JP2001263832A - Refrigerating cycle of refrigerator - Google Patents

Refrigerating cycle of refrigerator

Info

Publication number
JP2001263832A
JP2001263832A JP2000083679A JP2000083679A JP2001263832A JP 2001263832 A JP2001263832 A JP 2001263832A JP 2000083679 A JP2000083679 A JP 2000083679A JP 2000083679 A JP2000083679 A JP 2000083679A JP 2001263832 A JP2001263832 A JP 2001263832A
Authority
JP
Japan
Prior art keywords
compressor
refrigeration cycle
pressure
way valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000083679A
Other languages
Japanese (ja)
Inventor
Mutsumi Kato
睦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000083679A priority Critical patent/JP2001263832A/en
Publication of JP2001263832A publication Critical patent/JP2001263832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating cycle of a refrigerant capable of being started without necessity of a large torque without generating a difference of pressures between an inlet and an outlet of a compressor by maintaining separate high and low pressures of a condenser and an evaporator when the compressor is stopped. SOLUTION: The compressor, the condenser, a capillary tube, and the evaporator are sequentially connected. A four-way valve is provided between the condenser and the tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫における冷
凍サイクルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle in a refrigerator.

【0002】[0002]

【従来の技術】図3は、例えば特開平11−13257
7号公報に示された第一の従来例で、冷蔵庫の冷凍サイ
クルの冷媒流路を示す図である(防露パイプは図示せ
ず)。図4は、図3の運転中の冷凍サイクルにおける各
部の圧力変化を示すグラフである。
2. Description of the Related Art FIG.
FIG. 7 is a diagram illustrating a refrigerant flow path of a refrigeration cycle of a refrigerator in a first conventional example disclosed in Japanese Patent No. 7 (No. 7). FIG. 4 is a graph showing pressure changes at various points in the refrigeration cycle during operation of FIG.

【0003】図3に示すように、冷凍サイクルは圧縮機
1、コンデンサ2、ドライヤ3、毛細管4及び蒸発器5
を順番に接続している。図4の,のグラフは、図3
の,の位置で測定した圧力変化を示している。この
冷凍サイクル運転中(コンプオン)はでは高圧とな
り、冷媒が毛細管4を通り低圧となりでは低圧とな
る。一方、庫内温度が所定温度まで冷えて圧縮機1が停
止(コンプオフ)すると、コンデンサ2の高圧側にあっ
た冷媒は毛細管4を通って蒸発器5に流れ込み、高圧側
と低圧側の圧力は均衡する。このとき圧縮機1を通
過して高圧側から低圧側に冷媒は流れない。
As shown in FIG. 3, a refrigerating cycle includes a compressor 1, a condenser 2, a dryer 3, a capillary tube 4, and an evaporator 5.
Are connected in order. The graph of, in FIG.
The pressure change measured at the position indicated by, is shown. During the refrigeration cycle operation (comp on), the pressure becomes high, and when the refrigerant becomes low pressure through the capillary tube 4, it becomes low. On the other hand, when the temperature in the refrigerator is cooled to a predetermined temperature and the compressor 1 is stopped (compressed off), the refrigerant on the high pressure side of the condenser 2 flows into the evaporator 5 through the capillary tube 4, and the pressures on the high pressure side and the low pressure side are reduced. Balance. At this time, the refrigerant does not flow from the high pressure side to the low pressure side after passing through the compressor 1.

【0004】しかしながら、冷凍サイクルの停止(コン
プオフ)時には、高圧側の冷媒が蒸発器5に流れ込むこ
とにより、蒸発器5の温度は上昇して庫内温度も上昇
し、そのため、冷蔵庫の冷凍サイクルとしてはロスが生
じるという問題があった。
However, when the refrigeration cycle is stopped (comp-off), the refrigerant on the high-pressure side flows into the evaporator 5, so that the temperature of the evaporator 5 rises and the temperature inside the refrigerator also rises. Had a problem that loss occurred.

【0005】次に、第二の従来例につき説明する。図5
は、例えば特開平11−132577号公報に示された
第二の従来例で、冷蔵庫の冷凍サイクルの冷媒流路を示
す図である(防露パイプは図示せず)。図6は、図5の
運転中の冷凍サイクルにおける各部の圧力変化を示すグ
ラフである。
Next, a second conventional example will be described. FIG.
FIG. 1 is a view showing a refrigerant flow path of a refrigeration cycle of a refrigerator in a second conventional example disclosed in, for example, Japanese Patent Application Laid-Open No. 11-132577 (a dew-proof pipe is not shown). FIG. 6 is a graph showing pressure changes at various points in the refrigeration cycle during operation of FIG.

【0006】図5に示すように冷凍サイクルには、第一
の従来例に設けられていない三方弁7、バイパスパイプ
(バイパス配管)8、逆止弁9を設けており、第一の従
来例における冷凍サイクルのロスを防止している。図6
において、,,,のグラフは図5の,,
,の位置で測定した圧力変化を示している。図5に
おいて、この冷凍サイクルはコンデンサ2と毛細管4と
の間に三方弁7を設け、該三方弁7と圧縮機1とを繋ぐ
バイパスパイプ8とを設けている。また、圧縮機1と蒸
発器5の間に逆止弁9を設けている。冷凍サイクル動作
中は前記三方弁7によって冷媒が前記毛細管4へ流れる
ようになし、前記冷凍サイクルの停止時は前記三方弁7
によって冷媒が前記バイパスパイプ8へ流れるようにな
した。
As shown in FIG. 5, the refrigeration cycle is provided with a three-way valve 7, a bypass pipe (bypass pipe) 8, and a check valve 9, which are not provided in the first conventional example. The loss of the refrigeration cycle is prevented. FIG.
In the graph of,,,
3 shows the pressure change measured at the positions of. In FIG. 5, the refrigeration cycle includes a three-way valve 7 provided between the condenser 2 and the capillary tube 4, and a bypass pipe 8 connecting the three-way valve 7 and the compressor 1. Further, a check valve 9 is provided between the compressor 1 and the evaporator 5. During the operation of the refrigeration cycle, the three-way valve 7 allows the refrigerant to flow to the capillary tube 4.
This allows the refrigerant to flow to the bypass pipe 8.

【0007】これにより、冷凍サイクル停止時には、三
方弁7によって高圧側から低圧側に冷媒が流れ込まず、
サイクルロスを低減することができ、起動時にも圧縮機
1前後の差圧が小さく起動性も良好である。
Accordingly, when the refrigeration cycle is stopped, the refrigerant does not flow from the high pressure side to the low pressure side by the three-way valve 7,
Cycle loss can be reduced, and the differential pressure across the compressor 1 during startup is small, and the startup performance is good.

【0008】また、他の従来例として特開昭58−99
655号公報があり、四方弁を用いた冷凍サイクルの記
載がある。
Another conventional example is disclosed in Japanese Patent Application Laid-Open No. 58-99.
No. 655, there is a description of a refrigeration cycle using a four-way valve.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この第
二の従来例においても、逆止弁9及び三方弁7からのバ
イパス配管8等部品点数が多くコストがかかる、溶接ポ
イント多く溶接不良が多くなる、バイパス配管8を設け
るために音が大きくなる、バイパス配管8は箱への振動
伝達を抑えるためキャピラリチューブが一般的である
が、吐出ガスを直接冷凍サイクルに吐出する低圧シェル
ではスラッジによるつまりがある、等の問題点があっ
た。
However, also in the second conventional example, the number of components such as the check valve 9 and the bypass pipe 8 from the three-way valve 7 is large and the cost is high. In addition, the bypass pipe 8 increases the noise, and the bypass pipe 8 is generally a capillary tube to suppress the transmission of vibration to the box. However, in the low-pressure shell that discharges the discharge gas directly to the refrigeration cycle, sludge is clogged. There was a problem.

【0010】そこで、この発明は上述のような課題を解
決するためになされたもので、圧縮機の停止時において
も、その入口と出口の間に圧力差が生じず、大きなトル
クを必要とすることなしに起動でき、逆止弁,バイパス
等を設けず安価で信頼性が高く、静音な冷蔵庫の冷凍サ
イクルを提供するものである。
Therefore, the present invention has been made to solve the above-mentioned problem, and a large torque is required without a pressure difference between the inlet and the outlet even when the compressor is stopped. The present invention provides an inexpensive, highly reliable, and silent refrigerator refrigeration cycle that can be started without any trouble, does not include a check valve, bypass, and the like.

【0011】[0011]

【課題を解決するための手段】請求項1に係る冷蔵庫の
冷凍サイクルは、圧縮機、コンデンサ、毛細管、蒸発器
の順に接続し、コンデンサと毛細管間及び蒸発器と圧縮
機間に四方切換弁を設けたものである。
According to a first aspect of the present invention, there is provided a refrigerating cycle for a refrigerator, comprising a compressor, a condenser, a capillary, and an evaporator connected in this order, and a four-way switching valve between the condenser and the capillary and between the evaporator and the compressor. It is provided.

【0012】請求項2に係る冷蔵庫の冷凍サイクルは、
四方弁は、圧縮機の運転時にはコンデンサ出口と毛細管
入口間及び蒸発器出口と圧縮機入口間を連通し、圧縮機
の停止時にはコンデンサ出口と圧縮機入口間及び蒸発器
出口と毛細管入口間を連通するものである。
The refrigeration cycle of the refrigerator according to claim 2 is
The four-way valve communicates between the condenser outlet and the capillary inlet and between the evaporator outlet and the compressor inlet when the compressor is operating, and between the condenser outlet and the compressor inlet and between the evaporator outlet and the capillary inlet when the compressor is stopped. Is what you do.

【0013】請求項3に係る冷蔵庫の冷凍サイクルは、
四方弁は、霜取り運転時にはコンデンサ出口と毛細管入
口間及び蒸発器出口と圧縮機入口間を連通するものであ
る。
The refrigeration cycle of the refrigerator according to claim 3 is
The four-way valve communicates between the condenser outlet and the capillary inlet and between the evaporator outlet and the compressor inlet during the defrosting operation.

【0014】請求項4に係る冷蔵庫の冷凍サイクルは、
圧縮機が低圧シェル圧縮機である。
[0014] The refrigeration cycle of the refrigerator according to claim 4 is as follows.
The compressor is a low-pressure shell compressor.

【0015】[0015]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1である冷蔵庫の冷凍サイクルを示す図であ
る。図において、1は低圧シェル圧縮機、2はコンデン
サ(凝縮器)、3はドライヤ、4は毛細管、5は蒸発器
であり、冷凍サイクルはこの順番で形成されている。6
は四方弁で、ドライヤ3と毛細管4との間と蒸発器5と
圧縮機1との間に設けている。また、冷凍サイクル内を
冷媒が矢印方向に流れている。四方弁6は、入り口Aを
ドライヤ3に、出口Bを毛細管4に、入り口Cを蒸発器
5に、出口Dを圧縮機1に接続する。冷凍サイクル(圧
縮機1)動作中は、AとB、CとDがそれぞれ連通す
る。冷凍サイクル(圧縮機1)停止中は、図2に示すよ
うに、AとD、BとCが連通している。尚、BとCは連
通しても閉塞しても良い。図2の通り、圧縮機停止中は
圧縮機1、コンデンサ2、ドライヤ3を設けた高圧域の
閉回路と、毛細管4、蒸発器5を設けた低圧域の閉回路
を構成するようにしている。冷凍サイクル動作中は正規
の冷凍サイクルが形成され、通常の冷却運転を行うこと
ができる。また、冷凍サイクル停止時は高低圧がサイク
ル上分離され、かつドライヤから圧縮機に高圧冷媒がパ
スされ、圧縮機吸入/吐出の圧力差を小さくすることが
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a diagram showing a refrigeration cycle of a refrigerator according to Embodiment 1 of the present invention. In the figure, 1 is a low-pressure shell compressor, 2 is a condenser (condenser), 3 is a dryer, 4 is a capillary tube, 5 is an evaporator, and a refrigeration cycle is formed in this order. 6
Is a four-way valve provided between the dryer 3 and the capillary 4 and between the evaporator 5 and the compressor 1. The refrigerant flows in the direction of the arrow in the refrigeration cycle. The four-way valve 6 connects the inlet A to the dryer 3, the outlet B to the capillary tube 4, the inlet C to the evaporator 5, and the outlet D to the compressor 1. During the operation of the refrigeration cycle (compressor 1), A and B and C and D communicate with each other. While the refrigeration cycle (compressor 1) is stopped, A and D and B and C communicate with each other as shown in FIG. In addition, B and C may be connected or closed. As shown in FIG. 2, while the compressor is stopped, a closed circuit of a high pressure region provided with the compressor 1, the condenser 2, and the dryer 3 and a closed circuit of a low pressure region provided with the capillary tube 4 and the evaporator 5 are configured. . During the operation of the refrigeration cycle, a normal refrigeration cycle is formed, and a normal cooling operation can be performed. When the refrigeration cycle is stopped, high and low pressures are separated on the cycle, and high-pressure refrigerant is passed from the dryer to the compressor, so that the pressure difference between suction and discharge of the compressor can be reduced.

【0016】ドライヤ(DRYER)3はコンデンサ2と毛
細管4の間に配置し、毛細管4に流入する冷媒の水分と
異物を除去する。水分は例えばモレキュラシーブという
吸湿材で、異物はフィルタで吸収する。ドライヤ3を四
方弁6の手前に配置すると、四方弁6には異物除去のフ
ィルタが不要である。
A dryer (DRYER) 3 is disposed between the condenser 2 and the capillary tube 4 to remove moisture and foreign matters of the refrigerant flowing into the capillary tube 4. The moisture is, for example, a moisture absorbing material called molecular sieve, and the foreign matter is absorbed by a filter. If the dryer 3 is arranged before the four-way valve 6, the four-way valve 6 does not require a filter for removing foreign matter.

【0017】圧縮機が高圧シェルの場合は、圧縮機停止
時にシェル内部及び吸入管に高圧ガスが逆流するため、
圧縮機前後の圧力は同じ位になりバランスする。しかし
ながら、低圧シェル圧縮機1の場合は圧力バランスがと
れないため、本願のような四方弁6を用いて圧縮機前後
の圧力バランスを調整することにより、圧縮機1が低圧
シェルであっても圧縮機1の起動時には圧縮機吸入/吐
出の圧力差が小さく、安定した起動性を確保できる。
When the compressor is a high-pressure shell, high-pressure gas flows back into the shell and the suction pipe when the compressor is stopped.
The pressure before and after the compressor is the same and is balanced. However, in the case of the low-pressure shell compressor 1, pressure cannot be balanced. Therefore, by adjusting the pressure balance before and after the compressor using the four-way valve 6 as in the present application, even if the compressor 1 is a low-pressure shell, compression is prevented. When the compressor 1 is started, the pressure difference between the compressor suction and discharge is small, and stable startability can be secured.

【0018】尚、四方弁6の圧縮機運転時と停止時の切
換え方法は、例えば電磁コイル等を用い、その電磁コイ
ルに通電したときにAとB、CとDがそれぞれ連通さ
せ、電磁コイルの通電を停止するとAとD、BとCを連
通させるような2系統の回路を切換動作させるものがあ
る。また、省エネを最大に引き出そうとする際には、電
磁コイル式よりもDCステップモータを用い、弁のポジ
ション移動時のみ通電し、弁位置移動後は通電しないス
タイルが最も良い。
A method of switching the compressor between operation and stop of the four-way valve 6 is, for example, using an electromagnetic coil or the like. When the electromagnetic coil is energized, A and B and C and D communicate with each other. In some cases, when the energization is stopped, two systems of circuits that switch A and D and B and C communicate with each other are switched. In order to maximize the energy saving, it is best to use a DC step motor rather than the electromagnetic coil type, and energize only when the valve position is moved, and not energize after the valve position is moved.

【0019】以上より、冷凍サイクル停止中は、高圧側
の冷媒が蒸発器5に流れることがなく蒸発器5の温度も
上昇せず、冷凍サイクルのロスを低減することができ
る。また、圧縮機1前後はいずれも高圧状態となってお
り、差圧が小さく、大きなトルクを必要とすることなし
に起動できるることより、冷凍サイクルの再起動性が良
好である。また、冷凍サイクル動作中は正規の冷凍サイ
クルが形成され、通常の冷却運転を行うことができ、冷
凍サイクル停止時は高低圧がサイクル上分離され、かつ
ドライヤ3から圧縮機1に高圧冷媒がパスされ、圧縮機
吸入/吐出の圧力差を小さくすることができる。
As described above, when the refrigeration cycle is stopped, the refrigerant on the high-pressure side does not flow to the evaporator 5 and the temperature of the evaporator 5 does not increase, so that the loss of the refrigeration cycle can be reduced. In addition, the compressor 1 is placed in a high pressure state before and after the compressor 1, and the differential pressure is small, and the compressor 1 can be started without requiring a large torque. In addition, during the operation of the refrigeration cycle, a normal refrigeration cycle is formed and normal cooling operation can be performed. When the refrigeration cycle is stopped, high and low pressures are separated on the cycle, and high-pressure refrigerant passes from the dryer 3 to the compressor 1. Thus, the pressure difference between compressor suction / discharge can be reduced.

【0020】また、四方弁を設け冷凍サイクルの運転状
態にあわせ冷凍サイクル流路を切り替えることにより、
冷凍サイクル停止時に凝縮/蒸発圧力を分離かつ維持、
霜取り時間も短縮することで省エネになり、圧縮機の起
動性も確保できる。また三方弁に比較して、バイパス
管、逆止弁がないことによるコスト抑制、静音化、スラ
ッジによる冷凍サイクル閉塞不良の回避、溶接不良の低
減を実現し、高信頼性を有しかつ静音、省エネな冷蔵庫
を提供することができる。
Further, by providing a four-way valve and switching the refrigeration cycle flow path according to the operation state of the refrigeration cycle,
Separate and maintain condensing / evaporating pressure when refrigeration cycle is stopped,
Shortening the defrost time saves energy and also ensures the startability of the compressor. Also, compared to the three-way valve, it realizes cost reduction by eliminating the bypass pipe and check valve, noise reduction, avoidance of refrigeration cycle blockage failure due to sludge, reduction of welding failure, high reliability and quietness, An energy-saving refrigerator can be provided.

【0021】四方弁の位置を圧縮機1の直後に配置する
と、圧縮機1停止時に機械室配管に低圧ガスが停留する
ことによる配管部への着露及びそれをきっかけにした2
次被害(錆による配管の腐食/床腐食/ウレタンの膨潤
に伴う3次被害等)が生じる。そこで、四方弁6の位置
を図1のように配置することにより、冷媒が2相域であ
るため、冷媒がガス領域で温度が高くなることによる巻
線の耐熱グレードアップの必要性もなく、四方弁6から
圧縮機1の吐出部までの距離が十分にあるため、耐スラ
ッジ性(フィルタ追加等)も必要ない。尚、四方弁6の
前にドライヤ3を設けると、異物除去機能を四方弁6に
設けなくて良い。
If the position of the four-way valve is arranged immediately after the compressor 1, the low pressure gas stays in the machine room piping when the compressor 1 is stopped.
Secondary damage (corrosion of pipes due to rust / floor corrosion / tertiary damage due to urethane swelling, etc.) occurs. Therefore, by arranging the position of the four-way valve 6 as shown in FIG. 1, since the refrigerant is in the two-phase region, there is no need to upgrade the heat resistance of the winding due to the temperature of the refrigerant increasing in the gas region. Since the distance from the four-way valve 6 to the discharge portion of the compressor 1 is sufficient, sludge resistance (addition of a filter or the like) is not required. If the dryer 3 is provided before the four-way valve 6, the foreign matter removing function need not be provided in the four-way valve 6.

【0022】上記構成の冷凍サイクルについて説明す
る。図6は図1と図2における冷凍サイクルを動作また
は停止させたときの各装置の圧力状態〜の変化を示
したものである。は圧縮機1出口からコンデンサ2を
経て四方弁6入り口Aまでの圧力、は四方弁6出口B
から毛細管3までの圧力、は毛細管3出口から蒸発器
4を経て四方弁6入り口Cまでの圧力、は四方弁6出
口Dから圧縮機1吸入部までの圧力を示す。
The refrigeration cycle having the above configuration will be described. FIG. 6 shows changes in the pressure state of each device when the refrigeration cycle in FIGS. 1 and 2 is operated or stopped. Is the pressure from the outlet of the compressor 1 through the condenser 2 to the inlet A of the four-way valve 6, and is the pressure B of the four-way valve 6
From the outlet of the capillary 3 to the inlet C of the four-way valve 6 via the evaporator 4, and the pressure from the outlet D of the four-way valve 6 to the suction part of the compressor 1.

【0023】冷凍サイクル動作中は四方弁6はAとB、
CとDを連通させる。図1における,は凝縮圧力と
なり、,は蒸発圧力となる。庫内が所定の温度まで
冷却され、冷凍サイクルが停止する。
During the operation of the refrigeration cycle, the four-way valve 6 is A and B,
Make C and D communicate. In FIG. 1, represents the condensing pressure, and represents the evaporating pressure. The inside of the refrigerator is cooled to a predetermined temperature, and the refrigeration cycle stops.

【0024】冷凍サイクル停止時には四方弁6のAとD
を連通させる。コンデンサ2の高圧冷媒は圧縮機1入り
口に流れ込む。またBとCは連通し、蒸発圧力で均衡す
る。その結果、図2における,は凝縮圧力、,
は蒸発圧力のままとまる。ここでAとDを連通するタイ
ミングは冷凍サイクル停止と同時でも、圧縮機起動直前
の任意時間(数秒〜数分)でも良い。また四方弁6内部の
A及びDの高圧側からB,C低圧側へのモレ量は極力小
さく(例えば、冷凍サイクル運転中の冷媒流量の5%以
下)する。
When the refrigeration cycle is stopped, A and D of the four-way valve 6
Communication. The high-pressure refrigerant in the condenser 2 flows into the inlet of the compressor 1. B and C communicate with each other and are balanced by the evaporation pressure. As a result, in FIG. 2, is the condensing pressure,
Remains at the evaporation pressure. Here, the timing of communication between A and D may be simultaneous with the stop of the refrigeration cycle or at an arbitrary time (several seconds to several minutes) immediately before the start of the compressor. In addition, the amount of leakage from the high pressure side of A and D to the low pressure side of B and C inside the four-way valve 6 is minimized (for example, 5% or less of the refrigerant flow rate during the refrigeration cycle operation).

【0025】図6において、圧縮機1停止時にとの
圧力が均衡している。よって、図2のように高圧域の
とを四方弁6により連通させることにより圧縮機の前
後がバランスされる。尚、圧縮機1停止時に低圧側の
との圧力は均衡しているが、低圧域の回路には圧縮機
1が含まれておらず、連通させる必要はない(尚、連通
されても構わない)。
In FIG. 6, the pressure when the compressor 1 is stopped is balanced. Therefore, as shown in FIG. 2, the front and rear of the compressor are balanced by communicating the high pressure region with the four-way valve 6. When the compressor 1 is stopped, the pressure on the low pressure side is balanced, but the circuit in the low pressure range does not include the compressor 1 and does not need to be communicated (it may be communicated). ).

【0026】以上より、冷蔵庫内温度が高くなり、圧縮
機1を起動する際には、圧縮機吸入/吐出での圧力バラ
ンスがとれているため、圧縮機1の必要起動トルクは小
さくすむ。圧縮機1が起動してから四方弁6流路を切り
替えることにより起動直後の圧力上昇が少ないため加速
トルクも少なくてすむ。さらに、圧縮機1の動作が安定
してから四方弁6を切り替えることにより圧力差が生じ
ても、既に圧縮機1動作による慣性があるため停止せず
動作を続けることができる。
As described above, when the temperature in the refrigerator becomes high and the compressor 1 is started, the pressure required for the suction and discharge of the compressor is balanced, so that the required starting torque of the compressor 1 can be reduced. By switching the flow path of the four-way valve 6 after the compressor 1 starts, the pressure rise immediately after the start is small, so that the acceleration torque is also small. Further, even if a pressure difference is generated by switching the four-way valve 6 after the operation of the compressor 1 is stabilized, the operation can be continued without stopping because of the inertia due to the operation of the compressor 1.

【0027】また、霜取り運転時に、四方弁6のAと
B、CとDを各々連通させ、冷凍サイクル動作時と同じ
サイクルを形成し、高圧冷媒を蒸発器5に流入させ、霜
取り加熱装置とともに除霜熱を冷媒からも供給する。圧
縮機1停止中、霜取時に限っては圧縮機運転時と同じ流
路を形成することにより、霜取時間を短縮できる。
In the defrosting operation, the four-way valve 6 communicates A and B, and C and D, respectively, to form the same cycle as in the refrigeration cycle operation. Defrost heat is also supplied from the refrigerant. When the compressor 1 is stopped, the defrosting time can be reduced by forming the same flow path as during the compressor operation only during defrosting.

【0028】[0028]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0029】請求項1の発明に係る冷蔵庫の冷凍サイク
ルは、圧縮機、コンデンサ、毛細管、蒸発器の順に接続
し、コンデンサと毛細管間及び蒸発器と圧縮機間に四方
切換弁を設けたので、逆止弁やバイパス配管等を設けず
安価で信頼性が高く、静音な冷凍サイクルとなる。
The refrigerating cycle of the refrigerator according to the first aspect of the present invention includes a compressor, a condenser, a capillary, and an evaporator connected in this order, and a four-way switching valve provided between the condenser and the capillary and between the evaporator and the compressor. A non-return valve, bypass piping, and the like are not provided, and the refrigeration cycle is inexpensive, highly reliable, and silent.

【0030】請求項2に係る冷蔵庫の冷凍サイクルは、
四方弁は、圧縮機の運転時にはコンデンサ出口と毛細管
入口間及び蒸発器出口と圧縮機入口間を連通し、圧縮機
の停止時にはコンデンサ出口と圧縮機入口間及び蒸発器
出口と毛細管入口間を連通するので、圧縮機の停止時に
おいても、圧縮機の入口と出口との間に圧力差を生じる
ことがなく、大きなトルクを必要とせずに再起動でき
る。
The refrigerating cycle of the refrigerator according to claim 2 is
The four-way valve communicates between the condenser outlet and the capillary inlet and between the evaporator outlet and the compressor inlet when the compressor is operating, and between the condenser outlet and the compressor inlet and between the evaporator outlet and the capillary inlet when the compressor is stopped. Therefore, even when the compressor is stopped, no pressure difference is generated between the inlet and the outlet of the compressor, and the compressor can be restarted without requiring a large torque.

【0031】請求項3に係る冷蔵庫の冷凍サイクルは、
四方弁は、霜取り運転時にはコンデンサ出口と毛細管入
口間及び蒸発器出口と圧縮機入口間を連通するので、霜
取時間を短縮できる。
The refrigeration cycle of the refrigerator according to claim 3 is as follows:
Since the four-way valve communicates between the condenser outlet and the capillary inlet and between the evaporator outlet and the compressor inlet during the defrosting operation, the defrosting time can be reduced.

【0032】請求項4に係る冷蔵庫の冷凍サイクルは、
圧縮機が低圧シェル圧縮機であっても、圧縮機の吸入側
と吐出側の圧力差が小さいことより、安定した圧縮機の
起動性を確保できる。
The refrigeration cycle of the refrigerator according to claim 4 is as follows:
Even if the compressor is a low-pressure shell compressor, a small difference in pressure between the suction side and the discharge side of the compressor ensures stable startability of the compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す冷蔵庫の冷凍
サイクル図。
FIG. 1 is a refrigeration cycle diagram of a refrigerator according to a first embodiment of the present invention.

【図2】 本発明における冷凍サイクルの停止時のサイ
クル図。
FIG. 2 is a cycle diagram when the refrigeration cycle is stopped according to the present invention.

【図3】 第一の従来例である冷蔵庫の冷凍サイクルの
冷媒流路を示す図。
FIG. 3 is a diagram showing a refrigerant flow path of a refrigeration cycle of a refrigerator as a first conventional example.

【図4】 図3の冷凍サイクルにおける各部の圧力変化
を示すグラフ。
FIG. 4 is a graph showing pressure changes at various points in the refrigeration cycle of FIG. 3;

【図5】 第二の従来例である冷蔵庫の冷凍サイクルの
冷媒流路を示す図。
FIG. 5 is a diagram showing a refrigerant flow path of a refrigeration cycle of a refrigerator as a second conventional example.

【図6】 図5及び図1と図2の冷凍サイクルにおける
各部の圧力変化を示すグラフ。
FIG. 6 is a graph showing pressure changes at various parts in the refrigeration cycle of FIG. 5 and FIGS. 1 and 2;

【符号の説明】[Explanation of symbols]

1 圧縮機、2 コンデンサ、3 ドライヤ、4 毛細
管、5 蒸発器、6四方弁、7 三方弁、8 バイパ
ス、9 逆止弁。
1 Compressor, 2 condenser, 3 dryer, 4 capillary, 5 evaporator, 6 4-way valve, 7 3-way valve, 8 bypass, 9 check valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、コンデンサ、毛細管、蒸発器の
順に接続し、前記コンデンサと前記毛細管間及び前記蒸
発器と前記圧縮機間に四方切換弁を設けたことを特徴と
する冷蔵庫の冷凍サイクル。
1. A refrigerating cycle for a refrigerator, comprising a compressor, a condenser, a capillary, and an evaporator connected in this order, and a four-way switching valve provided between the condenser and the capillary and between the evaporator and the compressor. .
【請求項2】 前記四方弁は、前記圧縮機の運転時には
前記コンデンサ出口と前記毛細管入口間及び前記蒸発器
出口と前記圧縮機入口間を連通し、前記圧縮機の停止時
には前記コンデンサ出口と前記圧縮機入口間及び前記蒸
発器出口と前記毛細管入口間を連通するものであること
を特徴とする請求項1記載の冷蔵庫の冷凍サイクル。
2. The four-way valve communicates between the condenser outlet and the capillary inlet and between the evaporator outlet and the compressor inlet during operation of the compressor, and communicates with the condenser outlet when the compressor is stopped. 2. The refrigerating cycle of a refrigerator according to claim 1, wherein the compressor communicates between an inlet of a compressor and an outlet of the evaporator and an inlet of the capillary.
【請求項3】 前記四方弁は、霜取り運転時には前記コ
ンデンサ出口と前記毛細管入口間及び前記蒸発器出口と
前記圧縮機入口間を連通するものであることを特徴とす
る請求項1または2記載の冷蔵庫の冷凍サイクル。
3. The method according to claim 1, wherein the four-way valve communicates between the condenser outlet and the capillary inlet and between the evaporator outlet and the compressor inlet during the defrosting operation. Refrigeration cycle of the refrigerator.
【請求項4】 前記圧縮機が、低圧シェル圧縮機である
ことを特徴とする請求項1乃至3のいずれかに記載の冷
蔵庫の冷凍サイクル。
4. The refrigeration cycle of a refrigerator according to claim 1, wherein the compressor is a low-pressure shell compressor.
JP2000083679A 2000-03-24 2000-03-24 Refrigerating cycle of refrigerator Pending JP2001263832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000083679A JP2001263832A (en) 2000-03-24 2000-03-24 Refrigerating cycle of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000083679A JP2001263832A (en) 2000-03-24 2000-03-24 Refrigerating cycle of refrigerator

Publications (1)

Publication Number Publication Date
JP2001263832A true JP2001263832A (en) 2001-09-26

Family

ID=18600273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083679A Pending JP2001263832A (en) 2000-03-24 2000-03-24 Refrigerating cycle of refrigerator

Country Status (1)

Country Link
JP (1) JP2001263832A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088212A1 (en) * 2004-03-01 2005-09-22 Arcelik Anonim Sirketi A cooling device and control method
JP2008224172A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Refrigerator
CN102679646A (en) * 2012-05-25 2012-09-19 厦门大学 Freezer cabinet with safe and rapid defrosting effect
EP2896855A4 (en) * 2012-09-16 2016-07-20 Hefei Meiling Co Ltd Electric valve and refrigeration system comprising same
EP2662647A3 (en) * 2012-05-11 2017-07-12 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
CN108168168A (en) * 2017-12-29 2018-06-15 青岛海尔股份有限公司 Refrigerator
CN108278824A (en) * 2017-12-29 2018-07-13 青岛海尔股份有限公司 Refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088212A1 (en) * 2004-03-01 2005-09-22 Arcelik Anonim Sirketi A cooling device and control method
JP2008224172A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Refrigerator
EP2662647A3 (en) * 2012-05-11 2017-07-12 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
CN102679646A (en) * 2012-05-25 2012-09-19 厦门大学 Freezer cabinet with safe and rapid defrosting effect
EP2896855A4 (en) * 2012-09-16 2016-07-20 Hefei Meiling Co Ltd Electric valve and refrigeration system comprising same
CN108168168A (en) * 2017-12-29 2018-06-15 青岛海尔股份有限公司 Refrigerator
CN108278824A (en) * 2017-12-29 2018-07-13 青岛海尔股份有限公司 Refrigerator
CN108278824B (en) * 2017-12-29 2021-04-23 海尔智家股份有限公司 Refrigerator with a door
CN108168168B (en) * 2017-12-29 2021-07-23 海尔智家股份有限公司 Refrigerator with a door

Similar Documents

Publication Publication Date Title
US7540163B2 (en) Prevention of flooded starts in heat pumps
JP4082435B2 (en) Refrigeration equipment
JP2001263832A (en) Refrigerating cycle of refrigerator
JP3152454B2 (en) Two-stage compression refrigeration system
JP2000346474A (en) Refrigerator
JP3175706B2 (en) Binary refrigeration equipment
JP4274250B2 (en) Refrigeration equipment
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JP2757689B2 (en) Refrigeration equipment
JPH08233379A (en) Refrigerator
JPH0618104A (en) Oil-recovery operation controller for air conditioner
JP2008032391A (en) Refrigerating unit
JPH07318176A (en) Freezer
JPH0972620A (en) Injection type refrigerating equipment
JP3407867B2 (en) Operation control method of air conditioner
JPH08313073A (en) Refrigerating apparatus
JPH0526524A (en) Two-stage compression type freezing device
JP4111241B2 (en) Refrigeration equipment
JPH10170080A (en) Air conditioner
JPH0448169A (en) Separated air-cooled heat pump type air-conditioning machine
JP3326835B2 (en) Refrigeration cycle
JPH07324849A (en) Refrigerator
JPH02293563A (en) Refrigerating plant
JPH116657A (en) Air-conditioner
JP2004293896A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629