JP2010271000A - Heat storage type refrigerating system - Google Patents

Heat storage type refrigerating system Download PDF

Info

Publication number
JP2010271000A
JP2010271000A JP2009124898A JP2009124898A JP2010271000A JP 2010271000 A JP2010271000 A JP 2010271000A JP 2009124898 A JP2009124898 A JP 2009124898A JP 2009124898 A JP2009124898 A JP 2009124898A JP 2010271000 A JP2010271000 A JP 2010271000A
Authority
JP
Japan
Prior art keywords
heat storage
temperature side
refrigeration cycle
storage tank
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009124898A
Other languages
Japanese (ja)
Inventor
Sadao Nishimura
西村貞生
Kiyoshi Fujikawa
清 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2009124898A priority Critical patent/JP2010271000A/en
Publication of JP2010271000A publication Critical patent/JP2010271000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezing-refrigerating system having a new configuration interconnecting both cycles via a heat storage tank to eliminate the "synchronism of cooling actions of respective refrigerating cycles on low and high temperature sides" and "necessity of a heat exchanger for directly interconnecting the respective refrigerating cycles" in the conventional two refrigerating cycles. <P>SOLUTION: This heat storage type refrigerating system includes: a first refrigerating cycle including a high-temperature side condenser 1 and a high-temperature side evaporator 3; a second refrigerating cycle including a low-temperature side condenser 7 and a low-temperature side evaporator 11; the one heat storage tank 5 storing the evaporator 3 of the first refrigerating cycle and the condenser 7 of the second refrigerating cycle; and a heat storage medium 6 stored within the heat storage tank 5. The heat storage medium 6 within the heat storage tank 5 is cooled by the evaporator 3 of the first refrigerating cycle to store cold, and the condenser 7 of the second refrigerating cycle is cooled by the cold stored in the heat storage medium 6 within the heat storage tank 5 to condense a refrigerant in the second refrigerant cycle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、従来使用されている二元冷凍システムと、本出願人によって出願され既に特許されている蓄熱システム(特許第3689283号、特許第3742043号、特許第3853965号、特許第3856572号)とを組み合わせて効率的でかつ環境問題をもクリアできる蓄熱式冷凍システムに関するものである。   The present invention includes a conventionally used binary refrigeration system, and a heat storage system (Patent No. 3689283, Patent No. 3742043, Patent No. 385965, and Patent No. 3856572) that has been filed by the present applicant and has already been patented. The present invention relates to a heat storage type refrigeration system that is efficient and can clear environmental problems.

冷凍工場、食品・農水物加工工場や、市場、物流倉庫等の物流拠点およびスーパーマーケットやコンビニエンスストアなどの小売店舗等では、冷凍・冷蔵・空調用としてフロンを冷媒とした装置(冷凍システム)が使用されている。しかし、フロンは地球温暖化等、自然環境上での問題が指摘されておりその使用が制限されてきている。このため、近年、省エネルギーに優れ、且つ冷媒として環境負荷の少ない自然冷媒(炭酸ガス、アンモニア等元来自然界に存在する物質)をフロン等の温室効果ガスにかわって冷媒として使用する冷凍・冷蔵・空調装置が開発されている。   In refrigeration factories, food / agricultural products processing factories, distribution bases such as markets and distribution warehouses, and retail stores such as supermarkets and convenience stores, chlorofluorocarbon refrigerant devices (refrigeration systems) are used for refrigeration, refrigeration and air conditioning. Has been. However, the use of CFCs has been restricted due to problems in the natural environment such as global warming. Therefore, in recent years, natural refrigerants (substances that exist in nature such as carbon dioxide and ammonia) that have excellent energy saving and low environmental impact are used as refrigerants instead of greenhouse gases such as chlorofluorocarbons. Air conditioners have been developed.

炭酸ガスを冷媒として冷凍、冷蔵、空調用に使用したシステムは種々提案されているが、炭酸ガスの臨界温度が31.1℃、臨界圧力が7.38Mpaである事から、夏季の気温が40°Cにも上昇するわが国に於いては臨界温度以上となり超臨界ガスとなり、実用上で解決すべき問題が多く山積されている。   Various systems that use carbon dioxide as a refrigerant for freezing, refrigeration, and air conditioning have been proposed. However, since the critical temperature of carbon dioxide is 31.1 ° C. and the critical pressure is 7.38 MPa, the temperature in summer is 40 In Japan, where the temperature rises to ° C, the temperature becomes higher than the critical temperature and becomes a supercritical gas, and there are many problems to be solved in practice.

具体的には炭酸ガスを冷媒として大気温度下に於いて冷凍、冷蔵設備用の冷凍システムに使用しようとすると、例えば冷凍サイクル上での凝縮過程での高圧力と蒸発(冷却)過程での蒸発圧力との差が7Mpa以上となるなど、あまりにその差が大きいという問題がある。
このため最近では図11に示すような1つの冷凍サイクルを低温側(炭酸ガス冷媒使用)と高温側(フロン、アンモニア、炭化水素等冷媒使用)にわけ、低温側の凝縮器と高温側の蒸発器の役割を担う熱交換器で直接熱交換させる冷凍装置(2元冷凍サイクルと称している)が提案されている(非特許文献1)。
Specifically, if carbon dioxide is used as a refrigerant in a refrigeration system for refrigeration and refrigeration equipment at ambient temperature, for example, high pressure during condensation on the refrigeration cycle and evaporation during evaporation (cooling) There is a problem that the difference is too large, for example, the difference from the pressure is 7 Mpa or more.
Therefore, recently, one refrigeration cycle as shown in FIG. 11 is divided into a low temperature side (using carbon dioxide refrigerant) and a high temperature side (using refrigerants such as chlorofluorocarbon, ammonia, hydrocarbons), and a low temperature side condenser and a high temperature side evaporation. A refrigeration apparatus (referred to as a binary refrigeration cycle) that directly exchanges heat with a heat exchanger that plays the role of a refrigerator has been proposed (Non-patent Document 1).

社団法人日本冷凍空調学会 平成19年11月30日発行 「SIによる 上級冷凍受験テキスト」第29ページThe Japan Society of Refrigerating and Air Conditioning Engineers issued on November 30, 2007 "Advanced Refrigeration Examination Text by SI", page 29

2元冷凍サイクルは、低温側、高温側ともにそれぞれの冷媒を使用する冷凍機(群)で構成されている。この現状システムは高温側サイクルと低温側サイクルとは熱交換器(図11では冷媒蒸発式凝縮器)を介し1つの冷却サイクルを構成している。そのため、低温側の冷却運転を可能にする為には常に高温側を運転させる必要がある。   The two-way refrigeration cycle is composed of a refrigerator (group) that uses respective refrigerants on both the low temperature side and the high temperature side. In this current system, the high-temperature side cycle and the low-temperature side cycle constitute one cooling cycle via a heat exchanger (refrigerant evaporation type condenser in FIG. 11). Therefore, in order to enable the cooling operation on the low temperature side, it is necessary to always operate the high temperature side.

また、このシステムでは、低温側の凝縮温度は高温側の蒸発器温度によって影響される為、高温側の冷却サイクルが運転停止すると高温側の蒸発器機能(冷却機能)が停止してしまう。その結果、外気温度をベースにしたシステム各所の温度変化(上昇する)に伴い高温側と低温側を結び付けている熱交換器(低温側の凝縮器)が大気温度に直接影響され、その飽和温度まで低温側冷媒温度は上昇し、同時に圧力も上昇し7〜8Mpaもの高圧力にまで上昇する。このような圧力上昇に耐えうる構造にシステムを構築しようとすると、重装備な構造が必要とされ高コストとなる。   In this system, since the condensation temperature on the low temperature side is influenced by the temperature of the evaporator on the high temperature side, the evaporator function (cooling function) on the high temperature side is stopped when the cooling cycle on the high temperature side is stopped. As a result, the heat exchanger (cold condenser on the low temperature side) connecting the high temperature side and the low temperature side is directly affected by the atmospheric temperature as the temperature changes (increases) in various parts of the system based on the outside air temperature, and its saturation temperature. The temperature of the low-temperature side refrigerant rises to the same time, and at the same time the pressure rises to a high pressure of 7-8 Mpa. If an attempt is made to build a system in a structure that can withstand such a pressure increase, a heavy equipment structure is required and the cost becomes high.

最近開発されたアンモニア冷凍機では炭酸ガスブラインを冷却循環するいわゆるポンプ循環システムが実用化され、このシステムを前述のような重装備をせずに済ませるために、圧力上昇時の対策としてシステム機器の保護を目的としてシステム内に安全弁等によって高圧に上昇する事を防ぐ対応策を講じるようにしている(特許文献1)   In the recently developed ammonia refrigerator, a so-called pump circulation system that cools and circulates carbon dioxide brine has been put into practical use, and in order to eliminate the need for heavy equipment as described above, as a countermeasure against pressure rise, For the purpose of protection, measures are taken in the system to prevent the pressure from rising due to a safety valve or the like (Patent Document 1).

特許第3458310号Japanese Patent No. 3458310

この文献のものは、アンモニア冷凍機の蒸発器で炭酸ガスを凝縮させ、凝縮炭酸ガス冷媒を負荷側にポンプで循環供給する液ポンプシステムと、負荷側を炭酸ガス凝縮器より低い位置に設置して、重力で炭酸ガス液を負荷側に供給し、負荷側で蒸発させた炭酸ガスの上記を前述の凝縮器で凝縮する自然循環システムを採用している。
しかし、このシステムは炭酸ガス冷却用のアンモニア冷凍機(高元冷凍機)が故障すると、炭酸ガス系統はそのおかれた周囲温度に応じた飽和圧力になり(冷媒量の多い凝縮器側の周囲温度に多く左右される)、安全弁から大気に放出される恐れが多い。ちなみに、現高圧ガス保安法冷凍保安規則による関係例示基準の項目19.設計圧力の項では、このタイプの設計圧力の設定について定められている。これにより炭酸ガス系統に安全弁を設け、この安全弁の設定圧力を2〜4Mpaに設定され、納入されている例が多い。
In this document, a liquid pump system that condenses carbon dioxide with an evaporator of an ammonia refrigerator and circulates condensed carbon dioxide refrigerant to the load side by a pump and a load side at a position lower than the carbon dioxide condenser are installed. Thus, a natural circulation system is used in which the carbon dioxide gas liquid is supplied to the load side by gravity, and the above carbon dioxide evaporated on the load side is condensed by the condenser.
However, in this system, when the ammonia refrigerator for cooling carbon dioxide gas (high-source refrigerator) fails, the carbon dioxide gas system is at a saturation pressure corresponding to the ambient temperature in which it is placed (the surrounding area on the condenser side with a large amount of refrigerant). There is a high risk of being released from the safety valve to the atmosphere. By the way, item 19 of the relationship example criteria according to the current high-pressure gas safety law refrigeration safety rules. The design pressure section provides for the setting of this type of design pressure. As a result, a safety valve is provided in the carbon dioxide gas system, and the set pressure of the safety valve is set to 2 to 4 Mpa, and many examples are delivered.

上記背景の中で、本発明は、従来の2元冷凍サイクルにおける「低温側、高温側の各冷凍サイクルの冷却行為の同時性」、及び低温側冷凍機と高温側冷凍機の一体的設計(構造性能)、さらに「各冷凍サイクル間を直接結合させる熱交換器の必要性」を無くすために、蓄熱槽を介して両サイクルを接続した新しい構成を有する蓄熱式冷凍システムを提供することにより、上記問題点を解決することを目的とする。
この構成により、本発明は従来システムと比較し冷凍機の運転の独立性、冷凍機容量設計の独立性、サービスの独立性が推進され、「信頼性向上」「より高い故障時の安全性確保」、「夜間蓄熱による夜間電力の積極的使用による電力使用平準化促進とそれによる使用電力料金の低減」といった優れた効果を達成することができる。
In the above background, the present invention relates to “simultaneity of cooling action of each refrigeration cycle on the low temperature side and the high temperature side” in the conventional binary refrigeration cycle, and an integrated design of the low temperature side refrigerator and the high temperature side refrigerator ( By providing a regenerative refrigeration system having a new configuration in which both cycles are connected via a heat storage tank in order to eliminate the need for a heat exchanger that directly couples each refrigeration cycle). The object is to solve the above problems.
With this configuration, the present invention promotes the independence of the operation of the refrigerator, the independence of the refrigerator capacity design, and the independence of the service as compared with the conventional system, and improves "reliability" and "ensures higher safety at the time of failure" ”,“ Promoting the leveling of power usage through the active use of nighttime electric power by nighttime heat storage and thereby reducing the amount of electricity used, ”can be achieved.

このため本発明は、本発明が採用した課題を解決するための手段は、
高温側凝縮器1と高温側蒸発器3とを有する第1冷凍サイクルと、
低温側凝縮器7と低温側蒸発器11とを有する第2冷凍サイクルと、
前記第1冷凍サイクルの高温側蒸発器3と前記第2冷凍サイクルの低温側凝縮器7とを収容する一つの蓄熱槽5と、
前記蓄熱槽内に収容した蓄熱媒体6とを備え、
前記第1冷凍サイクルの高温側蒸発器によって蓄熱槽内の蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの低温側凝縮器を冷却し、
前記第2冷凍サイクルの冷媒を凝縮することを特徴とする蓄熱式冷凍システムである。
また、前記第1冷凍サイクルと、第2冷凍サイクルを複数準備し、複数の第1冷凍サイクルの高温側蒸発器と、複数の第2冷凍サイクルの低温側凝縮器とを一つの蓄熱槽内に配置したことを特徴とする蓄熱式冷凍システムである。
また、前記第1冷凍サイクルの冷媒がアンモニアなどの自然冷媒であり、第2冷凍サイクルの冷媒が炭酸ガスであることを特徴とする蓄熱式冷凍システムである。
また、前記蓄熱槽内の蓄熱媒体を汲み上げ、負荷15を作動する負荷回路15aを設けたことを特徴とする蓄熱式冷凍システムである。
また、前記蓄熱槽内の蓄熱媒体と熱交換を行なう蓄熱槽熱交換器と負荷を有する負荷循環回路16を設け、循環回路16内には炭酸ガス冷媒を循環させることを特徴とする蓄熱式冷凍システムである。
また、前記負荷循環回路16内に蓄熱槽熱交換器18と直列に循環ポンプを設けたことを特徴とする蓄熱式冷凍システムである。
また、前記負荷循環回路の冷媒は重力を利用して自然循環させることをことを特徴とする蓄熱式冷凍システムである。
また、高温側凝縮器1と高温側蒸発器3とを有する第1冷凍サイクルと、
低温側凝縮器7と低温側蒸発器11とを有する第2冷凍サイクルと、
前記第1冷凍サイクルの高温側蒸発器3を収容する一つの蓄熱槽5と、
前記蓄熱槽内に収容した蓄熱媒体6とを備え、
前記蓄熱槽の蓄熱媒体を汲み上げ前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの低温側凝縮器を冷却する蓄熱媒体循環回路14を設け、
前記第1冷凍サイクルの高温側蒸発器によって蓄熱槽内の蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱媒体循環回路14により第2冷凍サイクルの凝縮器を冷却することを特徴とする蓄熱式冷凍システムである。
また、前記第1冷凍サイクルの冷媒がアンモニアなどの自然冷媒であり、第2冷凍サイクルの冷媒が炭酸ガス、アンモニア、HC冷媒、フロン冷媒の内の一つであることを特徴とする蓄熱式冷凍システムである。
また、前記蓄熱媒体循環回路内に負荷を設けたことを特徴とする蓄熱式冷凍システムである。
また、前記蓄熱槽の蓄熱媒体を汲み上げる蓄熱媒体循環回路を複数設けたことを特徴とする蓄熱式冷凍システムである。
また、前記複数設けた蓄熱媒体循環回路内に、負荷を設けたことを特徴とする蓄熱式冷凍システムである。
また、高温側凝縮器1と高温側蒸発器3とを有する第1冷凍サイクルと、
低温側凝縮器7と低温側蒸発器11とを有する第2冷凍サイクルと、
ブライン循環ポンプと製氷コイルとを有し、前記第1冷凍サイクルの高温側蒸発器と熱交換できるブライン配管と、
前記製氷コイルと前記第2冷凍サイクルの低温側凝縮器7とを収容する一つの蓄熱槽5と、
前記蓄熱槽内に収容した蓄熱媒体6とを備え、
前記第1冷凍サイクルの高温側蒸発器によってブラインを冷却し、冷却したブラインを蓄熱槽内の製氷コイルに流して前記蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの低温側凝縮器を冷却し、
前記第2冷凍サイクルの冷媒を凝縮することを特徴とする蓄熱式冷凍システムである。
Therefore, the present invention provides means for solving the problems adopted by the present invention.
A first refrigeration cycle having a high temperature side condenser 1 and a high temperature side evaporator 3;
A second refrigeration cycle having a low temperature side condenser 7 and a low temperature side evaporator 11;
One heat storage tank 5 for accommodating the high temperature side evaporator 3 of the first refrigeration cycle and the low temperature side condenser 7 of the second refrigeration cycle;
A heat storage medium 6 accommodated in the heat storage tank,
The heat storage medium in the heat storage tank is cooled by the high temperature side evaporator of the first refrigeration cycle to store cold heat, and the low temperature side condenser of the second refrigeration cycle is stored by the cold heat stored in the heat storage medium in the heat storage tank. Cool,
It is a heat storage type refrigerating system characterized by condensing the refrigerant of the 2nd refrigerating cycle.
A plurality of first refrigeration cycles and a plurality of second refrigeration cycles are prepared, and a plurality of first side refrigeration cycle high temperature side evaporators and a plurality of second refrigeration cycle low temperature side condensers are provided in one heat storage tank. It is a heat storage type refrigeration system characterized by having arranged.
The refrigerant of the first refrigeration cycle is a natural refrigerant such as ammonia, and the refrigerant of the second refrigeration cycle is carbon dioxide gas.
Further, the heat storage type refrigeration system is provided with a load circuit 15a for pumping the heat storage medium in the heat storage tank and operating the load 15.
Further, a heat storage tank heat exchanger for exchanging heat with the heat storage medium in the heat storage tank and a load circulation circuit 16 having a load are provided, and a carbon dioxide refrigerant is circulated in the circulation circuit 16. System.
The heat storage refrigeration system is characterized in that a circulation pump is provided in series with the heat storage tank heat exchanger 18 in the load circulation circuit 16.
The refrigerant of the load circulation circuit may be naturally circulated using gravity to provide a heat storage type refrigeration system.
Moreover, the 1st freezing cycle which has the high temperature side condenser 1 and the high temperature side evaporator 3,
A second refrigeration cycle having a low temperature side condenser 7 and a low temperature side evaporator 11;
One heat storage tank 5 accommodating the high-temperature side evaporator 3 of the first refrigeration cycle;
A heat storage medium 6 accommodated in the heat storage tank,
A heat storage medium circulation circuit 14 that pumps up the heat storage medium of the heat storage tank and cools the low-temperature side condenser of the second refrigeration cycle by the cold energy stored in the heat storage medium in the heat storage tank is provided,
The heat storage medium in the heat storage tank is cooled by the high temperature side evaporator of the first refrigeration cycle to store cold heat, and the condenser of the second refrigeration cycle is cooled by the heat storage medium circulation circuit 14. Type refrigeration system.
The regenerative refrigerant is characterized in that the refrigerant in the first refrigeration cycle is a natural refrigerant such as ammonia, and the refrigerant in the second refrigeration cycle is one of carbon dioxide, ammonia, HC refrigerant, and chlorofluorocarbon refrigerant. System.
The heat storage refrigeration system is characterized in that a load is provided in the heat storage medium circulation circuit.
The heat storage refrigeration system includes a plurality of heat storage medium circulation circuits for pumping up the heat storage medium of the heat storage tank.
The heat storage refrigeration system is characterized in that a load is provided in the plurality of heat storage medium circulation circuits.
Moreover, the 1st freezing cycle which has the high temperature side condenser 1 and the high temperature side evaporator 3,
A second refrigeration cycle having a low temperature side condenser 7 and a low temperature side evaporator 11;
A brine pipe having a brine circulation pump and an ice making coil, and a brine pipe capable of exchanging heat with the high temperature side evaporator of the first refrigeration cycle;
One heat storage tank 5 that houses the ice making coil and the low temperature side condenser 7 of the second refrigeration cycle;
A heat storage medium 6 accommodated in the heat storage tank,
The brine is cooled by the high-temperature side evaporator of the first refrigeration cycle, and the cooled brine is passed through an ice making coil in a heat storage tank to cool the heat storage medium to store cold heat, and to the heat storage medium in the heat storage tank. The low-temperature side condenser of the second refrigeration cycle is cooled by the stored cold heat,
It is a heat storage type refrigerating system characterized by condensing the refrigerant of the 2nd refrigerating cycle.

本発明は、それぞれの冷凍サイクル(第1冷凍サイクル、第2冷凍サイクル)で使用する冷媒を蓄熱槽内の蓄熱媒体を介して低温側の熱を高温側に移動させるものであり、この間の成績係数は蓄熱媒体(ブライン、水等)を介するためその分従来方式に比べ低くなるが、夜間の蓄熱運転により高温側の冷凍サイクルの成績係数は向上し、蓄熱槽内の熱交換による成績係数の低下を補って余りある。   In the present invention, the refrigerant used in each refrigeration cycle (first refrigeration cycle, second refrigeration cycle) moves the heat on the low temperature side to the high temperature side via the heat storage medium in the heat storage tank. The coefficient is lower than that of the conventional method because it passes through a heat storage medium (brine, water, etc.), but the coefficient of performance of the refrigeration cycle on the high temperature side is improved by the heat storage operation at night, and the coefficient of There is more to compensate for the decline.

蓄熱槽を設置することで、例えば夜間(日中であっても良い)に第1冷凍サイクル中の高温側冷凍機で蓄熱運転し、日中この低温熱で第2冷凍サイクル内の低温側凝縮器を冷却できる。このことにより高温側冷凍機が仮に故障しても、蓄熱槽にストックされた冷熱によって低温側凝縮器の温度上昇に伴う圧力上昇を回避する時間が持てる。また、日中の負荷に対し夜間蓄熱することにより昼間に使用する電力を夜間に移行することができる。さらに高温側冷凍機も夜間運転時は外気温度も低く、効率のよい運転も可能になる。時間差運転、及び夜間電力料金が適用され経済的に有利になる。また第1冷凍サイクル内の高温側冷凍機と第2冷凍サイクル内の低温側冷凍機とを必ずしも同時運転をする必要はない。   By installing a heat storage tank, heat storage operation is performed with the high-temperature side refrigerator in the first refrigeration cycle at night (may be during the day), for example, and the low-temperature side condensation in the second refrigeration cycle is performed with this low-temperature heat during the day. The vessel can be cooled. Thus, even if the high-temperature side refrigerator breaks down, it is possible to have time to avoid the pressure increase due to the temperature increase of the low-temperature side condenser due to the cold heat stored in the heat storage tank. Moreover, the electric power used in the daytime can be transferred to the nighttime by storing the heat at night with respect to the load during the daytime. Further, the high temperature side refrigerator also has a low outside air temperature during night operation, and can be operated efficiently. Time difference operation and night electricity charges are applied, which is economically advantageous. Further, it is not always necessary to simultaneously operate the high temperature side refrigerator in the first refrigeration cycle and the low temperature side refrigerator in the second refrigeration cycle.

従来型が低温用冷凍機(低元冷凍機)と高温側冷凍機(高元冷凍機)が同時に運転しか出来ないことに対し、本システムは各冷凍機(1台〜複数台)の運転の独立性を可能とし、冷凍機設計、設置容量の独立性やサービスの独立性が推進される。
即ち、従来の2元冷凍機は低温側冷凍機(低元冷凍機)と高温側冷凍機(高元冷凍機)をカスケード熱交換器を介して一体的に組み立て、低温側冷凍機を運転するためには必ず高温側冷凍機の同時運転をしなければならない。本発明によると、高温側冷凍機の容量と低温側冷凍機の容量の一体的整合性は不要となり、例えば、高温側冷凍機の容量は低温側冷凍機の容量以下であっても運転時間を考慮することにより高温側と低温側の負荷の整合性を計ることができる(下記式参照)。
高温側冷凍機能力×運転時間≧低温側冷凍機能力×運転時間
Whereas the conventional type can only operate the low-temperature refrigerator (low-source refrigerator) and the high-temperature side refrigerator (high-source refrigerator) at the same time, this system operates each refrigerator (one to multiple units). Independence is possible, and independence of refrigerator design, installation capacity and service is promoted.
In other words, the conventional two-way refrigerator is a low-temperature side refrigerator (low-source refrigerator) and a high-temperature side refrigerator (high-source refrigerator) that are integrally assembled via a cascade heat exchanger, and the low-temperature side refrigerator is operated. In order to achieve this, the high temperature side refrigerator must be operated simultaneously. According to the present invention, the integrated consistency between the capacity of the high temperature side refrigerator and the capacity of the low temperature side refrigerator is not required. For example, even if the capacity of the high temperature side refrigerator is equal to or less than the capacity of the low temperature side refrigerator, the operation time is reduced. It is possible to measure the consistency of the load on the high temperature side and the low temperature side by taking into consideration (see the following formula).
High temperature side refrigeration functional force x operation time ≥ Low temperature side refrigeration functional force x operation time

本願発明は、従来のカスケード熱交換器に対し、蓄熱槽の蓄熱媒体(ブライン、水、等)を介在させ、熱交換させるシステムである。この形態は従来の低元冷凍機と高元冷凍機が「一体型」であるのに対し、「分離型」に位置づけられる。本願発明は、各冷凍機の運転は、高温側冷凍機(蓄熱用冷凍機)は主に夜間に運転し、低温側冷凍機(冷凍用冷凍機)はその冷熱で日中運転をすることができる。
即ち、蓄熱槽を介在させることにより、高温側冷凍機、低温側冷凍機いずれも大小様々で複数台設置することができる(マルチ接続)。またそれぞれの冷凍機の使用冷媒を異なるもの(例えば炭酸ガス冷凍機とフロンやアンモニア冷凍機)の組み合わせも自由である。このため、今後の様々なユーザの要求に対して、システム設計の自由度が拡大できるとともにサービス信頼性がより向上されることになる。
The present invention is a system for heat exchange by interposing a heat storage medium (brine, water, etc.) of a heat storage tank with respect to a conventional cascade heat exchanger. This form is positioned as a “separate type”, whereas the conventional low and high level refrigerators are “integrated”. According to the present invention, the operation of each refrigerator is such that the high temperature side refrigerator (heat storage refrigerator) operates mainly at night, and the low temperature side refrigerator (refrigeration refrigerator) operates during the day with its cold. it can.
That is, by interposing a heat storage tank, a plurality of high-temperature side refrigerators and low-temperature side refrigerators can be installed in various sizes (multi-connection). In addition, combinations of refrigerants used in different refrigerators (for example, carbon dioxide refrigerators, Freon and ammonia refrigerators) are also free. For this reason, the degree of freedom in system design can be expanded and service reliability can be further improved in response to various future user requests.

また、高温側冷凍機をヒートポンプとし低温側凝縮器の冷却用ブライン熱を利用できるよう切り換え接続すれば、暖房あるいは給湯の熱源として冷凍、冷蔵熱の熱回収運転も可能となる。   Further, if the high-temperature side refrigerator is used as a heat pump and is switched and connected so that the cooling brine heat of the low-temperature side condenser can be used, a heat recovery operation of refrigeration and refrigeration heat can be performed as a heat source for heating or hot water supply.

空調側、冷凍、冷蔵側の複数のユニットを現地配管で接続するシステムに於いても、フロンガス冷媒配管でなく、ブライン配管で漏れがあっても温暖化ガスの放出がない。
等々の特有の優れた作用効果を達成することができる。
なお、高温側冷媒がアンモニアの場合、毒性、可燃性ガスのため、現地でのマルチ接続は好ましくない。炭化水素も可燃ガスのためチャージ量の使用制限がある。フロンは温暖化ガスであり、ガス漏れを防止するため、これらの冷媒はできるだけ現地配管は避けるべきである。
Even in a system in which a plurality of units on the air conditioning side, the refrigeration side, and the refrigeration side are connected by local piping, there is no emission of warming gas even if there is a leak in the brine piping instead of the chlorofluorocarbon refrigerant piping.
And so on.
In addition, when the high temperature side refrigerant | coolant is ammonia, since it is a toxicity and a flammable gas, the local multi-connection is not preferable. Since hydrocarbons are also flammable gases, there are restrictions on the amount of charge used. Fluorocarbons are warming gases, and these refrigerants should avoid local piping as much as possible to prevent gas leakage.

本発明の第1実施例に係る蓄熱式冷凍システムの構成図である。1 is a configuration diagram of a regenerative refrigerating system according to a first embodiment of the present invention. 本発明の第2実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 2nd Example of this invention. 本発明の第3実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 3rd Example of this invention. 本発明の第4実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 4th Example of this invention. 本発明の第5実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 5th Example of this invention. 本発明の第6実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type freezing system which concerns on 6th Example of this invention. 本発明の第7実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 7th Example of this invention. 本発明の第8実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 8th Example of this invention. 本発明の第9実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 9th Example of this invention. 本発明の第10実施例に係る蓄熱式冷凍システムの構成図である。It is a block diagram of the thermal storage type refrigerating system which concerns on 10th Example of this invention. 1つの冷凍サイクルを低温側と高温側にわけ、低温側の凝縮器と高温側の蒸発器の役割を担う熱交換器で直接熱交換させる従来公知の2元冷凍サイクルの構成図である。It is a block diagram of a conventionally well-known binary refrigeration cycle in which one refrigeration cycle is divided into a low temperature side and a high temperature side, and heat is exchanged directly with a heat exchanger that plays the role of a low temperature side condenser and a high temperature side evaporator.

本発明は、第1冷凍サイクルと、第2冷凍サイクルと、前記第1冷凍サイクルの高温側蒸発器と前記第2冷凍サイクルの低温側凝縮器とを収容する少なくとも1つ以上の蓄熱槽と、前記蓄熱槽内に収容した蓄熱媒体とを備え、前記第1冷凍サイクルの蒸発器によって蓄熱槽内の蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの凝縮器を冷却し、前記第2冷凍サイクルの冷媒を凝縮するものである。   The present invention includes at least one heat storage tank that houses a first refrigeration cycle, a second refrigeration cycle, a high temperature side evaporator of the first refrigeration cycle, and a low temperature side condenser of the second refrigeration cycle; A heat storage medium housed in the heat storage tank, cools the heat storage medium in the heat storage tank by the evaporator of the first refrigeration cycle, stores cold heat, and stores heat in the heat storage medium in the heat storage tank Is used to cool the condenser of the second refrigeration cycle and condense the refrigerant of the second refrigeration cycle.

以下、本発明に係る蓄熱式冷凍システムの好適な実施例を図面に基づいて説明すると、図1は本発明の第1実施例に係る蓄熱式冷凍システムの構成図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a heat storage refrigeration system according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a heat storage refrigeration system according to a first embodiment of the present invention.

図1において、第1実施例の蓄熱式冷凍システム(冷蔵システムを含む)は、第1冷凍サイクル(以下高温側冷凍サイクル)S1と、第2冷凍サイクル(以下低温側冷凍サイクル)S2と、蓄熱槽5とを備えている。
高温側冷凍サイクルS1は、従来公知の冷凍サイクルと同様に高温側凝縮器1、高温側圧縮機2、高温側蒸発器3、高温側膨張弁4を備え、これらが図示のように配置接続されている。前記高温側蒸発器3は高温側冷凍サイクルの冷媒が蒸発し蓄熱槽5の蓄熱媒体6に冷熱を授与する機能を有し、蓄熱槽5は第1冷凍サイクルから授与された冷熱を蓄熱槽内の蓄熱媒体に蓄える機能を有している。また、この高温側冷凍サイクルS1は冷媒としてアンモニアガスを使用しているが、フロン、炭化水素等他の冷媒を使用することも可能である。
In FIG. 1, a heat storage type refrigeration system (including a refrigeration system) of the first embodiment includes a first refrigeration cycle (hereinafter referred to as a high temperature side refrigeration cycle) S1, a second refrigeration cycle (hereinafter referred to as a low temperature side refrigeration cycle) S2, and a heat storage. And a tank 5.
The high temperature side refrigeration cycle S1 includes a high temperature side condenser 1, a high temperature side compressor 2, a high temperature side evaporator 3, and a high temperature side expansion valve 4, as in the known refrigeration cycle, and these are arranged and connected as shown in the figure. ing. The high temperature side evaporator 3 has a function of giving cold to the heat storage medium 6 of the heat storage tank 5 as the refrigerant in the high temperature side refrigeration cycle evaporates, and the heat storage tank 5 stores the cold heat given from the first refrigeration cycle in the heat storage tank. It has the function to store in the heat storage medium. Moreover, although this high temperature side refrigerating cycle S1 uses ammonia gas as a refrigerant | coolant, it is also possible to use other refrigerants, such as a Freon and a hydrocarbon.

低温側冷凍サイクルS2は、上記高温側冷凍サイクルと同様に従来公知の低温側凝縮器7、低温側圧縮機8、低温側負荷(蒸発器)11、低温側膨張弁9、及び低温側受液器10等を備え、これらが図示のように配置接続されている。この低温側冷凍サイクルの冷媒は、本例では環境対策として炭酸ガスを使用しているが他の冷媒(アンモニア、HC冷媒、フロン冷媒等)を使用することも可能である。
前記高温冷凍サイクルS1の高温側蒸発器3と低温冷凍サイクルS2の低温側凝縮器7は、蓄熱槽5内に収容されているとともに蓄熱槽5内に貯留してある蓄熱媒体(ブライン、水等)6に漬けられている。
The low temperature side refrigeration cycle S2 is a low temperature side condenser 7, a low temperature side compressor 8, a low temperature side load (evaporator) 11, a low temperature side expansion valve 9, and a low temperature side liquid receiver, which are conventionally known, like the high temperature side refrigeration cycle. And the like are arranged and connected as shown in the figure. In this example, carbon dioxide gas is used as the refrigerant for the low temperature side refrigeration cycle, but other refrigerants (ammonia, HC refrigerant, chlorofluorocarbon refrigerant, etc.) can also be used.
The high temperature side evaporator 3 of the high temperature refrigeration cycle S1 and the low temperature side condenser 7 of the low temperature refrigeration cycle S2 are stored in the heat storage tank 5 and stored in the heat storage tank 5 (brine, water, etc.). ) Soaked in 6.

上記構成からなる蓄熱式冷凍システムの作動について説明する。
まず、冷熱の製造は冷却対象負荷処理に先んじ(又は同時対応でも良い)高温側冷凍サイクルS1の運転を行い、図1に示す蓄熱槽5の蓄熱媒体6にその冷熱を蓄える。
低温冷凍サイクルS2は蓄熱槽5に蓄えられた冷熱を凝縮に利用しながら低温域に存在する冷凍負荷を冷却処理する。
The operation of the heat storage type refrigeration system having the above configuration will be described.
First, the cold heat is produced by operating the high-temperature side refrigeration cycle S1 prior to the cooling target load process (or simultaneous processing), and the cold heat is stored in the heat storage medium 6 of the heat storage tank 5 shown in FIG.
The low temperature refrigeration cycle S2 cools the refrigeration load existing in the low temperature region while using the cold energy stored in the heat storage tank 5 for condensation.

以上のように、それぞれの冷凍サイクルS1、S2で使用する冷媒により蓄熱槽内の蓄熱媒体を介して低温側の冷熱を高温側に移動させるものであり、この間の成績係数は蓄熱媒体(ブライン、水等)を介するためその分従来方式に比べ低くなるが、夜間の蓄熱運転により高温側の冷凍サイクルの成績係数は向上し、蓄熱槽内の熱交換による成績係数の低下を補って余りある。   As described above, the refrigerant used in each of the refrigeration cycles S1 and S2 moves the cold on the low temperature side to the high temperature side via the heat storage medium in the heat storage tank, and the coefficient of performance during this period is the coefficient of performance for the heat storage medium (brine, However, the coefficient of performance of the refrigeration cycle on the high temperature side is improved by the heat storage operation at night, and the decrease in the coefficient of performance due to heat exchange in the heat storage tank is more than compensated.

本例のように蓄熱槽を設置することで、例えば夜間(日中であっても良い)に高温側冷凍機で蓄熱運転し、日中この低温熱で低温側の凝縮器(放熱器)を冷却できる。このことにより高温側冷凍機が仮に故障しても、蓄熱槽にストックされた冷熱によって低温側の温度上昇に伴う圧力上昇を回避する時間が持てる。日中の負荷に対し夜間蓄熱することにより昼間に使用する電力を夜間に移行することができる。また高温側冷凍機も夜間運転時は外気温度も低く、効率のよい運転も可能になる。時間差運転ができ、夜間電力料金が適用され経済性に有利となる。
従来型が低温用冷凍機(低元冷凍機)と高温側冷凍機(高元冷凍機)が同時に運転しか出来ないことに対し、本システムは各冷凍機(1台〜複数台)の運転の独立性を可能とし、冷凍機設計、設置容量の独立性やサービスの独立性が推進される。
By installing a heat storage tank as in this example, for example, heat storage operation is performed with a high-temperature side refrigerator at night (may be during the day), and a low-temperature side condenser (heat radiator) is connected with this low-temperature heat during the day. Can be cooled. As a result, even if the high-temperature side refrigerator breaks down, it is possible to have time to avoid a pressure increase accompanying a temperature increase on the low temperature side due to the cold heat stored in the heat storage tank. By storing heat at night against the load during the daytime, the electric power used during the daytime can be transferred to the nighttime. In addition, the high temperature side refrigerator also has a low outside air temperature during night operation, and can be operated efficiently. Time difference operation is possible, and the night electricity charge is applied, which is advantageous for economy.
In contrast to the conventional low temperature refrigerator (low-source refrigerator) and high-temperature side refrigerator (high-source refrigerator) that can only be operated at the same time, this system operates each refrigerator (one to multiple units). Independence is possible, and independence of refrigerator design, installation capacity and service is promoted.

高温側冷凍機をヒートポンプとし低温側放熱器の冷媒熱を利用できるよう切り換え接続すれば、暖房あるいは給湯の熱源として冷凍、冷蔵熱の熱回収運転も可能となる。   If the high-temperature side refrigerator is used as a heat pump and is switched and connected so that the refrigerant heat of the low-temperature side radiator can be used, a heat recovery operation of refrigeration and refrigeration heat can be performed as a heat source for heating or hot water supply.

空調側、冷凍、冷蔵側の複数のユニットを現地配管で接続するシステムに於いても、冷媒配管でなく、ブライン配管でよく漏れがあっても温暖化ガスを放出しない。
冷媒がアンモニアの場合、毒性、可燃性ガスのため、現地での在人空間までの冷媒配管接続は好ましくない。炭化水素も可燃ガスのためチャージ量の使用制限がある。フロンは温暖化ガスであり、ガス漏れを防止するため、これらの冷媒はできるだけ現地配管は避けるべきである。本発明は、高温冷凍機側(アンモニア冷媒)とは蓄熱槽内で分離してあり在人空間においては、ブライン配管、及び炭酸ガス冷媒配管のため安全である。
Even in a system in which multiple units on the air conditioning side, refrigeration, and refrigeration side are connected by local piping, warming gas is not released even if there is a leak in the brine piping instead of the refrigerant piping.
When the refrigerant is ammonia, it is not preferable to connect the refrigerant piping to the local manned space because of toxicity and flammable gas. Since hydrocarbons are also flammable gases, there are restrictions on the amount of charge used. Fluorocarbons are warming gases, and these refrigerants should avoid local piping as much as possible to prevent gas leakage. The present invention is separated from the high-temperature refrigerator side (ammonia refrigerant) in the heat storage tank, and is safe in the manned space due to the brine piping and the carbon dioxide gas refrigerant piping.

続いて第2実施例を図面に基づいて説明すると、図2は本発明の第2実施例に係る冷凍冷蔵システムの構成図である。
第1、第2実施例との相違点は、蓄熱槽の蓄熱媒体(ブライン、水等)内には、複数の高温側冷凍サイクルのそれぞれの蒸発器が配置されるとともに、複数の低温側冷凍サイクルの凝縮器が配置されており、各高温側冷凍サイクルを運転することにより蓄熱槽の蓄熱媒体に冷熱を蓄熱でき、また、蓄熱された蓄熱槽内の蓄熱媒体により、蓄熱槽内に配置された複数の低温側冷凍サイクルの凝縮器を冷却することができる。
Next, a second embodiment will be described with reference to the drawings. FIG. 2 is a configuration diagram of a refrigeration system according to the second embodiment of the present invention.
The difference from the first and second embodiments is that the evaporators of the plurality of high temperature side refrigeration cycles are arranged in the heat storage medium (brine, water, etc.) of the heat storage tank, and the plurality of low temperature side refrigerations. The condenser of the cycle is arranged, the cold storage can be stored in the heat storage medium of the heat storage tank by operating each high-temperature side refrigeration cycle, and the heat storage medium in the heat storage tank stored in the heat storage tank is arranged in the heat storage tank In addition, the condensers of a plurality of low-temperature refrigeration cycles can be cooled.

上記構成でも第1実施例と同様に冷熱の製造は冷却対象負荷処理に先んじ(又は同時対応でも良い)高温側冷凍サイクルの運転を行い、図2に示す蓄熱槽にその冷熱を蓄える。 低温冷凍サイクルは蓄熱槽に蓄えられた冷熱を凝縮に利用しながら低温域に存在する冷凍負荷を冷却処理する。
本発明では、一つの蓄熱槽内に複数の高温側冷凍サイクル、低温側冷凍サイクルの蒸発器、凝縮器を配置したため、蓄熱槽の共用化を図ることができ、経済的である。
Even in the above-described configuration, as in the first embodiment, the manufacture of cold heat operates the high-temperature side refrigeration cycle prior to the cooling target load processing (or may be performed simultaneously), and stores the cold heat in the heat storage tank shown in FIG. The low-temperature refrigeration cycle cools the refrigeration load existing in the low-temperature region while using the cold energy stored in the heat storage tank for condensation.
In the present invention, since a plurality of high temperature side refrigeration cycles, low temperature side refrigeration cycle evaporators and condensers are arranged in one heat storage tank, the heat storage tank can be shared, which is economical.

続いて第3実施例を図面に基づいて説明すると、図3は本発明の第3実施例に係る冷凍冷蔵システムの構成図である。
第3実施例は、蓄熱槽内の冷熱の有効活用を図るために、蓄熱槽に負荷回路15aを接続し、この回路内に負荷15を設けたものである。この例では、蓄熱媒体循環ポンプ17aを作動することで蓄熱槽内の蓄熱媒体を循環させ負荷を冷却することができ、装置の簡略化を図ることができる。この負荷は蓄熱媒体で冷却可能な、0°C近辺の中温用冷却装置である。
Next, a third embodiment will be described with reference to the drawings. FIG. 3 is a configuration diagram of a refrigeration system according to a third embodiment of the present invention.
In the third embodiment, a load circuit 15a is connected to the heat storage tank and a load 15 is provided in the circuit in order to effectively use the cold heat in the heat storage tank. In this example, by operating the heat storage medium circulation pump 17a, the heat storage medium in the heat storage tank can be circulated to cool the load, and the apparatus can be simplified. This load is a medium temperature cooling device in the vicinity of 0 ° C. that can be cooled by a heat storage medium.

続いて第4実施例を図面に基づいて説明すると、図4は本発明の第4実施例に係る冷凍冷蔵システムの構成図である。
第4実施例は、蓄熱槽内の冷熱の有効活用を図るために、蓄熱槽内に、熱交換器を有する独立した負荷循環回路(独立した回路内でCO2冷媒を循環し蓄熱媒体と熱交換器を介して熱交換を行なう循環回路)16を接続しこの回路内に負荷15を設けたものである。この例では、CO2循環ポンプ17を作動することで負荷循環回路16内のCO2冷媒を循環させ、負荷15を冷却することができ、装置の簡略化を図ることができる。また特許文献1に対して、高温側冷凍機の故障時においても圧力上昇を回避する時間がもてる。
Next, a fourth embodiment will be described with reference to the drawings. FIG. 4 is a configuration diagram of a refrigeration system according to the fourth embodiment of the present invention.
In the fourth embodiment, in order to effectively use the cold energy in the heat storage tank, an independent load circulation circuit having a heat exchanger in the heat storage tank (CO2 refrigerant is circulated in the independent circuit to exchange heat with the heat storage medium. A circulation circuit 16 for exchanging heat through a vessel) is connected, and a load 15 is provided in this circuit. In this example, by operating the CO2 circulation pump 17, the CO2 refrigerant in the load circulation circuit 16 can be circulated, the load 15 can be cooled, and the apparatus can be simplified. Further, Patent Document 1 has time to avoid a pressure increase even when the high-temperature side refrigerator is out of order.

続いて第5実施例を図面に基づいて説明すると、図5は本発明の第4実施例の改良型の冷凍冷蔵システムの構成図である。
第5実施例は、蓄熱槽内の冷熱の有効活用を図るために、第4実施例と同様に蓄熱槽に、熱交換器を有する独立したCO2循環回路を配置し、この回路内に負荷15を設け、循環媒体(CO2)を重力(落差)を使用して自然循環するようにしたものである。この例では、落差を使用して負荷循環回路16内の媒体を循環させることができるため、装置の簡略化を図ることができる。また特許文献1に対して、高温側冷凍機の故障時においても圧力上昇を回避する時間がもてる。
Next, a fifth embodiment will be described with reference to the drawings. FIG. 5 is a configuration diagram of an improved refrigeration system of the fourth embodiment of the present invention.
In the fifth embodiment, in order to effectively use the cold heat in the heat storage tank, an independent CO2 circulation circuit having a heat exchanger is arranged in the heat storage tank as in the fourth embodiment, and a load 15 is placed in this circuit. And the circulation medium (CO2) is naturally circulated using gravity (head). In this example, since the medium in the load circulation circuit 16 can be circulated using the head, the apparatus can be simplified. Further, Patent Document 1 has time to avoid a pressure increase even when the high-temperature side refrigerator is out of order.

続いて第6実施例を図6に基づいて説明すると、図6は本発明の第6実施例に係る冷凍冷蔵システムの構成図である。
第1実施例との相違点は、蓄熱槽5内には、高温側蒸発器3のみが配置され、低温側凝縮器は配置されていない点にある。そして蓄熱槽には低温側冷凍サイクルの凝縮器7に冷熱を与える熱交換器7を有する蓄熱媒体循環回路14が接続されている。そしてこのシステムでは、蓄熱槽内の蓄熱媒体を蓄熱媒体循環ポンプによって汲み上げ、熱交換器によって低温側凝縮器を冷却するものであり、この実施例も高温側冷凍サイクルを運転することにより蓄熱槽内に冷熱を蓄熱できるようになっている。前記循環回路14内の熱交換器内には低温側冷凍サイクルの凝縮器7が配置され、この熱交換器は蓄熱槽より遠方の負荷側近辺に設置可能である。
Next, a sixth embodiment will be described with reference to FIG. 6. FIG. 6 is a configuration diagram of a refrigeration system according to a sixth embodiment of the present invention.
The difference from the first embodiment is that only the high temperature side evaporator 3 is arranged in the heat storage tank 5, and the low temperature side condenser is not arranged. The heat storage tank is connected to a heat storage medium circulation circuit 14 having a heat exchanger 7 that provides cold heat to the condenser 7 of the low temperature side refrigeration cycle. In this system, the heat storage medium in the heat storage tank is pumped up by the heat storage medium circulation pump, and the low-temperature side condenser is cooled by the heat exchanger. This embodiment also operates in the high-temperature side refrigeration cycle to operate the heat storage tank. It can be used to store cold energy. A condenser 7 of a low temperature side refrigeration cycle is disposed in the heat exchanger in the circulation circuit 14, and this heat exchanger can be installed near the load side far from the heat storage tank.

続いて第7実施例を図7に基づいて説明すると、図7は本発明の第7実施例に係る冷凍冷蔵システムの構成図である。
第7実施例は、第6実施例の改良版であり、第6実施例中の蓄熱媒体循環回路中に負荷15を設けた点で相違している。このシステムも高温側冷凍サイクルを運転することにより蓄熱槽内に冷熱を蓄熱できるようになっており、その冷熱を使用して第2冷凍サイクル中の凝縮器7を冷却できるようになっている。
Next, a seventh embodiment will be described with reference to FIG. 7. FIG. 7 is a configuration diagram of a refrigeration system according to the seventh embodiment of the present invention.
The seventh embodiment is an improved version of the sixth embodiment, and is different in that a load 15 is provided in the heat storage medium circulation circuit in the sixth embodiment. This system can also store the cold in the heat storage tank by operating the high temperature side refrigeration cycle, and the condenser 7 in the second refrigeration cycle can be cooled using the cold.

第8実施例は、第7実施例中の蓄熱媒体循環回路を複数設けた点に特徴がある。
本発明では、一つの蓄熱槽内に複数の高温側冷凍サイクルを配置し、複数の第2冷凍サイクルを複数の循環回路により冷却できるようにしたことで高温側冷凍サイクルと低温側冷凍サイクルとは離れた位置にあっても、容易に実現することが可能である。
The eighth embodiment is characterized in that a plurality of heat storage medium circulation circuits in the seventh embodiment are provided.
In the present invention, the high temperature side refrigeration cycle and the low temperature side refrigeration cycle are arranged by arranging a plurality of high temperature side refrigeration cycles in one heat storage tank and allowing a plurality of second refrigeration cycles to be cooled by a plurality of circulation circuits. Even in a distant position, it can be easily realized.

第9実施例は、第8実施例の改良型であり、実施例中の蓄熱媒体循環回路14内に負荷を設けたことを特徴としている。   The ninth embodiment is an improved version of the eighth embodiment and is characterized in that a load is provided in the heat storage medium circulation circuit 14 in the embodiment.

第10実施例は、第1実施例の蓄熱式冷凍システム(冷蔵システムを含む)の、第1冷凍サイクル(以下高温側冷凍サイクル)S1と、第2冷凍サイクル(以下低温側冷凍サイクル)S2との間に第1冷凍サイクルの冷熱をブライン液を介して蓄熱槽内に蓄熱するためのブライン配管を備えている。即ち第1実施例のように第1冷凍サイクルからの熱を直接的に蓄熱槽内に蓄熱するのではなく、途中ブライン配管を介して、このブライン配管内を循環する冷媒によって蓄熱槽5内に冷熱を蓄えるようにした点に特徴がある。
具体的には、高温側冷凍サイクルS1は、従来公知の冷凍サイクルと同様に高温側凝縮器1、高温側圧縮機2、高温側蒸発器3、高温側膨張弁4を備え、これらが図示のように配置接続されている。高温側蒸発器にはブライン配管が隣接配置されており、高温側蒸発器によって得られた冷熱によりブライン配管内のブラインを冷却し、冷却ブラインをブライン循環ポンプによって循環して蓄熱槽5内の製氷コイルを介して蓄熱媒体を冷却できるようになっている。
蓄熱槽5はブライン配管の製氷コイルから授与された冷熱を蓄熱槽内の蓄熱媒体に蓄える機能を有している。
The tenth embodiment includes a first refrigeration cycle (hereinafter referred to as a high temperature side refrigeration cycle) S1 and a second refrigeration cycle (hereinafter referred to as a low temperature side refrigeration cycle) S2 of the heat storage type refrigeration system (including the refrigeration system) of the first embodiment. In the meantime, a brine pipe for storing the cold heat of the first refrigeration cycle in the heat storage tank via the brine solution is provided. That is, the heat from the first refrigeration cycle is not directly stored in the heat storage tank as in the first embodiment, but in the heat storage tank 5 by the refrigerant circulating in the brine pipe via the brine pipe on the way. It is characterized by storing cold energy.
Specifically, the high temperature side refrigeration cycle S1 includes a high temperature side condenser 1, a high temperature side compressor 2, a high temperature side evaporator 3, and a high temperature side expansion valve 4, as in the known refrigeration cycle, which are illustrated in the figure. Arranged so that they are connected. A brine pipe is disposed adjacent to the high temperature side evaporator, the brine in the brine pipe is cooled by the cold heat obtained by the high temperature side evaporator, and the cooling brine is circulated by a brine circulation pump to produce ice in the heat storage tank 5. The heat storage medium can be cooled via the coil.
The heat storage tank 5 has a function of storing cold heat given from an ice making coil of a brine pipe in a heat storage medium in the heat storage tank.

低温側冷凍サイクルS2は、上記高温側冷凍サイクルと同様に従来公知の低温側凝縮器7、低温側圧縮機8、低温側負荷(蒸発器)11、低温側膨張弁9、及び低温側受液器10等を備え、これらが図示のように配置接続されている。この低温側冷凍サイクルの冷媒は、本例では環境対策として炭酸ガスを使用しているが他の冷媒(アンモニア、HC冷媒、フロン冷媒等)を使用することも可能である。 前記ブライン配管内の製氷コイルと低温冷凍サイクルS2の低温側凝縮器7は、蓄熱槽5内に収容されているとともに蓄熱槽5内に貯留してある蓄熱媒体(ブライン、水等)6に漬けられている。   The low temperature side refrigeration cycle S2 is a low temperature side condenser 7, a low temperature side compressor 8, a low temperature side load (evaporator) 11, a low temperature side expansion valve 9, and a low temperature side liquid receiver, which are conventionally known, like the high temperature side refrigeration cycle. And the like are arranged and connected as shown in the figure. In this example, carbon dioxide gas is used as the refrigerant for the low temperature side refrigeration cycle, but other refrigerants (ammonia, HC refrigerant, chlorofluorocarbon refrigerant, etc.) can also be used. The ice making coil in the brine pipe and the low temperature side condenser 7 of the low temperature refrigeration cycle S2 are immersed in a heat storage medium (brine, water, etc.) 6 that is housed in the heat storage tank 5 and stored in the heat storage tank 5. It has been.

上記構成からなる蓄熱式冷凍システムの作動について説明する。
まず、冷熱の製造は冷却対象負荷処理に先んじ(又は同時対応でも良い)高温側冷凍サイクルS1の運転を行い、図1に示す蓄熱槽5の蓄熱媒体6にその冷熱を蓄える。
低温冷凍サイクルS2は蓄熱槽5に蓄えられた冷熱を凝縮に利用しながら低温域に存在する冷凍負荷を冷却処理する。
尚第10実施例についても、高温冷凍サイクルS1、低温冷凍サイクルS2を第2実施例のように複数設けたり、第3〜5実施例のように負荷回路、負荷循環回路を設けることも可能である。
The operation of the heat storage type refrigeration system having the above configuration will be described.
First, the cold heat is produced by operating the high-temperature side refrigeration cycle S1 prior to the cooling target load process (or simultaneous processing), and the cold heat is stored in the heat storage medium 6 of the heat storage tank 5 shown in FIG.
The low temperature refrigeration cycle S2 cools the refrigeration load existing in the low temperature region while using the cold energy stored in the heat storage tank 5 for condensation.
In the tenth embodiment, a plurality of high-temperature refrigeration cycles S1 and low-temperature refrigeration cycles S2 can be provided as in the second embodiment, or a load circuit and a load circulation circuit can be provided as in the third to fifth embodiments. is there.

以上、本発明の実施例について説明してきたが、本発明の趣旨の範囲内で、蓄熱槽内への蒸発器、凝縮器等の配置、冷凍負荷回路の配置等を適宜変更することができる。また、第1、第2冷凍サイクルの冷媒としては、現在存在する種々の冷媒を選択使用することができる。また冷凍サイクルには冷蔵サイクルも含まれることは当然である。また、蓄熱槽は設置場所、システムに対応して一つ以上複数設けることができる。さらに、実施例に記載の諸元はあらゆる点で単なる例示に過ぎず限定的に解釈してはならない。   As mentioned above, although the Example of this invention was described, arrangement | positioning of an evaporator, a condenser, etc. in a thermal storage tank, arrangement | positioning of a refrigerating load circuit, etc. can be suitably changed within the range of the meaning of this invention. In addition, as the refrigerants for the first and second refrigeration cycles, various refrigerants that currently exist can be selectively used. Of course, the refrigeration cycle includes a refrigeration cycle. Moreover, one or more heat storage tanks can be provided corresponding to the installation location and system. Furthermore, the specifications described in the examples are merely examples in all respects and should not be interpreted in a limited manner.

本発明は、鮮魚店、コンビニエンスストアなど、各種冷凍冷蔵システムに利用することができる。   The present invention can be used for various freezing and refrigeration systems such as fresh fish stores and convenience stores.

1 高温側凝縮器
2 高温側圧縮機
3 高温側蒸発器
4 高温側膨張弁
5 蓄熱槽
6 蓄熱媒体
7 低温側凝縮器
8 低温側圧縮機
9 低温側膨張弁
10 低温側受液器
11 冷凍負荷(低温側蒸発器)
14 蓄熱媒体循環回路
15a 負荷回路
15 負荷
16 負荷循環回路
17a 蓄熱媒体循環ポンプ
17 CO2循環ポンプ
18 蓄熱槽内熱交換器

DESCRIPTION OF SYMBOLS 1 High temperature side condenser 2 High temperature side compressor 3 High temperature side evaporator 4 High temperature side expansion valve 5 Heat storage tank 6 Heat storage medium 7 Low temperature side condenser 8 Low temperature side compressor 9 Low temperature side expansion valve 10 Low temperature side receiver 11 Refrigeration load (Low temperature side evaporator)
14 Heat storage medium circulation circuit 15a Load circuit 15 Load 16 Load circulation circuit 17a Heat storage medium circulation pump 17 CO2 circulation pump 18 Heat exchanger in heat storage tank

Claims (13)

高温側凝縮器1と高温側蒸発器3とを有する第1冷凍サイクルと、
低温側凝縮器7と低温側蒸発器11とを有する第2冷凍サイクルと、
前記第1冷凍サイクルの高温側蒸発器3と前記第2冷凍サイクルの低温側凝縮器7とを収容する一つの蓄熱槽5と、
前記蓄熱槽内に収容した蓄熱媒体6とを備え、
前記第1冷凍サイクルの高温側蒸発器によって蓄熱槽内の蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの低温側凝縮器を冷却し、
前記第2冷凍サイクルの冷媒を凝縮することを特徴とする蓄熱式冷凍システム
A first refrigeration cycle having a high temperature side condenser 1 and a high temperature side evaporator 3;
A second refrigeration cycle having a low temperature side condenser 7 and a low temperature side evaporator 11;
One heat storage tank 5 for accommodating the high temperature side evaporator 3 of the first refrigeration cycle and the low temperature side condenser 7 of the second refrigeration cycle;
A heat storage medium 6 accommodated in the heat storage tank,
The heat storage medium in the heat storage tank is cooled by the high temperature side evaporator of the first refrigeration cycle to store cold heat, and the low temperature side condenser of the second refrigeration cycle is stored by the cold heat stored in the heat storage medium in the heat storage tank. Cool,
A heat storage type refrigeration system characterized in that the refrigerant of the second refrigeration cycle is condensed.
前記第1冷凍サイクルと、第2冷凍サイクルを複数準備し、複数の第1冷凍サイクルの高温側蒸発器と、複数の第2冷凍サイクルの低温側凝縮器とを一つの蓄熱槽内に配置したことを特徴とする請求項1に記載の蓄熱式冷凍システム。 A plurality of first refrigeration cycles and a plurality of second refrigeration cycles are prepared, and a plurality of high temperature side evaporators of the first refrigeration cycles and a plurality of low temperature side condensers of the second refrigeration cycles are arranged in one heat storage tank. The regenerative refrigeration system according to claim 1. 前記第1冷凍サイクルの冷媒がアンモニア等の自然冷媒であり、第2冷凍サイクルの冷媒が炭酸ガスであることを特徴とする請求項1または2に記載の蓄熱式冷凍システム。 The regenerative refrigeration system according to claim 1 or 2, wherein the refrigerant in the first refrigeration cycle is a natural refrigerant such as ammonia, and the refrigerant in the second refrigeration cycle is carbon dioxide. 前記蓄熱槽内の蓄熱媒体を汲み上げ、負荷15を作動する負荷回路15aを設けたことを特徴とする請求項1〜3のいずれかに記載の蓄熱式冷凍システム。 The heat storage refrigeration system according to any one of claims 1 to 3, further comprising a load circuit 15a for pumping a heat storage medium in the heat storage tank and operating a load 15. 前記蓄熱槽内の蓄熱媒体と熱交換を行なう蓄熱槽熱交換器と負荷を有する負荷循環回路16を設け、循環回路16内には炭酸ガス冷媒を循環させることを特徴とする請求項1〜3のいずれかに記載の蓄熱式冷凍システム。 4. A heat storage tank heat exchanger for exchanging heat with the heat storage medium in the heat storage tank and a load circulation circuit 16 having a load are provided, and a carbon dioxide refrigerant is circulated in the circulation circuit 16. The regenerative refrigerating system according to any one of the above. 前記負荷循環回路16内に蓄熱槽熱交換器18と直列に循環ポンプを設けたことを特徴とする請求項5に記載の蓄熱式冷凍システム。 The heat storage refrigeration system according to claim 5, wherein a circulation pump is provided in series with the heat storage tank heat exchanger 18 in the load circulation circuit 16. 前記負荷循環回路の冷媒は重力を利用して自然循環させることをことを特徴とする請求項5に記載の蓄熱式冷凍システム。 The regenerative refrigeration system according to claim 5, wherein the refrigerant in the load circulation circuit is naturally circulated using gravity. 高温側凝縮器1と高温側蒸発器3とを有する第1冷凍サイクルと、
低温側凝縮器7と低温側蒸発器11とを有する第2冷凍サイクルと、
前記第1冷凍サイクルの高温側蒸発器3を収容する一つの蓄熱槽5と、
前記蓄熱槽内に収容した蓄熱媒体6とを備え、
前記蓄熱槽の蓄熱媒体を汲み上げ前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの低温側凝縮器を冷却する蓄熱媒体循環回路14を設け、
前記第1冷凍サイクルの高温側蒸発器によって蓄熱槽内の蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱媒体循環回路14により第2冷凍サイクルの凝縮器を冷却することを特徴とする蓄熱式冷凍システム。
A first refrigeration cycle having a high temperature side condenser 1 and a high temperature side evaporator 3;
A second refrigeration cycle having a low temperature side condenser 7 and a low temperature side evaporator 11;
One heat storage tank 5 accommodating the high-temperature side evaporator 3 of the first refrigeration cycle;
A heat storage medium 6 accommodated in the heat storage tank,
A heat storage medium circulation circuit 14 that pumps up the heat storage medium of the heat storage tank and cools the low-temperature side condenser of the second refrigeration cycle by the cold energy stored in the heat storage medium in the heat storage tank is provided,
The heat storage medium in the heat storage tank is cooled by the high temperature side evaporator of the first refrigeration cycle to store cold heat, and the condenser of the second refrigeration cycle is cooled by the heat storage medium circulation circuit 14. Refrigeration system.
前記第1冷凍サイクルの冷媒がアンモニアなどの自然冷媒であり、第2冷凍サイクルの冷媒が炭酸ガス、アンモニア、HC冷媒、フロン冷媒のうちの一つであることを特徴とする請求項8に記載の蓄熱式冷凍システム。 9. The refrigerant of the first refrigeration cycle is a natural refrigerant such as ammonia, and the refrigerant of the second refrigeration cycle is one of carbon dioxide, ammonia, HC refrigerant, and chlorofluorocarbon refrigerant. Thermal storage refrigeration system. 前記蓄熱媒体循環回路内に負荷を設けたことを特徴とする請求項8または請求項9に記載の蓄熱式冷凍システム。 The heat storage refrigeration system according to claim 8 or 9, wherein a load is provided in the heat storage medium circulation circuit. 前記蓄熱槽の蓄熱媒体を汲み上げる蓄熱媒体循環回路を複数設けたことを特徴とする請求項8または請求項9に記載の蓄熱式冷凍システム。   The heat storage refrigeration system according to claim 8 or 9, wherein a plurality of heat storage medium circulation circuits for pumping up the heat storage medium of the heat storage tank are provided. 前記複数設けた蓄熱媒体循環回路内に、負荷を設けたことを特徴とする請求項11に記載の蓄熱式冷凍システム。   The heat storage refrigeration system according to claim 11, wherein a load is provided in the plurality of heat storage medium circulation circuits. 高温側凝縮器1と高温側蒸発器3とを有する第1冷凍サイクルと、
低温側凝縮器7と低温側蒸発器11とを有する第2冷凍サイクルと、
ブライン循環ポンプと製氷コイルとを有し、前記第1冷凍サイクルの高温側蒸発器と熱交換できるブライン配管と、
前記製氷コイルと前記第2冷凍サイクルの低温側凝縮器7とを収容する一つの蓄熱槽5と、
前記蓄熱槽内に収容した蓄熱媒体6とを備え、
前記第1冷凍サイクルの高温側蒸発器によってブラインを冷却し、冷却したブラインを蓄熱槽内の製氷コイルに流して前記蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱槽内の蓄熱媒体に蓄熱された冷熱により第2冷凍サイクルの低温側凝縮器を冷却し、
前記第2冷凍サイクルの冷媒を凝縮することを特徴とする蓄熱式冷凍システム。
A first refrigeration cycle having a high temperature side condenser 1 and a high temperature side evaporator 3;
A second refrigeration cycle having a low temperature side condenser 7 and a low temperature side evaporator 11;
A brine pipe having a brine circulation pump and an ice making coil, and a brine pipe capable of exchanging heat with the high temperature side evaporator of the first refrigeration cycle;
One heat storage tank 5 that houses the ice making coil and the low temperature side condenser 7 of the second refrigeration cycle;
A heat storage medium 6 accommodated in the heat storage tank,
The brine is cooled by the high-temperature side evaporator of the first refrigeration cycle, and the cooled brine is passed through an ice making coil in a heat storage tank to cool the heat storage medium to store cold energy, and to the heat storage medium in the heat storage tank. The low-temperature side condenser of the second refrigeration cycle is cooled by the stored cold heat,
A regenerative refrigerating system, wherein the refrigerant of the second refrigeration cycle is condensed.
JP2009124898A 2009-05-25 2009-05-25 Heat storage type refrigerating system Pending JP2010271000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124898A JP2010271000A (en) 2009-05-25 2009-05-25 Heat storage type refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124898A JP2010271000A (en) 2009-05-25 2009-05-25 Heat storage type refrigerating system

Publications (1)

Publication Number Publication Date
JP2010271000A true JP2010271000A (en) 2010-12-02

Family

ID=43419173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124898A Pending JP2010271000A (en) 2009-05-25 2009-05-25 Heat storage type refrigerating system

Country Status (1)

Country Link
JP (1) JP2010271000A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425874A (en) * 2011-10-16 2012-04-25 大连三洋冷链有限公司 Integrated refrigeration energy-saving system for convenience stores
JP2013002737A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Refrigeration cycle device
JP2013036706A (en) * 2011-08-10 2013-02-21 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2013036658A (en) * 2011-08-08 2013-02-21 Yamato:Kk Cooling system
CN107606811A (en) * 2017-09-27 2018-01-19 南京师范大学 A kind of cryogenic refrigeration systems and its operation method
CN107606849A (en) * 2017-09-27 2018-01-19 南京师范大学 One kind may move shared refrigeration system and its operation method
CN108106036A (en) * 2017-12-05 2018-06-01 广东申菱环境系统股份有限公司 A kind of heat pump using folding type cooling system waste heat
CN110068174A (en) * 2019-05-28 2019-07-30 苏州必信空调有限公司 A kind of shell and tube condenser and its refrigeration system
CN110425776A (en) * 2019-08-19 2019-11-08 北京丰联奥睿科技有限公司 A kind of V-type vertical tube evaporative cooling tower and its double control air-conditioning system
CN110671848A (en) * 2019-10-16 2020-01-10 滨州市马士滨生物科技有限公司 Control system of carbon dioxide high-efficiency refrigeration equipment
KR102183632B1 (en) * 2020-09-10 2020-11-26 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry
KR102297905B1 (en) * 2020-04-17 2021-09-02 한장원 Multiple refrigeration cycle system
CN114111170A (en) * 2021-11-19 2022-03-01 合肥天鹅制冷科技有限公司 Cold accumulation type cooling liquid circulating cooling system
JP2022173019A (en) * 2021-05-07 2022-11-17 浩二 尊田 air conditioner
JP2023153721A (en) * 2022-04-05 2023-10-18 浩二 尊田 air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847085U (en) * 1981-09-17 1983-03-30 三洋電機株式会社 Frozen case
JPS62202965A (en) * 1986-02-28 1987-09-07 株式会社東芝 Refrigeration cycle
JPH02203162A (en) * 1989-01-31 1990-08-13 Nkk Corp Heat accumulating refrigerator
JPH0432669A (en) * 1990-05-25 1992-02-04 Matsushita Electric Ind Co Ltd Heat pump system controlling method therefor
JP2000002474A (en) * 1998-04-15 2000-01-07 Mitsubishi Electric Corp Freezing air conditioner and its control method
JP2000292021A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Refrigerating air-conditioning device for shop
JP2004308972A (en) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2 refrigerating machine
JP2008057974A (en) * 2007-11-05 2008-03-13 Sanden Corp Cooling apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847085U (en) * 1981-09-17 1983-03-30 三洋電機株式会社 Frozen case
JPS62202965A (en) * 1986-02-28 1987-09-07 株式会社東芝 Refrigeration cycle
JPH02203162A (en) * 1989-01-31 1990-08-13 Nkk Corp Heat accumulating refrigerator
JPH0432669A (en) * 1990-05-25 1992-02-04 Matsushita Electric Ind Co Ltd Heat pump system controlling method therefor
JP2000002474A (en) * 1998-04-15 2000-01-07 Mitsubishi Electric Corp Freezing air conditioner and its control method
JP2000292021A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Refrigerating air-conditioning device for shop
JP2004308972A (en) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2 refrigerating machine
JP2008057974A (en) * 2007-11-05 2008-03-13 Sanden Corp Cooling apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002737A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Refrigeration cycle device
JP2013036658A (en) * 2011-08-08 2013-02-21 Yamato:Kk Cooling system
JP2013036706A (en) * 2011-08-10 2013-02-21 Mitsubishi Electric Corp Refrigerating cycle apparatus
CN102425874A (en) * 2011-10-16 2012-04-25 大连三洋冷链有限公司 Integrated refrigeration energy-saving system for convenience stores
CN107606811A (en) * 2017-09-27 2018-01-19 南京师范大学 A kind of cryogenic refrigeration systems and its operation method
CN107606849A (en) * 2017-09-27 2018-01-19 南京师范大学 One kind may move shared refrigeration system and its operation method
CN108106036B (en) * 2017-12-05 2023-10-27 广东申菱环境系统股份有限公司 Heat pump utilizing waste heat of cascade refrigeration system
CN108106036A (en) * 2017-12-05 2018-06-01 广东申菱环境系统股份有限公司 A kind of heat pump using folding type cooling system waste heat
CN110068174A (en) * 2019-05-28 2019-07-30 苏州必信空调有限公司 A kind of shell and tube condenser and its refrigeration system
CN110425776A (en) * 2019-08-19 2019-11-08 北京丰联奥睿科技有限公司 A kind of V-type vertical tube evaporative cooling tower and its double control air-conditioning system
CN110671848B (en) * 2019-10-16 2021-06-15 佛山市纳奇电气设备有限公司 Control system of carbon dioxide high-efficiency refrigeration equipment
CN110671848A (en) * 2019-10-16 2020-01-10 滨州市马士滨生物科技有限公司 Control system of carbon dioxide high-efficiency refrigeration equipment
KR102297905B1 (en) * 2020-04-17 2021-09-02 한장원 Multiple refrigeration cycle system
KR102183632B1 (en) * 2020-09-10 2020-11-26 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry
JP2022173019A (en) * 2021-05-07 2022-11-17 浩二 尊田 air conditioner
CN114111170A (en) * 2021-11-19 2022-03-01 合肥天鹅制冷科技有限公司 Cold accumulation type cooling liquid circulating cooling system
JP2023153721A (en) * 2022-04-05 2023-10-18 浩二 尊田 air conditioner
JP7454143B2 (en) 2022-04-05 2024-03-22 浩二 尊田 air conditioner

Similar Documents

Publication Publication Date Title
JP2010271000A (en) Heat storage type refrigerating system
RU2738989C2 (en) Improved thawing by reversible cycle in vapor compression refrigeration systems, based on material with phase transition
CN103221760B (en) Refrigerating device
CA2652182C (en) Modular co2 refrigeration system
EP1164338B1 (en) Heat pump system of combination of ammonia cycle and carbon dioxide cycle
EP2019272B1 (en) Combined receiver and heat exchanger for a secondary refrigerant
CN103105020B (en) Hot and cold water water supply installation
CA2735347C (en) Co2 refrigeration system for ice-playing surface
KR100981398B1 (en) Refrigerating system for cold store using evaporation heat of lng liquid gas
US20110173998A1 (en) Process and apparatus for cooling
JP5523180B2 (en) Data center auxiliary cooling system
CA2911696A1 (en) Carbon dioxide based auxiliary cooling system
CA2766361A1 (en) Co2 refrigeration system for ice-playing surface
KR101511432B1 (en) Cooling system for low-temperature warehouse and system for supplying hot water using the cooling system
US10156385B1 (en) Multistage refrigeration system
JP2008051370A (en) Water cooling type refrigerating system and cold storage equipped with the same
CA2420028A1 (en) Stirling cooling apparatus, cooler and refrigerator
JP4043348B2 (en) Carbon dioxide secondary refrigerant ice heat storage refrigeration system
KR20130123017A (en) P.c.m storage type cold store of moving passable p.c.m small container having furnished
JP2012177531A (en) Auxiliary cooling device for data center
KR200428357Y1 (en) Cold water/hot water producing system for heat pump
JP5517333B2 (en) Refrigeration apparatus and operation method thereof
KR20090125312A (en) Heating and cooling system
US10281180B2 (en) Economized cycle with thermal energy storage
JP6007455B1 (en) Cold heat supply apparatus and cold heat supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Effective date: 20120518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02