JP2005351590A - Cooling/warming system - Google Patents

Cooling/warming system Download PDF

Info

Publication number
JP2005351590A
JP2005351590A JP2004175145A JP2004175145A JP2005351590A JP 2005351590 A JP2005351590 A JP 2005351590A JP 2004175145 A JP2004175145 A JP 2004175145A JP 2004175145 A JP2004175145 A JP 2004175145A JP 2005351590 A JP2005351590 A JP 2005351590A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
refrigerant
cooling
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004175145A
Other languages
Japanese (ja)
Other versions
JP2005351590A5 (en
JP4436716B2 (en
Inventor
Toshikazu Sakai
寿和 境
Kenji Kaneshiro
賢治 金城
Masaharu Kamei
正治 亀井
Tsuyoki Hirai
剛樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004175145A priority Critical patent/JP4436716B2/en
Priority to KR1020040080577A priority patent/KR101108311B1/en
Priority to CNB2004100959912A priority patent/CN100436979C/en
Priority to CN2008100984861A priority patent/CN101285634B/en
Publication of JP2005351590A publication Critical patent/JP2005351590A/en
Publication of JP2005351590A5 publication Critical patent/JP2005351590A5/ja
Application granted granted Critical
Publication of JP4436716B2 publication Critical patent/JP4436716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling/warming system for minimizing the amount of hydrocarbon refrigerant to be used for particularly warming up to 50-100°C. <P>SOLUTION: The cooling/warming system for cooling or warming goods such as canned drinks uses a low pressure shell compressor 20, refrigerant R600a, and a mineral oil or ester oil as lubricating oil for the compressor which has lower cost, generally working results and a kinetic viscosity of 3-30 mm<SP>2</SP>/s at 40°C. The low pressure shell compressor 20 is encircled by a cover 21. When using a sensor 22 for measuring ambient temperature around the low pressure shell compressor 20, when its value is smaller than a preset value, a heater 23 is energized to keep the temperature of the lubricating oil to be 40-80°C during warming, thus minimizing the amount of the refrigerant to be used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、缶飲料などの商品を加温あるいは冷却して販売する自動販売機やショーケースなどにおいて、圧縮機で圧縮された冷媒が凝縮する際に生じる潜熱を利用して冷却および加温を行う冷却加温システムに関するものである。   The present invention uses a latent heat generated when a refrigerant compressed by a compressor condenses in a vending machine or a showcase that sells products such as canned beverages heated or cooled for cooling and heating. The present invention relates to a cooling and heating system to be performed.

近年、自動販売機やショーケースなどの冷蔵および温蔵機器に対する消費電力量削減の要求が高まってきており、ヒータによる加温時の消費電力量を削減する手段として、冷暖房空調装置などと同じように冷却システムをヒートポンプに切換えて加温に利用したものが提案されている。また、地球温暖化係数の低い自然冷媒である炭化水素冷媒を用いた場合、冷媒漏洩時の安全性を高めるために、圧縮機の潤滑油に溶解する冷媒量を抑制することが重要となる。特に、冷却システムをヒートポンプに切換えて加温に利用する場合、冷却時と加温時で圧縮機の潤滑油に溶解する冷媒量が大きく変化しない工夫が必要である。冷媒溶解量が大きく変化すると、最適冷媒量を維持するために常に液冷媒を貯留しておく必要が生じて、結果として冷媒使用量の増大を招く。   In recent years, there has been an increasing demand for reducing power consumption for refrigeration and warming equipment such as vending machines and showcases. As a means to reduce power consumption when heating by a heater, it is the same as for air conditioning and air conditioning systems. In addition, a cooling system that uses a heat pump for heating is proposed. In addition, when a hydrocarbon refrigerant, which is a natural refrigerant with a low global warming potential, is used, it is important to suppress the amount of refrigerant dissolved in the lubricating oil of the compressor in order to increase safety at the time of refrigerant leakage. In particular, when the cooling system is switched to a heat pump and used for heating, it is necessary to devise a method in which the amount of refrigerant dissolved in the lubricating oil of the compressor does not change greatly between cooling and heating. When the refrigerant dissolution amount changes greatly, it becomes necessary to always store the liquid refrigerant in order to maintain the optimum refrigerant quantity, resulting in an increase in the refrigerant usage.

従来、圧縮機をヒータで加温することで圧縮機内の潤滑油の温度を一定以上に保つ構成(例えば、特許文献1参照)や、炭化水素冷媒の溶解量が比較的小さい特殊な潤滑油を使用する構成(例えば、特許文献2参照)が提案されている。ここで、炭化水素冷媒を用いた冷蔵庫では一般的な鉱油系潤滑油を用いるが、低圧シェル型圧縮機を低い蒸発温度でのみ使用するため、潤滑油に溶解する冷媒量が小さく大きな問題とならない。圧縮機の潤滑油に溶解する冷媒量が問題となるのは、比較的蒸発温度が高いヒートポンプあるいは高圧シェル型圧縮機を使用した冷却システムの場合である。   Conventionally, a configuration in which the temperature of the lubricating oil in the compressor is maintained at a certain level or higher by heating the compressor with a heater (see, for example, Patent Document 1) or a special lubricating oil in which the amount of dissolved hydrocarbon refrigerant is relatively small. A configuration to be used (for example, see Patent Document 2) has been proposed. Here, a general mineral oil-based lubricating oil is used in a refrigerator using a hydrocarbon refrigerant. However, since the low-pressure shell compressor is used only at a low evaporation temperature, the amount of refrigerant dissolved in the lubricating oil is small and does not cause a big problem. . The amount of refrigerant dissolved in the lubricating oil of the compressor becomes a problem in the case of a cooling system using a heat pump or a high-pressure shell type compressor having a relatively high evaporation temperature.

以下、図面を参照しながら従来の冷却加温システムを説明する。   Hereinafter, a conventional cooling and heating system will be described with reference to the drawings.

図6は従来の冷却加温システムの冷媒回路図である。   FIG. 6 is a refrigerant circuit diagram of a conventional cooling and heating system.

図6に示すように、従来の冷却加温システムは炭化水素冷媒であるプロパンあるいはイソブタンを用いるとともに、高圧シェル型圧縮機1、四方弁2、アキュームレータ3、室外熱交換器4、室内熱交換器5を基本構成とし、室内を冷却する場合は高圧シェル型圧縮機1から吐出された冷媒を四方弁2で流路を切替えて室外熱交換器4から室内熱交換器5へ供給して、再び四方弁2を経てアキュームレータ3から高圧シェル型圧縮機1へ還流するとともに、室内を加温する場合は高圧シェル型圧縮機1から吐出された冷媒を四方弁2で流路を切替えて室内熱交換器5から室外熱交換器4へ供給して、再び四方弁2を経てアキュームレータ3から高圧シェル型圧縮機1へ還流するものである。   As shown in FIG. 6, the conventional cooling and heating system uses propane or isobutane which is a hydrocarbon refrigerant, and also includes a high-pressure shell compressor 1, a four-way valve 2, an accumulator 3, an outdoor heat exchanger 4, and an indoor heat exchanger. When the room is cooled, the refrigerant discharged from the high-pressure shell compressor 1 is switched by the four-way valve 2 and supplied from the outdoor heat exchanger 4 to the indoor heat exchanger 5, and again The refrigerant flows from the accumulator 3 to the high-pressure shell compressor 1 through the four-way valve 2, and when heating the room, the refrigerant discharged from the high-pressure shell compressor 1 is switched by the four-way valve 2 to exchange the heat in the room. The heat is supplied from the vessel 5 to the outdoor heat exchanger 4, and is returned to the high pressure shell type compressor 1 from the accumulator 3 through the four-way valve 2 again.

ここで、一般に室内熱交換器5は缶飲料などの冷却加温する対象物が収納された断熱空間(図示せず、以下収納室という)内に設置されるとともに、高圧シェル型圧縮機1、四方弁2、アキュームレータ3、室外熱交換器4は前記断熱空間の外に配置される。   Here, in general, the indoor heat exchanger 5 is installed in a heat insulating space (not shown, hereinafter referred to as a storage chamber) in which an object to be cooled and heated such as a can beverage is stored, and the high-pressure shell compressor 1, The four-way valve 2, the accumulator 3, and the outdoor heat exchanger 4 are disposed outside the heat insulating space.

また、室外熱交換器4と室内熱交換器5を結ぶ配管には、加温用キャピラリチューブ6、冷却用逆止弁7、冷却用キャピラリチューブ8、加温用逆止弁9およびドライヤ10が接続されている。ここで、加温用キャピラリチューブ6と冷却用逆止弁7、および冷却用キャピラリチューブ8と加温用逆止弁9はそれぞれ並列に接続されるとともに、加温用キャピラリチューブ6と冷却用キャピラリチューブ8に挟まれる位置にドライヤ10が接続される。また、一般に室外熱交換器4、室内熱交換器5はそれぞれ独立の送風ファン(図示せず)で必要に応じて送風され、空冷および熱交換を促進される。   The piping connecting the outdoor heat exchanger 4 and the indoor heat exchanger 5 includes a heating capillary tube 6, a cooling check valve 7, a cooling capillary tube 8, a heating check valve 9 and a dryer 10. It is connected. Here, the heating capillary tube 6 and the cooling check valve 7, and the cooling capillary tube 8 and the heating check valve 9 are respectively connected in parallel, and the heating capillary tube 6 and the cooling capillary are connected. A dryer 10 is connected to a position sandwiched between the tubes 8. In general, the outdoor heat exchanger 4 and the indoor heat exchanger 5 are blown as necessary by independent blow fans (not shown), and air cooling and heat exchange are promoted.

ここで、高圧シェル型圧縮機1の出口配管には、吐出ガスの温度を測定するセンサ11、高圧シェル型圧縮機1の下面には、シェル下面を加温するヒータ12、高圧シェル型圧縮機1の側方には、空冷用のファン13を備えている。   Here, the outlet pipe of the high-pressure shell compressor 1 has a sensor 11 for measuring the temperature of the discharge gas, the lower surface of the high-pressure shell compressor 1 has a heater 12 for heating the lower surface of the shell, and the high-pressure shell compressor. 1 is provided with a fan 13 for air cooling.

以上のように構成された従来の冷温切替システムについて、以下その動作を説明する。   The operation of the conventional cold / warm switching system configured as described above will be described below.

収納室内を冷却する場合、高圧シェル型圧縮機1から吐出された冷媒は四方弁2で流路を切替えて室外熱交換器4へ供給されて凝縮液化する。室外熱交換器4から出た液冷媒は冷却用逆止弁7を経てドライヤ10に供給される。そして、ドライヤ10から出た液冷媒は冷却用キャピラリチューブ8で減圧されて室内熱交換器5へ供給されて蒸発気化し、ガス冷媒は再び四方弁2を経てアキュームレータ3から高圧シェル型圧縮機1へ還流する。   When the storage chamber is cooled, the refrigerant discharged from the high-pressure shell compressor 1 is switched to a flow path by the four-way valve 2 and supplied to the outdoor heat exchanger 4 to be condensed and liquefied. The liquid refrigerant discharged from the outdoor heat exchanger 4 is supplied to the dryer 10 through the cooling check valve 7. The liquid refrigerant discharged from the dryer 10 is depressurized by the cooling capillary tube 8 and supplied to the indoor heat exchanger 5 to evaporate, and the gas refrigerant passes through the four-way valve 2 and again from the accumulator 3 to the high-pressure shell compressor 1. To reflux.

また、収納室内を加温する場合、高圧シェル型圧縮機1から吐出された冷媒は四方弁2で流路を切替えて室内熱交換器5へ供給されて凝縮液化する。室内熱交換器5から出た液冷媒は加温用逆止弁9を経てドライヤ10に供給される。そして、ドライヤ10から出た液冷媒は加温用キャピラリチューブ6で減圧されて室外熱交換器4へ供給されて蒸発気化し、ガス冷媒は再び四方弁2を経てアキュームレータ3から高圧シェル型圧縮機1へ還流する。   When the storage chamber is heated, the refrigerant discharged from the high-pressure shell compressor 1 is switched to a flow path by the four-way valve 2 and supplied to the indoor heat exchanger 5 to be condensed and liquefied. The liquid refrigerant discharged from the indoor heat exchanger 5 is supplied to the dryer 10 through the heating check valve 9. The liquid refrigerant discharged from the dryer 10 is depressurized by the heating capillary tube 6 and supplied to the outdoor heat exchanger 4 to evaporate, and the gas refrigerant again passes from the accumulator 3 through the four-way valve 2 to the high pressure shell type compressor. Reflux to 1.

ここで、高圧シェル型圧縮機1を用いた場合、高圧シェル型圧縮機1の内部に貯留された鉱油系潤滑油が凝縮圧力の炭化水素冷媒にさらされて、炭化水素冷媒を溶解する。一般に、鉱油系潤滑油の温度が低いときには大量の炭化水素冷媒を溶解することが知られている。そこで、常にセンサ11の指示値を監視し、所定値よりも低い場合はヒータ12に通電するとともに、所定値よりも高い場合はファン13を駆動して空冷することにより、高圧シェル型圧縮機1およびその内部に貯留される潤滑油の温度を略一定に高く保つ。   Here, when the high-pressure shell type compressor 1 is used, the mineral oil-based lubricating oil stored inside the high-pressure shell type compressor 1 is exposed to the hydrocarbon refrigerant at the condensation pressure to dissolve the hydrocarbon refrigerant. Generally, it is known that a large amount of hydrocarbon refrigerant is dissolved when the temperature of the mineral oil-based lubricating oil is low. Therefore, the indication value of the sensor 11 is always monitored, and when it is lower than the predetermined value, the heater 12 is energized. And the temperature of the lubricating oil stored in the inside is kept substantially constant and high.

このように、ヒータ12とファン13を用いて、高圧シェル型圧縮機1の温度を略一定に高く保つことで潤滑油中の冷媒量を少なくかつ略一定に保つことができ、冷媒使用量の増大を防止できる。
特開2000−283621号公報 特開2001−234184号公報
Thus, by using the heater 12 and the fan 13, the amount of refrigerant in the lubricating oil can be kept small and substantially constant by keeping the temperature of the high-pressure shell compressor 1 substantially constant and high, and the amount of refrigerant used can be reduced. Increase can be prevented.
JP 2000-283621 A JP 2001-234184 A

しかしながら、上記従来の構成はエアコンのヒートポンプなどの比較的低い凝縮温度30〜40℃程度を想定しており、缶飲料などの商品を50〜100℃に加温する場合、凝縮圧力が高くなり、高い凝縮圧力でも炭化水素冷媒の溶解量を低く保つために鉱油系潤滑油の温度をさらに高く維持する必要が生じる。この結果、高圧シェル型圧縮機1を高温に維持するために必要なヒータ電力が増大するとともに、加温時に外部に漏洩する熱量も増大して大きな効率低下を招く。また、潤滑に必要な粘度を高温で確保するためにより粘度の高い潤滑油を用いると、冷媒とともにシステム配管へ吐出された潤滑油が蒸発温度にある熱交換器内で異常に粘度上昇して滞留し、システム配管の閉塞や圧縮機内での潤滑油不足という2次的な問題が発生する危険も増大する。   However, the above conventional configuration assumes a relatively low condensation temperature of about 30 to 40 ° C. such as an air conditioner heat pump, and when a product such as a can beverage is heated to 50 to 100 ° C., the condensation pressure becomes high, In order to keep the dissolved amount of the hydrocarbon refrigerant low even at a high condensation pressure, the temperature of the mineral oil-based lubricating oil needs to be kept higher. As a result, the heater power necessary for maintaining the high-pressure shell compressor 1 at a high temperature increases, and the amount of heat leaked to the outside during heating increases, resulting in a significant reduction in efficiency. Also, if a higher viscosity lubricant is used to ensure the necessary viscosity for lubrication at a high temperature, the lubricant discharged to the system piping together with the refrigerant will abnormally increase in viscosity and stay in the heat exchanger at the evaporation temperature. However, the risk of secondary problems such as blockage of system piping and lack of lubricating oil in the compressor increases.

一方、炭化水素冷媒の溶解量の小さい特殊な潤滑油は高価であるとともに、十分な実績がないことから一般に適用するのは困難である。   On the other hand, a special lubricating oil with a small amount of dissolved hydrocarbon refrigerant is expensive and is generally difficult to apply because it does not have a sufficient track record.

本発明は、従来の課題を解決するもので、特に缶飲料などの商品を50〜100℃の高温に加温する場合に潤滑油中の冷媒溶解量を略一定に抑えることができる冷却加温システムを提案し、炭化水素冷媒の使用量を抑制しながら効率および信頼性の向上を図ることを目的とする。   The present invention solves the conventional problems, and in particular, when heating a product such as a can beverage to a high temperature of 50 to 100 ° C., cooling heating that can keep the amount of refrigerant dissolved in the lubricating oil substantially constant. A system is proposed to improve efficiency and reliability while reducing the amount of hydrocarbon refrigerant used.

上記従来の課題を解決するために、本発明の冷却加温システムは、低圧シェル型圧縮機を用い、冷媒としてR600aを用いるとともに、圧縮機の潤滑油として安価で一般に使用実績のある40℃の動粘度が3〜30mm/sの鉱油あるいはエステル油を用いることを特徴とするものである。 In order to solve the above-mentioned conventional problems, the cooling and heating system of the present invention uses a low-pressure shell compressor, uses R600a as a refrigerant, and is inexpensive and generally used as a lubricating oil for a compressor at 40 ° C. Mineral oil or ester oil having a kinematic viscosity of 3 to 30 mm 2 / s is used.

これによって、圧縮機内部の圧力を低い蒸発圧力に保つことで潤滑油中の冷媒溶解量を低く抑え、炭化水素冷媒の使用量を削減することができる。同時に、凝縮温度が50〜100℃と極めて高い条件でも凝縮圧力の低い炭化水素冷媒R600aを用いることで40℃の動粘度が3〜30mm/sの比較的小さい粘度の潤滑油でも圧縮機の耐久性を維持することができるので、システム経路内で潤滑油が滞留するなどの信頼性の問題を解消することができる。 Thus, by keeping the pressure inside the compressor at a low evaporation pressure, the amount of refrigerant dissolved in the lubricating oil can be kept low, and the amount of hydrocarbon refrigerant used can be reduced. At the same time, by using the hydrocarbon refrigerant R600a having a low condensation pressure even under a very high condensation temperature of 50 to 100 ° C., even a lubricating oil having a relatively low viscosity of 3 to 30 mm 2 / s at a kinematic viscosity at 40 ° C. Since durability can be maintained, it is possible to eliminate reliability problems such as the retention of lubricating oil in the system path.

また、本発明の他の冷却加温システムは、低圧シェル型圧縮機を用い、冷媒としてR600aを用いるとともに、圧縮機を断熱材で囲い、加温時に潤滑油温度を40〜80℃に保つことを特徴とするものである。   In addition, another cooling and heating system of the present invention uses a low-pressure shell compressor, uses R600a as a refrigerant, surrounds the compressor with a heat insulating material, and keeps the lubricating oil temperature at 40 to 80 ° C. during heating. It is characterized by.

これによって、圧縮機内部の圧力を低い蒸発圧力に保つことで潤滑油中の冷媒溶解量を低く抑えるとともに、冷却時に比べて蒸発温度が高くなる加温時に、圧縮機を断熱材で囲い潤滑油温度を40〜80℃に保つことで、外部に漏洩する熱量を抑えながら冷却時と加温時の冷媒溶解量の差を抑制することができる。この結果、最適冷媒量を維持するために常に液冷媒を貯留しておく必要がなく、最小限の冷媒使用量が維持できる。   As a result, the amount of refrigerant dissolved in the lubricating oil is kept low by keeping the pressure inside the compressor at a low evaporating pressure, and the compressor is surrounded by a heat insulating material at the time of heating when the evaporating temperature is higher than that during cooling. By maintaining the temperature at 40 to 80 ° C., it is possible to suppress the difference in the amount of refrigerant dissolved between cooling and heating while suppressing the amount of heat leaking to the outside. As a result, it is not necessary to always store the liquid refrigerant in order to maintain the optimum refrigerant amount, and the minimum refrigerant usage can be maintained.

本発明の冷却加温システムは、圧縮機の潤滑油中の冷媒溶解量を抑制することで、特に缶飲料などの商品を50〜100℃の高温に加温する場合に冷媒使用量を最小に抑えるとともに、冷却時と加温時の冷媒溶解量の差を抑制することができるので、炭化水素冷媒の使用量を抑制しながら効率および信頼性の向上が実現できる。   The cooling and heating system of the present invention minimizes the amount of refrigerant used, particularly when products such as can drinks are heated to a high temperature of 50 to 100 ° C. by suppressing the amount of refrigerant dissolved in the lubricating oil of the compressor. In addition, the difference in the amount of refrigerant dissolved between cooling and heating can be suppressed, and thus the efficiency and reliability can be improved while suppressing the amount of hydrocarbon refrigerant used.

本発明の請求項1に記載の発明は、商品を収納する室内に設置された室内熱交換器と、商品を収納する区画の外に設置された室外熱交換器と、膨張機構と、圧縮機と、前記圧縮機と膨張機構と前記室内熱交換器と前記室外熱交換器とを環状に接続する冷却加温システム配管と、前記圧縮機から吐出された冷媒を前記室外熱交換器から前記膨張機構および前記室内熱交換器を循環して前記圧縮機に帰還するか、あるいは前記室内熱交換器から前記膨張機構および前記室外熱交換器を循環して前記圧縮機に帰還するかのどちらかを選択する四方切換弁とを備え、前記圧縮機を低圧シェル型圧縮機とするとともに、冷媒としてR600aを用い、前記圧縮機の潤滑油として40℃の動粘度が3〜30mm/sの鉱油を用いたことを特徴とする冷却加温システムであるので、圧縮機内部の圧力を低い蒸発圧力に保つことで潤滑油中の冷媒溶解量を低く抑え、炭化水素冷媒の使用量を削減することができる。同時に、凝縮温度が50〜100℃と極めて高い条件でも凝縮圧力の低い炭化水素冷媒R600aを用いることで40℃の動粘度が3〜30mm/sの比較的小さい粘度の潤滑油でも圧縮機の耐久性を維持することができるので、システム経路内で潤滑油が滞留するなどの信頼性の問題を解消することができる。 The invention according to claim 1 of the present invention includes an indoor heat exchanger installed in a room for storing products, an outdoor heat exchanger installed outside a compartment for storing products, an expansion mechanism, and a compressor A cooling and heating system pipe that annularly connects the compressor, the expansion mechanism, the indoor heat exchanger, and the outdoor heat exchanger, and the refrigerant discharged from the compressor from the outdoor heat exchanger. Either circulating the mechanism and the indoor heat exchanger and returning to the compressor, or circulating from the indoor heat exchanger to the expansion mechanism and the outdoor heat exchanger and returning to the compressor The compressor is a low-pressure shell type compressor, R600a is used as a refrigerant, and mineral oil having a kinematic viscosity at 40 ° C. of 3 to 30 mm 2 / s is used as the lubricating oil for the compressor. Cold, characterized by the use Because it is warming system, keeping the pressure inside the compressor to the low evaporation pressure suppressing the refrigerant dissolution amount of lubricating oil in, it is possible to reduce the amount of hydrocarbon refrigerant. At the same time, by using the hydrocarbon refrigerant R600a having a low condensation pressure even under a very high condensation temperature of 50 to 100 ° C., even a lubricating oil having a relatively low viscosity of 3 to 30 mm 2 / s at a kinematic viscosity at 40 ° C. Since durability can be maintained, it is possible to eliminate reliability problems such as the retention of lubricating oil in the system path.

本発明の請求項2に記載の発明は、商品を収納する室内に設置された室内熱交換器と、商品を収納する区画の外に設置された室外熱交換器と、膨張機構と、圧縮機と、前記圧縮機と膨張機構と前記室内熱交換器と前記室外熱交換器とを環状に接続する冷却加温システム配管と、前記圧縮機から吐出された冷媒を前記室外熱交換器から前記膨張機構および前記室内熱交換器を循環して前記圧縮機に帰還するか、あるいは前記室内熱交換器から前記膨張機構および前記室外熱交換器を循環して前記圧縮機に帰還するかのどちらかを選択する四方切換弁とを備え、前記圧縮機を低圧シェル型圧縮機とするとともに、冷媒としてR600aを用い、前記圧縮機の潤滑油として40℃の動粘度が3〜30mm/sのエステル油を用いたことを特徴とする冷却加温システムであるので、圧縮機内部の圧力を低い蒸発圧力に保つことで潤滑油中の冷媒溶解量を低く抑え、炭化水素冷媒の使用量を削減することができる。同時に、凝縮温度が50〜100℃と極めて高い条件でも凝縮圧力の低い炭化水素冷媒R600aを用いることで40℃の動粘度が3〜30mm/sの比較的小さい粘度の潤滑油でも圧縮機の耐久性を維持することができるので、システム経路内で潤滑油が滞留するなどの信頼性の問題を解消することができる。また、水分の飽和溶解量の大きいエステル油を用いることで、冷却時の水分チョークの危険が解消されるので液冷媒が滞留するドライヤを省くことができ、結果としてさらに冷媒使用量を削減することができる。 Invention of Claim 2 of this invention is the indoor heat exchanger installed in the room | chamber interior which accommodates goods, the outdoor heat exchanger installed outside the division which accommodates goods, an expansion mechanism, and a compressor A cooling and heating system pipe that annularly connects the compressor, the expansion mechanism, the indoor heat exchanger, and the outdoor heat exchanger, and the refrigerant discharged from the compressor from the outdoor heat exchanger. Either circulating the mechanism and the indoor heat exchanger and returning to the compressor, or circulating from the indoor heat exchanger to the expansion mechanism and the outdoor heat exchanger and returning to the compressor A four-way selector valve, the compressor being a low-pressure shell compressor, R600a being used as a refrigerant, and an ester oil having a kinematic viscosity at 40 ° C. of 3 to 30 mm 2 / s as a lubricating oil for the compressor It is characterized by using Since in that the cooling and warming system, keeping the pressure inside the compressor to the low evaporation pressure suppressing the refrigerant dissolution amount of lubricating oil in, it is possible to reduce the amount of hydrocarbon refrigerant. At the same time, by using the hydrocarbon refrigerant R600a having a low condensation pressure even under a very high condensation temperature of 50 to 100 ° C., even a lubricating oil having a relatively low viscosity of 3 to 30 mm 2 / s at a kinematic viscosity at 40 ° C. Since durability can be maintained, it is possible to eliminate reliability problems such as the retention of lubricating oil in the system path. Also, by using ester oil with a large amount of saturated water solubility, the risk of moisture chalk during cooling is eliminated, eliminating the drier in which liquid refrigerant accumulates, and as a result, further reducing the amount of refrigerant used Can do.

本発明の請求項3に記載の発明は、請求項1あるいは請求項2に記載の発明において、圧縮機を断熱材で囲い、加温時の潤滑油温度を40〜80℃に保つことを特徴とする冷却加温システムであるので、圧縮機内部の圧力を低い蒸発圧力に保つことで潤滑油中の冷媒溶解量を低く抑えるとともに、冷却時に比べて蒸発温度が高くなる加温時に、圧縮機を断熱材で囲い潤滑油温度を40〜80℃に保つことで、外部に漏洩する熱量を抑えながら冷却時と加温時の冷媒溶解量の差を抑制することができる。この結果、最適冷媒量を維持するために常に液冷媒を貯留しておく必要がなく、最小限の冷媒使用量が維持できる。   The invention according to claim 3 of the present invention is characterized in that, in the invention according to claim 1 or 2, the compressor is surrounded by a heat insulating material, and the lubricating oil temperature during heating is kept at 40 to 80 ° C. Therefore, while maintaining the pressure inside the compressor at a low evaporating pressure, the amount of refrigerant dissolved in the lubricating oil is kept low, and at the time of heating when the evaporating temperature is higher than that during cooling, the compressor And the lubricating oil temperature is kept at 40 to 80 ° C., so that the difference in the amount of refrigerant dissolved between cooling and heating can be suppressed while suppressing the amount of heat leaking to the outside. As a result, it is not necessary to always store the liquid refrigerant in order to maintain the optimum refrigerant amount, and the minimum refrigerant usage can be maintained.

本発明の請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、圧縮機を加温するヒータを備え、加温時に前記圧縮機の温度が所定値を下回った場合、前記ヒータを通電することを特徴とする冷却加温システムであるので、冷却時に比べて蒸発温度が高くなる加温時に、圧縮機が始動してまだ温度が上昇するまでの間にヒータで加温することで、圧縮機中に溶解している液冷媒を速やかにシステム内に供給して凝縮温度を上げシステムの立ち上がり特性を向上することができる。   The invention according to claim 4 of the present invention is the invention according to any one of claims 1 to 3, further comprising a heater for heating the compressor, wherein the temperature of the compressor is predetermined during heating. Since the cooling and heating system is characterized in that the heater is energized when the value is lower than the value, during the warming when the evaporation temperature is higher than during cooling, the compressor is started and the temperature still rises. By heating with a heater in the meantime, the liquid refrigerant dissolved in the compressor can be quickly supplied into the system to increase the condensation temperature and improve the startup characteristics of the system.

本発明の請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、圧縮機を冷却するファンを備え、冷却時に前記圧縮機の温度が所定値を上回った場合、前記ファンを稼動することを特徴とする冷却加温システムであるので、加温時に比べて蒸発温度が低くなる冷却時には、圧縮機の温度を下げることで圧縮機効率を向上することができる。   The invention according to claim 5 of the present invention is the invention according to any one of claims 1 to 4, further comprising a fan for cooling the compressor, wherein the temperature of the compressor becomes a predetermined value during cooling. The cooling and heating system is characterized in that the fan is operated when the temperature exceeds the upper limit. Therefore, the efficiency of the compressor is improved by lowering the temperature of the compressor during cooling when the evaporation temperature is lower than that during heating. Can do.

以下、本発明による自動販売機の実施の形態について図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。   Embodiments of a vending machine according to the present invention will be described below with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

(実施の形態1)
図1は実施の形態1の冷却加温システムの冷媒回路図である。図2は同実施の形態の鉱油Aの油中冷媒溶解量の特性を示す図である。図3は同実施の形態の鉱油Aの油粘度の特性を示す図である。図4は同実施の形態の鉱油Bの油中冷媒溶解量の特性を示す図である。図5は同実施の形態の鉱油Bの油粘度の特性を示す図である。
(Embodiment 1)
FIG. 1 is a refrigerant circuit diagram of the cooling and heating system of the first embodiment. FIG. 2 is a graph showing the characteristics of the amount of refrigerant dissolved in oil of mineral oil A according to the embodiment. FIG. 3 is a diagram showing the characteristics of the oil viscosity of the mineral oil A of the same embodiment. FIG. 4 is a graph showing the characteristics of the amount of refrigerant dissolved in oil of mineral oil B according to the embodiment. FIG. 5 is a diagram showing the characteristics of the oil viscosity of the mineral oil B of the same embodiment.

図1に示すように、本発明の冷却加温システムは、炭化水素冷媒であるイソブタンを用いるとともに、低圧シェル型圧縮機20、四方弁2、アキュームレータ3、室外熱交換器4、室内熱交換器5を基本構成とし、室内を冷却する場合は低圧シェル型圧縮機20から吐出された冷媒を四方弁2で流路を切替えて室外熱交換器4から室内熱交換器5へ供給して、再び四方弁2を経てアキュームレータ3から低圧シェル型圧縮機20へ還流するとともに、室内を加温する場合は低圧シェル型圧縮機20から吐出された冷媒を四方弁2で流路を切替えて室内熱交換器5から室外熱交換器4へ供給して、再び四方弁2を経てアキュームレータ3から低圧シェル型圧縮機20へ還流するものである。   As shown in FIG. 1, the cooling and heating system of the present invention uses isobutane, which is a hydrocarbon refrigerant, and also includes a low-pressure shell compressor 20, a four-way valve 2, an accumulator 3, an outdoor heat exchanger 4, and an indoor heat exchanger. When the room is cooled, the refrigerant discharged from the low-pressure shell compressor 20 is switched by the four-way valve 2 and supplied from the outdoor heat exchanger 4 to the indoor heat exchanger 5, and again The refrigerant flows from the accumulator 3 to the low-pressure shell compressor 20 through the four-way valve 2, and when the room is heated, the refrigerant discharged from the low-pressure shell compressor 20 is switched by the four-way valve 2 to exchange the heat in the room. The heat is supplied from the vessel 5 to the outdoor heat exchanger 4, and is returned to the low-pressure shell compressor 20 from the accumulator 3 through the four-way valve 2 again.

ここで、一般に室内熱交換器5は缶飲料などの冷却加温する対象物が収納された収納室内に設置されるとともに、低圧シェル型圧縮機20、四方弁2、アキュームレータ3、室外熱交換器4は収納室外に配置される。   Here, in general, the indoor heat exchanger 5 is installed in a storage room in which an object to be cooled and heated, such as a can drink, is stored, a low-pressure shell compressor 20, a four-way valve 2, an accumulator 3, an outdoor heat exchanger. 4 is arranged outside the storage room.

また、室外熱交換器4と室内熱交換器5を結ぶ配管には、加温用キャピラリチューブ6、冷却用逆止弁7、冷却用キャピラリチューブ8、加温用逆止弁9およびドライヤ10が接続されている。ここで、加温用キャピラリチューブ6と冷却用逆止弁7、および冷却用キャピラリチューブ8と加温用逆止弁9はそれぞれ並列に接続されるとともに、加温用キャピラリチューブ6と冷却用キャピラリチューブ8に挟まれる位置にドライヤ10が接続される。また、一般に室外熱交換器4、室内熱交換器5はそれぞれ独立の送風ファン(図示せず)で必要に応じて送風され、空冷および熱交換を促進される。   The piping connecting the outdoor heat exchanger 4 and the indoor heat exchanger 5 includes a heating capillary tube 6, a cooling check valve 7, a cooling capillary tube 8, a heating check valve 9 and a dryer 10. It is connected. Here, the heating capillary tube 6 and the cooling check valve 7, and the cooling capillary tube 8 and the heating check valve 9 are respectively connected in parallel, and the heating capillary tube 6 and the cooling capillary are connected. A dryer 10 is connected to a position sandwiched between the tubes 8. In general, the outdoor heat exchanger 4 and the indoor heat exchanger 5 are blown as necessary by independent blow fans (not shown), and air cooling and heat exchange are promoted.

ここで、低圧シェル型圧縮機20は、断熱材からなるカバー21で囲われるとともに、カバー21内部の温度を計測するセンサ22、低圧シェル型圧縮機20を加温するヒータ23、カバー21内に外気を取り入れるファン24を備えている。   Here, the low-pressure shell compressor 20 is surrounded by a cover 21 made of a heat insulating material, and includes a sensor 22 for measuring the temperature inside the cover 21, a heater 23 for heating the low-pressure shell compressor 20, and the cover 21. A fan 24 for taking in outside air is provided.

以上のように構成された本発明の冷却加温システムについて、以下その動作を説明する。   The operation of the cooling and heating system of the present invention configured as described above will be described below.

収納室内を冷却する場合、低圧シェル型圧縮機20から吐出された冷媒は四方弁2で流路を切替えて室外熱交換器4へ供給されて凝縮液化する。室外熱交換器4から出た液冷媒は冷却用逆止弁7を経てドライヤ10に供給される。そして、ドライヤ10から出た液冷媒は冷却用キャピラリチューブ8で減圧されて室内熱交換器5へ供給されて蒸発気化し、ガス冷媒は再び四方弁2を経てアキュームレータ3から低圧シェル型圧縮機20へ還流する。   When cooling the storage chamber, the refrigerant discharged from the low-pressure shell compressor 20 switches the flow path by the four-way valve 2 and is supplied to the outdoor heat exchanger 4 to be condensed and liquefied. The liquid refrigerant discharged from the outdoor heat exchanger 4 is supplied to the dryer 10 through the cooling check valve 7. The liquid refrigerant discharged from the dryer 10 is depressurized by the cooling capillary tube 8 and supplied to the indoor heat exchanger 5 to evaporate, and the gas refrigerant again passes from the accumulator 3 through the four-way valve 2 to the low pressure shell compressor 20. To reflux.

また、収納室内を加温する場合、低圧シェル型圧縮機20から吐出された冷媒は四方弁2で流路を切替えて室内熱交換器5へ供給されて凝縮液化する。室内熱交換器5から出た液冷媒は加温用逆止弁9を経てドライヤ10に供給される。そして、ドライヤ10から出た液冷媒は加温用キャピラリチューブ6で減圧されて室外熱交換器4へ供給されて蒸発気化し、ガス冷媒は再び四方弁2を経てアキュームレータ3から低圧シェル型圧縮機20へ還流する。   Further, when heating the storage chamber, the refrigerant discharged from the low-pressure shell compressor 20 is switched to the flow path by the four-way valve 2 and supplied to the indoor heat exchanger 5 to be condensed and liquefied. The liquid refrigerant discharged from the indoor heat exchanger 5 is supplied to the dryer 10 through the heating check valve 9. The liquid refrigerant discharged from the dryer 10 is depressurized by the heating capillary tube 6 and supplied to the outdoor heat exchanger 4 to evaporate, and the gas refrigerant passes through the four-way valve 2 and again from the accumulator 3 to the low-pressure shell compressor. Reflux to 20.

ここで、図2および図3を参照しながら、低圧シェル型圧縮機20の内部に貯留された潤滑油である鉱油Aの冷媒溶解量特性と油粘度特性について、以下に説明する。   Here, with reference to FIG. 2 and FIG. 3, the refrigerant dissolution amount characteristic and the oil viscosity characteristic of the mineral oil A which is the lubricating oil stored in the low pressure shell type compressor 20 will be described below.

図2に示すように鉱油Aと冷媒の混合物に含まれる冷媒の重量%(以下油中冷媒溶解量という)は、鉱油Aの温度(以下油温という)と低圧シェル型圧縮機20の内部の冷媒圧力(この値を飽和温度に換算したものを、以下冷媒の飽和温度という)によって大きく変化する。特に、冷媒の飽和温度と油温の差が小さくなると油中冷媒溶解量が急激に増加する傾向を示している。一般に、炭化水素冷媒と鉱油の組合せでは同様の傾向を示すことが知られている。また、炭化水素冷媒の使用量を抑制する観点から、油中冷媒溶解量は0〜5重量%が望ましい。   As shown in FIG. 2, the weight% of the refrigerant contained in the mixture of the mineral oil A and the refrigerant (hereinafter referred to as the amount of refrigerant dissolved in oil) represents the temperature of the mineral oil A (hereinafter referred to as the oil temperature) and the inside of the low-pressure shell compressor 20. The refrigerant pressure varies greatly depending on the refrigerant pressure (the value converted into the saturation temperature is hereinafter referred to as the refrigerant saturation temperature). In particular, when the difference between the saturation temperature of the refrigerant and the oil temperature decreases, the amount of refrigerant dissolved in oil tends to increase rapidly. In general, it is known that a combination of a hydrocarbon refrigerant and mineral oil shows a similar tendency. Further, from the viewpoint of suppressing the amount of hydrocarbon refrigerant used, the amount of refrigerant dissolved in oil is preferably 0 to 5% by weight.

図3に示すように鉱油Aと冷媒の混合物の動粘度(以下油粘度という)も、油温と冷媒の飽和温度によって大きく変化する。油温40℃において、冷媒の飽和温度が上昇するに従い急激に油粘度が低下するのは、油中冷媒溶解量が急激に増加するためである。一般に、炭化水素冷媒と鉱油の組合せでは同様の傾向を示すことが知られている。また、圧縮機の耐久性を確保する観点と、潤滑油の粘性抵抗による損失を低減する観点から、油粘度は3〜10mm/sが望ましい。 As shown in FIG. 3, the kinematic viscosity (hereinafter referred to as oil viscosity) of the mixture of mineral oil A and the refrigerant also varies greatly depending on the oil temperature and the saturation temperature of the refrigerant. The reason why the oil viscosity rapidly decreases as the refrigerant saturation temperature increases at an oil temperature of 40 ° C. is that the amount of refrigerant dissolved in oil increases rapidly. In general, it is known that a combination of a hydrocarbon refrigerant and mineral oil shows a similar tendency. In addition, the oil viscosity is preferably 3 to 10 mm 2 / s from the viewpoint of ensuring the durability of the compressor and reducing the loss due to the viscous resistance of the lubricating oil.

本実施の形態において、収納室内を冷却する場合、室外熱交換器4の凝縮温度は外気温度より若干高い20〜50℃、室内熱交換器5の蒸発温度は冷凍〜冷蔵を考慮すると−30〜−10℃となる。一方、収納室内を加温する場合、室外熱交換器4の蒸発温度は一般的なヒートポンプエアコンと同等の−10〜10℃、室内熱交換器5の凝縮温度は缶飲料などの商品保持温度50〜60℃を考慮すると50〜70℃となる。   In this embodiment, when the storage room is cooled, the condensation temperature of the outdoor heat exchanger 4 is 20 to 50 ° C., which is slightly higher than the outside air temperature, and the evaporation temperature of the indoor heat exchanger 5 is −30 to 30 when considering freezing to refrigeration. -10 ° C. On the other hand, when heating the storage room, the evaporating temperature of the outdoor heat exchanger 4 is −10 to 10 ° C. equivalent to that of a general heat pump air conditioner, and the condensing temperature of the indoor heat exchanger 5 is a product holding temperature 50 such as a can drink. Considering -60 ° C, the temperature is 50-70 ° C.

この結果、収納室内を冷却する場合は、冷媒の飽和温度は−30〜−10℃であるので、油温が80℃を越えない範囲において油中冷媒溶解量および油粘度は適正であり、問題ないことがわかる。そこで、冷媒圧力が低いR600aを用いると吐出ガス温度が低く抑えられることから、低圧シェル型圧縮機20および油温が大きく上昇することはなく、カバー21内を換気する程度にファン24を駆動すればよい。   As a result, when cooling the storage chamber, since the saturation temperature of the refrigerant is -30 to -10 ° C, the amount of refrigerant dissolved in oil and the oil viscosity are appropriate within the range where the oil temperature does not exceed 80 ° C. I understand that there is no. Therefore, if the R600a having a low refrigerant pressure is used, the discharge gas temperature can be kept low, so that the low-pressure shell compressor 20 and the oil temperature do not rise significantly, and the fan 24 is driven to the extent that the inside of the cover 21 is ventilated. That's fine.

なお、外気温度が低く凝縮温度が低い場合は、低圧シェル型圧縮機20および油温は上昇せずファン24を駆動する必要がないので、低圧シェル型圧縮機20の周囲温度をセンサ22で計測しながら、その値が所定値を上回ったらファン24を駆動することが望ましい。   When the outside air temperature is low and the condensation temperature is low, the ambient temperature of the low-pressure shell compressor 20 is measured by the sensor 22 because the low-pressure shell compressor 20 and the oil temperature do not rise and there is no need to drive the fan 24. However, it is desirable to drive the fan 24 when the value exceeds a predetermined value.

一方、収納室内を加温する場合は、冷媒の飽和温度は−10〜+10℃であるので、油中冷媒溶解量を適正に抑えるために油温を40〜80℃以上に保つ必要があることがわかる。また、80℃を越えると油粘度が適正値を下回ることから、蒸発温度に合わせて狭い範囲で油温を制御しなければならないことがわかる。そこで、低圧シェル型圧縮機20をカバー21で囲い、低圧シェル型圧縮機20の周囲温度をセンサ22で計測しながら、その値が所定値を下回ったらヒータ23に通電するようにして、低圧シェル型圧縮機20の油温を40〜80℃以上に保っている。特に、始動時においては油温が低いことから、ヒータ23に連続通電して速やかに昇温することが望ましい。   On the other hand, when heating the storage chamber, the saturation temperature of the refrigerant is −10 to + 10 ° C., so that the oil temperature needs to be kept at 40 to 80 ° C. or higher in order to appropriately suppress the amount of refrigerant dissolved in oil. I understand. Moreover, since oil viscosity will fall below an appropriate value when it exceeds 80 degreeC, it turns out that oil temperature must be controlled in a narrow range according to evaporation temperature. Therefore, the low-pressure shell compressor 20 is surrounded by a cover 21, and the ambient temperature of the low-pressure shell compressor 20 is measured by the sensor 22, and when the value falls below a predetermined value, the heater 23 is energized so that the low-pressure shell compressor 20 is energized. The oil temperature of the mold compressor 20 is kept at 40 to 80 ° C. or higher. In particular, since the oil temperature is low at the time of starting, it is desirable that the heater 23 is continuously energized to quickly raise the temperature.

なお、低圧シェル型圧縮機20の発熱量は、その仕事量に比例することから、収納室内を加温する場合の室内熱交換器5の凝縮温度がほぼ固定であれば、低圧シェル型圧縮機20を断熱材からなるカバー21で囲うだけで、室外熱交換器4の蒸発温度−10〜+10℃が低ければ潤滑油の温度は低下し、高ければ潤滑油の温度が上昇することで、油温をほぼ適正に保つ傾向を示す。そこで、カバー21の断熱特性を適正に調整すれば、ヒータ23の通電をほぼ零にすることができる。   Note that the amount of heat generated by the low-pressure shell compressor 20 is proportional to the amount of work, so if the condensation temperature of the indoor heat exchanger 5 when heating the storage chamber is substantially fixed, the low-pressure shell compressor By simply enclosing 20 with a cover 21 made of a heat insulating material, the temperature of the lubricating oil decreases if the evaporation temperature −10 to + 10 ° C. of the outdoor heat exchanger 4 is low, and the temperature of the lubricating oil increases if it is high. It shows a tendency to keep the temperature almost right. Therefore, if the heat insulation characteristic of the cover 21 is appropriately adjusted, the energization of the heater 23 can be made substantially zero.

ここで、40℃の動粘度が10mm/s程度の鉱油Aに換えて、40℃の動粘度が30mm/s程度の鉱油Bを用いた場合の影響について、図4および図5を参照しながら、以下に説明する。なお、図2および図3と同一の用語については説明を省略する。 Here, refer to FIG. 4 and FIG. 5 for the influence of using mineral oil B having a kinematic viscosity at 40 ° C. of about 30 mm 2 / s instead of mineral oil A having a kinematic viscosity at 40 ° C. of about 10 mm 2 / s. However, it will be described below. Note that description of the same terms as those in FIGS. 2 and 3 is omitted.

図4に示すように鉱油Bの油中冷媒溶解量の特性は、図2で示した鉱油Aと大差ない傾向を示す。また、炭化水素冷媒の使用量を抑制する観点から、油中冷媒溶解量は0〜5重量%が望ましい。   As shown in FIG. 4, the characteristics of the amount of refrigerant dissolved in the oil of the mineral oil B tend not to differ greatly from the mineral oil A shown in FIG. 2. Further, from the viewpoint of suppressing the amount of hydrocarbon refrigerant used, the amount of refrigerant dissolved in oil is preferably 0 to 5% by weight.

図5に示すように鉱油Bの油粘度の特性は、図3で示した鉱油Aに比べて油粘度の絶対値が変化するが、その変化傾向は同様であることがわかる。この結果、圧縮機の耐久性を確保する観点と、潤滑油の粘性抵抗による損失を低減する観点から、適正な油粘度3〜10mm/sを維持するため、鉱油Aに比べて油温を高めに制御する必要がある。 As shown in FIG. 5, the oil viscosity characteristic of the mineral oil B changes in the absolute value of the oil viscosity as compared with the mineral oil A shown in FIG. 3, but the change tendency is the same. As a result, in order to maintain the proper oil viscosity of 3 to 10 mm 2 / s from the viewpoint of ensuring the durability of the compressor and reducing the loss due to the viscous resistance of the lubricating oil, the oil temperature is set lower than that of the mineral oil A. It is necessary to control it higher.

本実施の形態において、鉱油Aの換わりに鉱油Bを用いた場合、収納室内を冷却する場合は、冷媒の飽和温度は−30〜−10℃であるので、適正な油粘度を維持するために油温を70〜120℃に保つ必要があることがわかる。そこで、断熱材からなるカバー21を厚くして断熱性能を上げるか、あるいは外表面積が小さく比較的温度が高くなる低圧シェル型圧縮機20を選定すれば、本実施の形態と同様に適正な油中冷媒溶解量と油粘度が実現できる。   In this embodiment, when mineral oil B is used instead of mineral oil A, when cooling the storage chamber, the saturation temperature of the refrigerant is −30 to −10 ° C., so that an appropriate oil viscosity is maintained. It turns out that it is necessary to keep oil temperature at 70-120 degreeC. Therefore, if the cover 21 made of a heat insulating material is thickened to improve the heat insulating performance, or if the low pressure shell type compressor 20 having a small outer surface area and a relatively high temperature is selected, an appropriate oil as in the present embodiment is selected. Medium refrigerant dissolution and oil viscosity can be achieved.

同様に、収納室内を加温する場合も、適正な油粘度を維持するために油温を70〜120℃に保てばよいこがわかる。これは、冷媒の飽和温度が−10〜+10℃であっても、油温を40〜80℃以上に保てば油中冷媒溶解量が適正になるためである。   Similarly, when the interior of the storage room is heated, it is understood that the oil temperature may be kept at 70 to 120 ° C. in order to maintain an appropriate oil viscosity. This is because even if the saturation temperature of the refrigerant is −10 to + 10 ° C., the amount of refrigerant dissolved in oil becomes appropriate if the oil temperature is kept at 40 to 80 ° C. or higher.

しかしながら、収納室内を冷却および加温する場合の油温の制御目標が高すぎると、低圧シェル型圧縮機20の始動時など初期の油温が低いと、油温が目標値に到達して適正運転するまでの時間が長くかかる問題がある。例えば、ヒータ23を長時間連続通電するなどして大きな電力を消費することから、油温の制御目標の上限は80℃程度が望ましい。従って、低圧シェル型圧縮機20では40℃の動粘度が3〜30mm/s程度、望ましくは10mm/s程度の鉱油を用いる方がよい。 However, if the control target of the oil temperature when cooling and warming the storage chamber is too high, the oil temperature reaches the target value and is appropriate if the initial oil temperature is low, such as when the low-pressure shell compressor 20 is started. There is a problem that it takes a long time to drive. For example, since a large amount of power is consumed by energizing the heater 23 for a long time, the upper limit of the control target of the oil temperature is desirably about 80 ° C. Thus, the kinematic viscosity of the low-pressure shell type compressor 20 at 40 ° C. is 3 to 30 mm 2 / s or so, preferably it is better to use a mineral oil of about 10 mm 2 / s.

なお、本実施の形態において、低圧シェル型圧縮機20に換えて高圧シェル型圧縮機1を用いた場合、冷媒の飽和温度が冷却時20〜50℃、加温時50〜70℃となることから、図2および図4からわかるように、120℃を上回るさらに高い油温が必要である。また、図3および図5からわかるように、120℃を上回るさらに高い油温で適正な油粘度を得るには、さらに高粘度の鉱油を使用する必要があり、蒸発温度となる熱交換器からの油戻りが懸念される。特に、加温時の冷媒の飽和温度50〜70℃に対応して、油中冷媒溶解量を0〜5重量%の適正値に維持して、冷媒使用量を抑制することはより困難である。従って、炭化水素冷媒の溶解量が小さい特殊な潤滑油を適用する必要があり、その価格や実績不足から実用化が困難となっている。   In this embodiment, when the high-pressure shell compressor 1 is used instead of the low-pressure shell compressor 20, the saturation temperature of the refrigerant is 20 to 50 ° C. during cooling and 50 to 70 ° C. during heating. Therefore, as can be seen from FIGS. 2 and 4, a higher oil temperature above 120 ° C. is required. Further, as can be seen from FIGS. 3 and 5, in order to obtain an appropriate oil viscosity at a higher oil temperature exceeding 120 ° C., it is necessary to use a mineral oil having a higher viscosity, and from the heat exchanger that becomes the evaporation temperature. There is concern about the oil return. In particular, it is more difficult to suppress the amount of refrigerant used by maintaining the amount of refrigerant dissolved in oil at an appropriate value of 0 to 5% by weight corresponding to the saturation temperature of the refrigerant at the time of heating of 50 to 70 ° C. . Therefore, it is necessary to apply a special lubricating oil in which the amount of dissolved hydrocarbon refrigerant is small, and it is difficult to put it to practical use due to its price and lack of results.

なお、本実施の形態において、鉱油Aおよび鉱油Bに換えて、40℃の動粘度が3〜30mm/s程度のエステル油を用いることもできる。例えば、R134aを用いた冷蔵庫の潤滑油として一般に使用される、ペンタエリスリトールやネオペンチルグリコールなどの多価アルコールを用いたヒンダードエステルからなるエステル油は、比較的安価であるとともに使用実績があるので実用的である。このようなエステル油は、鉱油と同様の炭化水素冷媒の溶解量を示すので、鉱油と同様に使用することができる。さらに、このようなエステル油は水分溶解量が鉱油の数十倍あるため、水分チョークが発生しにくい特徴があり、ドライヤなしでも運転が可能である。この結果、ドライヤに滞留する炭化水素冷媒の量だけ削減することができる。 In the present embodiment, instead of mineral oil A and mineral oil B, ester oil having a kinematic viscosity at 40 ° C. of about 3 to 30 mm 2 / s can also be used. For example, ester oils composed of hindered esters using polyhydric alcohols such as pentaerythritol and neopentyl glycol, which are generally used as a lubricating oil for refrigerators using R134a, are relatively inexpensive and have a track record of use. It is practical. Such ester oils can be used in the same manner as mineral oil because they exhibit the same amount of dissolved hydrocarbon refrigerant as mineral oil. Furthermore, since such ester oil has a water dissolution amount several tens of times that of mineral oil, it has a feature that moisture chalk is hardly generated, and can be operated without a dryer. As a result, it is possible to reduce the amount of hydrocarbon refrigerant staying in the dryer.

以上のように、本発明にかかる冷却加温システムは、低圧シェル型圧縮機を用い、冷媒としてR600aを用いるとともに、圧縮機の潤滑油として安価で一般に使用実績のある40℃の動粘度が3〜30mm/sの鉱油あるいはエステル油を用いることで、特に缶飲料などの商品を50〜100℃の高温に加温する場合に潤滑油中の冷媒溶解量を略一定に抑えることができるので、ショーケースや食品保管庫など冷却と加温を切替えて用いる冷却加温システムにおいて、炭化水素冷媒の使用量を抑制しながら効率および信頼性を向上する目的でも適用できる。 As described above, the cooling and heating system according to the present invention uses a low-pressure shell compressor, uses R600a as a refrigerant, and has a kinematic viscosity of 40 ° C., which is inexpensive and generally used as a lubricating oil for compressors. By using mineral oil or ester oil of ˜30 mm 2 / s, the amount of refrigerant dissolved in the lubricating oil can be kept substantially constant, especially when products such as can drinks are heated to a high temperature of 50 to 100 ° C. In a cooling and heating system that switches between cooling and heating, such as a showcase or a food storage, it can also be applied for the purpose of improving efficiency and reliability while suppressing the amount of hydrocarbon refrigerant used.

本発明の実施の形態1による冷却加温システムの冷媒回路図FIG. 1 is a refrigerant circuit diagram of a cooling and heating system according to Embodiment 1 of the present invention. 本発明の実施の形態1による鉱油Aの油中冷媒溶解量の特性を示す図The figure which shows the characteristic of the refrigerant | coolant dissolution amount in the oil of the mineral oil A by Embodiment 1 of this invention 本発明の実施の形態1による鉱油Aの油粘度の特性を示す図The figure which shows the characteristic of the oil viscosity of the mineral oil A by Embodiment 1 of this invention 本発明の実施の形態1による鉱油Bの油中冷媒溶解量の特性を示す図The figure which shows the characteristic of the refrigerant | coolant dissolution amount in the oil of the mineral oil B by Embodiment 1 of this invention 本発明の実施の形態1による鉱油Bの油粘度の特性を示す図The figure which shows the characteristic of the oil viscosity of the mineral oil B by Embodiment 1 of this invention 従来の冷却加温システムの冷媒回路図Refrigerant circuit diagram of conventional cooling and heating system

符号の説明Explanation of symbols

20 低圧シェル型圧縮機
21 カバー
22 センサ
23 ヒータ
24 ファン
20 Low-pressure shell compressor 21 Cover 22 Sensor 23 Heater 24 Fan

Claims (5)

商品を収納する室内に設置された室内熱交換器と、商品を収納する区画の外に設置された室外熱交換器と、膨張機構と、圧縮機と、前記圧縮機と膨張機構と前記室内熱交換器と前記室外熱交換器とを環状に接続する冷却加温システム配管と、前記圧縮機から吐出された冷媒を前記室外熱交換器から前記膨張機構および前記室内熱交換器を循環して前記圧縮機に帰還するか、あるいは前記室内熱交換器から前記膨張機構および前記室外熱交換器を循環して前記圧縮機に帰還するかのどちらかを選択する四方切換弁とを備え、前記圧縮機を低圧シェル型圧縮機とするとともに、冷媒としてR600aを用い、前記圧縮機の潤滑油として40℃の動粘度が3〜30mm/sの鉱油を用いたことを特徴とする冷却加温システム。 An indoor heat exchanger installed in a room for storing products, an outdoor heat exchanger installed outside a compartment for storing products, an expansion mechanism, a compressor, the compressor, the expansion mechanism, and the indoor heat A cooling and heating system pipe connecting the exchanger and the outdoor heat exchanger in an annular shape, and circulating the refrigerant discharged from the compressor from the outdoor heat exchanger to the expansion mechanism and the indoor heat exchanger A four-way switching valve for selecting whether to return to the compressor or to circulate the expansion mechanism and the outdoor heat exchanger from the indoor heat exchanger and return to the compressor. Is a low-pressure shell type compressor, R600a is used as a refrigerant, and mineral oil having a kinematic viscosity at 40 ° C. of 3 to 30 mm 2 / s is used as lubricating oil for the compressor. 商品を収納する室内に設置された室内熱交換器と、商品を収納する区画の外に設置された室外熱交換器と、膨張機構と、圧縮機と、前記圧縮機と膨張機構と前記室内熱交換器と前記室外熱交換器とを環状に接続する冷却加温システム配管と、前記圧縮機から吐出された冷媒を前記室外熱交換器から前記膨張機構および前記室内熱交換器を循環して前記圧縮機に帰還するか、あるいは前記室内熱交換器から前記膨張機構および前記室外熱交換器を循環して前記圧縮機に帰還するかのどちらかを選択する四方切換弁とを備え、前記圧縮機を低圧シェル型圧縮機とするとともに、冷媒としてR600aを用い、前記圧縮機の潤滑油として40℃の動粘度が3〜30mm/sのエステル油を用いたことを特徴とする冷却加温システム。 An indoor heat exchanger installed in a room for storing products, an outdoor heat exchanger installed outside a compartment for storing products, an expansion mechanism, a compressor, the compressor, the expansion mechanism, and the indoor heat A cooling and heating system pipe connecting the exchanger and the outdoor heat exchanger in an annular shape, and circulating the refrigerant discharged from the compressor from the outdoor heat exchanger to the expansion mechanism and the indoor heat exchanger A four-way switching valve for selecting whether to return to the compressor or to circulate the expansion mechanism and the outdoor heat exchanger from the indoor heat exchanger and return to the compressor. Is a low-pressure shell compressor, R600a is used as a refrigerant, and ester oil having a kinematic viscosity of 3 to 30 mm 2 / s at 40 ° C. is used as a lubricating oil for the compressor. . 圧縮機を断熱材で囲い、加温時の潤滑油温度を40〜80℃に保つことを特徴とする請求項1あるいは2記載の冷却加温システム。   The cooling and heating system according to claim 1 or 2, wherein the compressor is surrounded by a heat insulating material, and the temperature of the lubricating oil during heating is maintained at 40 to 80 ° C. 圧縮機を加温するヒータを備え、加温時に前記圧縮機の温度が所定値を下回った場合、前記ヒータを通電することを特徴とする請求項1〜3記載の冷却加温システム。   The cooling and heating system according to claim 1, further comprising a heater for heating the compressor, wherein the heater is energized when the temperature of the compressor falls below a predetermined value during heating. 圧縮機を冷却するファンを備え、冷却時に前記圧縮機の温度が所定値を上回った場合、前記ファンを稼動することを特徴とする請求項1〜4記載の冷却加温システム。   The cooling and heating system according to claim 1, further comprising a fan for cooling the compressor, wherein the fan is operated when the temperature of the compressor exceeds a predetermined value during cooling.
JP2004175145A 2003-10-09 2004-06-14 vending machine Expired - Fee Related JP4436716B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004175145A JP4436716B2 (en) 2004-06-14 2004-06-14 vending machine
KR1020040080577A KR101108311B1 (en) 2003-10-09 2004-10-08 Heating system and automatic vending machine
CNB2004100959912A CN100436979C (en) 2003-10-09 2004-10-09 Heating system and automat
CN2008100984861A CN101285634B (en) 2003-10-09 2004-10-09 Automatic vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175145A JP4436716B2 (en) 2004-06-14 2004-06-14 vending machine

Publications (3)

Publication Number Publication Date
JP2005351590A true JP2005351590A (en) 2005-12-22
JP2005351590A5 JP2005351590A5 (en) 2006-10-12
JP4436716B2 JP4436716B2 (en) 2010-03-24

Family

ID=35586216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175145A Expired - Fee Related JP4436716B2 (en) 2003-10-09 2004-06-14 vending machine

Country Status (1)

Country Link
JP (1) JP4436716B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293905A (en) * 2008-06-09 2009-12-17 Daikin Ind Ltd Refrigerating device
WO2013047754A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Refrigeration device
WO2013168193A1 (en) * 2012-05-09 2013-11-14 三菱電機株式会社 Refrigerant compressor and heat pump device
WO2014136865A1 (en) * 2013-03-08 2014-09-12 ダイキン工業株式会社 Refrigeration device
CN105303702A (en) * 2015-10-08 2016-02-03 浙江大学 Instant-heating-cooling dual automatic vending machines and supply methods of same
CN105466095A (en) * 2016-01-25 2016-04-06 珠海格力电器股份有限公司 Electrical heating control method, device and system for low-temperature refrigerating air conditioning unit
WO2017026011A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Refrigeration cycle device
EP3236075A4 (en) * 2014-12-19 2018-12-26 Fujitsu General Limited Rotary compressor
US10563655B2 (en) 2016-11-14 2020-02-18 Fujitsu General Limited Rotary compressor for compressing refrigerant using cylinder

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103583A (en) * 1993-09-30 1995-04-18 Toshiba Corp Air-conditioning equipment
JPH10148405A (en) * 1996-11-20 1998-06-02 Hitachi Ltd Refrigerating/air-conditioning equipment
JPH11248271A (en) * 1998-03-02 1999-09-14 Matsushita Electric Ind Co Ltd Refrigerating machine
JPH11294877A (en) * 1998-04-08 1999-10-29 Matsushita Electric Ind Co Ltd Refrigeration cycle device using combustible regrigerant
JPH11304303A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Air conditioner
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2001234184A (en) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd Compressor and refrigerating apparatus using the same
JP2002107027A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Refrigerator with deep freezer, and method for operating the refrigerator with deep freezer
JP2003056971A (en) * 2001-08-15 2003-02-26 Mitsubishi Electric Corp Evaporator with defrosting heater and refrigerator using the evaporator
JP2003073681A (en) * 2001-09-03 2003-03-12 Hitachi Ltd Working medium composition for refrigerator and refrigerator using the composition
JP2003173467A (en) * 2001-09-28 2003-06-20 Fuji Electric Co Ltd Vending machine
JP2003287324A (en) * 2002-03-28 2003-10-10 Matsushita Refrig Co Ltd Method for setting gas sealing amount of appliance using flammable gas, and refrigerating system for regulating gas sealing amount by the method
JP2003314860A (en) * 2002-04-24 2003-11-06 Matsushita Electric Ind Co Ltd Manufacturing method of refrigerating cycle device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103583A (en) * 1993-09-30 1995-04-18 Toshiba Corp Air-conditioning equipment
JPH10148405A (en) * 1996-11-20 1998-06-02 Hitachi Ltd Refrigerating/air-conditioning equipment
JPH11248271A (en) * 1998-03-02 1999-09-14 Matsushita Electric Ind Co Ltd Refrigerating machine
JPH11294877A (en) * 1998-04-08 1999-10-29 Matsushita Electric Ind Co Ltd Refrigeration cycle device using combustible regrigerant
JPH11304303A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Air conditioner
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2001234184A (en) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd Compressor and refrigerating apparatus using the same
JP2002107027A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Refrigerator with deep freezer, and method for operating the refrigerator with deep freezer
JP2003056971A (en) * 2001-08-15 2003-02-26 Mitsubishi Electric Corp Evaporator with defrosting heater and refrigerator using the evaporator
JP2003073681A (en) * 2001-09-03 2003-03-12 Hitachi Ltd Working medium composition for refrigerator and refrigerator using the composition
JP2003173467A (en) * 2001-09-28 2003-06-20 Fuji Electric Co Ltd Vending machine
JP2003287324A (en) * 2002-03-28 2003-10-10 Matsushita Refrig Co Ltd Method for setting gas sealing amount of appliance using flammable gas, and refrigerating system for regulating gas sealing amount by the method
JP2003314860A (en) * 2002-04-24 2003-11-06 Matsushita Electric Ind Co Ltd Manufacturing method of refrigerating cycle device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293905A (en) * 2008-06-09 2009-12-17 Daikin Ind Ltd Refrigerating device
WO2013047754A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Refrigeration device
JP2013083434A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Refrigeration device
CN103827597A (en) * 2011-09-30 2014-05-28 大金工业株式会社 Refrigeration device
US9939184B2 (en) 2011-09-30 2018-04-10 Daikin Industries, Ltd. Refrigeration device
AU2012317420B2 (en) * 2011-09-30 2015-08-13 Daikin Industries, Ltd. Refrigeration device
EP2781855A4 (en) * 2011-09-30 2015-09-16 Daikin Ind Ltd Refrigeration device
JPWO2013168193A1 (en) * 2012-05-09 2015-12-24 三菱電機株式会社 Refrigerant compressor and heat pump device
WO2013168193A1 (en) * 2012-05-09 2013-11-14 三菱電機株式会社 Refrigerant compressor and heat pump device
WO2014136865A1 (en) * 2013-03-08 2014-09-12 ダイキン工業株式会社 Refrigeration device
CN105026853A (en) * 2013-03-08 2015-11-04 大金工业株式会社 Pipeline system comprising an emptying container for receiving a liquid flowing through a pipeline system
AU2014226888B2 (en) * 2013-03-08 2016-06-09 Daikin Industries, Ltd. Refrigeration apparatus
US9897360B2 (en) 2013-03-08 2018-02-20 Daikin Industries, Ltd. Refrigeration apparatus
JP2014173791A (en) * 2013-03-08 2014-09-22 Daikin Ind Ltd Freezer
EP3236075A4 (en) * 2014-12-19 2018-12-26 Fujitsu General Limited Rotary compressor
US10458408B2 (en) 2014-12-19 2019-10-29 Fujitsu General Limited Rotary compressor having communication path hole overlap with discharge chamber concave portion
WO2017026011A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Refrigeration cycle device
CN105303702A (en) * 2015-10-08 2016-02-03 浙江大学 Instant-heating-cooling dual automatic vending machines and supply methods of same
CN105466095A (en) * 2016-01-25 2016-04-06 珠海格力电器股份有限公司 Electrical heating control method, device and system for low-temperature refrigerating air conditioning unit
US10563655B2 (en) 2016-11-14 2020-02-18 Fujitsu General Limited Rotary compressor for compressing refrigerant using cylinder

Also Published As

Publication number Publication date
JP4436716B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US20120117996A1 (en) Cascade refrigeration system with modular ammonia chiller units
JP2008002759A (en) Binary refrigerating system and cold storage
JP4436716B2 (en) vending machine
JP2010271000A (en) Heat storage type refrigerating system
KR101108311B1 (en) Heating system and automatic vending machine
JP2007225265A (en) Refrigerating unit
JP2006336943A (en) Refrigeration system, and cold insulation box
JP5705070B2 (en) Cooling system
JP2009068728A (en) Cooling apparatus
JP5194742B2 (en) vending machine
DK174257B1 (en) Installations and methods where CO2 is used as a refrigerant and as a working medium for defrosting
JP4670576B2 (en) vending machine
JP2007298254A (en) Heat pump type water heater and its starting method
JP2006017379A (en) Cooling/warming system
WO2018155028A1 (en) Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system
JP6094859B2 (en) Refrigeration equipment
JP5056026B2 (en) vending machine
JP5375333B2 (en) vending machine
JP2009079818A (en) Vending machine
JP4670325B2 (en) vending machine
JP2007051796A (en) Cooling and heating system
JP2012008828A (en) Automatic vending machine
JP5418037B2 (en) vending machine
KR20190092989A (en) Air conditioning system
JP2005115824A (en) Warming system and vending machine using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070720

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees