JP3848098B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3848098B2
JP3848098B2 JP2001134115A JP2001134115A JP3848098B2 JP 3848098 B2 JP3848098 B2 JP 3848098B2 JP 2001134115 A JP2001134115 A JP 2001134115A JP 2001134115 A JP2001134115 A JP 2001134115A JP 3848098 B2 JP3848098 B2 JP 3848098B2
Authority
JP
Japan
Prior art keywords
oil
pipe
compressor
discharge
oil return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001134115A
Other languages
Japanese (ja)
Other versions
JP2002327975A (en
Inventor
憲一 中村
信一郎 永松
俊治 佐々木
宏明 坪江
成志 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001134115A priority Critical patent/JP3848098B2/en
Publication of JP2002327975A publication Critical patent/JP2002327975A/en
Application granted granted Critical
Publication of JP3848098B2 publication Critical patent/JP3848098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルを用いる空気調和機に係り、特に冷凍サイクル用圧縮機の油量安定化に好適な空気調和機に関するものである。
【0002】
【従来の技術】
第1の従来の技術では、高圧チャンバー方式の圧縮機を連結した、複数の圧縮機の場合、運転と停止は、同時に行っていたが、こういう運転方法は、容量可変の圧縮機と一定容量の圧縮機を組み合わせて、容量可変の圧縮機は常時運転をし一定容量の圧縮機は随時運転をする容量制御を行う冷凍サイクルには適用できない。
【0003】
第2の従来の技術として、特開平10−141785号公報に開示されるように、複数台の圧縮機の余剰油を系統側に戻すために、各々の回路に油分離器を設けるものがある。
【0004】
【発明が解決しようとする課題】
第1の従来技術は、容量可変の圧縮機と一定容量の圧縮機の組み合わせで構成される冷凍サイクルで、一定容量の圧縮機を運転と停止をくり返した時に、停止中の圧縮機に溜まった油を排出できない点について配慮がされておらず、圧縮機内に溜まる油量分も考慮した油封入量となるためシステム全体の油量が増加し冷凍サイクルの性能低下をまねいていた。これを回避し、油量を低減するために圧縮機は同時運転せざるをえず、容量制御範囲に制限が大きくなるという問題点があった。
【0005】
第2の従来技術は、各々の回路に分離器を設けねばならず、部品数が多くなってコストが高くなるという生産性上の問題点があった。
【0006】
本発明の目的は、上記のような従来技術の問題点を解決し、容量可変の圧縮機と一定容量の圧縮機の組み合わせで構成される冷凍サイクルで、圧縮機への油保有量を適正化し、冷凍サイクル全体の油保有量を低減させる空気調和機を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明による空気調和機は、特許請求の範囲の各請求項に記載されたところを特徴とするものであるが、特に独立項としての請求項1に係る発明による空気調和機は、複数の圧縮機、気液分離器、油分離器、熱源側熱交換器、各種膨張弁及び利用側熱交換器を配管接続して冷凍サイクルを構成し、前記圧縮機には油放出用接続口、吐出配管及び吸入配管等の低圧側配管を設けると共に、前記圧縮機の前記油放出用接続口と前記吐出配管の合流点より上流側の前記吐出配管を接続する返油配管と、前記吐出配管の合流点より上流側の前記吐出配管と前記低圧側配管を接続する返油回路を設けてなる空気調和機において、前記返油配管は、その配管経路が前記油放出用接続口より下方にあり、かつ前記油放出用接続口より下方で前記吐出配管に接続されていることを特徴とするものである。
【0008】
【発明の実施の形態】
本発明の一実施例について図1ないし図5を用いて以下説明する。
【0009】
図1に、空気熱源式の空気調和機の冷凍サイクルを示す。2点鎖線内はそれぞれ室内ユニット50、室外ユニット60を示す。
【0010】
冷凍サイクルは、圧縮機1、油分離器9、四方弁2、熱源側熱交換器としての室外熱交換器3、室外膨張弁4、室内膨張弁5、利用側熱交換器としての室内熱交換器6及び気液分離器7により構成され、それぞれの構成部品は、配管により接続されている。また、室外と室内の熱交換器には、それぞれ送風機8を備えており、各熱交換器に送風することにより冷媒と空気の熱交換をさせて空調している。これらの部品で構成された冷凍サイクルは、図1中のPsなどの圧力検出手段16及びTeなどの温度検出手段17を検出値入力手段18で取り込み、冷凍サイクル運転手段19にて運転される。
【0011】
図1では、一冷凍サイクル内に圧縮機1を2台接続した例を示す。各圧縮機1の吐出ガスを接続配管で合流させ、合流後に油分離器9を設けている。油分離器9で分離された冷凍機油は、油戻し配管14により気液分離器7に戻され、ここで冷媒と混合されて各圧縮機に戻る油循環回路を形成している。この油循環の回路は、従来より一般的に広く用いられているものである。
【0012】
本発明では、圧縮機1の油放出用接続口としての返油口22と、吐出配管20の配管経路との間に返油配管10が接続されている。該返油配管10は、運転時にも停止側にも圧縮機1の必要油量以上に、圧縮機1の密閉容器内に油を溜めないためのものである。特に運転時、本実施例で用いた圧縮機1は、高圧チャンバ方式のスクロール圧縮機であり、圧縮機1内部は高圧に保持されているため、このような返油配管10を設置した場合には、圧縮機1内の油を返油配管10側に放出することが可能となる。吐出配管20内の圧力Pd2は、圧縮機1内の圧力Pd1より、吐出配管20の圧縮機1出口の縮流損失分△P1と配管の圧力損失分△P2とだけ低くなっており、この圧力差すなわちPd1−Pd2=△P1+△P2で油を返油配管10を経て吐出配管20に放出することが可能である。
【0013】
さらに、各圧縮機1のまわりの配管には、吐出配管20に後記の返油回路12との接続点より下流側でかつ吐出配管20の合流点の上流側に逆止弁11を、高圧側の吐出配管20と低圧側の気液分離器7の上流側の吸入配管21とを接続する返油回路12上に電動弁13を有する。
【0014】
2台の圧縮機1は、室内熱交換器6の負荷に応じて運転と停止を組み合わせることが可能であり、一方を運転し他方を停止している場合の停止側圧縮機1に溜まり込んだ余剰な冷凍機油は、停止側圧縮機1の電動弁13を開くことにより返油回路12を経由して気液分離器7に排出される。
【0015】
2台とも圧縮機が運転している場合には、返油配管10により余剰油は、吐出配管20に排出され、油分離器9を経由して油戻し配管14から気液分離器7に排出される。
【0016】
2台とも圧縮機が停止した場合には、油戻し配管14に設置されている電動弁15は、閉じた状態とするため、高圧側と低圧側は完全に分離されることになる。
【0017】
これにより、停止直後に高圧側の配管に溜まっている液冷媒が、油戻し配管14を通じて低圧側に流れていくことを阻止できるため、気液分離器7に液冷媒が溜まりこむことはなくなり、起動時の液圧縮発生を抑制することが可能となる。
【0018】
図2を用いて、圧縮機1の返油配管10の接続位置を説明する。
【0019】
圧縮機1に設けられた返油口22は、圧縮機1に必要な油量の最適位置付近に位置しており、この位置を超えた分は余剰量である。余剰分の油は、圧縮機1運転中には吐出配管20内の圧力損失により、返油配管10を経て吐出配管20内に導かれる。圧縮機1が停止した場合には、吐出配管20には圧力損失が発生しないが、返油口22に対して返油配管10と圧縮機1の吐出配管20との接続点を下方としているため、余剰分の油は、返油口22と油面高さ25の差で放出され、吐出配管20内の最も配管位置が低くなる位置に油を溜める構造である。低い位置に溜められた油は、前記接続点より下方で接続した返油回路12を経由して気液分離器7に戻す構造である。
【0020】
図3を用いて、返油配管10が返油口22より下方を経由していることについて詳しく説明する。返油配管10が、圧縮機1の返油口22より低い位置を経由して返油口22に接続された場合、圧縮機1内の油は、余剰分の油が返油口22と油面高さ25の差で放出される。破線で示すように、返油配管10が、圧縮機1の返油口22より高い位置を経由して接続された場合、圧縮機1内の油は最大で返油配管10の最高高さ26位置まで溜まることになり、返油口22からの余剰油排出ができなくなる。また、この場合には、冷凍サイクル全体としての必要油量は、各圧縮機1に溜まる最大油量分を必要とすることになり、過剰な油が封入され、ひいては冷凍サイクルの性能低下を招くことになる。本実施例では、これらを回避し、適正油量による冷凍サイクルを実現している。
【0021】
次に、図4を用いて説明する。複数台の圧縮機1を用いた冷凍サイクルの場合、圧縮機1から冷媒を吐出する吐出配管20の経路を、一旦圧縮機1の吐出口より高い位置を経由し、その後、圧縮機1の返油口22より下方に配設した。ここに油溜めとなる部位を設けた後再び上方に配管を配し、逆止弁11を備え、その後他圧縮機1の吐出配管20と連結する。
【0022】
容量可変の圧縮機1及び一定容量の圧縮機1の二種類からなる複数台の圧縮機1の組合せをした場合には、停止中の一定容量の圧縮機1と運転中の容量可変の圧縮機1とが、同一冷凍サイクル内に同時に存在する場合がある。この場合でも、各圧縮機1の吐出配管20には逆止弁11を設置するため、停止中の圧縮機1に冷媒が溜まりこむ現象の発生が阻止できる。
【0023】
図5では、図4に比して構成部品を簡略化した例を示す。運転中に必ず運転している容量可変の圧縮機1側には、返油配管10を設けない。これは、常時運転中の圧縮機1には多少の余剰油があった場合でも吐出ガスにより適度に油を排出することが可能なためである。また、随時運転する一定容量の圧縮機1には、返油配管10の返油口22までの油を貯留しており、全圧縮機1が停止した場合に常時運転の圧縮機1から油を排出する必要がないためである。
【0024】
また、常時運転する圧縮機は、随時運転する圧縮機より吐出配管20において上流側におく。随時運転する圧縮機の停止時に、常時運転する圧縮機の吐出配管20の合流点での流れにより随時運転する圧縮機の吐出配管20の油を吸い出し、油が溜まりこむのを防ぐためである。
【0025】
さらに、返油回路12には、各圧縮機1個別には電動弁13を配置せず、返油回路12が合流した後に配置する構成とした。この時、返油回路12の合流する直前の所に、逆止弁23をそれぞれの返油回路12に設ける。
【0026】
電動弁13を開いた場合には、運転中圧縮機1の吐出圧力の低下が生じることとなるが、冷凍サイクル運転手段19により、電動弁13の開いている時間を最短とすることにより、運転中の冷凍サイクルに与える圧力変動の影響を最小としながら、回路の開閉を実施することが可能となる。また、これにより製造コストの低減も可能とすることができる。
【0027】
本実施例では、一冷凍サイクル内に圧縮機1が2台の場合を示したが、接続される圧縮機1が3台以上に増えた場合でも同様の効果が得られることは言うまでもない。また、空冷式の冷凍サイクルを用いて説明をしているが、水冷式などの他方式でも同じ効果が得られることは言うまでもない。
【0028】
さらに、本実施例では、室内ユニット50が1台のいわゆるシングルサイクルの例を示したが、室内ユニット50が複数台接続されたいわゆるマルチサイクルでも同様の効果が得られる。また、室外ユニット60が複数になった場合、氷や水などに熱を蓄えるいわゆる蓄熱ユニットが接続されたサイクルでも同様の効果が得られる。
【0029】
【発明の効果】
本発明によれば、圧縮機の油を放出する回路により余剰油を排出できるので冷凍サイクル中の必要油量を低減する効果がある。
【0030】
本発明によれば、油を放出する回路が油放出用接続口より下方で吐出配管と接続されているので圧縮機の停止中にも余剰油を排出できるので冷凍サイクル中の必要油量を低減する効果がある。
【0031】
本発明によれば、圧縮機の吐出配管には各々逆止弁が配置されており一方の圧縮機が運転され他方の圧縮機が停止している場合運転中の圧縮機が排出する余剰油が停止中の圧縮機に溜まり込まない効果がある。
【図面の簡単な説明】
【図1】冷凍サイクル系統図である。
【図2】圧縮機の返油口位置説明図である。
【図3】返油配管接続経路説明図である。
【図4】吐出配管接続経路説明図である。
【図5】簡略版吐出配管接続経路説明図である。
【符号の説明】
1…圧縮機
2…四方弁
3…室外熱交換器
4…室外膨張弁
5…室内膨張弁
6…室内熱交換器
7…気液分離器
8…送風機
9…油分離器
10…返油配管
11…逆止弁
12…返油回路
13…電動弁
14…油戻し配管
15…電動弁
16…圧力検出手段
17…温度検出手段
18…検出値入力手段
19…冷凍サイクル運転手段
20…吐出配管
21…吸入配管
22…返油口
23…逆止弁
25…油面高さ
26…返油配管の最高高さ
50…室内ユニット
60…室外ユニット
Td…圧縮機吐出冷媒温度
Ts…圧縮機吸込冷媒温度
Ta0…室外空気温度
Te1…室外熱交換器入口冷媒温度
Te2…室外熱交換器出口冷媒温度
Ta1…室内空気吸込温度
Ta2…室内空気吹出温度
Tr1…室内熱交換器入口冷媒温度
Tr2…室内熱交換器出口冷媒温度
Ps…圧縮機吸込圧力
Pd…圧縮機吐出圧力
Pd1…圧縮機内圧力
Pd2…吐出配管圧力
△P1…縮流損失
△P2…配管損失
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner using a refrigeration cycle, and more particularly to an air conditioner suitable for stabilizing the oil amount of a compressor for a refrigeration cycle.
[0002]
[Prior art]
In the first conventional technique, in the case of a plurality of compressors connected with high-pressure chamber type compressors, the operation and the stop were performed at the same time. Such an operation method is performed by using a variable capacity compressor and a fixed capacity. The compressor cannot be applied to a refrigeration cycle that performs capacity control in which a variable capacity compressor is always operated and a fixed capacity compressor is operated as needed.
[0003]
As a second conventional technique, as disclosed in Japanese Patent Application Laid-Open No. 10-141785, there is one in which an oil separator is provided in each circuit in order to return excess oil of a plurality of compressors to the system side. .
[0004]
[Problems to be solved by the invention]
The first prior art is a refrigeration cycle composed of a combination of a variable capacity compressor and a constant capacity compressor. When the constant capacity compressor is repeatedly operated and stopped, it accumulates in the stopped compressor. No consideration has been given to the point where oil cannot be discharged, and the amount of oil filled also takes into account the amount of oil that accumulates in the compressor, so that the amount of oil in the entire system increased, leading to a decrease in the performance of the refrigeration cycle. In order to avoid this and reduce the amount of oil, the compressors must be operated at the same time, and there is a problem that the capacity control range is limited.
[0005]
The second prior art has a problem in productivity that a separator has to be provided in each circuit, which increases the number of parts and increases the cost.
[0006]
The object of the present invention is to solve the above-mentioned problems of the prior art and to optimize the amount of oil retained in the compressor by a refrigeration cycle comprising a combination of a variable capacity compressor and a constant capacity compressor. An object of the present invention is to provide an air conditioner that reduces the oil holding amount of the entire refrigeration cycle.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioner according to the present invention is characterized by what is stated in each of the claims, and in particular, the air according to the invention according to claim 1 as an independent claim. The harmony machine comprises a plurality of compressors, gas-liquid separators, oil separators, heat source side heat exchangers, various expansion valves, and utilization side heat exchangers connected by piping to constitute a refrigeration cycle. discharge connecting port, Rutotomoni provided a low pressure side pipe of such discharge pipe and the suction pipe, oil return pipe connecting the discharge pipe upstream of the confluence of the said and the oil discharge connection port of the compressor discharge pipe And an air conditioner comprising an oil return circuit that connects the discharge pipe upstream of the junction of the discharge pipe and the low pressure side pipe, wherein the oil return pipe is connected to the oil discharge line. It is below the mouth and the connection port for oil discharge And it is characterized in that it is connected to the discharge pipe below.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
[0009]
FIG. 1 shows a refrigeration cycle of an air heat source type air conditioner. The two-dot chain lines indicate the indoor unit 50 and the outdoor unit 60, respectively.
[0010]
The refrigeration cycle includes a compressor 1, an oil separator 9, a four-way valve 2, an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor expansion valve 4, an indoor expansion valve 5, and an indoor heat exchange as a use side heat exchanger. The component 6 is comprised by the gas-liquid separator 7, and each component is connected by piping. In addition, the outdoor and indoor heat exchangers are each provided with a blower 8, and air conditioning is performed by heat exchange between the refrigerant and air by blowing air to each heat exchanger. The refrigeration cycle constituted by these components is operated by the refrigeration cycle operation means 19 by taking in the pressure detection means 16 such as Ps and the temperature detection means 17 such as Te in FIG.
[0011]
FIG. 1 shows an example in which two compressors 1 are connected in one refrigeration cycle. The discharge gas of each compressor 1 is merged by connection piping, and the oil separator 9 is provided after the merge. The refrigerating machine oil separated by the oil separator 9 is returned to the gas-liquid separator 7 by an oil return pipe 14, where it is mixed with refrigerant and forms an oil circulation circuit that returns to each compressor. This oil circulation circuit has been widely used conventionally.
[0012]
In the present invention, the oil return pipe 10 is connected between the oil return port 22 as the oil discharge connection port of the compressor 1 and the piping path of the discharge pipe 20. The oil return pipe 10 is for preventing oil from being accumulated in the hermetic container of the compressor 1 more than the required oil amount of the compressor 1 both during operation and at the stop side. In particular, during operation, the compressor 1 used in the present embodiment is a high-pressure chamber type scroll compressor, and since the interior of the compressor 1 is maintained at a high pressure, such an oil return pipe 10 is installed. The oil in the compressor 1 can be discharged to the oil return pipe 10 side. The pressure Pd2 in the discharge pipe 20 is lower than the pressure Pd1 in the compressor 1 by a contraction loss ΔP1 at the outlet of the compressor 1 of the discharge pipe 20 and a pressure loss ΔP2 of the pipe. With the difference, that is, Pd1−Pd2 = ΔP1 + ΔP2, oil can be discharged to the discharge pipe 20 through the oil return pipe 10.
[0013]
Further, a check valve 11 is provided on the piping around each compressor 1 on the high-pressure side on the downstream side of the connection point between the discharge piping 20 and the oil return circuit 12 described later and on the upstream side of the junction of the discharge piping 20. The motor-operated valve 13 is provided on the oil return circuit 12 that connects the discharge pipe 20 and the suction pipe 21 upstream of the gas-liquid separator 7 on the low-pressure side.
[0014]
The two compressors 1 can be combined with operation and stop according to the load of the indoor heat exchanger 6, and accumulated in the stop-side compressor 1 when one is operated and the other is stopped. Excess refrigeration oil is discharged to the gas-liquid separator 7 via the oil return circuit 12 by opening the motor-operated valve 13 of the stop-side compressor 1.
[0015]
When both the compressors are operating, surplus oil is discharged to the discharge pipe 20 through the oil return pipe 10 and discharged from the oil return pipe 14 to the gas-liquid separator 7 via the oil separator 9. Is done.
[0016]
When both compressors are stopped, the motor-operated valve 15 installed in the oil return pipe 14 is closed, so that the high pressure side and the low pressure side are completely separated.
[0017]
Thereby, since the liquid refrigerant collected in the high pressure side pipe immediately after the stop can be prevented from flowing to the low pressure side through the oil return pipe 14, the liquid refrigerant does not accumulate in the gas-liquid separator 7, It becomes possible to suppress the occurrence of liquid compression at startup.
[0018]
The connection position of the oil return pipe 10 of the compressor 1 will be described with reference to FIG.
[0019]
The oil return port 22 provided in the compressor 1 is located in the vicinity of the optimum position of the oil amount necessary for the compressor 1, and the amount exceeding this position is a surplus amount. Excess oil is introduced into the discharge pipe 20 through the oil return pipe 10 due to a pressure loss in the discharge pipe 20 during operation of the compressor 1. When the compressor 1 is stopped, no pressure loss occurs in the discharge pipe 20, but the connection point between the oil return pipe 10 and the discharge pipe 20 of the compressor 1 is located below the oil return port 22. The excess oil is discharged by the difference between the oil return port 22 and the oil level height 25, and the oil is stored in a position where the pipe position in the discharge pipe 20 is lowest. The oil stored in the low position is returned to the gas-liquid separator 7 via the oil return circuit 12 connected below the connection point.
[0020]
The fact that the oil return pipe 10 passes below the oil return port 22 will be described in detail with reference to FIG. 3. When the oil return pipe 10 is connected to the oil return port 22 via a position lower than the oil return port 22 of the compressor 1, the excess oil in the compressor 1 is composed of the oil return port 22 and the oil. It is emitted with the difference of the surface height 25. As shown by the broken line, when the oil return pipe 10 is connected via a position higher than the oil return port 22 of the compressor 1, the maximum amount of oil in the compressor 1 is the maximum height 26 of the oil return pipe 10. Therefore, the excess oil cannot be discharged from the oil return port 22. Further, in this case, the required oil amount for the entire refrigeration cycle requires the maximum amount of oil accumulated in each compressor 1, and excess oil is enclosed, leading to a reduction in the performance of the refrigeration cycle. It will be. In the present embodiment, these are avoided and a refrigeration cycle with an appropriate amount of oil is realized.
[0021]
Next, it demonstrates using FIG. In the case of a refrigeration cycle using a plurality of compressors 1, the path of the discharge pipe 20 that discharges the refrigerant from the compressor 1 passes through a position higher than the discharge port of the compressor 1, and then returns to the compressor 1. The oil port 22 was disposed below. After providing a part to be an oil sump here, a pipe is arranged again upward, a check valve 11 is provided, and then connected to the discharge pipe 20 of the other compressor 1.
[0022]
When a combination of two types of compressors 1 consisting of a variable capacity compressor 1 and a constant capacity compressor 1 is used, the fixed capacity compressor 1 being stopped and the variable capacity compressor being operated are operated. 1 may exist simultaneously in the same refrigeration cycle. Even in this case, since the check valve 11 is installed in the discharge pipe 20 of each compressor 1, it is possible to prevent a phenomenon in which refrigerant accumulates in the stopped compressor 1.
[0023]
In FIG. 5, the example which simplified the component compared with FIG. 4 is shown. The oil return pipe 10 is not provided on the side of the variable capacity compressor 1 that is always in operation. This is because the compressor 1 that is always in operation can appropriately discharge the oil by the discharge gas even if there is some excess oil. In addition, the fixed capacity compressor 1 that is operated at any time stores the oil up to the oil return port 22 of the oil return pipe 10, and when all the compressors 1 are stopped, the oil is supplied from the compressor 1 that is always operated. This is because there is no need to discharge.
[0024]
Further, the compressor that is always operated is placed upstream of the compressor that is operated as needed in the discharge pipe 20. This is because when the compressor operating at any time is stopped, the oil in the discharge piping 20 of the compressor operating at any time is sucked out by the flow at the junction of the discharge piping 20 of the compressor operating at all times to prevent the oil from accumulating.
[0025]
Further, in the oil return circuit 12, the motor-operated valve 13 is not arranged individually for each compressor 1, but is arranged after the oil return circuit 12 is merged. At this time, a check valve 23 is provided in each oil return circuit 12 immediately before the oil return circuits 12 merge.
[0026]
When the motor-operated valve 13 is opened, the discharge pressure of the compressor 1 is reduced during operation. However, the refrigeration cycle operating means 19 makes the motor valve 13 open by shortening the open time. It is possible to open and close the circuit while minimizing the influence of pressure fluctuation on the internal refrigeration cycle. This also makes it possible to reduce the manufacturing cost.
[0027]
In the present embodiment, the case where there are two compressors 1 in one refrigeration cycle is shown, but it goes without saying that the same effect can be obtained even when the number of connected compressors 1 is increased to three or more. Moreover, although it demonstrated using the air-cooling type refrigerating cycle, it cannot be overemphasized that the same effect is acquired also by other systems, such as a water cooling type.
[0028]
Further, in this embodiment, an example of a so-called single cycle in which one indoor unit 50 is provided has been described, but the same effect can be obtained even in a so-called multi-cycle in which a plurality of indoor units 50 are connected. In addition, when there are a plurality of outdoor units 60, the same effect can be obtained even in a cycle in which so-called heat storage units that store heat in ice or water are connected.
[0029]
【The invention's effect】
According to the present invention, surplus oil can be discharged by the circuit that discharges the oil of the compressor, so that there is an effect of reducing the amount of oil required in the refrigeration cycle.
[0030]
According to the present invention, since the circuit for discharging oil is connected to the discharge pipe below the connection port for oil discharge, surplus oil can be discharged even when the compressor is stopped, so that the required amount of oil in the refrigeration cycle is reduced. There is an effect to.
[0031]
According to the present invention, the check valve is arranged in each discharge pipe of the compressor, and when one compressor is operated and the other compressor is stopped, the surplus oil discharged by the operating compressor is discharged. There is an effect that does not accumulate in the stopped compressor.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle system diagram.
FIG. 2 is an explanatory diagram of an oil return port position of a compressor.
FIG. 3 is an explanatory diagram of an oil return pipe connection path.
FIG. 4 is an explanatory diagram of a discharge pipe connection path.
FIG. 5 is an explanatory diagram of a simplified version discharge pipe connection path.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Four-way valve 3 ... Outdoor heat exchanger 4 ... Outdoor expansion valve 5 ... Indoor expansion valve 6 ... Indoor heat exchanger 7 ... Gas-liquid separator 8 ... Blower 9 ... Oil separator 10 ... Oil return piping 11 ... check valve 12 ... oil return circuit 13 ... electric valve 14 ... oil return pipe 15 ... electric valve 16 ... pressure detection means 17 ... temperature detection means 18 ... detection value input means 19 ... refrigeration cycle operation means 20 ... discharge pipe 21 ... Suction pipe 22 ... oil return port 23 ... check valve 25 ... oil level 26 ... maximum height of oil return pipe 50 ... indoor unit 60 ... outdoor unit Td ... compressor discharge refrigerant temperature Ts ... compressor suction refrigerant temperature Ta0 ... outdoor air temperature Te1 ... outdoor heat exchanger inlet refrigerant temperature Te2 ... outdoor heat exchanger outlet refrigerant temperature Ta1 ... indoor air suction temperature Ta2 ... indoor air blowing temperature Tr1 ... indoor heat exchanger inlet refrigerant temperature Tr2 ... indoor heat exchanger outlet Refrigerant temperature Ps ... Compressor suction pressure Pd ... compressor discharge pressure Pd1 ... compressor pressure Pd2 ... discharge pipe pressure △ P1 ... contraction loss △ P2 ... piping loss

Claims (3)

複数の圧縮機、気液分離器、油分離器、熱源側熱交換器、各種膨張弁及び利用側熱交換器を配管接続して冷凍サイクルを構成し、前記圧縮機には油放出用接続口、吐出配管及び吸入配管等の低圧側配管を設けると共に、前記圧縮機の前記油放出用接続口と前記吐出配管の合流点より上流側の前記吐出配管を接続する返油配管と、前記吐出配管の合流点より上流側の前記吐出配管と前記低圧側配管を接続する返油回路を設けてなる空気調和機において、
前記返油配管は、その配管経路が前記油放出用接続口より下方にあり、かつ前記油放出用接続口より下方で前記吐出配管に接続されていることを特徴とする空気調和機。
A plurality of compressors, gas-liquid separators, oil separators, heat source side heat exchangers, various expansion valves and utilization side heat exchangers are connected by piping to form a refrigeration cycle. , Rutotomoni provided a low pressure side pipe of such discharge pipe and the suction pipe, and oil return pipe connecting the discharge pipe upstream of the confluence of the discharge pipe and the oil discharge connection port of the compressor, the discharge In an air conditioner provided with an oil return circuit that connects the discharge pipe and the low-pressure side pipe upstream from the junction of pipes ,
An air conditioner characterized in that the oil return pipe has a pipe path below the oil discharge connection port and is connected to the discharge pipe below the oil discharge connection port .
前記返油回路は、前記油放出用接続口より下方で前記吐出配管と接続されており、該接続点は、前記吐出配管と前記返油配管との接続点より下方にあると共に、回路を遮断することができる弁を備えていることを特徴とする請求項1に記載の空気調和機。 The oil return circuit is connected to the discharge pipe below the oil discharge connection port, and the connection point is below the connection point between the discharge pipe and the oil return pipe, and the circuit is cut off. The air conditioner according to claim 1, further comprising a valve that can perform the operation. 前記吐出配管は、前記吐出配管の合流点と前記返油配管か前記返油回路と前記吐出配管の接続点のいずれか下流側との間に逆止弁を設けることを特徴とする請求項1又は請求項2に記載の空気調和機。 2. The check pipe according to claim 1 , wherein a check valve is provided between the junction point of the discharge pipe and the oil return pipe or the downstream side of the connection point of the oil return circuit and the discharge pipe. Or the air conditioner of Claim 2.
JP2001134115A 2001-05-01 2001-05-01 Air conditioner Expired - Fee Related JP3848098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134115A JP3848098B2 (en) 2001-05-01 2001-05-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134115A JP3848098B2 (en) 2001-05-01 2001-05-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002327975A JP2002327975A (en) 2002-11-15
JP3848098B2 true JP3848098B2 (en) 2006-11-22

Family

ID=18981861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134115A Expired - Fee Related JP3848098B2 (en) 2001-05-01 2001-05-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP3848098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068136A (en) * 2007-12-22 2009-06-25 삼성전자주식회사 Air conditioner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939547B1 (en) * 2005-08-26 2013-05-01 Mitsubishi Electric Corporation Refrigerating air conditioner
KR101380036B1 (en) * 2007-10-25 2014-04-01 엘지전자 주식회사 Air conditioner
JP5084950B2 (en) * 2009-03-31 2012-11-28 三菱電機株式会社 Refrigeration equipment
CN104457059B (en) * 2013-09-12 2017-02-15 珠海格力电器股份有限公司 Gas-liquid separator and air conditioner comprising same
JP6242235B2 (en) * 2014-02-20 2017-12-06 三菱電機株式会社 Heat source unit and refrigeration cycle apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068136A (en) * 2007-12-22 2009-06-25 삼성전자주식회사 Air conditioner
JP2009150628A (en) * 2007-12-22 2009-07-09 Samsung Electronics Co Ltd Oil equalizing system for high pressure shell compressor used in air conditioner

Also Published As

Publication number Publication date
JP2002327975A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
CN110914609B (en) Control method for an economizer of a transport refrigeration unit
JP4013261B2 (en) Refrigeration equipment
CN101443609B (en) Economic refrigeration system with low-pressure steam injection
US6722156B2 (en) Refrigeration system
US20060101845A1 (en) Compressor oil recovering apparatus and multi-unit air conditioner equiped with the same
EP1443286B1 (en) Refrigerating equipment
US6860116B2 (en) Performance enhancement of vapor compression systems with multiple circuits
US7721559B2 (en) Multi-type air conditioner and method for controlling the same
US20060107686A1 (en) Compressor oil recovering apparatus and multi-unit air conditioner equiped with the same
EP2910871B1 (en) Refrigeration device
KR100564444B1 (en) Apparatus and method for liquid refrigerant temperature preventing accumulation of air conditioner
CN108139123B (en) Method for switching capacity of compressor
KR101695689B1 (en) Refrigerator
JP3848098B2 (en) Air conditioner
JP4031560B2 (en) Air conditioner
JP2017116136A (en) Air conditioner
WO2023273495A1 (en) Refrigerating system and refrigerator
JP2000346474A (en) Refrigerator
JPH07120086A (en) Heat pump
KR100770718B1 (en) Air conditioner with multi compressors
JP3480778B2 (en) Multi-type air conditioner
KR100675797B1 (en) Air conditioner
KR200273219Y1 (en) Refrigerator for a refrigerator car
WO2022224304A1 (en) Heat source unit
US20240353159A1 (en) Heat pump having a charge management receiver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees