駆動し、動作温度の下限である1℃に達するまで冷却運転が継続される。   For example, when the cooling target temperature in the refrigerator compartment 3 is 2 ° C. and the set operating temperature range is ± 1 ° C., the operating temperature range for operation control is 1 ° C. to 3 ° C. Accordingly, when the internal temperature reaches 3 ° C., which is the upper limit of the operating temperature, the compressor 20 is driven by the operation control unit 33, and the cooling operation is continued until it reaches 1 ° C., which is the lower limit of the operating temperature.

同様に、主冷凍室6内の冷却目標温度が−20℃で、設定される動作温度幅が±2℃の場合、運転制御される動作温度の範囲は−22℃から−18℃となる。従って、庫内温度が動作温度の上限である−18℃に達すると、運転制御部33により圧縮機20を駆動し、動作温度の下限である−22℃に達するまで冷却運転が継続される。   Similarly, when the target cooling temperature in the main freezer compartment 6 is −20 ° C. and the set operating temperature range is ± 2 ° C., the operating temperature range for operation control is −22 ° C. to −18 ° C. Therefore, when the internal temperature reaches −18 ° C., which is the upper limit of the operating temperature, the operation controller 33 drives the compressor 20 and the cooling operation is continued until it reaches −22 ° C., which is the lower limit of the operating temperature.

そして、動作温度幅制御部34による動作温度幅の変更制御は、庫外雰囲気が露付現象を引き起こしやすい高温高湿であるほど動作温度幅を小さく設定し、低温低湿であるほど動作温度幅を大きく設定する。   The operation temperature range change control by the operation temperature range control unit 34 is such that the operating temperature range is set smaller as the temperature and humidity outside the chamber are likely to cause a dew phenomenon, and the operating temperature range is set lower as the temperature and humidity are lower. Set larger.

図4は庫外湿度に基づく動作温度幅制御のフローチャート図である。ただし図4においてW1<W2である。本実施形態では庫外湿度に応じて、動作温度幅の値を変えるように制御する。すなわち、湿度センサ9で検出された庫外湿度があらかじめ設定した湿度より高い場合には、外箱2a外表面の露付を起こしやすいため、動作温度幅を小さく設定する。一方、庫外湿度が設定値より低い場合には、露付を起こしにくいため、動作温度幅を大きく設定する。 FIG. 4 is a flowchart of operating temperature width control based on outside humidity. However, W 1 <W 2 in FIG. In the present embodiment, control is performed so as to change the value of the operating temperature range according to the humidity outside the refrigerator. That is, when the outside humidity detected by the humidity sensor 9 is higher than the preset humidity, the outer surface of the outer box 2a is likely to be exposed, so the operating temperature range is set to be small. On the other hand, when the outside humidity is lower than the set value, it is difficult to cause dew, so the operating temperature range is set large.

図5は庫外湿度と外気温とに基づく動作温度幅制御のフローチャート図であり、図4と同様、W1<W2の関係にある。前述のとおり、外気温が高いほど、冷却貯蔵室の庫内温度との温度差が大きくなるため露付を起こしやすい。従って、外気温および庫外湿度がともに設定値よりも低い低温且つ、低湿の状態のみ動作温度幅を大きく設定し、設定値より高温または、高湿時には動作温度幅を小さく設定する。 FIG. 5 is a flowchart of the operating temperature range control based on the outside humidity and the outside air temperature, and, as in FIG. 4, there is a relationship of W 1 <W 2 . As described above, the higher the outside air temperature, the greater the temperature difference from the inside temperature of the cooling storage room, and thus the easier it is to cause dew condensation. Accordingly, the operating temperature range is set large only when the outside air temperature and the outside humidity are both lower than the set value and low humidity, and the operating temperature range is set smaller when the temperature is higher or higher than the set value.

図4と図5のフローチャートに対応する具体的数値は、例えば、庫外の設定湿度を80%、庫外の設定温度を15℃としたとき、冷蔵室3内の冷却目標温度が2℃であればW1=±1℃、W2=±2℃である。また、主冷凍室6内の冷却目標温度が−20℃であればW1=±2℃、W2=±4℃である。ただし、ここで示したW1とW2の値はあくまで一例であり、冷蔵庫の性能や使用環境などの条件により適宜変更が必要となる。 The specific numerical values corresponding to the flowcharts of FIGS. 4 and 5 are, for example, when the set humidity outside the refrigerator is 80% and the set temperature outside the refrigerator is 15 ° C., the cooling target temperature in the refrigerator compartment 3 is 2 ° C. If so, W 1 = ± 1 ° C. and W 2 = ± 2 ° C. If the target cooling temperature in the main freezer compartment 6 is −20 ° C., W 1 = ± 2 ° C. and W 2 = ± 4 ° C. However, the values of W 1 and W 2 shown here are merely examples, and need to be appropriately changed depending on conditions such as the performance of the refrigerator and the use environment.

図6は湿度変化に応じた動作温度幅変化と放熱パイプ28の平均温度変化のタイミングチャート図である。湿度が設定値である80%に達したことで、動作温度幅が±W2から±W1へ小さく設定される。すなわち、冷却目標温度T0とすると、庫内温度において圧縮機20を駆動する温度であるオン点が、T0+W2からT0+W1に低く設定され、圧縮機20の運転を停止する温度であるオフ点が、T0−W2からT0−W1に高く設定される。これにより、圧縮機20が頻繁に駆動され、放熱パイプ28を高温冷媒が流れる度合が増加するため、放熱パイプ28の平均温度が上昇する。 FIG. 6 is a timing chart of the change in the operating temperature range according to the change in humidity and the change in the average temperature of the heat radiating pipe 28. When the humidity reaches the set value of 80%, the operating temperature range is set to be smaller from ± W 2 to ± W 1 . That is, when the cooling target temperature T 0, on point is the temperature at which drives the compressor 20 at inside temperature is set low from T 0 + W 2 to T 0 + W 1, it stops the operation of the compressor 20 Temperature off point is is set high from T 0 -W 2 to T 0 -W 1. Thereby, since the compressor 20 is driven frequently and the degree to which a high-temperature refrigerant | coolant flows through the thermal radiation pipe 28 increases, the average temperature of the thermal radiation pipe 28 rises.

図7は圧縮機20の運転周波数と放熱パイプ温度の相関関係を示すタイミングチャート図である。なお、図7は室温を18℃と仮定した場合のタイミングチャート図である。上述したように庫内温度センサ24、25、26で検出された庫内温度がオン点に達すると運転制御部33が圧縮機20を運転させて庫内を冷却する。このとき、圧縮機20の運転周波数は負荷の大きさや圧縮機の性能にも依存するが、安定した運転状態においては20Hz程度である。さらに、圧縮機20の運転に伴い圧縮され温度の上昇した冷媒が凝縮器21を通過した後に放熱パイプ28内部に流れる。これにより、放熱パイプ28の平均温度が上昇する。   FIG. 7 is a timing chart showing the correlation between the operating frequency of the compressor 20 and the heat radiating pipe temperature. FIG. 7 is a timing chart when the room temperature is assumed to be 18 ° C. As described above, when the internal temperature detected by the internal temperature sensors 24, 25, and 26 reaches the ON point, the operation control unit 33 operates the compressor 20 to cool the interior. At this time, the operating frequency of the compressor 20 depends on the size of the load and the performance of the compressor, but is about 20 Hz in a stable operating state. Further, the refrigerant that has been compressed and increased in temperature as the compressor 20 is operating passes through the condenser 21 and then flows into the heat radiating pipe 28. Thereby, the average temperature of the heat radiating pipe 28 rises.

また、圧縮機20の運転に伴い冷却ファン200を運転させることで凝縮器21での放熱を補助するとともに、圧縮機20及び高温冷媒配管が高温になり過ぎることを防ぐ。この時の冷却ファン200の回転数は冷却ファン200の性能に依存するが、圧縮機20が20Hzで運転している場合には900rpmであり、圧縮機20が40Hzで運転している場合においては1000rpm程度の回転数である。なお、圧縮機20が運転を停止している状態においては冷却ファン200の回転を停止させる。   In addition, the cooling fan 200 is operated along with the operation of the compressor 20 to assist heat dissipation in the condenser 21 and to prevent the compressor 20 and the high-temperature refrigerant pipe from becoming too hot. The number of rotations of the cooling fan 200 at this time depends on the performance of the cooling fan 200, but is 900 rpm when the compressor 20 is operating at 20 Hz, and when the compressor 20 is operating at 40 Hz. The rotation speed is about 1000 rpm. Note that the rotation of the cooling fan 200 is stopped in a state where the compressor 20 is not operating.

その後、庫内温度がオフ点よりも所定温度t(例えば0.5℃)高い温度まで低下したことを庫内温度センサ24、25、26が検知すると、圧縮機20の運転周波数を高周波数(例えば40Hz)に引き上げる結露防止制御を行う。この高周波数での圧縮機20の運転は庫内温度がオフ点に到達するまで継続し、庫内温度がオフ点に達したことを検知して圧縮機20を停止させる。   Thereafter, when the internal temperature sensors 24, 25, 26 detect that the internal temperature has decreased to a temperature higher than the off point by a predetermined temperature t (for example, 0.5 ° C.), the operating frequency of the compressor 20 is set to a high frequency ( For example, the dew condensation prevention control is raised to 40 Hz. The operation of the compressor 20 at this high frequency is continued until the internal temperature reaches the off point, and the compressor 20 is stopped upon detecting that the internal temperature has reached the off point.

上述した実施形態によれば、次のような作用効果を得ることができる。   According to the embodiment described above, the following operational effects can be obtained.

冷蔵庫前面の開口部周縁などに放熱パイプ28を配して防露を実現した冷蔵庫において、オフ点に達して圧縮機20を停止させる直前に、圧縮機20を通常の周波数よりも高い周波数で運転する。これにより、放熱パイプ28内に高温の冷媒を通常よりも多く流し、結露を防止したい箇所の温度を上昇させることができるため、結露を確実に防止することができる。   In the refrigerator in which the heat radiating pipe 28 is disposed on the opening peripheral edge of the refrigerator front and the like to achieve dew prevention, the compressor 20 is operated at a frequency higher than the normal frequency immediately before reaching the off point and stopping the compressor 20. To do. Thereby, since a high temperature refrigerant | coolant can be flowed more in the heat radiating pipe 28 than usual, and the temperature of the location which wants to prevent dew condensation can be raised, dew condensation can be prevented reliably.

また、圧縮機20の動作温度幅を大きくした場合に、放熱パイプ28に冷媒が流れない時間が長時間続くことになり、露付のリスクが増加するものの、上述した発明を適用することで、より確実に結露を防止できるため、動作温度幅を大きくすることができ、圧縮機の運転状態と停止状態の切替で生じる電力の消費を抑えることができる。   Also, when the operating temperature range of the compressor 20 is increased, the time during which the refrigerant does not flow through the heat radiating pipe 28 will last for a long time, and although the risk of dew condensation increases, by applying the above-described invention, Since dew condensation can be prevented more reliably, the operating temperature range can be increased, and power consumption caused by switching between the operating state and the stopped state of the compressor can be suppressed.

(第二実施形態)
図8は冷却ファン200の回転数と放熱パイプ28温度の相関関係を示すタイミングチャート図である。なお、図8は図7と同じく室温を18℃と仮定した場合のタイミングチャート図である。庫内温度センサ24、25、26で検出された庫内温度がオン点に達すると運転制御部33が圧縮機20を運転させて庫内を冷却する。このとき、冷却ファン200の回転数は圧縮機20の運転周波数の高さや冷却ファン200の性能に依存するが、圧縮機20が20Hzで運転している場合においては1000rpm程度の回転数である。
(Second embodiment)
FIG. 8 is a timing chart showing the correlation between the rotational speed of the cooling fan 200 and the temperature of the heat radiating pipe 28. FIG. 8 is a timing chart when the room temperature is assumed to be 18 ° C. as in FIG. When the internal temperature detected by the internal temperature sensors 24, 25, and 26 reaches the ON point, the operation control unit 33 operates the compressor 20 to cool the internal space. At this time, the rotation speed of the cooling fan 200 depends on the operating frequency of the compressor 20 and the performance of the cooling fan 200, but is approximately 1000 rpm when the compressor 20 is operating at 20 Hz.

その後、庫内温度がオフ点よりも所定温度t(例えば0.5℃)高い温度まで低下したことを庫内温度センサ24、25、26が検知すると冷却ファン200の回転を停止させる結露防止制御を行う。この冷却ファン200の回転を停止した状態で圧縮機20の運転を継続させ、庫内温度がオフ点に達したことを検知した後に圧縮機20を停止させる。   Thereafter, when the internal temperature sensors 24, 25, and 26 detect that the internal temperature has decreased to a temperature that is higher than the off point by a predetermined temperature t (for example, 0.5 ° C.), the dew condensation prevention control that stops the rotation of the cooling fan 200 is performed. I do. The operation of the compressor 20 is continued in a state where the rotation of the cooling fan 200 is stopped, and the compressor 20 is stopped after detecting that the internal temperature has reached the off point.

上述した実施形態によれば、次のような作用効果を得ることができる。   According to the embodiment described above, the following operational effects can be obtained.

冷蔵庫前面の開口部周縁などに放熱パイプ28を配して防露を実現した冷蔵庫において、オフ点に達して圧縮機20を停止させる直前に、冷却ファン200を停止させる。これにより、放熱パイプ28内を流れる冷媒の温度を通常よりも高くし、結露を防止したい箇所の温度を上昇させることができるため、結露を確実に防止することができる。   In the refrigerator in which the heat radiating pipe 28 is arranged on the peripheral edge of the opening on the front surface of the refrigerator to realize dew prevention, the cooling fan 200 is stopped immediately before reaching the off point and stopping the compressor 20. Thereby, since the temperature of the refrigerant | coolant which flows in the inside of the thermal radiation pipe 28 can be made higher than usual, and the temperature of the location which wants to prevent dew condensation can be raised, dew condensation can be prevented reliably.

また、圧縮機20の動作温度幅を大きくした場合に、放熱パイプ28に冷媒が流れない時間が長時間続くことになり、露付のリスクが増加するものの、上述した発明を適用することで、より確実に結露を防止できるため、動作温度幅を大きくすることができ、圧縮機の運転状態と停止状態の切替で生じる電力の消費を抑えることができる。   Also, when the operating temperature range of the compressor 20 is increased, the time during which the refrigerant does not flow through the heat radiating pipe 28 will last for a long time, and although the risk of dew condensation increases, by applying the above-described invention, Since dew condensation can be prevented more reliably, the operating temperature range can be increased, and power consumption caused by switching between the operating state and the stopped state of the compressor can be suppressed.

(第三実施形態)
図9は圧縮機20の運転周波数と放熱パイプ28温度と冷却ファン200の回転数の相関関係を示すタイミングチャート図である。なお、図9は図7と同じく室温を18℃と仮定した場合のタイミングチャート図である。庫内温度センサ24、25、26で検出された庫内温度がオン点に達すると運転制御部33が圧縮機20を運転させて庫内を冷却する。このとき、冷却ファン200の回転数は圧縮機20の運転周波数の高さや冷却ファン200の性能に依存するが、圧縮機20が20Hzで運転している場合においては1000rpm程度の回転数である。
(Third embodiment)
FIG. 9 is a timing chart showing the correlation among the operating frequency of the compressor 20, the temperature of the heat radiating pipe 28, and the rotational speed of the cooling fan 200. FIG. 9 is a timing chart when the room temperature is assumed to be 18 ° C. as in FIG. When the internal temperature detected by the internal temperature sensors 24, 25, and 26 reaches the ON point, the operation control unit 33 operates the compressor 20 to cool the internal space. At this time, the rotation speed of the cooling fan 200 depends on the operating frequency of the compressor 20 and the performance of the cooling fan 200, but is approximately 1000 rpm when the compressor 20 is operating at 20 Hz.

その後、庫内温度がオフ点よりも所定温度t(例えば0.5℃)高い温度まで低下したことを庫内温度センサ24、25、26が検知すると圧縮機20の運転周波数を高周波数(例えば40Hz)に引き上げるとともに冷却ファン200の回転数を所定の回転数(例えば900rpm)まで低下させる結露防止制御を行う。この圧縮機20が高周波数かつ冷却ファン200が低回転の状態で圧縮機20の運転を継続させ、庫内温度がオフ点に達したことを検知して圧縮機20を停止させるとともに冷却ファン200を停止させる。   Thereafter, when the internal temperature sensors 24, 25, 26 detect that the internal temperature has decreased to a temperature higher than the off point by a predetermined temperature t (for example, 0.5 ° C.), the operating frequency of the compressor 20 is set to a high frequency (for example, 40 Hz) and the condensation prevention control is performed to reduce the rotational speed of the cooling fan 200 to a predetermined rotational speed (for example, 900 rpm). The operation of the compressor 20 is continued with the compressor 20 at a high frequency and the cooling fan 200 at a low speed, the compressor 20 is stopped while detecting that the internal temperature has reached the off point, and the cooling fan 200 Stop.

上述した実施形態によれば、次のような作用効果を得ることができる。   According to the embodiment described above, the following operational effects can be obtained.

冷蔵庫前面の開口部周縁などに放熱パイプ28を配して防露を実現した冷蔵庫において、オフ点に達して圧縮機20を停止させる直前に、圧縮機20の運転周波数を上昇させるとともに冷却ファン200の回転数を低下させる。これにより、放熱パイプ28内を流れる冷媒の温度を通常よりも高くするとともに流れる冷媒の量を増加させることができるため、結露を防止したい箇所の温度を上昇させることで、結露を確実に防止することができる。   In the refrigerator in which the heat radiating pipe 28 is arranged on the peripheral edge of the opening of the refrigerator to achieve dew prevention, the operating frequency of the compressor 20 is increased and the cooling fan 200 immediately before the compressor 20 is stopped after reaching the off point. Reduce the number of revolutions. Accordingly, the temperature of the refrigerant flowing in the heat radiating pipe 28 can be made higher than usual, and the amount of the flowing refrigerant can be increased. Therefore, the condensation is reliably prevented by increasing the temperature of the portion where condensation is desired to be prevented. be able to.

また、圧縮機20の動作温度幅を大きくした場合に、放熱パイプ28に冷媒が流れない時間が長時間続くことになり、露付のリスクが増加するものの、上述した発明を適用することで、より確実に結露を防止できるため、動作温度幅を大きくすることができ、圧縮機の運転状態と停止状態の切替で生じる電力の消費を抑えることができる。   Also, when the operating temperature range of the compressor 20 is increased, the time during which the refrigerant does not flow through the heat radiating pipe 28 will last for a long time, and although the risk of dew condensation increases, by applying the above-described invention, Since dew condensation can be prevented more reliably, the operating temperature range can be increased, and power consumption caused by switching between the operating state and the stopped state of the compressor can be suppressed.

また、圧縮機20の運転周波数の増加と冷却ファン200の回転数の減少を併せて行うことで、放熱パイプ28の平均温度をより高くすることができるため、より確実に結露を防止することができる。   Further, by increasing the operating frequency of the compressor 20 and decreasing the rotational speed of the cooling fan 200, it is possible to increase the average temperature of the heat radiating pipe 28, thereby preventing condensation more reliably. it can.

(第四実施形態)
第四実施形態は庫外情報取得手段によって取得した情報に応じて圧縮機20の停止前の圧縮機20の運転周波数と冷却ファン200の回転数とを変更する点が上述した実施形態とは異なっている。
(Fourth embodiment)
The fourth embodiment is different from the above-described embodiment in that the operating frequency of the compressor 20 and the rotation speed of the cooling fan 200 before changing the compressor 20 are changed according to the information acquired by the external information acquisition means. ing.

外気温センサ8で測定した外気温が高いほど、冷却貯蔵室の庫内温度との温度差が大きくなるため露付を起こしやすい。また、湿度センサ9で測定した湿度が高いほど露付を起こしやすい。従って、露付を起こしやすい条件である高温または高湿の条件下では圧縮機20を停止させる直前の圧縮機20の運転周波数を高くする。具体的には、外気温が所定温度(例えば30℃)よりも高温であることを検知した場合、あるいは湿度が所定湿度(例えば90%)よりも高湿であることを検知した場合には、結露防止制御である圧縮機20を停止させる直前の運転周波数を40Hzよりも5Hz高い45Hzに設定する。   As the outside air temperature measured by the outside air temperature sensor 8 is higher, the temperature difference from the inside temperature of the cooling storage chamber becomes larger, so that dew is more likely to occur. Further, the higher the humidity measured by the humidity sensor 9, the easier it is to cause dew. Therefore, the operating frequency of the compressor 20 immediately before stopping the compressor 20 is increased under conditions of high temperature or high humidity, which are conditions that are likely to cause dew. Specifically, when it is detected that the outside air temperature is higher than a predetermined temperature (for example, 30 ° C.), or when it is detected that the humidity is higher than the predetermined humidity (for example, 90%), The operating frequency immediately before stopping the compressor 20 which is the dew condensation prevention control is set to 45 Hz which is 5 Hz higher than 40 Hz.

同様に、高温高湿の条件下では冷却ファン200の回転数を低下させる量を大きくする。具体的には、外気温が所定温度(例えば30℃)よりも高温であることを検知した場合、あるいは湿度が所定湿度(例えば90%)よりも高湿であることを検知した場合には、圧縮機20を停止させる直前に冷却ファン200の回転数を100rpm低下させるのではなく、回転を停止させる。あるいは、回転数を低下させる量を大きくし、200rpm低下させる。   Similarly, the amount by which the number of revolutions of the cooling fan 200 is reduced under high temperature and high humidity conditions is increased. Specifically, when it is detected that the outside air temperature is higher than a predetermined temperature (for example, 30 ° C.), or when it is detected that the humidity is higher than the predetermined humidity (for example, 90%), Immediately before the compressor 20 is stopped, the rotation speed of the cooling fan 200 is not reduced by 100 rpm, but the rotation is stopped. Alternatively, the amount by which the number of revolutions is reduced is increased, and the speed is reduced by 200 rpm.

なお、露付を起こしにくい条件である低温または低湿の条件下において、圧縮機20を停止させる直前の結露防止制御である圧縮機20の運転周波数を低く、冷却ファン200の回転数を高く設定するようにしても良い。   Note that the operating frequency of the compressor 20, which is the dew condensation prevention control immediately before stopping the compressor 20, is set low, and the rotation speed of the cooling fan 200 is set high under conditions of low temperature or low humidity, which are conditions that hardly cause dew condensation. You may do it.

また、使用者が冷蔵庫本体1に結露が生じていることを発見した場合など、現在の結露防止制御が不十分であり、結露をより確実に防止する必要があると判断した場合には、操作パネル7を操作し結露防止モードを選択することで放熱パイプ28の温度をより高くする制御に変更する。具体的には、外気温や湿度の検知結果によらず圧縮機20の停止直前には圧縮機20を通常時の結露防止制御で設定する高周波数よりもさらに高い周波数(例えば50Hz)で運転するとともに冷却ファン200を停止させる結露防止制御を行う。さらに、結露防止モードにおいて、オフ点より0.5℃高い温度からオフ点に至るまでの間に結露防止制御を行うのではなく、オフ点より0.7℃高い温度からオフ点に至るまでの間に結露防止制御を行うなどして、放熱パイプ28に高温の冷媒が流れる時間を長く確保するようにしてもよい。   In addition, when it is determined that the current condensation prevention control is inadequate and it is necessary to prevent condensation more reliably, such as when the user discovers that condensation has occurred in the refrigerator body 1, By operating the panel 7 and selecting the dew condensation prevention mode, the control is changed to make the temperature of the heat radiating pipe 28 higher. Specifically, the compressor 20 is operated at a frequency (for example, 50 Hz) higher than the high frequency set in the normal condensation prevention control immediately before the compressor 20 is stopped regardless of the detection result of the outside air temperature and humidity. At the same time, the condensation prevention control for stopping the cooling fan 200 is performed. Further, in the dew condensation prevention mode, the dew condensation prevention control is not performed during the period from the temperature 0.5 ° C. higher than the off point to the off point, but from the temperature 0.7 ° C. higher than the off point to the off point. It is also possible to ensure a long time for the high-temperature refrigerant to flow through the heat radiating pipe 28 by performing dew condensation prevention control in the meantime.

上述した実施形態によれば、次のような作用効果を得ることができる。   According to the embodiment described above, the following operational effects can be obtained.

庫外情報取得手段である外気温センサ8や湿度センサ9の検知結果から露付の起こり易さを判断し、露付の起こり易い条件下では放熱パイプ28がより高温になるように結露防止制御を行うため、露付を確実に防止できる。   Condensation prevention control is performed so that the easiness of dew condensation is determined from the detection results of the outside air temperature sensor 8 and the humidity sensor 9 which are outside-compartment information acquisition means, and the heat radiation pipe 28 is heated to a higher temperature under conditions where dew is liable to occur. Therefore, dew can be surely prevented.

また、露付の起こり難い条件下では放熱パイプ28が必要以上に高温になりすぎないように結露防止制御を行うため、消費電力量を抑えることができる。   Further, since the dew condensation prevention control is performed so that the heat radiating pipe 28 does not become unnecessarily high under the conditions where it is difficult for dew condensation to occur, the power consumption can be suppressed.

以上において、放熱パイプ28以外の防露手段を備えていない冷蔵庫、すなわち、放熱ヒータや、バイパス管を用いて冷媒流路を弁により切換え制御する機構などを備えていない冷蔵庫について説明を行ったが、防露手段として放熱パイプ28に加えて放熱パイプ28以外の部品を備えた冷蔵庫に適用してもよい。その場合、放熱ヒータの制御や放熱パイプ28を流れる冷媒の流量の制御など、複数の防露手段を制御することになるので、防露の精度をさらに高めることができる。   In the above description, a refrigerator that does not include dew proofing means other than the heat radiating pipe 28, that is, a refrigerator that does not include a heat radiating heater or a mechanism that controls switching of the refrigerant flow path with a valve using a bypass pipe has been described. Further, the present invention may be applied to a refrigerator provided with parts other than the heat radiating pipe 28 in addition to the heat radiating pipe 28 as dew proof means. In this case, since a plurality of dew prevention means such as control of the heat radiating heater and control of the flow rate of the refrigerant flowing through the heat radiating pipe 28 are controlled, the dew proofing accuracy can be further improved.

変形例として、あらかじめ設定された湿度と実際の庫外湿度との差の大きさから動作温度幅の変更制御を決定するのではなく、庫外湿度と外気温情報から露点温度を算出して、放熱パイプ28により防露したい箇所が露点温度以上の温度になるように動作温度幅を決定してもよい。   As a modification, instead of determining the change control of the operating temperature range from the magnitude of the difference between the preset humidity and the actual outside humidity, calculate the dew point temperature from the outside humidity and outside air temperature information, The operating temperature range may be determined so that the location where the heat radiating pipe 28 is desired to prevent dew becomes a temperature equal to or higher than the dew point temperature.

また、冷凍サイクルとしては、冷蔵用と冷凍用など複数の冷却器を備えたものに限られず、単一の冷却器を備えた冷蔵庫の場合でもよい。   In addition, the refrigeration cycle is not limited to one having a plurality of coolers such as refrigeration and freezing, and may be a refrigerator having a single cooler.

以上のように本実施形態の冷蔵庫によると、冷蔵庫前面の開口部周縁などに放熱パイプ28を配して防露を実現した冷蔵庫において、オフ点に達して圧縮機20を停止させる直前に、結露防止制御を行い放熱パイプ28の温度を高くすることで、その後冷媒が流れない時間が長時間続いても、放熱パイプ28の温度が所定温度よりも低い温度に低下しにくくする。これにより、放熱パイプ28内を流れる冷媒の温度を通常よりも高くするとともに流れる冷媒の量を増加させることができるため、結露を防止したい箇所の温度を上昇させることで、結露を確実に防止することができる。   As described above, according to the refrigerator of the present embodiment, in the refrigerator in which the heat radiating pipe 28 is arranged on the peripheral edge of the opening on the front surface of the refrigerator to achieve dew condensation, the dew condensation occurs immediately before reaching the off point and stopping the compressor 20. By performing prevention control and increasing the temperature of the heat radiating pipe 28, the temperature of the heat radiating pipe 28 is less likely to be lowered to a temperature lower than the predetermined temperature even if the refrigerant does not flow thereafter for a long time. Accordingly, the temperature of the refrigerant flowing in the heat radiating pipe 28 can be made higher than usual, and the amount of the flowing refrigerant can be increased. Therefore, the condensation is reliably prevented by increasing the temperature of the portion where condensation is desired to be prevented. be able to.

また、圧縮機20の動作温度幅を大きくした場合に、放熱パイプ28に冷媒が流れない時間が長時間続くことになり、露付のリスクが増加するものの、上述した発明を適用することで、より確実に結露を防止できるため、動作温度幅を大きくすることができ、圧縮機の運転状態と停止状態の切替で生じる電力の消費を抑えることができる。   Also, when the operating temperature range of the compressor 20 is increased, the time during which the refrigerant does not flow through the heat radiating pipe 28 will last for a long time, and although the risk of dew condensation increases, by applying the above-described invention, Since dew condensation can be prevented more reliably, the operating temperature range can be increased, and power consumption caused by switching between the operating state and the stopped state of the compressor can be suppressed.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

2は断熱箱体、2aは外箱、2bは内箱、2cは断熱材、8は外気温センサ、9は湿度センサ、10は冷蔵用冷却器、15は冷凍用冷却器、20は圧縮機、21は凝縮器、23は制御装置、28は放熱パイプ、29は三方弁、30は冷蔵用キャピラリチュ−ブ、31は冷凍用キャピラリチュ−ブ、32はサクションパイプ、33は運転制御部、34は動作温度幅制御部、35は記憶手段、200は冷却ファンを示す。

2 is a heat insulating box, 2a is an outer box, 2b is an inner box, 2c is a heat insulating material, 8 is an outside air temperature sensor, 9 is a humidity sensor, 10 is a refrigeration cooler, 15 is a refrigeration cooler, and 20 is a compressor. , 21 is a condenser, 23 is a control device, 28 is a heat radiating pipe, 29 is a three-way valve, 30 is a refrigeration capillary tube, 31 is a freezing capillary tube, 32 is a suction pipe, 33 is an operation control unit, Reference numeral 34 denotes an operating temperature width controller, 35 denotes storage means, and 200 denotes a cooling fan.

Claims (5)

冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された冷媒が通過することで周辺温度を上昇させる放熱パイプと、
庫内温度を検出する温度センサと、
前記温度センサでの検出温度に基づき圧縮機を制御する運転制御部とを備え、
前記運転制御部で前記圧縮機を停止させる前に前記放熱パイプの温度を上昇させる結露防止制御を行う冷蔵庫。
A compressor for compressing the refrigerant;
A heat radiating pipe that raises the ambient temperature by passing the refrigerant compressed by the compressor; and
A temperature sensor for detecting the internal temperature;
An operation control unit for controlling the compressor based on the temperature detected by the temperature sensor,
The refrigerator which performs the dew condensation prevention control which raises the temperature of the said heat radiating pipe before stopping the said compressor in the said operation control part.
前記結露防止制御は前記圧縮機の回転数を上昇させる制御である請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the dew condensation prevention control is a control for increasing a rotation speed of the compressor. 圧縮された前記冷媒の温度を低下させる冷却ファンを備え、
前記結露防止制御は前記冷却ファンの回転数を低下させる制御である請求項1に記載の冷蔵庫。
A cooling fan for reducing the temperature of the compressed refrigerant,
The refrigerator according to claim 1, wherein the dew condensation prevention control is a control for reducing the number of rotations of the cooling fan.
庫外情報を取得する庫外情報取得手段を備え、
前記庫外情報取得手段で取得した情報に応じて前記結露防止制御での制御内容を変更する請求項1から3のいずれかに記載の冷蔵庫。
Provided with outside information acquisition means for acquiring outside information,
The refrigerator in any one of Claim 1 to 3 which changes the control content in the said dew condensation prevention control according to the information acquired by the said external information acquisition means.
使用者の操作によって結露防止制御の内容を変更することが可能な請求項1から4のいずれかに記載の冷蔵庫。   The refrigerator in any one of Claim 1 to 4 which can change the content of dew condensation prevention control by a user's operation.
JP2014169184A 2014-08-22 2014-08-22 refrigerator Withdrawn JP2016044875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169184A JP2016044875A (en) 2014-08-22 2014-08-22 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169184A JP2016044875A (en) 2014-08-22 2014-08-22 refrigerator

Publications (1)

Publication Number Publication Date
JP2016044875A true JP2016044875A (en) 2016-04-04

Family

ID=55635605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169184A Withdrawn JP2016044875A (en) 2014-08-22 2014-08-22 refrigerator

Country Status (1)

Country Link
JP (1) JP2016044875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017428A (en) * 2016-07-26 2018-02-01 東芝ライフスタイル株式会社 refrigerator
WO2020049647A1 (en) * 2018-09-05 2020-03-12 三菱電機株式会社 Refrigerator
WO2020054252A1 (en) * 2018-09-11 2020-03-19 Phcホールディングス株式会社 Cooling device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017428A (en) * 2016-07-26 2018-02-01 東芝ライフスタイル株式会社 refrigerator
WO2020049647A1 (en) * 2018-09-05 2020-03-12 三菱電機株式会社 Refrigerator
WO2020054252A1 (en) * 2018-09-11 2020-03-19 Phcホールディングス株式会社 Cooling device
CN112673223A (en) * 2018-09-11 2021-04-16 普和希控股公司 Cooling device
JPWO2020054252A1 (en) * 2018-09-11 2021-06-03 Phcホールディングス株式会社 Cooling system
JP6999834B2 (en) 2018-09-11 2022-01-19 Phcホールディングス株式会社 Cooling system
EP3835694B1 (en) * 2018-09-11 2023-11-29 PHC Holdings Corporation Cooling device

Similar Documents

Publication Publication Date Title
JP4954484B2 (en) Cooling storage
JP5826317B2 (en) refrigerator
JP2014020715A (en) Refrigerator
JP2013050237A (en) Refrigerator and freezer
JP4945395B2 (en) refrigerator
JP2012127514A (en) Refrigerator-freezer
JP6121654B2 (en) refrigerator
AU2018202123B2 (en) Refrigerator and method for controlling the same
JP2015010815A (en) Refrigerator
JP2009250476A (en) Refrigerator
JP5506760B2 (en) refrigerator
JP2016044875A (en) refrigerator
JP2005172303A (en) Refrigerator
JP2014044025A (en) Refrigerator
JP2015034673A (en) Refrigerator
JP2006090663A (en) Refrigerator
JP6109520B2 (en) refrigerator
JP6539093B2 (en) refrigerator
JP2013068388A (en) Refrigerator
JP5743867B2 (en) Cooling storage
KR20080068233A (en) Method and apparatus for prevention supercooling of refrigerator
JP2014129911A (en) Refrigerator
JP2017040398A (en) refrigerator
JP2013053801A (en) Refrigerator
JP2004092939A (en) Refrigerator-freezer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170602

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180226