JPH116657A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH116657A
JPH116657A JP15948297A JP15948297A JPH116657A JP H116657 A JPH116657 A JP H116657A JP 15948297 A JP15948297 A JP 15948297A JP 15948297 A JP15948297 A JP 15948297A JP H116657 A JPH116657 A JP H116657A
Authority
JP
Japan
Prior art keywords
compressor
oil
compressors
refrigerating machine
stopped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15948297A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatta
博史 八田
Mitsugi Aoyama
貢 青山
Kiyokazu Makino
清和 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15948297A priority Critical patent/JPH116657A/en
Publication of JPH116657A publication Critical patent/JPH116657A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Abstract

PROBLEM TO BE SOLVED: To reduce temperature change in fluid to be cooled by closing the oil-returning piping of the oil separator at the discharge side of a compressor being stopped, and by switching to an oil-returning piping for returning refrigerating machine oil to intake piping of the compressor being stopped when operation state is switched to unloader control. SOLUTION: The temperature of fluid to be cooled that is cooled by an evaporator 5 is detected by a sensor 7 and the number of compressors 1a, 1b, and 1c is controlled (unloader control). Also, solenoid valves 8a, 8b, and 8c are arranged in oil-returning pipes 6a, 6b, and 6c. Then, immediately when operation state is switched to the unloader control, the solenoid valves such as the solenoid valves 8a and 8b are closed, and the solenoid valve 8c is opened, thus preventing refrigerating machine oil from flowing into the compressor 1c being stopped, and at the same time successively returning the refrigerating machine oil to the compressors 1b and 1c via the oil-returning pipes 6b and 6a. As a result, the unbalance of the refrigerating machine oil and the adhesion and seizure of the compressors 1a-1c can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被冷却流体の温度
を設定温度に近づける制御を行う空気調和機に関わり、
特に圧縮機の台数制御を行うことにより被冷却流体の温
度変化を小さくすることを目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for controlling the temperature of a fluid to be cooled to a set temperature,
In particular, an object of the present invention is to reduce the temperature change of the fluid to be cooled by controlling the number of compressors.

【0002】[0002]

【従来の技術】この種の複数台圧縮機を持つ空気調和機
の従来の技術は、圧縮機を並列に設置し、その各々の吐
出配管と吸入配管を共通として、凝縮器、減圧機構、蒸
発器と順次接続してできる1つの冷凍サイクルにより空
気調和機を形成するものがある。また、この空気調和機
の冷凍サイクルには冷凍機油の偏りを防止するため複数
台の圧縮機の各々の吐出配管に油分離器を設け、その油
分離器の油戻し配管を各々隣の圧縮機の吸入配管に戻す
構造を持つものがある。
2. Description of the Related Art The prior art of this type of air conditioner having a plurality of compressors is such that a compressor is installed in parallel, a discharge pipe and a suction pipe are commonly used, and a condenser, a decompression mechanism, an evaporation Some air conditioners are formed by one refrigeration cycle formed by connecting the air conditioner sequentially. Also, in the refrigeration cycle of this air conditioner, an oil separator is provided in each discharge pipe of the plurality of compressors to prevent bias of the refrigerating machine oil, and an oil return pipe of the oil separator is connected to each of the adjacent compressors. Some have a structure that returns to the suction pipe.

【0003】また、冷凍機油の偏りを防止するために、
複数台の圧縮機の間に均圧管を設け、冷凍機油の偏りを
防止する均圧管方式や、圧縮機外部から冷凍機油を給油
する外部給油方式がある。
Further, in order to prevent the bias of the refrigerating machine oil,
There are a pressure equalizing pipe method in which a pressure equalizing pipe is provided between a plurality of compressors to prevent bias of the refrigerating machine oil, and an external refueling method in which refrigerating machine oil is supplied from outside the compressor.

【0004】尚、この種の技術に関する公知例として、
特願平5−99354があげられる。
As a known example of this kind of technology,
Japanese Patent Application No. 5-99354 is an example.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、ア
ンローダ制御を実施した際、油戻し配管により停止させ
た圧縮機の吸入配管に冷凍機油を戻す構造のために、停
止している圧縮機に冷凍機油が滞留し、運転している側
の冷凍機油が不足することにより圧縮機の固渋や破損に
至る問題があった。また、従来の技術の内、均圧管方式
や外部給油方式では使用する圧縮機として、構造の特別
なものを用いなければならず一般の空気調和機で用いら
れるものと同じ構造のものを使えないことや、冷凍サイ
クルが複雑になるという問題があった。
In the above prior art, when the unloader control is performed, the compressor oil that has been stopped is stopped by the oil return pipe because of the structure that returns the refrigerating machine oil to the suction pipe. When the refrigerating machine oil stays and the running side of the refrigerating machine oil runs short, there is a problem that the compressor is hardened or damaged. In addition, among the conventional technologies, a compressor having a special structure must be used as the compressor used in the equalizing pipe system or the external refueling system, and a compressor having the same structure as that used in a general air conditioner cannot be used. And that the refrigeration cycle becomes complicated.

【0006】[0006]

【課題を解決するための手段】上記課題の内、停止して
いる圧縮機の吸入配管に冷凍機油を戻さないために、運
転状態がアンローダ制御に移行した時点で、停止した圧
縮機の吐出側の油分離器の油戻し配管を閉鎖し、停止し
た圧縮機の吸入配管に冷凍機油を戻す油戻し配管と切り
替える。つまり、停止した圧縮機をとばして、順次隣の
圧縮機に油を戻すことになる。圧縮機が2台空気調和機
の場合、アンローダ制御時には運転している1台の圧縮
機の冷凍機油は油分離器により自分自身の吸入配管に戻
ってくることになる。
In order to prevent the refrigerating machine oil from returning to the suction pipe of the stopped compressor, at the time when the operation state shifts to the unloader control, the discharge side of the stopped compressor is selected. The oil return pipe of the oil separator is closed and switched to the oil return pipe that returns the refrigeration oil to the suction pipe of the stopped compressor. That is, the stopped compressor is skipped, and the oil is sequentially returned to the next compressor. When two compressors are air conditioners, the refrigerating machine oil of one operating compressor returns to its own suction pipe by the oil separator during unloader control.

【0007】または、アンローダ制御中に停止中である
圧縮機を一定の間隔で一定時間運転することにより、圧
縮機間の冷凍機油の偏りを解消することができる。ま
た、この際の冷却能力の増加については、高圧側と低圧
側をバイパスさせることにより防ぐことができる。
[0007] Alternatively, by operating the compressor that is stopped during unloader control at a constant interval for a fixed time, it is possible to eliminate the bias of the refrigerating machine oil between the compressors. In addition, an increase in the cooling capacity at this time can be prevented by bypassing the high pressure side and the low pressure side.

【0008】[0008]

【発明の実施の形態】本発明の一実施例を図1を用いて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.

【0009】複数台の圧縮機1a,1b,1c(図1で
は3台)を並列に設置し、その各々の圧縮機の吐出配管
に油分離器2a,2b,2cを接続する。油分離器の油
戻し管6a,6b,6cはそれぞれ隣の圧縮機の吸入配
管に接続する。すなわち、油戻し管6aは圧縮機1bの
吸入配管に接続、油戻し管6bは圧縮機1cの吸入配管
に接続、油戻し管6cは圧縮機1aの吸入配管に接続す
る。また、油分離器2a,2b,2cの出口配管は1つ
に統合され、凝縮器3に接続される。その後、減圧機
構、蒸発器と順次接続され、その後、配管は分岐して圧
縮機1a,1b,1cの吸入側へ接続される。蒸発器5
により冷却される被冷却流体の温度は、センサ7にて検
知され、圧縮機の台数制御(アンローダ制御)が行われ
る。また、電磁弁8a,8b,8cを油戻し管に設置す
る。通常運転状態においては、圧縮機1a,1b,1c
は運転され、電磁弁8a,8bは開、電磁弁8cは閉と
なり、冷凍機油は順次隣の圧縮機へ戻されることにな
る。これにより、冷凍機油が各圧縮機を循環するため冷
凍機油の偏りは防止させる。この状態でセンサ7にて検
知された被冷却流体の温度によりアンローダ制御へ移行
したとすると、圧縮機の台数制御により複数台の内の、
例えば圧縮機1cが停止する。このとき、油戻し配管の
状態が通常運転のままであれば、圧縮機1bから戻って
くる冷凍機油が停止している圧縮機1cへ溜まり込むこ
とになり、運転している圧縮機1a,1bの冷凍機油が
不足することになる。これを防ぐために、アンローダ制
御に移行したと同時に電磁弁8a,8bを閉、電磁弁8
cを開する。これにより停止している圧縮機1cへの冷
凍機油の流入を防ぎ、かつ順次隣の圧縮機に冷凍機油を
戻すことが可能である。
A plurality of compressors 1a, 1b, 1c (three in FIG. 1) are installed in parallel, and oil separators 2a, 2b, 2c are connected to the discharge pipe of each compressor. The oil return pipes 6a, 6b, 6c of the oil separator are respectively connected to suction pipes of adjacent compressors. That is, the oil return pipe 6a is connected to the suction pipe of the compressor 1b, the oil return pipe 6b is connected to the suction pipe of the compressor 1c, and the oil return pipe 6c is connected to the suction pipe of the compressor 1a. The outlet pipes of the oil separators 2a, 2b, 2c are integrated into one and connected to the condenser 3. Thereafter, the pressure reducing mechanism and the evaporator are sequentially connected, and thereafter, the pipe is branched and connected to the suction sides of the compressors 1a, 1b, 1c. Evaporator 5
The temperature of the fluid to be cooled is detected by the sensor 7, and the number of compressors is controlled (unloader control). Also, the solenoid valves 8a, 8b, 8c are installed on the oil return pipe. In the normal operation state, the compressors 1a, 1b, 1c
Is operated, the solenoid valves 8a and 8b are opened, the solenoid valve 8c is closed, and the refrigerating machine oil is sequentially returned to the adjacent compressor. Thereby, since the refrigerating machine oil circulates through each compressor, bias of the refrigerating machine oil is prevented. In this state, if it is assumed that the process shifts to the unloader control based on the temperature of the fluid to be cooled detected by the sensor 7, the number of compressors is controlled by controlling the number of compressors.
For example, the compressor 1c stops. At this time, if the state of the oil return pipe remains normal operation, the refrigerating machine oil returning from the compressor 1b will accumulate in the stopped compressor 1c, and the operating compressors 1a, 1b Will run out of refrigerating machine oil. In order to prevent this, the solenoid valves 8a and 8b are closed at the same time as the
Open c. Thus, it is possible to prevent the refrigerating machine oil from flowing into the stopped compressor 1c, and to return the refrigerating machine oil to the next compressor in sequence.

【0010】図2は本発明の他の一実施例であるが、図
1の電磁弁8a,8cの代わりに二方弁10を用いたも
のである。
FIG. 2 shows another embodiment of the present invention, in which a two-way valve 10 is used instead of the solenoid valves 8a and 8c of FIG.

【0011】さらに、本発明の他の実施例を図3を用い
て説明する。
Another embodiment of the present invention will be described with reference to FIG.

【0012】複数台の圧縮機1a,1b,1c(図1で
は3台)を並列に設置し、その各々の圧縮機の吐出配管
に油分離器2a,2b,2cを接続する。油分離器の油
戻し管6a,6b,6cはそれぞれ隣の圧縮機の吸入配
管に接続する。すなわち、油戻し管6aは圧縮機1bの
吸入配管に接続、油戻し管6bは圧縮機1cの吸入配管
に接続、油戻し管6cは圧縮機1aの吸入配管に接続す
る。また、油分離器2a,2b,2cの出口配管は1つ
に統合され、凝縮器3に接続される。その後、減圧機
構、蒸発器と順次接続され、その後、配管は分岐して圧
縮機1a,1b,1cの吸入側へ接続される。蒸発器5
により冷却される被冷却流体の温度は、センサ7にて検
知され、圧縮機の台数制御(アンローダ制御)が行われ
る。また電磁弁11を介して高圧側と低圧側はバイパス
配管にて接続されている。通常運転状態においては、圧
縮機1a,1b,1cは運転され、 冷凍機油は隣の圧
縮機へ戻されることになる。この状態でセンサ7にて検
知された被冷却流体の温度によりアンローダ制御へ移行
したとすると、圧縮機の台数制御により複数台の内の、
例えば圧縮機1cが停止する。このとき、 圧縮機1b
から戻ってくる冷凍機油は停止している圧縮機1cへ溜
まり込むことになり、運転している圧縮機1a,1bの
冷凍機油が不足することになる。これを防止するため
に、アンローダ制御に移行してから一定間隔で、例えば
1時間毎に、停止している圧縮機1cを一定時間、例え
ば5分間運転させる。これにより停止している圧縮機1
cに溜まっていた冷凍機油が圧縮機1cから吐出され冷
凍機油の偏りが解消される。但し、アンロード制御中に
停止中の圧縮機を運転させるということは、過大な冷却
能力が発生することになるので、停止中の圧縮機を5分
間運転させるときに電磁弁11を開させる。これにより
圧縮機を運転することによる冷却能力の増加を抑えるこ
とができる。
A plurality of compressors 1a, 1b, 1c (three in FIG. 1) are installed in parallel, and oil separators 2a, 2b, 2c are connected to discharge pipes of each compressor. The oil return pipes 6a, 6b, 6c of the oil separator are respectively connected to suction pipes of adjacent compressors. That is, the oil return pipe 6a is connected to the suction pipe of the compressor 1b, the oil return pipe 6b is connected to the suction pipe of the compressor 1c, and the oil return pipe 6c is connected to the suction pipe of the compressor 1a. The outlet pipes of the oil separators 2a, 2b, 2c are integrated into one and connected to the condenser 3. Thereafter, the pressure reducing mechanism and the evaporator are sequentially connected, and thereafter, the pipe is branched and connected to the suction sides of the compressors 1a, 1b, 1c. Evaporator 5
The temperature of the fluid to be cooled is detected by the sensor 7, and the number of compressors is controlled (unloader control). The high pressure side and the low pressure side are connected by a bypass pipe via the electromagnetic valve 11. In the normal operation state, the compressors 1a, 1b, 1c are operated, and the refrigerating machine oil is returned to the adjacent compressor. In this state, if it is assumed that the process shifts to the unloader control based on the temperature of the fluid to be cooled detected by the sensor 7, the number of compressors is controlled by controlling the number of compressors.
For example, the compressor 1c stops. At this time, the compressor 1b
The refrigerating machine oil returned from the compressor accumulates in the stopped compressor 1c, and the running compressor oils of the compressors 1a and 1b run short. In order to prevent this, the stopped compressor 1c is operated for a fixed time, for example, 5 minutes at regular intervals, for example, every hour after the shift to the unloader control. Compressor 1 stopped by this
The refrigerating machine oil accumulated in c is discharged from the compressor 1c, thereby eliminating the bias of the refrigerating machine oil. However, operating the stopped compressor during the unload control causes an excessive cooling capacity. Therefore, the solenoid valve 11 is opened when the stopped compressor is operated for 5 minutes. This can suppress an increase in cooling capacity due to operation of the compressor.

【0013】従って、前述の冷凍サイクルにおいて、油
戻し配管の切替を、3つの電磁弁の開/閉と圧縮機の運
転/停止とを同期させて実施することもできる。
Therefore, in the above-described refrigeration cycle, the switching of the oil return pipe can be performed by synchronizing the opening / closing of the three solenoid valves and the operation / stop of the compressor.

【0014】また、前記冷凍サイクルにおいて、油戻し
配管の切替を、1つの二方弁と1つの電磁弁の開/閉と
圧縮機の運転/停止とを同期させて実施することもでき
る。さらに、前述の冷凍サイクルにおいて、停止してい
る圧縮機に冷凍機油を滞留させないために、停止してい
る圧縮機を一定の間隔で一定時間起動させることもでき
る。
In the refrigeration cycle, the switching of the oil return pipe may be performed by synchronizing the opening / closing of one two-way valve and one solenoid valve with the operation / stop of the compressor. Further, in the above-described refrigeration cycle, the stopped compressor can be started at fixed intervals for a certain period of time in order to prevent the refrigerating machine oil from staying in the stopped compressor.

【0015】さらにまた、前述の冷凍サイクルの制御方
法において、アンローダ制御時に、停止中の圧縮機に冷
凍機油を滞留させないように起動させたことによる冷却
能力の上昇を防ぐために、停止中だった圧縮機が起動し
ている間、冷凍サイクルの高圧側と低圧側をバイパスさ
せることもできる。従って、電磁弁(2方弁)の制御で
あり、リレーとタイマによる簡単なリレーシーケンス回
路により制御することが可能である。
Further, in the above-described method for controlling a refrigeration cycle, in order to prevent an increase in the cooling capacity due to starting the compressor in a stopped state so as not to cause stagnation of the refrigerating machine oil during unloader control, the compression in the stopped state is prevented. While the machine is running, the high and low pressure sides of the refrigeration cycle can be bypassed. Therefore, the control is a solenoid valve (two-way valve), and can be controlled by a simple relay sequence circuit using a relay and a timer.

【0016】[0016]

【発明の効果】本発明により複数台圧縮機を持つ1つの
冷凍サイクルにおいて冷凍機油の偏りを防止することが
可能となり、圧縮機の固渋、焼き付きを防止できる。従
って、複数台圧縮機を持つ1つの冷凍サイクルにおいて
アンローダ制御(台数制御)が可能となった。
According to the present invention, it is possible to prevent the refrigerating machine oil from being biased in one refrigeration cycle having a plurality of compressors, thereby preventing the compressor from being stuck and burning. Accordingly, unloader control (number control) is possible in one refrigeration cycle having a plurality of compressors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す冷凍サイクル系統図。FIG. 1 is a refrigeration cycle system diagram showing one embodiment of the present invention.

【図2】本発明の他の実施例を示す冷凍サイクル系統
図。
FIG. 2 is a refrigeration cycle system diagram showing another embodiment of the present invention.

【図3】本発明のさらに他の実施例を示す冷凍サイクル
系統図。
FIG. 3 is a refrigeration cycle system diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a,1b,1c…圧縮機、2a,2b,2c…油分離
器、3…凝縮器、4…減圧機構、5…蒸発器、6a,6
b,6c…油戻し管、7…センサ、8a,8b,8c…
電磁弁、10…二方弁、11…電磁弁。
1a, 1b, 1c compressor, 2a, 2b, 2c oil separator, 3 condenser, 4 decompression mechanism, 5 evaporator, 6a, 6
b, 6c: oil return pipe, 7: sensor, 8a, 8b, 8c ...
Solenoid valve, 10: two-way valve, 11: solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数台の圧縮機を並列に設置し、順次、凝
縮器、減圧機構、および蒸発器より冷凍サイクルを構成
し、その各々の圧縮機の吐出配管に油分離器を設け、そ
の油分離器の油戻し管を順次隣の圧縮機の吸入配管に接
続し、冷凍機油の偏りを防止する構造の空気調和機にお
いて、複数台の圧縮機の内、数台の圧縮機を停止させる
ことにより冷凍能力を削減する制御(アンローダ制御、
以下同じ)を行う際、停止している圧縮機に冷凍機油を
滞留させないために、油分離器の油戻し配管の接続口を
停止している圧縮機の吸入配管から、運転している圧縮
機の吸入配管に切り替えることを特徴とする空気調和
機。
1. A plurality of compressors are installed in parallel, a refrigeration cycle is constituted by a condenser, a decompression mechanism, and an evaporator, and an oil separator is provided in a discharge pipe of each compressor. The oil return pipe of the oil separator is sequentially connected to the suction pipe of the adjacent compressor, and in the air conditioner having a structure for preventing the bias of the refrigerating machine oil, several of the plurality of compressors are stopped. Control to reduce the refrigeration capacity (unloader control,
The same applies to the following), in order to prevent the refrigerating machine oil from staying in the stopped compressor, the compressor operating from the suction pipe of the stopped compressor is connected to the oil return pipe connection port of the oil separator. An air conditioner characterized by switching to a suction pipe.
JP15948297A 1997-06-17 1997-06-17 Air-conditioner Pending JPH116657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15948297A JPH116657A (en) 1997-06-17 1997-06-17 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15948297A JPH116657A (en) 1997-06-17 1997-06-17 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH116657A true JPH116657A (en) 1999-01-12

Family

ID=15694741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15948297A Pending JPH116657A (en) 1997-06-17 1997-06-17 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH116657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100328A1 (en) * 2002-05-28 2003-12-04 Daikin Industries, Ltd. Compression mechanism of refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100328A1 (en) * 2002-05-28 2003-12-04 Daikin Industries, Ltd. Compression mechanism of refrigerator
EP1508757A1 (en) * 2002-05-28 2005-02-23 Daikin Industries, Ltd. Compression mechanism of refrigerator
US6948335B2 (en) 2002-05-28 2005-09-27 Daikin Industries, Ltd. Compression mechanism for refrigeration system
EP1508757A4 (en) * 2002-05-28 2006-03-29 Daikin Ind Ltd Compression mechanism of refrigerator

Similar Documents

Publication Publication Date Title
KR100437946B1 (en) Refrigerator
JPS60245960A (en) Refrigeration cycle of air conditioner
US5937660A (en) Quick cooling air conditioning system
KR100564444B1 (en) Apparatus and method for liquid refrigerant temperature preventing accumulation of air conditioner
JPH05203270A (en) Two-stage compressi0n type refrigerating cycle apparatus
JPH0626716A (en) Operation control device for air conditioner
JP3152454B2 (en) Two-stage compression refrigeration system
JP3175706B2 (en) Binary refrigeration equipment
JPH0367958A (en) Refrigerating plant
JPH116657A (en) Air-conditioner
JP2001263832A (en) Refrigerating cycle of refrigerator
JPH04313647A (en) Heat pump type air conditioner
JPH01196462A (en) Heat pump device
JP2000130871A (en) Refrigerating apparatus
JPH09210515A (en) Refrigerating device
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JPH09269155A (en) Double-element freezer
JP2006317024A (en) Refrigerating device
JPH07120116A (en) Cooler
JP3407867B2 (en) Operation control method of air conditioner
JPH07318176A (en) Freezer
JP3010908B2 (en) Refrigeration equipment
JPH03279753A (en) Multi-refrigerating cycle starting load reduction structure
JP2001280768A (en) Refrigerator
JP2611377B2 (en) Refrigeration cycle