JPH02293563A - Refrigerating plant - Google Patents

Refrigerating plant

Info

Publication number
JPH02293563A
JPH02293563A JP1114544A JP11454489A JPH02293563A JP H02293563 A JPH02293563 A JP H02293563A JP 1114544 A JP1114544 A JP 1114544A JP 11454489 A JP11454489 A JP 11454489A JP H02293563 A JPH02293563 A JP H02293563A
Authority
JP
Japan
Prior art keywords
value
degree
superheat degree
partial load
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1114544A
Other languages
Japanese (ja)
Inventor
Toshio Nishio
西尾 利夫
Osami Kataoka
片岡 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1114544A priority Critical patent/JPH02293563A/en
Publication of JPH02293563A publication Critical patent/JPH02293563A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To previously avoid liquid return upon restarting by providing superheat degree altering means for obtaining larger suction superheat degree than suction superheat degree at the time of full load operation, at the time of partial load operation. CONSTITUTION:Superheat degree altering means 7 for obtaining larger suction superheat degree than that at a full load operation, at the time of partial load operation is provided. The means 7 has temperature difference correcting means for correcting temperature difference to be detected at the inlet of an evaporator 5 to a smaller value than an actual value. A switch A is opened, a switch B is closed at the time of partial load, an inlet temperature sensor T1 is inserted in series with a quasi-resistor R, its quasi-resistance value is added to the resistance value to meet the detected inlet temperature of the sensor T1 to provide a larger apparent value than the actually detected inlet temperature and to input it to a regulator 6, and the difference (T2-T1) between the detected outlet temperature by an outlet temperature sensor T2 and the inlet temperature is corrected to a smaller value than the actual value. Thus, larger suction superheat degree than that at the time of full load is obtained, and an accident due to liquid return is prevented at the time of restarting.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、容量制御可能な圧縮機を備え、膨張機構とし
て電動式膨張弁を用いた冷凍装置における主として部分
負荷運転時の再起動の際に生じる液パックの防止策に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a refrigeration system equipped with a capacity-controllable compressor and using an electric expansion valve as an expansion mechanism, mainly during restart during partial load operation. Concerning measures to prevent liquid packs that occur in

(従来の技術) 従来、電動式膨張弁を用い、蒸発器の出入口温度差に基
づいてその弁開度を調節し、吸入ガスの過熱度を所定の
一定値に制御するようにしたものは、例えば特開昭61
−38671号公報等により知られている。このように
、吸入ガスに常時一定の過熱度を付与するのは、圧縮機
に戻される吸入ガスを常時飽和状態にして、液冷媒の戻
りを防止し、主に液圧縮による過剰な圧力上昇ひいては
機械的損傷を未然に回避するためである。
(Prior Art) Conventionally, an electric expansion valve is used, and the valve opening degree is adjusted based on the temperature difference between the entrance and exit of the evaporator, and the degree of superheating of the intake gas is controlled to a predetermined constant value. For example, JP-A-61
It is known from Publication No.-38671 and the like. In this way, the reason why the suction gas is always given a constant degree of superheating is to keep the suction gas returned to the compressor in a saturated state and prevent the liquid refrigerant from returning. This is to prevent mechanical damage.

(発明が解決しようとする課題) しかし、通常の冷凍装置では、冷却水温等の負荷に応じ
て適性な運転が行えるよう、その圧縮機に、圧縮途上の
ガスを一部吸入側へパイバスするバイパス方式や、イン
バータ制御による回転数の変更で単位時間当たりの圧縮
回数を変更するインバー夕方式等の容量制御機構を具備
させているため、吸入過熱度を単に一定値に制御するだ
けでは、全負荷に対し低容量とされる部分負荷運転時、
次の問題が起こるのである。
(Problem to be solved by the invention) However, in ordinary refrigeration equipment, in order to perform appropriate operation according to the load such as cooling water temperature, the compressor has a bypass that bypasses a part of the gas that is being compressed to the suction side. Because it is equipped with a capacity control mechanism such as an inverter evening type that changes the number of compressions per unit time by changing the rotation speed using inverter control, it is not possible to simply control the suction superheat to a constant value. During partial load operation, which is considered to have a low capacity,
The following problem occurs.

すなわち、部分負荷運転時、圧縮機の低容量化に伴い、
圧縮機に吸入される冷媒の流速つまり蒸発器に単位時間
あたりに流通される冷媒の流量が全負荷時に比べて低下
してしまうため、全負荷時と同じ吸入過熱度になるよう
に電動式膨張弁の開度を制御していたのでは、低下した
冷媒流量に対して必−要な過熱をつけるための蒸発器伝
熱面積が小さくて済むため、乾き状態の伝熱管が少なく
なり、蒸発器に液状の冷媒が溜りやす《なってしまう。
In other words, during partial load operation, as the capacity of the compressor decreases,
Since the flow rate of refrigerant sucked into the compressor, that is, the flow rate of refrigerant flowing to the evaporator per unit time, is lower than when it is at full load, electric expansion is used to maintain the same degree of suction superheat as when it is at full load. If the opening degree of the valve was controlled, the evaporator heat transfer area needed to generate the necessary superheat for the reduced refrigerant flow rate would be small, which would reduce the number of dry heat transfer tubes and reduce the evaporator heat transfer area. Liquid refrigerant tends to accumulate in the area.

そして、この吠態で冷却水温等の負荷が設定値に到達し
て圧縮機の運転を中断し、再び起動を行うような場合に
は、蒸発器に寝込んだ液冷媒が圧縮機に吸入されること
になり、該液バックによる過剰な液圧縮で圧縮機が機械
的損傷を招くおそれが生じるのである。
Then, when the load such as the cooling water temperature reaches the set value in this state and the compressor operation is interrupted and restarted, the liquid refrigerant that has settled in the evaporator is sucked into the compressor. As a result, excessive liquid compression due to the liquid bag may cause mechanical damage to the compressor.

本発明の目的は、部分負荷運転時に確保する吸入過熱度
を全負荷時のそれに対し大きい値に変更することにより
、再起動に伴う液パックを未然に回避できる冷凍装置を
提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigeration system that can avoid liquid pack caused by restart by changing the suction superheat degree secured during partial load operation to a value larger than that during full load operation.

(課題を解決するための手段) そこで、全負荷と部分負荷に対応して容量制御を行う圧
縮機(1)と、凝縮器(3)、蒸発器(5)、及び該蒸
発器(5)の出入口で検出される温度差に基づいて吸入
過熱度を設定値に制御する電動式膨張弁(4)とを備え
た冷凍装置において、部分負荷運転峙、全負荷運転時の
吸入過熱度よりも大きい吸入過熱度を確保する過熱度変
更手段(7)を設けることにした。
(Means for solving the problem) Therefore, a compressor (1), a condenser (3), an evaporator (5), and the evaporator (5) that perform capacity control in response to full load and partial load are provided. In a refrigeration system equipped with an electric expansion valve (4) that controls the degree of suction superheat to a set value based on the temperature difference detected at the entrance and exit of the It was decided to provide superheat degree changing means (7) to ensure a large suction superheat degree.

この場合、前記過熱度変更手段(7)の好適な例として
、該変更手段(7)を、部分負荷運転時、蒸発器(5)
の出入口で検出される温度差を実際の値よりも小さい値
に補正する検出温度差補正手段で構成する。
In this case, as a preferable example of the superheat degree changing means (7), the changing means (7) may be set to the evaporator (5) during partial load operation.
The temperature difference correcting means corrects the temperature difference detected at the entrance/exit to a value smaller than the actual value.

又、検出温度差の補正による過熱度変更手段(7)を用
いる場合、連続的に変化する部分負荷率に応じて補正値
を連続的に変更する連続変更手段を具備させるのも効果
的である。
Furthermore, when using the superheat degree changing means (7) by correcting the detected temperature difference, it is also effective to provide a continuous changing means that continuously changes the correction value in accordance with the continuously changing partial load factor. .

(作用) 蒸発器(5)への冷媒の通過流速が全負荷時に対し低下
される部分負荷時、その流速低下に見合う大きな吸入過
熱度が確保されるため、蒸発器(5)での液冷媒の滞留
が低減でき、運転を中断した後の再起動時に、圧縮機(
1)に多量の液冷媒が吸入される事態を回避できるので
ある。
(Function) At partial load, where the flow rate of refrigerant passing through the evaporator (5) is lower than that at full load, a large degree of suction superheat commensurate with the decrease in flow rate is ensured, so that the liquid refrigerant in the evaporator (5) This reduces the amount of stagnation in the compressor (
1) The situation where a large amount of liquid refrigerant is inhaled can be avoided.

この場合、゛検出温度差を小さく補正する手段によれば
、吸入過熱度の設定値自体は変更することなく、部分負
荷時の過熱度を太き《することができ、制御性の向上が
図られる。
In this case, by means of correcting the detected temperature difference to a smaller value, it is possible to increase the degree of superheating at partial load without changing the set value of the suction superheating degree itself, resulting in improved controllability. It will be done.

又、連続的に補正値を変更する場合には、連続的に変化
する部分負荷率に応じて、実際に調節する過熱度を適性
に設定でき、負荷にマッチしたきめ細かな制御を行うこ
とができる。
In addition, when changing the correction value continuously, the degree of superheat to be actually adjusted can be set appropriately according to the continuously changing partial load factor, allowing fine-grained control that matches the load. .

(実施例) 第2図に示すものは、圧縮機(1)の吐出側に、冷却水
配管(30)を配設する凝縮器(3)、弁駆動モータ(
40)で駆動される電動式膨張弁(4)、及び空調用冷
熱源等として用いる冷水又はブラインの取出管(50)
を配設する蒸発器(5)を順次接続し、所謂冷凍サイク
ルを構成したものである。
(Example) The one shown in Fig. 2 includes a condenser (3) provided with a cooling water pipe (30) on the discharge side of the compressor (1), a valve drive motor (
40), and a cold water or brine outlet pipe (50) used as a cold source for air conditioning, etc.
A so-called refrigeration cycle is constructed by sequentially connecting the evaporators (5) provided with the evaporators (5).

圧縮機(1)は、インパータ制御回路(10)で駆動さ
れるモータ(11)を備え、該モータ(11)への供給
電源周波数の変更で回転数を調節し、100%から0%
近くにわたる広い範囲で運転容量を変更できるようにし
ている。
The compressor (1) is equipped with a motor (11) driven by an imperter control circuit (10), and adjusts the rotation speed by changing the frequency of the power supply to the motor (11), from 100% to 0%.
This allows the operating capacity to be changed over a wide range of nearby areas.

電動式膨張弁(4)は、蒸発器(6)の入口及び出口に
介装する入口温度センサー(T1)及び出口温度センサ
ー(T2)の検出温度差が予め設定した吸入過熱度の設
定値に等しくなるように、調節器(6)を介して開度調
節されるものである。すなわち、出口温度センサー(T
2)の検出値から入口温度センサー(T1)の検出値を
引いた温度差(T2−TI)が実際の過熱度であり、こ
れが設定値に対して小さい場合は、過熱度が不足し蒸発
器(5)出口側の冷媒が湿りぎみとなるため、第1図に
示すように、調節器(6)の切換スイッチ(60)を閉
側に切換え、膨張弁(4)を閉じる側に作動させる弁駆
動モータ(40)の第1コイル(4a)を励磁して膨張
弁(4)の開度を縮小し、蒸発器(5)の通過冷媒量を
減少させて過熱度を増大させるのである。一方、前記温
度差(T2−TI)が設定値に対し大きい場合は、逆に
過熱度が必要以上に付き過ぎているため、切換スイッチ
(6o)を開側にして膨張弁(4)を開く側に作動させ
る第2コイル(4b)を励磁し膨張弁(4)の開度を拡
大して過熱度を低減させるのである。
The electric expansion valve (4) is configured so that the difference in temperature detected by an inlet temperature sensor (T1) and an outlet temperature sensor (T2) installed at the inlet and outlet of the evaporator (6) reaches a preset value of the suction superheat degree. The opening degree is adjusted via the regulator (6) so that the openings are equal. That is, the outlet temperature sensor (T
The temperature difference (T2 - TI) obtained by subtracting the detected value of the inlet temperature sensor (T1) from the detected value of 2) is the actual degree of superheating. If this is smaller than the set value, the degree of superheating is insufficient and the evaporator (5) Since the refrigerant on the outlet side becomes too wet, as shown in Figure 1, switch the changeover switch (60) of the regulator (6) to the close side and operate the expansion valve (4) to the close side. The first coil (4a) of the valve drive motor (40) is energized to reduce the opening degree of the expansion valve (4), thereby reducing the amount of refrigerant passing through the evaporator (5) and increasing the degree of superheat. On the other hand, if the temperature difference (T2-TI) is larger than the set value, the degree of superheating is too high than necessary, and the changeover switch (6o) is turned to the open side to open the expansion valve (4). The second coil (4b) is energized to increase the opening degree of the expansion valve (4), thereby reducing the degree of superheating.

尚、第1図において、(S)は運輯中オンとなり停止中
オフとなる接点であり、該接点(S)がオンになる運転
中は、リレー(Y)が励磁されてそのブレーク設定(Y
−b)が開かれ、前記第1コイル(4a)の強制励磁線
路が開かれて専ら調節器(6)による弁開度調節が行わ
れる。一方、停止に至ると、ブレーク接点(Y−b)は
閉じられ、前記第1コイル(4a)は強制励磁されて膨
張弁(4)は全閉状態とされる。運転を再開すると、全
閉状態にある膨張弁(4)の下流側即ち蒸発器(5)に
滞留した冷媒は、圧縮機(1)にポンプダウンされ、膨
張弁(,、4).の上流側の凝縮器(3)等に溜め込ま
れる。このポンプダウン運転の終了は、例えば吸入ガス
の圧力が一定値以下に低下することにより検出される。
In Fig. 1, (S) is a contact that is turned on during operation and turned off when stopped, and when the contact (S) is turned on during operation, the relay (Y) is energized and its break setting ( Y
-b) is opened, the forced excitation line of the first coil (4a) is opened, and the valve opening degree is adjusted exclusively by the regulator (6). On the other hand, when the engine stops, the break contact (Y-b) is closed, the first coil (4a) is forcibly excited, and the expansion valve (4) is fully closed. When the operation is resumed, the refrigerant that has accumulated on the downstream side of the fully closed expansion valve (4), that is, in the evaporator (5), is pumped down to the compressor (1), and the refrigerant is pumped down to the compressor (1), and the refrigerant is pumped down to the compressor (1). is stored in the condenser (3) etc. on the upstream side. The end of this pump-down operation is detected, for example, when the pressure of the intake gas drops below a certain value.

(PD)は該ポンプダウン運転の終了でオンとなる接点
であり、該接点(PD)がオンになると、リレー(X)
を励磁してそのメイク接点(X−a)を閉じ、前記第2
コイル(4b)の励磁線路を成立させる。同時に、第2
図において膨張弁(4)の入口に介装した電磁弁(SV
)を開き、その後は通常の冷凍サイクルに従う運転がな
される。
(PD) is a contact that turns on when the pump down operation ends, and when the contact (PD) turns on, the relay (X)
is energized to close its make contact (X-a), and the second
Establish an excitation line for the coil (4b). At the same time, the second
In the figure, a solenoid valve (SV
), and then operation follows the normal refrigeration cycle.

以上の構成で、第1図に示すように、部分負荷運転時、
全負荷運転時の吸入過熱度よりも大きい吸入過熱度を確
保する過熱度変更手段(7)を設ける。この変更手段(
7)は、部分負荷時、蒸発器(5)の出入口で検出され
る温度差を実際の値よりも小さい値に補正する温度差補
正手段で構成するものである。すなわち、部分負荷時、
第1スイッチ(A)をオフにし、第2スイッチ(B)を
オンにして、入口温度センサー(T1)に疑似抵抗(R
)を直列に挿入し、該疑似抵抗値をセンサー(T1)の
検出入口温度に見合う抵抗値に加算することにより、実
際の検出入口温度よりも大きく見せかけて調節器(6)
に入力し、結果的に、出口温度センサー(T2)による
検出出口温度と入口温度との差(T2−TI)を実際の
値よりも小さく補正するものである。
With the above configuration, as shown in Figure 1, during partial load operation,
Superheat degree changing means (7) is provided to ensure a suction superheat degree greater than the suction superheat degree during full-load operation. This means of change (
7) comprises a temperature difference correction means for correcting the temperature difference detected at the entrance and exit of the evaporator (5) to a value smaller than the actual value during partial load. That is, at partial load,
The first switch (A) is turned off, the second switch (B) is turned on, and the pseudo resistance (R) is applied to the inlet temperature sensor (T1).
) in series and adding the pseudo resistance value to the resistance value corresponding to the detected inlet temperature of the sensor (T1), the regulator (6) is made to appear larger than the actual detected inlet temperature.
As a result, the difference (T2-TI) between the outlet temperature and the inlet temperature detected by the outlet temperature sensor (T2) is corrected to be smaller than the actual value.

前記第1及び第2スイッチ(A)(B)は、一方がオン
ならば他方がオフとなる関係にあり、該スイッチの操作
は、運転容量つまり負荷率を決めるインバータ制御回路
(10)からの周欅数設定値に連動させて行うようにし
ている。因みに、100%〜50%の容量時を全負荷運
転とみなしてAをオン、bをオフにし、49%以下の容
量時を部分負荷運転とみなして逆にAをオフ、Bをオン
にしている。
The first and second switches (A) and (B) are in a relationship such that when one is on, the other is off, and the operation of the switch is controlled by the inverter control circuit (10) that determines the operating capacity, that is, the load factor. This is done in conjunction with the Shukeyaki number setting value. By the way, when the capacity is 100% to 50%, it is considered full load operation, and A is turned on and b is turned off.When the capacity is 49% or less, it is considered to be partial load operation, and conversely, A is turned off and B is turned on. There is.

尚、、疑似抵抗(R)は可変抵抗器で構成しており、補
正値を変更できるようにしている。又、蒸発器(5)の
検出出入口温度差を実際の値よりも小さく補正するやり
方きしては、入口温度センサー(T1)に直列にこの疑
似抵抗を挿入する他、部分負荷時、出口温度センサー(
T2)に並列に抵抗を挿入し、実際の検出出口温度より
も小さくするようにしても同じ効果が得られる。
Incidentally, the pseudo resistance (R) is constituted by a variable resistor, so that the correction value can be changed. In addition, in order to correct the detected inlet and outlet temperature difference of the evaporator (5) to be smaller than the actual value, in addition to inserting this pseudo-resistance in series with the inlet temperature sensor (T1), at partial load, the outlet temperature sensor(
The same effect can be obtained by inserting a resistor in parallel with T2) to make it lower than the actual detected outlet temperature.

以上により、部分負荷運転時は、全負荷時よりも大きな
吸入過熱度が確保できるため、蒸発器(5)を流通する
冷媒の流速が低下して,も、その低下した流速に見合う
膨張弁(4)の開度調節がなされ、蒸発器(5)での冷
媒の蒸発気化作用が十分に行われ、液冷媒の状態のまま
蒸発器(5)に溜まる量を減らせるのである。従って、
圧縮機(1)の運転の中断後、再起動する際の液バック
量が減らせ、液圧縮による過剰な圧力増大を防止できる
のである。
As a result of the above, a larger degree of suction superheat can be secured during partial load operation than during full load operation, so even if the flow rate of the refrigerant flowing through the evaporator (5) decreases, the expansion valve ( 4) is adjusted, the refrigerant is sufficiently evaporated in the evaporator (5), and the amount of liquid refrigerant that remains in the evaporator (5) can be reduced. Therefore,
After the operation of the compressor (1) is interrupted, the amount of liquid back up when the compressor (1) is restarted can be reduced, and an excessive increase in pressure due to liquid compression can be prevented.

又、部分負荷時の吸入過熱度を全負荷に対し大きくする
ために、検出側の値を実際よりも小さくみせかけるよう
にしているため、調節器(6)1こ設定する吸入過熱度
の設定値自体は、全負荷、部分負荷に拘わらず一つに定
めることができ、制御硅゛養向上できる利点もある。
In addition, in order to make the suction superheat degree at partial load larger than the full load, the value on the detection side is made to appear smaller than the actual value, so the suction superheat degree setting is set by one regulator (6). The value itself can be determined to be the same regardless of whether the load is full or partial, which has the advantage of improving control efficiency.

“  ところで上記実施例では、疑似抵抗(R)を二つ
′だ号としたが、第3図に示すように挿入する疑似抵抗
を複数とし、第4図に示すように、運転容量の変化範囲
を複数の領域(■,■,■,■)に区分し、その運転領
域の減少に伴い、順次、疑似抵抗(Rl.R2,R3)
の挿入個数を増やして合成疑似抵抗値を増加し、吸入過
熱度を増大させて更にきめの細かい補正を行うようにし
てもよい。この場合にも、各疑似抵抗の挿入と解除とを
行う各一対のスイッチ(AI,Bl)(A2.B2)(
A3.83)は、運転容量を決めるインバータ制御回路
(10)からの周波数設定値に連動して作動できるよう
にするのである。
"By the way, in the above embodiment, the pseudo resistance (R) is numbered 2', but as shown in Fig. 3, a plurality of pseudo resistances are inserted, and as shown in Fig. 4, the range of change in operating capacity is changed. is divided into multiple regions (■, ■, ■, ■), and as the operating region decreases, the pseudo resistance (Rl.R2, R3) is
The number of insertions may be increased to increase the composite pseudo resistance value, and the degree of suction superheat may be increased to perform more fine-grained correction. In this case as well, each pair of switches (AI, Bl) (A2, B2) (
A3.83) enables operation in conjunction with the frequency setting value from the inverter control circuit (10) that determines the operating capacity.

更に、第5図に示すように、インパータ制御回路(10
)からの周波数設定値の変化に連続的に追従する可変抵
抗を設け、これを直接に、又は図示の通り周波数一抵抗
変換器(16)を介して、入口温度センサー(T1)に
直列に接続し、挿入疑似抵抗値を、第6図に示すように
、連続的に変化する運転容量の減少により連続的に増加
し、種々変化する部分負荷率に応じて無段階に補正して
もよく、この場合には、更に精密な制御が行える。尚、
以上の説明における圧縮機(1)としては、ロータリー
ベーン式、レシプロ式、スクロール式、スクリュー式等
の種々の型式のものが使用される。
Furthermore, as shown in FIG. 5, an inverter control circuit (10
), which is connected in series to the inlet temperature sensor (T1) either directly or via a frequency-to-resistance converter (16) as shown. However, as shown in FIG. 6, the insertion pseudo resistance value may be continuously increased due to the continuously changing operating capacity decrease, and may be steplessly corrected in accordance with the variously changing partial load factors. In this case, even more precise control can be achieved. still,
As the compressor (1) in the above description, various types are used, such as a rotary vane type, a reciprocating type, a scroll type, and a screw type.

又、以上説明した実施例では、インパータ制御回路(1
0)による容量制御機構を用いたが、その他、バイパス
方式等による機械的に容量制御を行うものにも適用でき
ることは云うまでもない。
Furthermore, in the embodiment described above, the inperter control circuit (1
Although the capacity control mechanism according to No. 0) was used, it goes without saying that it is also applicable to other mechanical capacity control mechanisms such as a bypass method.

(発明の効果) 以上、本発明によれば、蒸発器(5)への冷媒の通過流
速が全負荷時に対し低下される部分負荷時、その流速低
下に見合う大きな吸入過熱度が確保されるため、蒸発器
(5)での液冷媒の滞留を低減でき、運転を中断した後
の再起動時に、圧縮機(1)に多量の液冷媒が吸入され
る事態を回避でき、該液バックに上る機械的損傷事故等
を未然に防止できるのである。
(Effects of the Invention) As described above, according to the present invention, when the flow rate of refrigerant passing through the evaporator (5) is reduced compared to the time of full load, a large suction superheat degree commensurate with the decrease in flow rate is ensured. , it is possible to reduce the accumulation of liquid refrigerant in the evaporator (5), and it is possible to avoid a situation where a large amount of liquid refrigerant is sucked into the compressor (1) when restarting after the operation is interrupted, and it is possible to prevent the liquid refrigerant from rising into the liquid bag. Mechanical damage accidents can be prevented.

この場合、蒸発器(5)の出入口で検出される温度差を
小さく補正することにより部分負荷時の吸入過熱度を全
負荷時に対し大きくすることにすれば、吸入過熱度の設
定値自体は全負荷と部分負荷との別に拘わらず一つの値
に定めることができ、制御性の向上をも図ることができ
る。
In this case, if the suction superheat degree at partial load is made larger than that at full load by correcting the temperature difference detected at the entrance and exit of the evaporator (5) to a small value, the set value of the suction superheat degree itself becomes It is possible to set the value to one value regardless of whether it is a load or a partial load, and it is also possible to improve controllability.

又、検出温度差の補正により過熱度を変更する場合であ
ってその捕正値を部分負荷率に応じて連続的に変更する
場合には、連続的に種々変化する部分負荷率に対して実
際の過熱度を適性に設定でき、負荷にマッチしたきめ細
かな制御を行うことができる。
In addition, when changing the degree of superheating by correcting the detected temperature difference, and when changing the corrected value continuously according to the partial load rate, the actual The degree of superheating can be set appropriately, allowing for fine-grained control that matches the load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる冷凍装置の第1実施例を示す
電気回路図、第2図は同冷媒配管系統図、第3図は同第
2実施例を示す要部の電気回路図、第4図はその制御を
説明する補正値の変化を示す図、第5図は無段階制御の
場合の電気回路図、第6図はその制御を説明する補正値
の変化を示す図である。 (−1)・・・・圧縮機 (3)・・・・凝縮器 (4)・・・・電動式膨張弁 ・・・・蒸発器 ・・・・過熱度変更手段 第5図 第1図 第2図 4電動大層気キ M転容t(′/c) 伏一周派数訊tl!.− ,l、)
FIG. 1 is an electric circuit diagram showing a first embodiment of the refrigeration system according to the present invention, FIG. 2 is a refrigerant piping system diagram, and FIG. 3 is an electric circuit diagram of main parts of the second embodiment. FIG. 4 is a diagram showing changes in correction values to explain the control, FIG. 5 is an electric circuit diagram in case of stepless control, and FIG. 6 is a diagram showing changes in correction values to explain the control. (-1)...Compressor (3)...Condenser (4)...Electric expansion valve...Evaporator...Superheat degree changing means Fig. 5 Fig. 1 Fig. 2 4 Electric large layer ki M transformation t('/c) Fukuichi round fact number tl! .. −,l,)

Claims (1)

【特許請求の範囲】 1)全負荷と部分負荷に対応して容量制御を行う圧縮機
(1)と、凝縮器(3)、蒸発器(5)、及び該蒸発器
(5)の出入口で検出される温度差に基づいて吸入過熱
度を設定値に制御する電動式膨張弁(4)とを備えた冷
凍装置において、部分負荷運転時、全負荷運転時の吸入
過熱度よりも大きい吸入過熱度を確保する過熱度変更手
段(7)を備えていることを特徴とする冷凍装置。 2)過熱度変更手段(7)が、部分負荷運転時、蒸発器
(5)の出入口で検出される温度差を実際の値よりも小
さい値に補正する検出温度差補正手段である請求項1記
載の冷凍装置。 3)連続的に変化する部分負荷率に応じて補正値を連続
的に変更する連続変更手段を備える請求項2記載の冷凍
装置。
[Claims] 1) A compressor (1) that performs capacity control in response to full load and partial load, a condenser (3), an evaporator (5), and an inlet/outlet of the evaporator (5). In a refrigeration system equipped with an electric expansion valve (4) that controls the degree of suction superheat to a set value based on the detected temperature difference, the degree of suction superheat during partial load operation is greater than the degree of suction superheat during full load operation. A refrigeration system characterized by comprising a superheat degree changing means (7) for ensuring a certain temperature. 2) Claim 1, wherein the superheat degree changing means (7) is a detected temperature difference correction means for correcting the temperature difference detected at the entrance and exit of the evaporator (5) to a value smaller than the actual value during partial load operation. Refrigeration equipment as described. 3) The refrigeration system according to claim 2, further comprising continuous changing means for continuously changing the correction value in accordance with a continuously changing partial load factor.
JP1114544A 1989-05-08 1989-05-08 Refrigerating plant Pending JPH02293563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114544A JPH02293563A (en) 1989-05-08 1989-05-08 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114544A JPH02293563A (en) 1989-05-08 1989-05-08 Refrigerating plant

Publications (1)

Publication Number Publication Date
JPH02293563A true JPH02293563A (en) 1990-12-04

Family

ID=14640436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114544A Pending JPH02293563A (en) 1989-05-08 1989-05-08 Refrigerating plant

Country Status (1)

Country Link
JP (1) JPH02293563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092354A (en) * 2007-10-12 2009-04-30 Fuji Koki Corp Valve control method and valve control device
JP2011064412A (en) * 2009-09-17 2011-03-31 Toshiba Corp Refrigerator
JP2013068405A (en) * 2011-09-09 2013-04-18 Osaka Gas Co Ltd Heat pump system and method of operating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984358U (en) * 1982-11-27 1984-06-07 株式会社東芝 Refrigeration cycle equipment
JPS6346347A (en) * 1986-08-11 1988-02-27 株式会社日立製作所 Refrigerant flow controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984358U (en) * 1982-11-27 1984-06-07 株式会社東芝 Refrigeration cycle equipment
JPS6346347A (en) * 1986-08-11 1988-02-27 株式会社日立製作所 Refrigerant flow controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092354A (en) * 2007-10-12 2009-04-30 Fuji Koki Corp Valve control method and valve control device
JP2011064412A (en) * 2009-09-17 2011-03-31 Toshiba Corp Refrigerator
JP2013068405A (en) * 2011-09-09 2013-04-18 Osaka Gas Co Ltd Heat pump system and method of operating the same

Similar Documents

Publication Publication Date Title
US5062274A (en) Unloading system for two compressors
US5771704A (en) Operation control apparatus for air conditioner
US5878810A (en) Air-conditioning apparatus
JPH0232546B2 (en)
KR0130756B1 (en) Unloading system and unloading methods for two stage compressor
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JP2000274859A (en) Refrigerator
JP4082435B2 (en) Refrigeration equipment
JP6160555B2 (en) Capacity control method for compressor of multi-source refrigeration system
JP2002106980A (en) Refrigerating device
JPH02293563A (en) Refrigerating plant
JPH04340046A (en) Operation control device of air conditioner
JP2001066000A (en) Heat pump type air conditioner and outdoor unit
JP4499863B2 (en) Multi-type air conditioner
JP6554903B2 (en) Air conditioner
JPH1151502A (en) Turbo refrigerating machine
JP2001263832A (en) Refrigerating cycle of refrigerator
JP3848098B2 (en) Air conditioner
JP4301546B2 (en) Refrigeration equipment
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
JPH0618104A (en) Oil-recovery operation controller for air conditioner
JP2008032391A (en) Refrigerating unit
JP2007147274A (en) Refrigerating device
JP3617742B2 (en) Scroll compressor and air conditioner
JP4111241B2 (en) Refrigeration equipment