JP5624295B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5624295B2
JP5624295B2 JP2009216028A JP2009216028A JP5624295B2 JP 5624295 B2 JP5624295 B2 JP 5624295B2 JP 2009216028 A JP2009216028 A JP 2009216028A JP 2009216028 A JP2009216028 A JP 2009216028A JP 5624295 B2 JP5624295 B2 JP 5624295B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
evaporator
cooling
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009216028A
Other languages
Japanese (ja)
Other versions
JP2011064412A (en
Inventor
谷口 一寿
一寿 谷口
勝久 天生
勝久 天生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Corp
Priority to JP2009216028A priority Critical patent/JP5624295B2/en
Publication of JP2011064412A publication Critical patent/JP2011064412A/en
Application granted granted Critical
Publication of JP5624295B2 publication Critical patent/JP5624295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、圧縮機から吐出された冷媒が凝縮器、蒸発器を通って、再び圧縮機に戻る冷凍サイクルを有し、蒸発器により冷却された空気をファンにより循環させて冷却する冷蔵庫に関する。   The present invention relates to a refrigerator having a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser and an evaporator and returns to the compressor again, and cools the air cooled by the evaporator by circulating it with a fan.

従来の冷蔵庫は、庫内温度と目標温度との差の大きさに応じて圧縮機回転数をPID制御し、この圧縮機の運転に同期してファンを運転して蒸発器で冷却された空気を庫内に循環送風している(例えば、特開2007−71492号公報―特許文献1)。   The conventional refrigerator performs PID control of the compressor rotation speed according to the difference between the internal temperature and the target temperature, and operates the fan in synchronization with the operation of the compressor to cool the air cooled by the evaporator. Is circulated in the cabinet (for example, JP 2007-71492 A-Patent Document 1).

ところが、従来技術では、ファン回転数を圧縮機回転数と同期させて回転するように制御しているので、次のような問題点があった。扉をそれほど頻繁に開かない状態では、冷凍室温度が適度な冷凍温度に保たれていて目標温度に対する冷却室検出温度の温度差が小さく、これに対応して冷凍室冷却時の圧縮機の回転数は低速に設定される。この結果として、圧縮機に同期して回転制御される冷凍室冷却ファンの回転数も低速に設定される。ところが、圧縮機が長らく低速回転制御されると冷媒流量は少なくなり、蒸発器内での気化量も少なくなり、冷凍室冷却用蒸発器内の冷媒は液状態のままになり、温度は上昇する。そして、蒸発器内の冷媒が液状態のままであれば液状態の冷媒を全液気化させるためには多くのエネルギーが必要となり、エネルギーロスが発生する。   However, in the prior art, since the fan rotation speed is controlled to rotate in synchronization with the compressor rotation speed, there are the following problems. When the door is not opened so often, the freezer temperature is kept at an appropriate freezing temperature, and the temperature difference between the target temperature and the detected temperature of the cooling chamber is small. The number is set to low speed. As a result, the number of rotations of the freezer compartment cooling fan whose rotation is controlled in synchronization with the compressor is also set to a low speed. However, if the compressor is controlled to rotate at a low speed for a long time, the refrigerant flow rate decreases, the amount of vaporization in the evaporator also decreases, the refrigerant in the freezer compartment cooling evaporator remains in a liquid state, and the temperature rises. . If the refrigerant in the evaporator remains in a liquid state, a large amount of energy is required to vaporize the liquid state refrigerant completely, resulting in energy loss.

このような問題点を解決するには、圧縮機回転数とは別個にファンの回転数を上げて蒸発器に多くの空気を当てることによりその中の冷媒を気化させ、蒸発器温度を下げ、庫内冷気循環量を増やして冷凍室温度を圧縮機回転停止温度まで速く低下させ、圧縮機回転を停止させる制御することが有効である。しかしながら、従来、そのような技術は知られていない。   In order to solve such problems, the fan speed is increased separately from the compressor speed and a large amount of air is applied to the evaporator to evaporate the refrigerant therein, lowering the evaporator temperature, It is effective to increase the amount of cool air circulation in the refrigerator to quickly lower the freezer temperature to the compressor rotation stop temperature and stop the compressor rotation. However, conventionally, such a technique is not known.

特開2007−71492号公報JP 2007-71492 A

本発明は、上記従来技術の問題点に鑑みてなされたもので、圧縮機回転数と蒸発器温度との状態に応じて、圧縮機回転数とは別個にファンを最適な回転数にて制御することができ、省エネが図れる冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and controls the fan at the optimum rotational speed separately from the compressor rotational speed in accordance with the state of the compressor rotational speed and the evaporator temperature. An object of the present invention is to provide a refrigerator that can save energy.

本発明は、冷媒を圧縮する圧縮機と、前記圧縮機からの冷媒を凝縮する凝縮器と、前記凝縮器を出た冷媒を気化させる蒸発器と、前記蒸発器にて冷却された冷気を冷凍室に循環させる冷却ファンとを有する冷凍サイクルと、冷凍室温度を検出する冷凍室温度センサと、前記蒸発器の温度を検出する蒸発器温度センサと、前記冷凍室温度センサの検出する冷凍室検出温度と冷凍室目標温度との温度差に応じてPID制御し、前記温度差が所定範囲まで縮小した時に圧縮機回転を停止させる制御をする圧縮機制御手段と、前記圧縮機制御手段による前記圧縮機回転と連動して前記冷却ファンを回転させる通常の冷凍室冷却運転中に、前記圧縮機回転数が所定の回転数設定値よりも低く、かつ、前記蒸発器検出温度が所定の設定温度よりも高い条件になれば前記冷却ファンを通常の回転数よりも所定値だけ高い回転数にて回転させる制御をする冷却ファン制御手段とを備えた冷蔵庫を特徴とする。 The present invention includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant from the compressor, an evaporator that vaporizes the refrigerant that has exited the condenser, and cold air that has been cooled by the evaporator. A refrigeration cycle having a cooling fan that circulates in the room; a freezer temperature sensor that detects a freezer temperature; an evaporator temperature sensor that detects the temperature of the evaporator; and a freezer detection that is detected by the freezer temperature sensor PID control according to the temperature difference between the temperature and the freezer compartment target temperature, and compressor control means for controlling the rotation of the compressor when the temperature difference is reduced to a predetermined range; and the compression by the compressor control means in conjunction with the machine rotate in the normal freezing compartment during the cooling operation you want to rotate. the cooling fan, the compressor rotational speed is lower than a predetermined rotational speed set value, and the evaporator temperature detected predetermined set point temperature higher conditions than The cooling fan than the normal speed and the cooling fan control means for controlling to rotate at a predetermined value by the high rotational speed, wherein the refrigerator having the if.

本発明の冷蔵庫によれば、圧縮機回転数と蒸発器温度との状態に応じて、圧縮機回転数とは別個に冷却ファンを制御し、圧縮機回転数が低く、かつ、蒸発器温度が高い場合には冷却ファンの回転数を上げて蒸発器に多くの空気を当てることによりその中の冷媒をより速く気化させ、蒸発器温度を下げ、庫内冷気循環量を増やして冷凍室温度を圧縮機回転停止温度まで速く低下させることにより圧縮機を長時間低速回転させる無駄をなくして省エネが図れる。   According to the refrigerator of the present invention, the cooling fan is controlled separately from the compressor rotation speed according to the state of the compressor rotation speed and the evaporator temperature, the compressor rotation speed is low, and the evaporator temperature is If it is high, increase the rotation speed of the cooling fan and apply more air to the evaporator to vaporize the refrigerant in it faster, lower the evaporator temperature, increase the amount of cool air circulation in the cabinet, and increase the freezer temperature. By quickly reducing the compressor rotation stop temperature, it is possible to save energy by eliminating the waste of rotating the compressor at a low speed for a long time.

本発明の第1〜3の実施の形態の冷蔵庫の冷蔵庫本体及び冷凍サイクルの構成を示すブロック図。The block diagram which shows the structure of the refrigerator main body and refrigeration cycle of the refrigerator of the 1st-3rd embodiment of this invention. 上記実施の形態の冷蔵庫における制御部分のブロック図。The block diagram of the control part in the refrigerator of the said embodiment. 上記実施の形態の冷蔵庫における運転制御のフローチャート。The flowchart of the operation control in the refrigerator of the said embodiment. 上記実施の形態の冷蔵庫における冷蔵、冷凍運転のタイミングチャート。The timing chart of the refrigerating and freezing operation in the refrigerator of the said embodiment. 本発明の第2の実施の形態の冷蔵庫における制御部分のブロック図。The block diagram of the control part in the refrigerator of the 2nd Embodiment of this invention. 上記実施の形態の冷蔵庫における運転制御のフローチャート。The flowchart of the operation control in the refrigerator of the said embodiment. 本発明の第3の実施の形態の冷蔵庫における運転制御のフローチャート。The flowchart of the operation control in the refrigerator of the 3rd Embodiment of this invention.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
図1に示すよう、冷蔵庫本体1は断熱筐体により構成され、その内部は、断熱仕切壁3により上部の冷蔵室(以下、「R室」という。)4と下部の冷凍室(以下、「F室」という。)5とに仕切られている。R室4内の奥部には、仕切板6によりダクト7が形成され、R室4内の下部には、仕切板8により野菜室9が形成されている。
[First Embodiment]
As shown in FIG. 1, the refrigerator main body 1 is constituted by a heat insulating casing, and the inside thereof is insulated by a heat insulating partition wall 3 and an upper refrigerator compartment (hereinafter referred to as “R room”) 4 and a lower freezer compartment (hereinafter referred to as “ It is divided into 5). A duct 7 is formed by a partition plate 6 in the inner part of the R chamber 4, and a vegetable chamber 9 is formed by a partition plate 8 in the lower part of the R chamber 4.

ダクト7内の下部には、冷凍サイクル2の冷蔵室冷却用蒸発器(以下、「Rエバ」という。)10が配設されており、仕切板6の上部には、吹き出し口6aが形成されていて、この吹き出し口6a部分に冷蔵室冷却ファン(以下、「Rファン」という。)11が配設されている。そして、仕切板6の下部には、ダクト7と野菜室9とを連通する吸い込み口6bが形成され、仕切板8には、R室4と野菜室9とを連通する連通口8aが形成されている。   A refrigerating chamber cooling evaporator (hereinafter referred to as “R EVA”) 10 of the refrigeration cycle 2 is disposed in the lower part of the duct 7, and a blowout port 6 a is formed in the upper part of the partition plate 6. In addition, a refrigerating room cooling fan (hereinafter referred to as “R fan”) 11 is disposed at the outlet 6a. A suction port 6b that communicates the duct 7 and the vegetable compartment 9 is formed in the lower part of the partition plate 6, and a communication port 8a that communicates the R chamber 4 and the vegetable compartment 9 is formed in the partition plate 8. ing.

F室5内の奥部には仕切板12によりダクト13が形成されて、そのダクト13内の下部には冷凍サイクル2の冷凍室冷却用蒸発器(以下、「Fエバ」という。)14が配設されている。また、仕切板12の上部には吹き出し口12aが形成されていて、この吹き出し口12a部分に冷凍室冷却ファン(以下、「Fファン」という。)15が配設されている。そして、仕切板12の下部には、ダクト13とF室5を連通する吸い込み口12bが形成されている。   A duct 13 is formed by a partition plate 12 in the inner part of the F chamber 5, and a freezer compartment cooling evaporator (hereinafter referred to as “F EVA”) 14 of the refrigeration cycle 2 is formed in the lower portion of the duct 13. It is arranged. In addition, an air outlet 12a is formed in the upper part of the partition plate 12, and a freezer compartment cooling fan (hereinafter referred to as “F fan”) 15 is disposed in the air outlet 12a. A suction port 12 b that connects the duct 13 and the F chamber 5 is formed in the lower part of the partition plate 12.

尚、冷蔵庫本体1の下部には機械室16が形成されていて、この機械室16の奥部には、冷凍サイクル2の圧縮機17が配設されている。   A machine room 16 is formed in the lower part of the refrigerator body 1, and a compressor 17 of the refrigeration cycle 2 is disposed in the inner part of the machine room 16.

本実施の形態の冷蔵庫の冷凍サイクル2は、Rエバ10、Fエバ14及び圧縮機17の他に、凝縮器18、三方弁からなる冷媒供給装置19、キャピラリーチューブ20、21を備えている。圧縮機17の吐出口は凝縮器18を介して冷媒供給装置19の入口に連通している。そして、冷媒供給装置19の一方の出口は、キャピラリーチューブ20、Rエバ10、連結パイプ22及びFエバ14を介して圧縮機17の吸入口に連通されている。冷媒供給装置19の他方の出口は、キャピラリーチューブ21を介して連結パイプ22の途中部位に連通されている。   The refrigerating cycle 2 of the refrigerator according to the present embodiment includes a condenser 18, a refrigerant supply device 19 including a three-way valve, and capillary tubes 20 and 21, in addition to the R evaporator 10, the F evaporator 14, and the compressor 17. The discharge port of the compressor 17 communicates with the inlet of the refrigerant supply device 19 via the condenser 18. One outlet of the refrigerant supply device 19 is communicated with the suction port of the compressor 17 through the capillary tube 20, the R evaporator 10, the connecting pipe 22, and the F evaporator 14. The other outlet of the refrigerant supply device 19 is communicated with a middle portion of the connection pipe 22 via the capillary tube 21.

本実施の形態の冷蔵庫の運転制御について、図2のブロック図、図3のタイミングチャートを用いて説明する。庫内温度などの条件により圧縮機17の運転を制御する圧縮機制御部61により圧縮機17が運転を開始する。圧縮された冷媒は、冷媒供給装置19を介してRエバ10又はFエバ14に供給される。R蒸発器10又はF蒸発器14に冷媒が供給されると、次第に蒸発器温度は低下し始める。   Operation control of the refrigerator of this embodiment will be described using the block diagram of FIG. 2 and the timing chart of FIG. The compressor 17 starts operation by the compressor controller 61 that controls the operation of the compressor 17 according to conditions such as the internal temperature. The compressed refrigerant is supplied to the R EVA 10 or the F EVA 14 via the refrigerant supply device 19. When the refrigerant is supplied to the R evaporator 10 or the F evaporator 14, the evaporator temperature gradually starts to decrease.

[R室冷却]
圧縮機制御部61は、F室冷却が最大継続時間を経過し、あるいはF室冷却が最低継続時間を経過し、かつ、R室検出温度がR室冷却開始温度RT−onを超えていればR室冷却を開始する(タイミングt2,t4,t6)。このR室冷却を開始するためには、圧縮機制御部61は冷媒供給装置19を冷媒がR蒸発器10側に流れるように切り換える。そして、圧縮機制御部61は、R室4の設定温度と実際のR室温度センサ51によるR室検出温度との偏差を算出し、この偏差の大小に応じて圧縮機17の回転数をPID制御し、偏差が大きい場合には圧縮機17を高速、例えば、30Hzにて回転させ、偏差が中程度の場合には圧縮機17を中速、例えば、20Hzにて回転させ、庫内温度が目標温度に近づけば低速、例えば10Hzにて回転させる。さらに、R室扉が開かれ、庫内温度が急上昇するような状況では、再度高速運転に戻して庫内冷却を行い、上の回転数制御を行う。圧縮機制御部61はこのR室冷却の際には、圧縮機17のオン/オフ、回転数と連動してRファン11を予め設定してある高速、中速、低速に切替えて運転し、R蒸発器10を通過して冷やされた冷気をR室4、野菜室9内に矢印Bのように循環させる。
[R room cooling]
The compressor control unit 61 determines that the F room cooling has passed the maximum duration, or the F chamber cooling has passed the minimum duration, and the R room detection temperature exceeds the R room cooling start temperature RT-on. R chamber cooling is started (timing t2, t4, t6). In order to start the R chamber cooling, the compressor control unit 61 switches the refrigerant supply device 19 so that the refrigerant flows to the R evaporator 10 side. Then, the compressor control unit 61 calculates a deviation between the set temperature of the R chamber 4 and the actual temperature detected by the R room temperature sensor 51, and determines the rotational speed of the compressor 17 according to the magnitude of this deviation. If the deviation is large, the compressor 17 is rotated at a high speed, for example, 30 Hz. If the deviation is medium, the compressor 17 is rotated at a medium speed, for example, 20 Hz, and the internal temperature is If it approaches the target temperature, it is rotated at a low speed, for example, 10 Hz. Further, in a situation where the R room door is opened and the internal temperature rapidly rises, the high speed operation is resumed to cool the internal chamber, and the upper rotational speed control is performed. During the cooling of the R chamber, the compressor control unit 61 operates by switching the R fan 11 to preset high speed, medium speed, and low speed in conjunction with the on / off of the compressor 17 and the rotational speed. The chilled air that has passed through the R evaporator 10 is circulated in the R chamber 4 and the vegetable chamber 9 as shown by an arrow B.

[F室冷却]
圧縮機制御部61は、R室冷却が最大継続時間を経過し、あるいはR室冷却が最低継続時間を経過し、かつ、F室検出温度がF室冷却開始温度FT−onを超えていればF室冷却を開始する(タイミングt1,t3,t5)。このF室冷却を開始するためには、圧縮機制御部61は冷媒供給装置19を冷媒がF蒸発器14側に流れるように切り換える。そして、圧縮機制御部61は、F室5の設定温度と実際のF室温度センサ52によるF室検出温度との偏差を算出し、この偏差の大小に応じて圧縮機17の回転数をPID制御し、偏差が大きい場合には圧縮機17を高速、例えば、30Hzにて回転させ、偏差が中程度の場合には圧縮機17を中速、例えば、20Hzにて回転させ、庫内温度が目標温度に近づけば低速、例えば10Hzにて回転させる。さらに、F室扉が開かれ、庫内温度が急上昇するような状況では、再度高速運転に戻して庫内冷却を行い、上の回転数制御を行う。
[F room cooling]
The compressor control unit 61 determines that if the R chamber cooling has passed the maximum duration, or the R chamber cooling has passed the minimum duration, and the F chamber detection temperature exceeds the F chamber cooling start temperature FT-on. F room cooling is started (timing t1, t3, t5). In order to start the F chamber cooling, the compressor control unit 61 switches the refrigerant supply device 19 so that the refrigerant flows to the F evaporator 14 side. Then, the compressor control unit 61 calculates a deviation between the set temperature of the F room 5 and the F room temperature detected by the actual F room temperature sensor 52, and determines the rotational speed of the compressor 17 according to the magnitude of the deviation PID. If the deviation is large, the compressor 17 is rotated at a high speed, for example, 30 Hz. If the deviation is medium, the compressor 17 is rotated at a medium speed, for example, 20 Hz, and the internal temperature is If it approaches the target temperature, it is rotated at a low speed, for example, 10 Hz. Further, in a situation where the F room door is opened and the internal temperature rapidly rises, the operation is returned to the high speed operation to cool the internal chamber, and the upper rotational speed control is performed.

Fファン制御部62は、このF室冷却の際には、圧縮機制御部61から圧縮機回転数情報を受け取り、またF蒸発器検出温度をF蒸発器温度センサ53から受け取り、Fファン15の回転数を独自に制御する。通常の運転状態では、Fファン制御部62はFファン15を圧縮機17のオン/オフ、回転数と連動して予め設定してある高速、中速、低速に切替えて運転し、F蒸発器14を通過して冷やされた冷気をF室5内に矢印Aのように循環させる。   The F fan control unit 62 receives the compressor rotation speed information from the compressor control unit 61 and receives the F evaporator detected temperature from the F evaporator temperature sensor 53 during the cooling of the F chamber. Control the number of revolutions independently. In a normal operation state, the F fan control unit 62 operates the F fan 15 by switching between high speed, medium speed, and low speed set in advance in conjunction with the on / off of the compressor 17 and the rotation speed. The chilled air that has passed through 14 is circulated in the F chamber 5 as shown by an arrow A.

上記の構成の冷蔵庫にあっては、冷凍室扉がそれほど頻繁に開閉されない場合、前回のF室冷却完了時から今回のF室冷却開始までの間にF室5内の温度はほとんど上昇しない。例えば、図3におけるタイミングt6のR室冷却開始時点からR室冷却終了タイミングt7の期間のようにR室冷却に移行した後も冷凍室温度が大きく上昇しない場合、タイミングt7から始まる次のF室冷却期間には最低継続時間だけF室冷却が行われる。この場合、F室目標温度とF室検出温度との差が小さいために、圧縮機制御部61は圧縮機17を10Hzのような低速にて回転させる。このように、圧縮機17が低速回転を継続すると、F室蒸発器14内での冷媒の気化量が少なくなり、気化熱の吸収が少ないためにF室蒸発器14の温度は上昇する。このため、次に庫内温度が上昇して圧縮機17を高速回転させて冷却する場合に、F蒸発器14内で液状冷媒を気化させるまでに時間がかかり、エネルギー消費が増えることになる。そのため、F蒸発器14は低温に維持しておく方がエネルギー効率から見れば好ましい。   In the refrigerator having the above configuration, when the freezer door is not opened and closed so frequently, the temperature in the F chamber 5 hardly rises between the completion of the previous F chamber cooling and the start of the current F chamber cooling. For example, when the freezer compartment temperature does not rise significantly after the transition to the R chamber cooling as in the period of the R chamber cooling end timing t7 from the R chamber cooling start time at the timing t6 in FIG. 3, the next F chamber starting from the timing t7. During the cooling period, the room F is cooled for a minimum duration. In this case, since the difference between the F room target temperature and the F room detection temperature is small, the compressor control unit 61 rotates the compressor 17 at a low speed such as 10 Hz. As described above, when the compressor 17 continues to rotate at a low speed, the amount of refrigerant vaporized in the F chamber evaporator 14 decreases, and the temperature of the F chamber evaporator 14 rises due to less absorption of the heat of vaporization. For this reason, when the internal temperature rises next and the compressor 17 is rotated at a high speed for cooling, it takes time until the liquid refrigerant is vaporized in the F evaporator 14, and the energy consumption increases. Therefore, it is preferable from the viewpoint of energy efficiency that the F evaporator 14 is kept at a low temperature.

本実施の形態の冷蔵庫では、この点を考慮し、図4のフローチャートに示すように、F室冷却において、F蒸発器14の温度を低温に維持する制御を行う。すなわち、圧縮機17の回転数にFファンの回転数を同期させる制御中に、圧縮機17の回転数fを監視していて、基底回転数以下(例えば、10Hz以下)になった時には、F蒸発器温度センサ53の検出温度tを見る(ステップS1−S4)。そして、F蒸発器温度が設定温度よりも高くなっていればFファン15を1段階(中速)、若しくは2段階(高速)アップする(ステップS5,S6)。   In the refrigerator of the present embodiment, in consideration of this point, as shown in the flowchart of FIG. 4, in the F chamber cooling, control is performed to maintain the temperature of the F evaporator 14 at a low temperature. That is, during the control to synchronize the rotational speed of the F fan with the rotational speed of the compressor 17, the rotational speed f of the compressor 17 is monitored, and when the rotational speed f becomes lower than the base rotational speed (for example, 10 Hz or lower), The detected temperature t of the evaporator temperature sensor 53 is observed (steps S1-S4). If the F evaporator temperature is higher than the set temperature, the F fan 15 is increased by one stage (medium speed) or two stages (high speed) (steps S5 and S6).

これにより、本実施の形態によれば、圧縮機17が低速回転しており、F蒸発器14が高温状態である時にFファン15を強制的に高速回転させることにより、F蒸発器14に多くの空気を当てることができ、F蒸発器14に多くの空気が当たれば内部の液状の冷媒を気化させることができ、F蒸発器14の温度を下げることができる。そしてF蒸発器14の温度が下がれば、これに当たる庫内空気が良く冷却され、F室5の温度を効果的に冷却することができ、ひいてはF室温度をFT−offまで速く低下させることによって圧縮機17を停止させることができる。これにより、本実施の形態の冷蔵庫によれば、F室冷却時に圧縮機17が長時間低速回転を続けることがなく、エネルギー効率を向上させることができる。   Thus, according to the present embodiment, when the compressor 17 rotates at a low speed and the F evaporator 14 is in a high temperature state, the F fan 15 is forcibly rotated at a high speed, so If a large amount of air hits the F evaporator 14, the liquid refrigerant inside can be vaporized, and the temperature of the F evaporator 14 can be lowered. And if the temperature of F evaporator 14 falls, the air in the store | warehouse | chamber which hits this will be cooled well, the temperature of F chamber 5 can be cooled effectively, and by lowering F chamber temperature to FT-off by extension by extension. The compressor 17 can be stopped. Thereby, according to the refrigerator of this Embodiment, the compressor 17 does not continue low-speed rotation for a long time at the time of F room cooling, and can improve energy efficiency.

[第2の実施の形態]
本発明の第2の実施の形態の冷蔵庫について、図5の制御部のブロック図、図6のフローチャートを用いて説明する。本実施の形態の冷蔵庫の機械的な構造は、図1に示した第1の実施の形態と共通する。本実施の形態の冷蔵庫では、F室冷却運転時に、圧縮機17が低速回転し、F蒸発器温度が高温であり、かつ、F室ドアが開かれたことを条件にして、Fファン15を強制的に高速回転させる制御をする点が特徴である。
[Second Embodiment]
The refrigerator of the 2nd Embodiment of this invention is demonstrated using the block diagram of the control part of FIG. 5, and the flowchart of FIG. The mechanical structure of the refrigerator of the present embodiment is common to the first embodiment shown in FIG. In the refrigerator of the present embodiment, during the cooling operation of the F chamber, the compressor 17 rotates at a low speed, the F evaporator temperature is high, and the F fan 15 is opened on the condition that the F chamber door is opened. It is characterized in that it is controlled to forcibly rotate at high speed.

図5のブロック図では、図2のブロック図に対して、Fファン制御部62にF室ドアセンサ54が入力される点が追加されている。Fファン制御部62は、Fファン15をドア開検出信号が入力された時に、Fファン制御を一定期間行う。   In the block diagram of FIG. 5, a point that the F room door sensor 54 is input to the F fan control unit 62 is added to the block diagram of FIG. 2. The F fan control unit 62 performs F fan control for a certain period when a door open detection signal is input to the F fan 15.

本実施の形態の冷蔵庫における圧縮機制御部61、Fファン制御部62の制御を、図6のフローチャートを用いて説明する。圧縮機制御部61は、R室冷却の最大継続時間を経過した時、あるいはR室冷却が最低継続時間を経過し、かつ、F室検出温度がF室冷却開始温度FT−onを超えた時にR室冷却を停止し、F室冷却に移行する。   Control of the compressor control unit 61 and the F fan control unit 62 in the refrigerator of the present embodiment will be described with reference to the flowchart of FIG. When the maximum duration time of the R room cooling has elapsed, or when the R room cooling has passed the minimum duration time, and the detected F room temperature exceeds the F room cooling start temperature FT-on, the compressor control unit 61 R room cooling is stopped, and it shifts to F room cooling.

F室冷却において、F蒸発器14の温度を低温に維持する制御を行う。すなわち、圧縮機17の回転数にFファン15の回転数を連動させる制御中に、圧縮機17の回転数fを監視し(ステップS1,S2)、F室ドア開が検出されるとFファン回転数制御に入る(ステップS11)。Fファン回転数制御では、Fファン15の回転数fが基底回転数以下になった時には、F蒸発器温度センサ53の検出温度tを見る(ステップS3,S4)。そして、F蒸発器温度が設定温度よりも高くなっていればFファン15を1段階(中速)、若しくは2段階(高速)アップする(ステップS5,S6)。Fファン15を強制的に高速回転させる時には、一定時間経過すれば通常運転に戻る(ステップS7)。   In the F chamber cooling, control is performed to maintain the temperature of the F evaporator 14 at a low temperature. That is, during the control to link the rotation speed of the F fan 15 to the rotation speed of the compressor 17, the rotation speed f of the compressor 17 is monitored (steps S1 and S2). The rotational speed control is started (step S11). In the F fan rotation speed control, when the rotation speed f of the F fan 15 becomes equal to or lower than the base rotation speed, the detected temperature t of the F evaporator temperature sensor 53 is observed (steps S3 and S4). If the F evaporator temperature is higher than the set temperature, the F fan 15 is increased by one stage (medium speed) or two stages (high speed) (steps S5 and S6). When the F fan 15 is forcibly rotated at a high speed, the normal operation is resumed after a predetermined time (step S7).

これにより、本実施の形態によれば、F室ドアが開かれてF室温度が上昇した状態でFファン15にて温度上昇したF室5の空気をF蒸発器14に通すので、F蒸発器14は第1の実施の形態の場合よりも温度上昇し、それだけ液状冷媒を多く気化させることができ、F蒸発器14の温度をより速く低下させることができ、エネルギー効率のいっそうの向上が図れる。   Thus, according to the present embodiment, the air in the F chamber 5 whose temperature has been increased by the F fan 15 in the state where the F chamber door is opened and the temperature of the F chamber is increased is passed through the F evaporator 14. The temperature of the evaporator 14 is higher than that in the case of the first embodiment, so that a larger amount of liquid refrigerant can be vaporized, the temperature of the F evaporator 14 can be lowered more quickly, and the energy efficiency can be further improved. I can plan.

[第3の実施の形態]
本発明の第3の実施の形態の冷蔵庫について、図7のフローチャートを用いて説明する。本実施の形態の冷蔵庫の機械的な構造は図1に示した第1の実施の形態と共通し、制御部のブロック図は図5に示した第2の実施の形態と共通する。
[Third Embodiment]
The refrigerator of the 3rd Embodiment of this invention is demonstrated using the flowchart of FIG. The mechanical structure of the refrigerator of this embodiment is common to the first embodiment shown in FIG. 1, and the block diagram of the control unit is common to the second embodiment shown in FIG.

本実施の形態の冷蔵庫では、F室冷却運転時に、圧縮機17が低速回転し、F蒸発器温度が高温であり、かつ、F室ドアが開かれたことを条件にして、Fファン15を強制的に高速回転させる制御をする点が特徴である。ただし、本実施の形態の場合、第2の実施の形態とはF蒸発器温度を第1の設定値T1、第2の設定値T2(T1>T2)と比較し、その高低によりFファン14に異なった制御をする点に特徴がある。   In the refrigerator of the present embodiment, during the cooling operation of the F chamber, the compressor 17 rotates at a low speed, the F evaporator temperature is high, and the F fan 15 is opened on the condition that the F chamber door is opened. It is characterized in that it is controlled to forcibly rotate at high speed. However, in the case of the present embodiment, the F evaporator temperature is compared with the first set value T1 and the second set value T2 (T1> T2) as compared with the second embodiment, and the F fan 14 depends on the level. Is characterized by different control.

本実施の形態の冷蔵庫における圧縮機制御部61、Fファン制御部62の制御を、図7のフローチャートを用いて説明する。圧縮機制御部61は、R室冷却の最大継続時間を経過した時、あるいはR室冷却が最低継続時間を経過し、かつ、F室検出温度がF室冷却開始温度FT−onを超えた時にR室冷却を停止し、F室冷却に移行する。   Control of the compressor control unit 61 and the F fan control unit 62 in the refrigerator of the present embodiment will be described with reference to the flowchart of FIG. When the maximum duration time of the R room cooling has elapsed, or when the R room cooling has passed the minimum duration time, and the detected F room temperature exceeds the F room cooling start temperature FT-on, the compressor control unit 61 R room cooling is stopped, and it shifts to F room cooling.

Fファン制御部62は、F室冷却においてF蒸発器14の温度を低温に維持する制御を行う。すなわち、圧縮機17の回転数にFファン15の回転数を連動させる制御中に圧縮機17の回転数fを監視していて、基底回転数以下になった時には、F蒸発器温度センサ53の検出温度tを見る(ステップS1−S4)。そして、F蒸発器温度tが第1の設定温度T1よりも高くなっていればFファン15を1段階(中速)、若しくは2段階(高速)アップする(ステップS5A,S6)。   The F fan control unit 62 performs control to maintain the temperature of the F evaporator 14 at a low temperature in the F chamber cooling. That is, during the control to link the rotation speed of the F fan 15 to the rotation speed of the compressor 17, the rotation speed f of the compressor 17 is monitored. Look at the detected temperature t (steps S1-S4). If the F evaporator temperature t is higher than the first set temperature T1, the F fan 15 is raised by one stage (medium speed) or two stages (high speed) (steps S5A and S6).

他方、F蒸発器温度tが第1の設定温度T1よりも高くなっていなければ、F室ドアが開かれたかどうかを判定し(ステップS11)、F室ドアが開かれた場合には、F蒸発器温度tが第2の設定温度T2(T1>T2)よりも高いか否かを判定する(ステップS5B)。そして、F室ドアが開かれ、かつ、F室温度がt≧T2であれば、Fファン15を1段階、若しくは2段階アップする(ステップS6)。   On the other hand, if the F evaporator temperature t is not higher than the first set temperature T1, it is determined whether or not the F chamber door is opened (step S11). It is determined whether or not the evaporator temperature t is higher than the second set temperature T2 (T1> T2) (step S5B). Then, if the F chamber door is opened and the F chamber temperature is t ≧ T2, the F fan 15 is increased by one step or two steps (step S6).

これにより、本実施の形態によれば、第1の実施の形態と第2の実施の形態の効果を同時に奏することができ、エネルギー効率の向上が図れる。   Thereby, according to this Embodiment, the effect of 1st Embodiment and 2nd Embodiment can be show | played simultaneously, and the improvement of energy efficiency can be aimed at.

1 冷蔵庫本体
2 冷凍サイクル
4 冷蔵室
5 冷凍室
10 冷蔵室冷却用蒸発器(R蒸発器)
11 冷蔵室冷却ファン(Rファン)
14 冷凍室冷却用蒸発器(F蒸発器)
15 冷凍室冷却ファン(Fファン)
17 圧縮機
18 凝縮器
19 冷媒供給装置(三方弁)
51 冷蔵室温度センサ(RTセンサ)
52 冷凍室温度センサ(FTセンサ)
53 F蒸発器温度センサ(FDTセンサ)
54 冷凍室ドアセンサ
61 圧縮機制御部
62 Fファン制御部
DESCRIPTION OF SYMBOLS 1 Refrigerator body 2 Refrigeration cycle 4 Refrigerating room 5 Freezing room 10 Refrigerating room cooling evaporator (R evaporator)
11 Cooling room cooling fan (R fan)
14 Refrigerating room cooling evaporator (F evaporator)
15 Freezer cooling fan (F fan)
17 Compressor 18 Condenser 19 Refrigerant supply device (3-way valve)
51 Cold room temperature sensor (RT sensor)
52 Freezer temperature sensor (FT sensor)
53 F evaporator temperature sensor (FDT sensor)
54 Freezer compartment door sensor 61 Compressor controller 62 F fan controller

Claims (2)

冷媒を圧縮する圧縮機と、前記圧縮機からの冷媒を凝縮する凝縮器と、前記凝縮器を出た冷媒を気化させる蒸発器と、前記蒸発器にて冷却された冷気を冷凍室に循環させる冷却ファンとを有する冷凍サイクルと、
冷凍室温度を検出する冷凍室温度センサと、
前記蒸発器の温度を検出する蒸発器温度センサと、
前記冷凍室温度センサの検出する冷凍室検出温度と冷凍室目標温度との温度差に応じてPID制御し、前記温度差が所定範囲まで縮小した時に圧縮機回転を停止させる制御をする圧縮機制御手段と、
前記圧縮機制御手段による前記圧縮機回転と連動して前記冷却ファンを回転させる通常の冷凍室冷却運転中に、前記圧縮機回転数が所定の回転数設定値よりも低く、かつ、前記蒸発器検出温度が所定の設定温度よりも高い条件になれば前記冷却ファンを通常の回転数よりも所定値だけ高い回転数にて回転させる制御をする冷却ファン制御手段とを備えたことを特徴とする冷蔵庫。
A compressor that compresses the refrigerant; a condenser that condenses the refrigerant from the compressor; an evaporator that vaporizes the refrigerant that exits the condenser; and the cold air that is cooled by the evaporator is circulated to the freezer compartment. A refrigeration cycle having a cooling fan;
A freezer temperature sensor for detecting the freezer temperature;
An evaporator temperature sensor for detecting the temperature of the evaporator;
Compressor control that performs PID control according to the temperature difference between the freezer compartment detected temperature detected by the freezer temperature sensor and the freezer target temperature, and stops the compressor rotation when the temperature difference is reduced to a predetermined range. Means,
Wherein in conjunction with the compressor rotation by the compressor control unit in the cooling fan normal freezing chamber you want to rotate. The cooling operation, the compressor speed is lower than a predetermined rotational speed set value, and the evaporating and wherein the vessel detected temperature with a cooling fan control means for controlling to rotate the cooling fan if at higher by a predetermined value than a normal rotational speed rotational speed higher conditions than the predetermined set temperature Refrigerator.
冷凍室ドアの開閉を検出するドアセンサを備え、
前記冷却ファン制御手段は、前記圧縮機回転数が所定の回転数設定値よりも低く、かつ、前記蒸発器検出温度が所定の設定温度よりも高く、かつ、前記ドアセンサが冷凍室ドア開を検出した時に、所定の時間だけ前記冷却ファンを通常の回転数よりも所定値だけ高い回転数にて回転させる制御をすることを特徴とする請求項1に記載の冷蔵庫。
It has a door sensor that detects opening and closing of the freezer compartment door,
The cooling fan control means is configured such that the compressor rotational speed is lower than a predetermined rotational speed set value, the evaporator detection temperature is higher than a predetermined set temperature, and the door sensor detects opening of a freezer compartment door. 2. The refrigerator according to claim 1, wherein the refrigerator is controlled to rotate the cooling fan at a rotation speed higher than a normal rotation speed by a predetermined value for a predetermined time.
JP2009216028A 2009-09-17 2009-09-17 refrigerator Active JP5624295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216028A JP5624295B2 (en) 2009-09-17 2009-09-17 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216028A JP5624295B2 (en) 2009-09-17 2009-09-17 refrigerator

Publications (2)

Publication Number Publication Date
JP2011064412A JP2011064412A (en) 2011-03-31
JP5624295B2 true JP5624295B2 (en) 2014-11-12

Family

ID=43950851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216028A Active JP5624295B2 (en) 2009-09-17 2009-09-17 refrigerator

Country Status (1)

Country Link
JP (1) JP5624295B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140477B2 (en) * 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption
US9140478B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control for refrigeration with reduced energy consumption
US9140479B2 (en) * 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
JP6429595B2 (en) * 2014-11-04 2018-11-28 シャープ株式会社 refrigerator
KR102589265B1 (en) * 2018-12-28 2023-10-13 엘지전자 주식회사 Refrigerator and method for controlling the same
KR102617277B1 (en) * 2018-12-28 2023-12-26 엘지전자 주식회사 Refrigerator and method for controlling the same
CN115773628B (en) * 2022-12-08 2024-08-27 珠海格力电器股份有限公司 Rotational speed control method and refrigeration equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986565U (en) * 1982-11-30 1984-06-12 株式会社東芝 refrigerator
JPH02293563A (en) * 1989-05-08 1990-12-04 Daikin Ind Ltd Refrigerating plant
JP3499396B2 (en) * 1997-03-21 2004-02-23 株式会社東芝 refrigerator
JP3593474B2 (en) * 1999-09-01 2004-11-24 株式会社東芝 Refrigerator control method
JP4011314B2 (en) * 2001-08-23 2007-11-21 株式会社東芝 refrigerator
JP4059474B2 (en) * 2001-10-12 2008-03-12 株式会社東芝 refrigerator
JP2006189209A (en) * 2005-01-07 2006-07-20 Sharp Corp Cooling storage
JP2007010220A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Refrigerating unit and refrigerator comprising the same
JP2008070031A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Cooling storage
JP2008241065A (en) * 2007-03-26 2008-10-09 Daikin Ind Ltd Refrigerating device and oil returning method of refrigerating device
JP4289427B2 (en) * 2007-09-28 2009-07-01 ダイキン工業株式会社 Refrigeration equipment
JP2009133567A (en) * 2007-11-30 2009-06-18 Calsonic Kansei Corp Gas-liquid separator and air conditioning device
JP2009168279A (en) * 2008-01-11 2009-07-30 Hoshizaki Electric Co Ltd Cooling storage
JP5033655B2 (en) * 2008-01-22 2012-09-26 三洋電機株式会社 Cooling device and open showcase

Also Published As

Publication number Publication date
JP2011064412A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4954484B2 (en) Cooling storage
JP5624295B2 (en) refrigerator
JP6334146B2 (en) refrigerator
WO2007132605A1 (en) Cooling storage compartment and its operating method
KR20120012613A (en) Refrigerator and control method thereof
WO2005038365A1 (en) Cooling storage
KR20060110687A (en) Method of controlling refrigerator
JP6081104B2 (en) refrigerator
JP4178646B2 (en) refrigerator
JP5856435B2 (en) refrigerator
KR20190050080A (en) Refrigerator and method for controlling the same
JP2005331239A (en) Refrigerator
JP2009014313A (en) Refrigerator
JP2011153788A (en) Refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
JPH11148761A (en) Refrigerator
JPH11304328A (en) Cooling operation controller of refrigerator
JP5862867B2 (en) refrigerator
JP2006214614A (en) Refrigerator and its control method
JP2013068388A (en) Refrigerator
KR20200062698A (en) Refrigerator and method for controlling the same
JP2003329354A (en) Controller for refrigerator-freezer
JP2013053801A (en) Refrigerator
JP2013194981A (en) Refrigerator
JP2012082984A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

R150 Certificate of patent or registration of utility model

Ref document number: 5624295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350