JP5132232B2 - Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device - Google Patents

Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device Download PDF

Info

Publication number
JP5132232B2
JP5132232B2 JP2007246869A JP2007246869A JP5132232B2 JP 5132232 B2 JP5132232 B2 JP 5132232B2 JP 2007246869 A JP2007246869 A JP 2007246869A JP 2007246869 A JP2007246869 A JP 2007246869A JP 5132232 B2 JP5132232 B2 JP 5132232B2
Authority
JP
Japan
Prior art keywords
oil
sump
compressor
compressed gas
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246869A
Other languages
Japanese (ja)
Other versions
JP2009074523A (en
Inventor
長和 緒方
泰城 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007246869A priority Critical patent/JP5132232B2/en
Publication of JP2009074523A publication Critical patent/JP2009074523A/en
Application granted granted Critical
Publication of JP5132232B2 publication Critical patent/JP5132232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Compressor (AREA)

Description

本発明は、圧縮機に供給する油だめ内の潤滑油の油面検知方法、油供給制御方法、これらを備えた気体圧縮装置、及びこの気体圧縮装置を備えた空気調和装置に関するものである。   The present invention relates to a method for detecting the level of lubricating oil in a sump supplied to a compressor, an oil supply control method, a gas compression device including these, and an air conditioner including the gas compression device.

気体圧縮装置においては、油だめ内の潤滑油を圧縮機に供給してその摺動部を潤滑すると共に、圧縮機で圧縮された気体に混入してこれを冷却しているが、潤滑油の油量が低下して供給不足が生じると、圧縮機の摺動部の摩耗や故障が生じ、また、圧縮機で圧縮された気体が十分冷却されなくなる。
このため、油だめ内の潤滑油の油量を常時検出し、油量が所定量より低下したときは、圧縮機を停止するなどの措置を講ずることが必要である。
In the gas compressor, the lubricating oil in the sump is supplied to the compressor to lubricate the sliding part, and mixed with the gas compressed by the compressor to cool it. When the amount of oil decreases and supply shortage occurs, wear and failure of the sliding portion of the compressor occur, and the gas compressed by the compressor is not sufficiently cooled.
For this reason, it is necessary to always detect the amount of lubricating oil in the sump and to take measures such as stopping the compressor when the amount of oil falls below a predetermined amount.

従来の油だめ内の油量の検知方法として、油分離器に、均圧用連通管と油連通管とによって接続されたフロート式油面検知装置を設け、油面がフロートの位置まで低下したときは、これを検知するようにしたものがある(例えば、特許文献1参照)。   As a conventional method for detecting the amount of oil in a sump, a float type oil level detector connected to the oil separator by a pressure equalizing communication pipe and an oil communication pipe is installed, and the oil level drops to the float position. There is one that detects this (for example, see Patent Document 1).

また、圧縮機の油タンク内に静電容量式レベルセンサを設けて油面を検知するようにしたものがある(例えば、特許文献2参照)。
さらに、高圧ガス容器内に超音波を送波して油面を検知するようにしたものがある(例えば、特許文献3参照)。
In addition, there is a type in which a capacitance level sensor is provided in an oil tank of a compressor to detect an oil level (see, for example, Patent Document 2).
Furthermore, there is one that detects an oil level by transmitting ultrasonic waves into a high-pressure gas container (see, for example, Patent Document 3).

特開平11−83249号公報(第2頁、図1)Japanese Patent Laid-Open No. 11-83249 (second page, FIG. 1) 特開平5−172074号公報(第3−4頁、図1)JP-A-5-172074 (page 3-4, FIG. 1) 特開2000−337946号公報(第3−4頁、図1)JP 2000-337946 A (page 3-4, FIG. 1)

油冷却式圧縮機においては、長期的な運転に伴って摺動部の摩耗や外気からの塵埃の侵入により潤滑油に徐々にスラッジが発生したり汚れたりするが、特許文献1の発明のフロート式油面検知装置は機械的可動部を有するため、可動部にスラッジ等が付着すると、油面検知の再現性が悪くなるという問題がある。また、振動に対する信頼性が低いため、車両等に搭載されて常時振動を受けるような装置に採用することは好ましくない。   In the oil-cooled compressor, sludge is gradually generated or contaminated in the lubricating oil due to wear of the sliding portion or intrusion of dust from the outside air with long-term operation. Since the oil level detector has a mechanical movable part, there is a problem that the reproducibility of the oil level detection deteriorates when sludge or the like adheres to the movable part. Moreover, since the reliability with respect to vibration is low, it is not preferable to employ it in a device that is mounted on a vehicle or the like and constantly receives vibration.

特許文献2の静電容量式レベルセンサの場合は、可動部がないため、フロート式のような問題はないが、長期的使用により潤滑油に発生したスラッジ等が検出管に付着すると検知誤差を生じたりするため、定期的に付着物を除去する必要があり、メンテナンスが面倒である。また、油面を検出するための外部電源が必要であり、システムとしての構成が複雑になるという問題がある。   In the case of the electrostatic capacitance level sensor of Patent Document 2, there is no problem as in the float type because there is no moving part, but if sludge generated in the lubricating oil adheres to the detection tube due to long-term use, a detection error will occur. Therefore, it is necessary to periodically remove the deposits, and maintenance is troublesome. In addition, an external power source for detecting the oil level is necessary, and there is a problem that the configuration as a system becomes complicated.

特許文献3の超音波式の場合は、油面からの反射を利用した測定方法であるため、反射経路に障害物や異物があると測定誤差が生じ易く、また長期の使用によって潤滑油に発生したスラッジ等により、誤検知をするおそれがある。さらに、静電容量式の場合と同様に検出するための外部電源が必要であり、システムとしての構成が複雑になるという問題がある。   In the case of the ultrasonic method of Patent Document 3, since the measurement method uses reflection from the oil surface, measurement errors are likely to occur if there are obstacles or foreign objects in the reflection path, and it occurs in the lubricating oil due to long-term use. There is a risk of false detection due to sludge and the like. Further, an external power supply for detection is required as in the case of the electrostatic capacitance type, and there is a problem that the configuration as a system becomes complicated.

本発明は、上記の課題を解決するためになされたもので、構造が簡単で潤滑油に発生したスラッジ等の影響を受けることがなく、その上振動に対する信頼性の高い圧縮機の油だめ内の油面検知方法、圧縮機への油供給制御方法、これらを備えた気体圧縮装置及びこの気体圧縮装置を備えた空気調和装置を提供することを目的としたものである。   The present invention has been made in order to solve the above-described problems, and has a simple structure, is not affected by sludge generated in the lubricating oil, and is highly reliable in the oil sump of the compressor with respect to vibration. It is an object of the present invention to provide an oil level detection method, an oil supply control method for a compressor, a gas compression device including these, and an air conditioner including the gas compression device.

本発明に係る油面検知方法は、圧縮機から吐出された圧縮気体に混入された油を油分離器で分離して油だめ内に貯留し、該油だめ内の油を前記圧縮機に供給するようにした気体圧縮装置において、前記圧縮機を複数台並列接続してその吐出管を吐出配管に合流させると共に、前記圧縮機に油を供給する油供給配管に油分配器を設け、該油分配器と前記複数の圧縮機とを高さ位置の異なる油分配管でそれぞれ接続し、前記油だめ内の油面が低下して前記油供給配管に前記圧縮気体が侵入したときは、前記油分配管のいずれかに集中的に前記圧縮気体が流入するようにし、前記油だめ内の油の油面を、前記圧縮機から吐出された前記圧縮気体の温度により検知するようにしたものである。 In the oil level detection method according to the present invention, oil mixed in compressed gas discharged from a compressor is separated by an oil separator and stored in a sump, and the oil in the sump is supplied to the compressor. In the gas compression apparatus, a plurality of the compressors are connected in parallel and the discharge pipes are joined to the discharge pipes, and an oil distributor is provided in an oil supply pipe for supplying oil to the compressors. And the plurality of compressors are connected with oil pipes having different height positions, and when the oil level in the sump is lowered and the compressed gas enters the oil supply pipe, any of the oil pipes as crab intensively the compressed gas flows, the oil level of oil in the oil sump, in which so as to detect the temperature of the compressed gas discharged from the compressor.

本発明に係る油供給制御方法は、圧縮機から吐出された圧縮気体に混入された油を油分離器で分離して油だめ内に貯留し、該油だめ内の油を油供給配管により前記圧縮機に供給するようにした気体圧縮装置において、前記圧縮機の吐出配管を流れる前記圧縮気体の温度を検知する温度センサを設けると共に、前記油だめに前記油供給配管に合流する吸込口の高さ位置の異なる2本の吸込管を設けて上部の吸込管に常開の電磁弁を設け、前記油だめ内の油面が低下して前記上部の吸込管に前記圧縮気体が侵入して前記圧縮機から吐出された前記圧縮気体の温度上昇を前記温度センサが検知したときは、前記電磁弁を閉止するようにしたものである。 In the oil supply control method according to the present invention, the oil mixed in the compressed gas discharged from the compressor is separated by an oil separator and stored in an oil sump, and the oil in the sump is stored in the oil supply pipe by the oil supply pipe. in the gas compressor which is adapted to supply to the compressor, provided with a temperature sensor for detecting the temperature of the compressed gas flowing through the discharge pipe of the compressor, high suction mouth merging into the oil supply pipe the oil sump Two suction pipes having different positions are provided, a normally open solenoid valve is provided in the upper suction pipe, the oil level in the sump is lowered, and the compressed gas enters the upper suction pipe and when the temperature rise of the compressed gas discharged from the compressor the temperature sensor detects is obtained so as to close the solenoid valve.

本発明に係る気体圧縮装置は、上記油面検知方法及び油供給制御方法の両者又はいずれか一方を備えたものである。
また、本発明に係る空気調和装置は、上記の気体圧縮装置を備えたものである。
The gas compression apparatus according to the present invention includes both or one of the oil level detection method and the oil supply control method.
Moreover, the air conditioning apparatus which concerns on this invention is equipped with said gas compression apparatus.

本発明に係る油面検知方法によれば、構造が簡単で、従来のようにレベル計の故障やメンテナンスに配慮する必要がなく、また、潤滑油にスラッジが発生しても油面レベルの検知精度に影響を受けることがない。さらに、振動による影響がないため、車両等に搭載されて常時振動を受ける装置に採用しても問題がない。   According to the oil level detection method of the present invention, the structure is simple, and there is no need to consider the trouble and maintenance of the level meter as in the past, and even if sludge occurs in the lubricating oil, the oil level detection is possible. It is not affected by accuracy. Furthermore, since there is no influence by vibration, there is no problem even if it is adopted in a device that is mounted on a vehicle or the like and constantly receives vibration.

本発明に係る気体圧縮装置の油供給制御方法によれば、上記と同様の効果が得られるばかりでなく、長期にわたって圧縮機の焼付きなどによる損傷や、吐出温度の異常上昇による事故などを防止することができる。   According to the oil supply control method of the gas compression apparatus according to the present invention, not only the same effects as described above can be obtained, but also damage due to seizure of the compressor over the long term, accidents due to abnormal increase in discharge temperature, etc. can be prevented. can do.

本発明に係る気体圧縮装置によれば、上記の効果を得ることができる。
また、本発明に係る空気調和機によれば、長期に亘ってメンテナンスが不要で、常時振動を受ける車両等に搭載しても問題がない。
According to the gas compression device concerning the present invention, the above-mentioned effect can be acquired.
Further, according to the air conditioner of the present invention, no maintenance is required for a long time, and there is no problem even if it is mounted on a vehicle or the like that is constantly subjected to vibration.

[実施の形態1]
図1は本発明の実施の形態1に係る気体圧縮装置のサイクル構成を示すブロック図、図2は図1の油だめの説明図である。
本実施の形態に係る気体圧縮装置Pは、図1に示すように、下部に潤滑油4(以下、単に油と記すことがある)が貯留された油だめ3に設けた吸込管5から、油供給配管6に設けたオイルフィルタ7、オイルクーラ8を経て圧縮機1に送られてその摺動部を潤滑し、エアフィルタ2を経て圧縮機1に導入された外気(気体)と混合して圧縮され、吐出配管9から油だめ3に設けた油分離器10に吐出される。そして、油分離器10により圧縮気体中の油が分離され、圧縮気体は送気管11により例えば除湿装置12へ送られ、分離した油は油だめ3内に貯留される。
[Embodiment 1]
FIG. 1 is a block diagram showing a cycle configuration of a gas compression apparatus according to Embodiment 1 of the present invention, and FIG. 2 is an explanatory diagram of a sump of FIG.
As shown in FIG. 1, the gas compression device P according to the present embodiment includes a suction pipe 5 provided in a sump 3 in which lubricating oil 4 (hereinafter sometimes simply referred to as oil) is stored in a lower portion, It is sent to the compressor 1 through an oil filter 7 and an oil cooler 8 provided in the oil supply pipe 6 to lubricate the sliding portion, and is mixed with the outside air (gas) introduced into the compressor 1 through the air filter 2. And is discharged from the discharge pipe 9 to the oil separator 10 provided in the oil sump 3. Then, the oil in the compressed gas is separated by the oil separator 10, the compressed gas is sent to the dehumidifier 12, for example, by the air supply pipe 11, and the separated oil is stored in the oil sump 3.

上記のように構成した気体圧縮装置Pにおいて、油だめ3に設けた吸込管5は、図2に示すように、正常の油面レベル4aより下方に設定した油面レベル4bの近傍に吸込口を位置させ、油だめ3の外部において油供給配管6に接続されている。
また、吐出配管9には、圧縮機1から吐出された圧縮気体の温度(以下、吐出温度という)を検知する温度センサ13が設けられている。
In the gas compression device P configured as described above, the suction pipe 5 provided in the sump 3 has a suction port in the vicinity of the oil level 4b set below the normal oil level 4a as shown in FIG. Is connected to the oil supply pipe 6 outside the oil sump 3.
The discharge pipe 9 is provided with a temperature sensor 13 for detecting the temperature of the compressed gas discharged from the compressor 1 (hereinafter referred to as discharge temperature).

次に、上記のように構成した本実施の形態の作用を、図3、図4を参照して説明する。なお、図3は圧縮機1から吐出した圧縮気体の吐出温度と、油だめ3に貯留された潤滑油4の油面レベルとの関係を示すグラフ、図4は油だめ3内の潤滑油4の油面レベルの検知及び油供給制御のフローチャートである。   Next, the operation of the present embodiment configured as described above will be described with reference to FIGS. 3 is a graph showing the relationship between the discharge temperature of the compressed gas discharged from the compressor 1 and the oil level of the lubricating oil 4 stored in the sump 3, and FIG. 4 shows the lubricating oil 4 in the sump 3. 5 is a flowchart of oil level detection and oil supply control.

気体圧縮装置Pの運転を開始する(ステップS1)と、圧縮機1から吐出配管9に吐出された圧縮気体の吐出温度は、外気温度T0から上昇するが、油だめ3から供給され、圧縮機1の摺動部を潤滑して圧縮気体に混入した潤滑油4によって冷却されるため、潤滑油の油量が正常な油面レベル4aから油面レベル4bの間(以下、正常油量ということがある)であれば、油供給配管6には吸込管5から潤滑油が送られるので、吐出温度は運転条件(圧力、外気温度、稼動率等)に応じて、ある温度T1で安定する。 When the operation of the gas compression device P is started (step S 1 ), the discharge temperature of the compressed gas discharged from the compressor 1 to the discharge pipe 9 rises from the outside air temperature T 0, but is supplied from the sump 3. Since the sliding portion of the compressor 1 is lubricated and cooled by the lubricating oil 4 mixed in the compressed gas, the amount of lubricating oil is between the normal oil level 4a and the oil level 4b (hereinafter referred to as normal oil amount). If so, since the lubricating oil is sent from the suction pipe 5 to the oil supply pipe 6, the discharge temperature is at a certain temperature T 1 according to the operating conditions (pressure, outside air temperature, operating rate, etc.). Stabilize.

ところが、長期の使用や何んらかの原因で潤滑油の油量が低下して(ステップS2)、油面レベルが4b以下になると(ステップS3)、吸込管5が油だめ3内の空気を吸込みはじめるため、潤滑油4の供給量が低下し、潤滑油4による摺動部の潤滑能力及び圧縮気体の冷却能力が低下して、吐出温度が徐々に上昇する(ステップS4)。 However, when the amount of lubricating oil decreases due to long-term use or for some reason (step S 2 ) and the oil level becomes 4b or less (step S 3 ), the suction pipe 5 is in the sump 3. As the air starts to be sucked in, the supply amount of the lubricating oil 4 decreases, the lubricating ability of the sliding portion by the lubricating oil 4 and the cooling capacity of the compressed gas decrease, and the discharge temperature gradually rises (step S 4 ). .

そして、吐出配管9に設けた温度センサ13で検知した吐出温度が一定温度T2以上になったときは(ステップS5)、潤滑油4の油面レベルの低下、したがって油量の低下と判断し、アラームを発し、あるいは圧縮機1の運転を停止する(ステップS6)など、適宜の措置を講じて圧縮機1の摺動部の焼付きなどを防止する。 Then, when the discharge temperature detected by the temperature sensor 13 provided in the discharge pipe 9 becomes equal to or higher than the constant temperature T 2 (step S 5 ), it is determined that the oil level of the lubricating oil 4 is lowered and therefore the oil amount is lowered. Then, an appropriate measure is taken such as generating an alarm or stopping the operation of the compressor 1 (step S 6 ) to prevent seizure of the sliding portion of the compressor 1.

図5は本実施の形態の他の例の油だめの説明図である。
本例は、正常の油面レベル4aの下方に設定した油面レベル4bの近傍に吸込口が位置する第1の吸込管5aを設けると共に、油面レベル4bの下方に設定した油面レベル4cの近傍に吸込口が位置する第2の吸込管5bを設け、油だめ3の外部において両吸込管5a,5bを油供給配管6に合流させたものである。
FIG. 5 is an explanatory diagram of a sump of another example of the present embodiment.
In this example, a first suction pipe 5a is provided in the vicinity of the oil level 4b set below the normal oil level 4a, and an oil level 4c set below the oil level 4b. A second suction pipe 5 b in which a suction port is located in the vicinity of is provided, and both suction pipes 5 a and 5 b are joined to the oil supply pipe 6 outside the oil sump 3.

先に説明した気体圧縮装置Pにおいて、油面レベルが4b以下になると完全な無給油運転になるため吐出温度が上昇するが、温度センサ13が吐出温度の上昇を検知するより先に圧縮機1が無給油状態になるため、圧縮機1に焼付きなどの損傷を生ずるおそれがある。
本例は、このような問題を解決するために、第1の吸込管5aに空気が侵入して無給油状態になってから、圧縮機1の運転が停止するまでの間、第2の吸込管5bから圧縮機に潤滑油4を供給することにより、圧縮機1の損傷を防止するようにしたものである。
In the gas compression device P described above, when the oil level becomes 4b or less, a complete oil-free operation is performed, so that the discharge temperature rises. However, before the temperature sensor 13 detects an increase in the discharge temperature, the compressor 1 Since there is no oil supply, the compressor 1 may be damaged such as seizure.
In the present example, in order to solve such a problem, the second suction is performed after the air enters the first suction pipe 5a and becomes in an oil-free state until the operation of the compressor 1 is stopped. By supplying the lubricating oil 4 from the pipe 5b to the compressor, the compressor 1 is prevented from being damaged.

上記の説明では、圧縮機1と、油分離器10を内蔵した油だめ3とを別置きに構成した場合を示したが、油分離器10と油だめ3を内蔵した圧縮機にも本発明を実施することができる(以下に説明する他の実施の形態においても同様である)。   In the above description, the compressor 1 and the oil sump 3 in which the oil separator 10 is built are shown separately. However, the present invention also applies to a compressor in which the oil separator 10 and the sump 3 are built. (The same applies to the other embodiments described below).

本実施の形態に係る気体圧縮装置は、油だめの油面レベルを検知するレベル計を使用することなく、圧縮機1から圧縮気体が吐出される吐出配管9に温度センサ13を設け、この温度センサ13により吐出温度を検知することにより、油だめ3内の油面レベルの低下を検知するようにしたので、従来のように、レベル計の故障やメンテナンスについて配慮する必要がない。また、潤滑油4にスラッジが発生した場合でも、油面レベルの検知精度に影響を受けることがない。
さらに、振動による影響がないため、車両等に搭載されて常時振動を受ける装置に採用しても問題ない。
The gas compression apparatus according to the present embodiment is provided with a temperature sensor 13 in the discharge pipe 9 through which compressed gas is discharged from the compressor 1 without using a level meter that detects the oil level of the sump. By detecting the discharge temperature by the sensor 13, a decrease in the oil level in the sump 3 is detected, so there is no need to consider malfunctions and maintenance of the level gauge as in the past. Further, even when sludge is generated in the lubricating oil 4, the detection accuracy of the oil level is not affected.
Furthermore, since there is no influence by vibration, there is no problem even if it is employed in a device that is mounted on a vehicle or the like and that constantly receives vibration.

[実施の形態2]
図6は本発明の実施の形態2に係る気体圧縮装置のサイクル構成を示すブロック図、図7は図6の油分配器の構成説明図、図8は図7の油分配器の作用説明図、図9は吐出温度と油だめの油面レベルとの関係を示すグラフ、図10は本実施の形態の作用を説明するためのフローチャートである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
[Embodiment 2]
6 is a block diagram showing a cycle configuration of a gas compression apparatus according to Embodiment 2 of the present invention, FIG. 7 is a configuration explanatory diagram of the oil distributor of FIG. 6, FIG. 8 is an operation explanatory diagram of the oil distributor of FIG. 9 is a graph showing the relationship between the discharge temperature and the oil level of the sump, and FIG. 10 is a flowchart for explaining the operation of the present embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態に係る気体圧縮装置Pは、実施の形態1に係る気体圧縮装置Pとほぼ同じ構成であるが、複数の圧縮機(図には、第1〜第3の3台の圧縮機1a,1b,1cが示してある)を並列接続し、その吐出管9a,9b,9cを吐出配管9に合流させると共に、油供給配管6に油分配器14を設け、この油分配器14により油供給配管6を第1〜第3の油分配管6a,6b,6cに分岐し、第1の圧縮機1aに第1の油分配管6aから、第2の圧縮機1bに第2の油分配管6bから、第3の圧縮機1cに第3の油分配管6cから、それぞれ潤滑油4を供給するようにしたものである。   The gas compression device P according to the present embodiment has almost the same configuration as the gas compression device P according to the first embodiment, but includes a plurality of compressors (first to third compressors in the figure). 1a, 1b, and 1c) are connected in parallel, and the discharge pipes 9a, 9b, and 9c are joined to the discharge pipe 9, and an oil distributor 14 is provided in the oil supply pipe 6, and the oil distributor 14 supplies oil. The pipe 6 is branched into first to third oil distribution pipes 6a, 6b, 6c, the first compressor 1a from the first oil distribution pipe 6a, the second compressor 1b from the second oil distribution pipe 6b, The lubricating oil 4 is supplied to the third compressor 1c from the third oil distribution pipe 6c.

油分配器14は、図7に示すように、油供給配管6を3本の油分配管6a,6b,6cに分岐して、第3の圧縮機1cに接続する油分配管6cを、他の油分配管6a,6bより高い位置に設けたものである。
そして、油だめ3内の潤滑油4が正常油量(図2の油面レベル4aと4bの間)であれば、油供給配管6は満油状態であるため、各油分配管6a,6b,6cも図7に示すように満油状態になっている。
As shown in FIG. 7, the oil distributor 14 branches the oil supply pipe 6 into three oil distribution pipes 6a, 6b, 6c, and connects the oil distribution pipe 6c connected to the third compressor 1c to other oil distribution pipes. It is provided at a position higher than 6a and 6b.
And if the lubricating oil 4 in the sump 3 is a normal oil quantity (between the oil level 4a and 4b of FIG. 2), since the oil supply piping 6 is full, each oil distribution piping 6a, 6b, 6c is also full of oil as shown in FIG.

若し、油だめ3内の油量が低下して油面レベル4bより低くなって油供給配管6内に空気が混入すると、図8に示すように、出口が低い位置にある油分配管6a,6bには潤滑油4が流れるが、出口が高い位置にある油分配管6cには集中的に空気が流れやすくなるようになっている。   If the amount of oil in the sump 3 decreases and becomes lower than the oil level 4b and air enters the oil supply pipe 6, as shown in FIG. 8, the oil distribution pipe 6a, Although the lubricating oil 4 flows through 6b, air tends to flow intensively through the oil distribution pipe 6c at a position where the outlet is high.

次に、図9、図10を参照して、本実施の形態の作用を説明する。
運転を開始する(ステップS1)と、圧縮機1a,1b,1cから吐出された圧縮気体の吐出温度は、外気温度T0から上昇するが、潤滑油4により圧縮気体が冷却されるため、潤滑油4が正常油量であれば、吐出温度は運転条件に応じてある温度T1で安定する。
Next, the operation of the present embodiment will be described with reference to FIGS.
When the operation is started (step S 1 ), the discharge temperature of the compressed gas discharged from the compressors 1 a, 1 b, 1 c rises from the outside air temperature T 0, but the compressed gas is cooled by the lubricating oil 4. If the lubricating oil 4 is a normal oil amount, the discharge temperature is stabilized at a certain temperature T 1 according to the operating conditions.

ところが、長期の使用やなんらかの原因で、油面レベルが低下(ステップS2)して4b以下となる(ステップS3)と、油だめ3の吸込管5から空気を吸込みはじめるため、混入した空気が集中的に流れる油分配管6cの潤滑油4の流量が低下し、第3の圧縮機1cの潤滑及び冷却能力が低下するため、その吐出温度が他の圧縮機1a,1bの吐出温度に比べて大きく上昇する(ステップS4)。 However, when the oil level drops (step S 2 ) and falls below 4b (step S 3 ) due to long-term use or for some reason, air starts to be sucked in from the suction pipe 5 of the sump 3, so mixed air Since the flow rate of the lubricating oil 4 in the oil distribution pipe 6c through which the oil flows intensively decreases and the lubrication and cooling capacity of the third compressor 1c decreases, the discharge temperature is higher than the discharge temperatures of the other compressors 1a and 1b. Te increases greatly (step S 4).

この吐出温度は温度センサ13で検知され、吐出温度が一定温度T2以上となった場合(ステップS6)は、油だめ3内の油面レベルの低下と判断してアラームを発し、あるいは第3の圧縮機1cのみを停止させるなどの適宜の措置を講ずる(ステップS7)。
この場合、第1、第2の圧縮機1a,1bには、図8に示すように、油分配管6a,6bから正常に潤滑油4が供給されているので、気体圧縮装置Pの運転をそのまま継続することができる。そして、さらに油面レベルが低下して第1、第2の油分配管6a,6bに空気が侵入し、第1、第2の圧縮機1a,1bの吐出温度がT2を超えたときは、アラームを発し、あるいは第1、第2の圧縮機1a,1bの運転を停止するなどの措置を講ずる。
This discharge temperature is detected by the temperature sensor 13, if the discharge temperature becomes constant temperature T 2 or more (step S 6) emits an alarm is determined that the lowering of the oil level in the oil sump 3, or the only 3 of the compressor 1c and take appropriate measures such as stopping (step S 7).
In this case, since the lubricating oil 4 is normally supplied from the oil distribution pipes 6a and 6b to the first and second compressors 1a and 1b, as shown in FIG. Can continue. The first reduced further oil level, the second oil pipe 6a, the air enters the 6b, when the first, second compressor 1a, the discharge temperature of 1b exceeds T 2 are, Measures such as issuing an alarm or stopping the operation of the first and second compressors 1a and 1b are taken.

上記の説明では、第3の圧縮機1cの吐出温度の上昇を、吐出配管9に設けた温度センサ13で検知する場合を示したが、第3の圧縮機1cの吐出管9cに温度センサを設けて、吐出温度を検知するようにしてもよい。
また、3台の圧縮機1a〜1cを並列接続した場合を示したが、2台以上の圧縮機を並列接続してもよく、この場合も油分配器14等を上記に準じた構成とすることにより、同様の作用、効果を得ることができる。
In the above description, the case where the increase in the discharge temperature of the third compressor 1c is detected by the temperature sensor 13 provided in the discharge pipe 9 is shown. However, a temperature sensor is provided in the discharge pipe 9c of the third compressor 1c. It may be provided to detect the discharge temperature.
Moreover, although the case where the three compressors 1a-1c were connected in parallel was shown, two or more compressors may be connected in parallel, and in this case, the oil distributor 14 and the like are configured in accordance with the above. Thus, similar actions and effects can be obtained.

さらに、油だめ3内に1本の吸込管5を設けた場合を示したが、実施の形態1の図5に示すように、吸込口の高さ位置の異なる2本の吸込管5a,5bを設けて、油供給配管6に合流するようにしてもよい。
また、油分配器14において、複数の分岐管を上下方向に設け、空気が侵入した圧縮機1a〜1cを順次停止するようにしてもよい。
Furthermore, although the case where the one suction pipe 5 was provided in the sump 3 was shown, as shown in FIG. 5 of Embodiment 1, the two suction pipes 5a and 5b from which the height position of a suction inlet differs are shown. May be provided to join the oil supply pipe 6.
In the oil distributor 14, a plurality of branch pipes may be provided in the vertical direction, and the compressors 1a to 1c into which air has entered may be stopped sequentially.

本実施の形態によれば、複数台の圧縮機を並列接続して気体圧縮装置Pを構成し、油だめ3内の潤滑油4の油面レベルが低下して油供給配管6に空気が混入したときは、特定の圧縮機に空気が集中して流れるように構成したので、当該圧縮機を停止するなどの措置を講ずることにより、油面レベルが低下しても他の圧縮機により気体圧縮装置4の運転を継続することができ、また、油面レベルの検知精度をより向上することができる。   According to the present embodiment, a plurality of compressors are connected in parallel to constitute the gas compression device P, and the oil level of the lubricating oil 4 in the sump 3 is lowered and air is mixed into the oil supply pipe 6. In such a case, the air is concentrated and flows to a specific compressor. Therefore, by taking measures such as stopping the compressor, even if the oil level drops, the other compressor compresses the gas. The operation of the device 4 can be continued, and the oil level detection accuracy can be further improved.

[実施の形態3]
図11は本発明の実施の形態3に係る気体圧縮装置のサイクル構成を示すブロック図、図12は図11の油だめの説明図、図13は吐出温度と油だめ内の潤滑油の油面レベルとの関係を示すグラフ、図14は本発明の作用を説明するためのフローチャートである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
[Embodiment 3]
FIG. 11 is a block diagram showing a cycle configuration of the gas compression apparatus according to Embodiment 3 of the present invention, FIG. 12 is an explanatory diagram of the oil sump in FIG. 11, and FIG. 13 is the discharge temperature and the oil level of the lubricating oil in the sump. FIG. 14 is a flowchart for explaining the operation of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態においては、油だめ3内に第1、第2の吸込管5a,5bが設けられており、第1の吸込管5aは、正常の油面レベル4aより下方に設定された油面レベル4bの近傍に吸込口を位置させ、第2の吸込管5bは、油面レベル4bよりさらに下方に設定された油面レベル4cの近傍に吸込口を位置させており、両吸込管5a,5bは油だめ3の外側において1本の油供給配管6に合流するようになっている。そして、上方に設けた吸込管5aには電磁弁15が設けられており、この電磁弁15は、油だめ3内の潤滑油4が正常油量(油面レベル4aと4bの間)のときは開、油面レベルが低下して4b以下となり、温度センサ13が吐出温度の上昇により油面レベルの低下を検知したときは閉となる。   In the present embodiment, first and second suction pipes 5a and 5b are provided in the oil sump 3, and the first suction pipe 5a is an oil set below the normal oil level 4a. The suction port is positioned in the vicinity of the surface level 4b, and the second suction pipe 5b has the suction port positioned in the vicinity of the oil level 4c set further below the oil level 4b. , 5b are joined to one oil supply pipe 6 outside the oil sump 3. The suction pipe 5a provided above is provided with a solenoid valve 15. This solenoid valve 15 is provided when the lubricating oil 4 in the oil sump 3 has a normal amount of oil (between oil level 4a and 4b). Is open, the oil level is lowered to 4b or less, and closed when the temperature sensor 13 detects a drop in the oil level due to an increase in the discharge temperature.

上記のように構成した本実施の形態において、気体圧縮装置Pの運転が開始されると、油だめ3内が正常油量の間は、第1、第2の吸込管5a,5bの両方から潤滑油4が供給され、吐出温度は、図13に示すように、T1で安定している。油だめ3内の油量が減って油面レベルが低下(4b)すると、第1の吸込管5aに空気が混入して吐出温度が徐々に上昇するが、温度センサ13が一定温度T2を検知するまでの過程は図14のフローチャートのステップS1〜S5に示すように、実施の形態1の場合(図3のフローチャートのステップS1〜S5)と同様である。 In the present embodiment configured as described above, when the operation of the gas compression device P is started, while the oil sump 3 is in the normal amount of oil, both the first and second suction pipes 5a and 5b are used. Lubricating oil 4 is supplied, and the discharge temperature is stable at T 1 as shown in FIG. Decreases the amount of oil in the oil sump 3 lowers the oil level (4b) Then, the discharge temperature air is mixed into the first suction pipe 5a is gradually increased, the temperature sensor 13 is a constant temperature T 2 process until it detected as shown in step S 1 to S 5 in the flowchart of FIG. 14 is the same as that in the first embodiment (step S 1 to S 5 in the flowchart of FIG. 3).

そして、温度センサ13によって検知された吐出温度がT2に達すると、油面レベルが低下したと判断してアラームを発すると同時に、気体圧縮装置Pの運転を継続したままで、第1の吸込管5aに設けた電磁弁15を閉じ(ステップS7)、潤滑油4を第2の吸込管5bのみから供給する。 When the discharge temperature detected by the temperature sensor 13 reaches T 2 , it is determined that the oil level has decreased and an alarm is issued. At the same time, the operation of the gas compression device P is continued and the first suction is performed. closed electromagnetic valve 15 provided in the tube 5a (step S 7), the lubricating oil 4 supplied only from the second suction tube 5b.

このようにして、油だめ3内の油量が減って第1の吸込管5aに空気が侵入し、吐出温度が上昇したときは、気体圧縮装置Pの運転を継続したままで電磁弁15を閉じ、第2の吸込管5bから引続き潤滑油4が供給されるので、吐出温度は正常に復帰する(ステップS8)。 In this way, when the amount of oil in the sump 3 decreases and air enters the first suction pipe 5a and the discharge temperature rises, the solenoid valve 15 is maintained while the operation of the gas compression device P is continued. closed, since continued lubricant 4 from the second suction pipe 5b is supplied, the discharge temperature returns normally (step S 8).

図15〜図17は本実施の形態に係る気体圧縮装置の油だめの他の例を示す説明図である。なお、図には電磁弁は省略してある。
図15の油だめ3は、第1、第2の吸込管5a,5bを同じ高さ位置で油だめ3に取付けて、第1の吸込管5aの吸込口を油面レベル4bの近傍に位置させ、第2の吸込管5bの吸込口を油面レベル4cの近傍に位置させて、第1の吸込管5aに電磁弁15を設けたものである。
15-17 is explanatory drawing which shows the other example of the oil sump of the gas compression apparatus which concerns on this Embodiment. In the figure, the solenoid valve is omitted.
The oil sump 3 in FIG. 15 has the first and second suction pipes 5a and 5b attached to the oil sump 3 at the same height position, and the suction port of the first suction pipe 5a is located in the vicinity of the oil level 4b. The suction port of the second suction pipe 5b is positioned in the vicinity of the oil level 4c, and the electromagnetic valve 15 is provided on the first suction pipe 5a.

また、図16の油だめ3は、第1、第2の吸込管5a,5bを油だめ3の底部から取込んで、第1の吸込管5aの吸込口を油面レベル4bの近傍に位置させ、第2の吸込管5bの吸込口を油面レベル4cの近傍に位置させて、第1の吸込管5aに電磁弁15を設けたものである。
さらに、図17の油だめ3は、油だめ3の周壁の下部の上下に、第1の吸込管5aの吸込口と、第2の吸込管5bの吸込口をそれぞれ直接設けたもので、第1、第2の吸込管5a,5bの吸込口の高さ位置に差を設け、第1の吸込管5aに電磁弁15を設けたものである。
本例に係る各油だめは、実施の形態1,2の油だめ3にも用いることができる。ただし、この場合は、電磁弁15は設けない。
In addition, the oil sump 3 in FIG. 16 takes the first and second suction pipes 5a and 5b from the bottom of the oil sump 3, and positions the suction port of the first suction pipe 5a in the vicinity of the oil level 4b. The suction port of the second suction pipe 5b is positioned in the vicinity of the oil level 4c, and the electromagnetic valve 15 is provided on the first suction pipe 5a.
Furthermore, the sump 3 of FIG. 17 is provided with a suction port of the first suction pipe 5a and a suction port of the second suction pipe 5b directly above and below the lower part of the peripheral wall of the sump 3, respectively. 1. A difference is provided in the height position of the suction port of the 1st, 2nd suction pipe 5a, 5b, and the solenoid valve 15 is provided in the 1st suction pipe 5a.
Each oil sump according to this example can be used for the oil sump 3 of the first and second embodiments. However, in this case, the solenoid valve 15 is not provided.

上記の説明では、1台の圧縮機1からなる気体圧縮装置の場合について説明したが、実施の形態2のように、複数台の圧縮機(例えば、3台)からなる気体圧縮装置にも本実施の形態を実施することができる。
本実施の形態によれば、実施の形態1の場合とほぼ同様の効果が得られるばかりでなく、電磁弁15により潤滑油4の供給を制御するようにしたので、長期にわたって圧縮機の焼付きなどによる損傷や吐出温度の異常上昇による事故などをより確実に防止することができる。
In the above description, the case of a gas compression device including one compressor 1 has been described. However, as in the second embodiment, the present invention is also applied to a gas compression device including a plurality of compressors (for example, three). Embodiments can be implemented.
According to the present embodiment, not only the effects similar to those in the first embodiment can be obtained, but also the supply of the lubricating oil 4 is controlled by the electromagnetic valve 15, so that the seizure of the compressor over a long period of time. It is possible to more reliably prevent damage due to the above and accidents due to abnormal rise in discharge temperature.

[実施の形態4]
図18は本発明の実施の形態4に係る気体圧縮装置の吐出温度と油だめの油面レベルとの関係を示すグラフ、図19は本実施の形態の作用を説明するためのフローチャートである。なお、気体圧縮装置のサイクル構成を示すブロック図は、実施の形態4の場合と同様である。
[Embodiment 4]
FIG. 18 is a graph showing the relationship between the discharge temperature of the gas compression apparatus according to Embodiment 4 of the present invention and the oil level of the sump, and FIG. 19 is a flowchart for explaining the operation of this embodiment. In addition, the block diagram which shows the cycle structure of a gas compression apparatus is the same as that of the case of Embodiment 4. FIG.

本実施の形態において、油だめ3内の油面レベルの低下により吐出温度が上昇し、温度センサ13がこれを検知して第1の吸込管5aの電磁弁15を閉じ、第2の吸込管5bだけで潤滑油4を供給することにより、吐出温度が正常に復帰するまでの過程(図14のステップS1〜S8)は、実施の形態4の場合と同様である。 In the present embodiment, the discharge temperature rises due to a drop in the oil level in the sump 3, the temperature sensor 13 detects this, closes the solenoid valve 15 of the first suction pipe 5a, and the second suction pipe. The process (steps S 1 to S 8 in FIG. 14) until the discharge temperature returns to normal by supplying the lubricating oil 4 only by 5b is the same as that of the fourth embodiment.

実施の形態4の気体圧縮装置Pにおいて、油だめ3内の潤滑油の油面レベルがさらに低下して(ステップS9)、図12の4c以下となった場合(ステップS10)は、油だめ3の第2の吸込管5bが空気を吸込んで、油供給配管6に送られる油量が低下して冷却能力が低下するため、図19に示すように、吐出温度が再び上昇する(ステップS11)。 In the gas compression device P of the fourth embodiment, when the oil level of the lubricating oil in the sump 3 is further lowered (step S 9 ) and becomes 4 c or less in FIG. 12 (step S 10 ), the oil Since the second suction pipe 5b of the sump 3 sucks air, the amount of oil sent to the oil supply pipe 6 decreases and the cooling capacity decreases, so that the discharge temperature rises again as shown in FIG. S 11).

本実施の形態においては、このような吐出温度の上昇を温度センサ13が再度検知したときは、油だめ3内の油量が枯渇状態であると判断し(ステップS12)、圧縮機1を停止させて再起動しないように制御する(ステップS13)。
本実施の形態によれば、実施の形態3の場合と同様の効果が得られる。
In this embodiment, when the temperature sensor 13 detects such an increase in the discharge temperature again, it is determined that the amount of oil in the sump 3 is in a depleted state (step S 12 ), and the compressor 1 is turned on. Control is performed so as not to stop and restart (step S 13 ).
According to the present embodiment, the same effect as in the third embodiment can be obtained.

[実施の形態5]
図20は本発明の実施の形態5に係る気体圧縮装置の油だめの説明図である。なお、気体圧縮装置のサイクル構成を示すブロック図は、実施の形態3の場合とほぼ同様である。
実施の形態3,4の場合は、油だめ3に2本の吸込管5a,5bを設け、上部の吸込管5aに電磁弁15を設けた場合を示したが、本実施の形態においては、油だめ3に、吸込口の高さ位置の異なる3本以上の吸込管5(図には、第1、第2、第3の3本の吸込管5a,5b,5cを設けた場合を示してある)を設けて油供給配管6に合流させると共に、最下部の吸込管5cを除き、上部の吸込管5a,5bに電磁弁15a,15bを設けたものである。
[Embodiment 5]
FIG. 20 is an explanatory diagram of a sump of the gas compression apparatus according to Embodiment 5 of the present invention. In addition, the block diagram which shows the cycle structure of a gas compression apparatus is as substantially the same as the case of Embodiment 3. FIG.
In the case of the third and fourth embodiments, the case has been shown in which two suction pipes 5a and 5b are provided in the sump 3 and the electromagnetic valve 15 is provided in the upper suction pipe 5a. The oil sump 3 is shown with three or more suction pipes 5 (first, second, and third three suction pipes 5a, 5b, and 5c shown in FIG. And the solenoid valve 15a, 15b is provided on the upper suction pipes 5a, 5b except for the lowermost suction pipe 5c.

本実施の形態においては、油だめ3内の潤滑油4が正常油量の場合は、電磁弁15a,15bはいずれも開で、吸込管5a〜5cから圧縮機1に潤滑油4が供給される。油量が低下して油面レベルが4bになり、吸込管5aに空気が侵入して温度センサ13が吐出温度の上昇を検知すると、第1の吸込管5aの電磁弁15aを閉じ、第2、第3の吸込管5b,5cから潤滑油4を供給する。   In the present embodiment, when the lubricating oil 4 in the sump 3 is a normal amount of oil, both the solenoid valves 15a and 15b are open, and the lubricating oil 4 is supplied to the compressor 1 from the suction pipes 5a to 5c. The When the amount of oil decreases and the oil level becomes 4b, air enters the suction pipe 5a and the temperature sensor 13 detects an increase in the discharge temperature, the electromagnetic valve 15a of the first suction pipe 5a is closed, and the second The lubricating oil 4 is supplied from the third suction pipes 5b and 5c.

さらに油量が低下して油面レベルが4cになり、第2の吸込管5bから空気が侵入して温度センサ13が吐出温度の上昇を検知すると、第2の吸込管5bの電磁弁15bを閉じ、第3の吸込管5cのみから潤滑油4を供給する。
そして、油面レベルが4dになり、第3の吸込管5cから空気が侵入し、温度センサ13が吐出温度の上昇を検知したときは、油だめ3内の油量が枯渇したと判断し、圧縮機1を停止させる。
本実施の形態によれば、実施の形態4の場合とほぼ同様の効果が得られるが、より長期にわたって圧縮機の運転を継続することができる。
When the oil level further decreases and the oil level becomes 4c, air enters from the second suction pipe 5b and the temperature sensor 13 detects an increase in the discharge temperature, the electromagnetic valve 15b of the second suction pipe 5b is turned on. The lubricating oil 4 is supplied only from the third suction pipe 5c.
When the oil level becomes 4d, air enters from the third suction pipe 5c, and the temperature sensor 13 detects an increase in the discharge temperature, it is determined that the amount of oil in the sump 3 has been exhausted, The compressor 1 is stopped.
According to the present embodiment, substantially the same effect as in the fourth embodiment can be obtained, but the operation of the compressor can be continued for a longer period.

[実施の形態6]
図21は本発明の実施の形態6に係る空気調和装置のサイクル構成を示すブロック図で、本実施の形態に係る空気調和装置は、実施の形態1の気体圧縮装置を備えたものである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
図21において、ACは気体圧縮装置Pが組込まれた空気調和装置で、油だめ3の吐出側に接続された冷媒配管20は、室外熱交換器21、膨張弁等の膨張部23、室内熱交換器24を経て、圧縮機1の吸気側に接続されている。なお、22は室外送風機、25は室内送風機である。
[Embodiment 6]
FIG. 21 is a block diagram showing a cycle configuration of an air-conditioning apparatus according to Embodiment 6 of the present invention. The air-conditioning apparatus according to this embodiment includes the gas compression apparatus according to Embodiment 1. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In FIG. 21, AC is an air conditioner in which the gas compression device P is incorporated, and the refrigerant pipe 20 connected to the discharge side of the sump 3 includes an outdoor heat exchanger 21, an expansion part 23 such as an expansion valve, and indoor heat. It is connected to the intake side of the compressor 1 via the exchanger 24. In addition, 22 is an outdoor blower and 25 is an indoor blower.

上記のように構成した空気調和装置ACにおいて、例えば冷房運転を行う場合は、圧縮機1から吐出された冷媒ガスは、吐出配管9に設けた切換弁(図示せず)を通り、油だめ3の油分離器10で油と分離され、冷媒配管20により室外熱交換器21に送られて凝縮され、膨張部23で減圧され、室内熱交換器24で蒸発して冷房を行い、圧縮機1へ戻る。なお、暖房運転の場合は、圧縮機1から吐出された冷媒ガスは、切換弁で切換えられて冷媒配管20中を冷媒運転の場合と反対方向に流れ、室内熱交換器24で蒸発して暖房を行う。   In the air conditioning apparatus AC configured as described above, for example, when performing a cooling operation, the refrigerant gas discharged from the compressor 1 passes through a switching valve (not shown) provided in the discharge pipe 9 and is filled with oil. Is separated from the oil by the oil separator 10, sent to the outdoor heat exchanger 21 through the refrigerant pipe 20, condensed, decompressed by the expansion unit 23, evaporated by the indoor heat exchanger 24, and cooled. Return to. In the heating operation, the refrigerant gas discharged from the compressor 1 is switched by the switching valve, flows in the refrigerant pipe 20 in the opposite direction to that in the refrigerant operation, evaporates in the indoor heat exchanger 24, and is heated. I do.

本実施の形態においては、上記のような冷暖房運転中において、圧縮機1の吐出配管9に設けた温度センサ13により冷媒ガスの吐出温度を常時検知し、吐出温度がT2(図3)以上になったときは、アラームを発し、あるいは空気調和装置ACの運転を停止するなどの措置を講ずる。
上記の説明では、空気調和装置ACに、実施の形態1に係る気体圧縮装置Pを組込んだ場合を示したが、これに限定するものではなく、実施の形態2〜5のいずれから気体圧縮装置Pを組込んでもよい。
In the present embodiment, the refrigerant gas discharge temperature is always detected by the temperature sensor 13 provided in the discharge pipe 9 of the compressor 1 during the air conditioning operation as described above, and the discharge temperature is equal to or higher than T 2 (FIG. 3). When it comes to, measures such as issuing an alarm or stopping the operation of the air conditioner AC are taken.
In the above description, the case where the gas compression device P according to Embodiment 1 is incorporated in the air conditioner AC is shown, but the present invention is not limited to this, and gas compression is performed from any of Embodiments 2 to 5. The device P may be incorporated.

本実施の形態によれば、空気調和装置ACに組込んだ気体圧縮装置Pの油だめ3内の潤滑油4の油面レベルの低下を、油面レベルを直接検知するレベル計を使用することなく、圧縮機1から吐出する冷媒ガスの温度によって検知するようにしたので、従来のようにレベル計の故障やメンテナンスについて配慮する必要がなく、また、潤滑油4にスラッジが発生した場合でも、油面レベルの検知精度に影響を受けることがない。
また、振動による影響がないため、常時振動を受ける車両等に搭載しても問題がないなど、長期に亘って故障がない空気調和装置を得ることができる。
According to the present embodiment, a level meter that directly detects the oil level is used to detect a decrease in the oil level of the lubricating oil 4 in the sump 3 of the gas compression device P incorporated in the air conditioner AC. Since the detection is made based on the temperature of the refrigerant gas discharged from the compressor 1, there is no need to consider the level meter failure and maintenance as in the past, and even when sludge is generated in the lubricating oil 4, It is not affected by the oil level detection accuracy.
Moreover, since there is no influence by vibration, it is possible to obtain an air conditioner that has no trouble over a long period of time, such as no problem even if it is mounted on a vehicle that constantly receives vibration.

本発明の実施の形態1に係る気体圧縮装置のサイクル構成を示すブロック図である。It is a block diagram which shows the cycle structure of the gas compression apparatus which concerns on Embodiment 1 of this invention. 図1の油だめの説明図である。It is explanatory drawing of the oil sump of FIG. 圧縮気体の吐出温度と油だめ内の油面レベルとの関係を示すグラフである。It is a graph which shows the relationship between the discharge temperature of compressed gas, and the oil level in a sump. 実施の形態1の作用を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the first embodiment. 実施の形態1の油だめの他の例の説明図である。It is explanatory drawing of the other example of the oil sump of Embodiment 1. FIG. 本発明の実施の形態2に係る気体圧縮装置のサイクル構成を示すブロック図である。It is a block diagram which shows the cycle structure of the gas compression apparatus which concerns on Embodiment 2 of this invention. 図6の油分配器の説明図である。It is explanatory drawing of the oil distributor of FIG. 図7の油分配器の作用説明図である。It is action | operation explanatory drawing of the oil distributor of FIG. 圧縮気体の吐出温度と油だめ内の油面レベルとの関係を示すグラフである。It is a graph which shows the relationship between the discharge temperature of compressed gas, and the oil level in a sump. 実施の形態2の作用を説明するためのフローチャートである。10 is a flowchart for explaining the operation of the second embodiment. 本発明の実施の形態3に係る気体圧縮装置のサイクル構成を示すブロック図である。It is a block diagram which shows the cycle structure of the gas compression apparatus which concerns on Embodiment 3 of this invention. 図11の油だめの説明図である。It is explanatory drawing of the oil sump of FIG. 圧縮気体の吐出温度と油だめ内の油面レベルとの関係を示すグラフである。It is a graph which shows the relationship between the discharge temperature of compressed gas, and the oil level in a sump. 実施の形態3の作用を説明するためのフローチャートである。10 is a flowchart for illustrating the operation of the third embodiment. 実施の形態3の油だめの他の例を示す説明図である。FIG. 10 is an explanatory view showing another example of a sump according to the third embodiment. 実施の形態3の油だめの他の例を示す説明図である。FIG. 10 is an explanatory view showing another example of a sump according to the third embodiment. 実施の形態3の油だめの他の例を示す説明図である。FIG. 10 is an explanatory view showing another example of a sump according to the third embodiment. 実施の形態4に係る気体圧縮装置の圧縮気体の吐出温度と油だめ内の油面レベルとの関係を示すグラフである。It is a graph which shows the relationship between the discharge temperature of the compressed gas of the gas compression apparatus which concerns on Embodiment 4, and the oil level in a sump. 実施の形態4の作用を説明するためのフローチャートである。10 is a flowchart for explaining the operation of the fourth embodiment. 本発明の実施の形態5に係る気体圧縮装置の油だめの説明図である。It is explanatory drawing of the oil sump of the gas compression apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る空気調和装置のサイクル構成を示すブロック図である。It is a block diagram which shows the cycle structure of the air conditioning apparatus which concerns on Embodiment 6 of this invention.

符号の説明Explanation of symbols

1,1a〜1c 圧縮機、3 油だめ、4 潤滑油、5,5a〜5c 吸込管、6 油供給配管、6a〜6c 油分配管、9 吐出配管、10 油分離器、13 温度センサ、14 油分配器、15 電磁弁、P 気体圧縮装置、AC 空気調和装置。   1, 1a to 1c Compressor, 3 Oil sump, 4 Lubricating oil, 5, 5a to 5c Suction pipe, 6 Oil supply piping, 6a to 6c Oil distribution piping, 9 Discharge piping, 10 Oil separator, 13 Temperature sensor, 14 Oil content Distributor, 15 solenoid valve, P gas compressor, AC air conditioner.

Claims (8)

圧縮機から吐出された圧縮気体に混入された油を油分離器で分離して油だめ内に貯留し、該油だめ内の油を前記圧縮機に供給するようにした気体圧縮装置において、
前記圧縮機を複数台並列接続してその吐出管を吐出配管に合流させると共に、前記圧縮機に油を供給する油供給配管に油分配器を設け、該油分配器と前記複数の圧縮機とを高さ位置の異なる油分配管でそれぞれ接続し、前記油だめ内の油面が低下して前記油供給配管に前記圧縮気体が侵入したときは、前記油分配管のいずれかに集中的に前記圧縮気体が流入するようにし、
前記油だめ内の油の油面を、前記圧縮機から吐出された前記圧縮気体の温度により検知することを特徴とする油面検知方法。
In the gas compression apparatus in which the oil mixed in the compressed gas discharged from the compressor is separated by an oil separator and stored in a sump, and the oil in the sump is supplied to the compressor.
A plurality of the compressors are connected in parallel and the discharge pipes are joined to the discharge pipes, and an oil distributor is provided in an oil supply pipe for supplying oil to the compressors, and the oil distributors and the plurality of compressors are When the oil level in the sump is lowered and the compressed gas enters the oil supply pipe, the compressed gas is concentrated in one of the oil pipes. To flow in,
An oil level detection method comprising detecting the oil level of oil in the sump by the temperature of the compressed gas discharged from the compressor.
前記圧縮機の吐出配管を流れる前記圧縮気体の温度を検知する温度センサを設けると共に、前記油だめに前記圧縮機に油を供給する油供給配管に接続され、その吸込口が油の正常油面より下方に位置する吸込管を設け、該吸込管に前記圧縮気体が侵入して前記圧縮機から吐出された前記圧縮気体の温度上昇を前記温度センサが検知することにより、前記油だめ内の油面の低下を検知することを特徴とする請求項1記載の油面検知方法。 Provided with a temperature sensor for detecting the temperature of the compressed gas flowing through the discharge pipe of the compressor, is connected to the oil supply pipe for supplying oil to the oil sump the compressor, the normal oil level of the suction port oil the suction pipe is provided which is located more downward, by the temperature sensor the temperature rise of the compressed gas discharged from the compressor the compressed gas from entering the suction write pipe senses, oil in the oil sump The oil level detection method according to claim 1, wherein a decrease in the level is detected. 前記油だめに、吸込口が前記吸込管の吸込口より下方に位置し、前記油供給配管に合流する第2の吸込管を設けたことを特徴とする請求項又は記載の油面検知方法。 The oil sump, suction port positioned below the suction port of the suction tube, the oil level detection according to claim 1 or 2 characterized in that a second suction pipe merges into the oil supply pipe Method. 圧縮機から吐出された圧縮気体に混入された油を油分離器で分離して油だめ内に貯留し、該油だめ内の油を油供給配管により前記圧縮機に供給するようにした気体圧縮装置において、
前記圧縮機の吐出配管を流れる前記圧縮気体の温度を検知する温度センサを設けると共に、前記油だめに前記油供給配管に合流する吸込口の高さ位置の異なる2本の吸込管を設けて上部の吸込管に常開の電磁弁を設け、前記油だめ内の油面が低下して前記上部の吸込管に前記圧縮気体が侵入して前記圧縮機から吐出された前記圧縮気体の温度上昇を前記温度センサが検知したときは、前記電磁弁を閉止することを特徴とする油供給制御方法。
Gas compression in which oil mixed in compressed gas discharged from a compressor is separated by an oil separator and stored in a sump, and the oil in the sump is supplied to the compressor through an oil supply pipe. In the device
Provided with a temperature sensor for detecting the temperature of the compressed gas flowing through the discharge pipe of the compressor, the upper is provided with two suction pipes of different height positions of the inlet merging into the oil supply pipe the oil sump of the suction pipe providing the solenoid valve normally open, the temperature rise of the compressed gas oil level is decreased the compressed gas to the suction pipe of the upper is discharged from the compressor from entering inside the oil sump An oil supply control method comprising: closing the solenoid valve when the temperature sensor detects.
前記電磁弁を閉止したのちも運転を継続し、前記圧縮機から吐出された前記圧縮気体の温度が再度上昇したときは該圧縮機の運転を停止することを特徴とする請求項記載の油供給制御方法。 Continued even operation After closing the solenoid valve, the oil of claim 4, wherein when the temperature of the compressed gas discharged from the compressor is raised again, characterized in that to stop the operation of said compressor Supply control method. 圧縮機から吐出された圧縮気体に混入された油を油分離器で分離して油だめ内に貯留し、該油だめ内の油を油供給配管により前記圧縮機に供給するようにした気体圧縮装置において、
前記圧縮機の吐出配管を流れる前記圧縮気体の温度を検知する温度センサを設けると共に、前記油だめに前記油供給配管に合流する吸込口の高さ位置の異なる3本以上の吸込管を設けて最下部の吸込管を除く他の吸込管にそれぞれ常開の電磁弁を設け、前記油だめ内の油面が低下して前記吸込管に前記圧縮気体が侵入して前記圧縮機から吐出された前記圧縮気体の温度上昇を前記温度センサが検知したときは前記電磁弁を順次閉止し、最下部の吸込管に前記圧縮気体が侵入して前記圧縮気体の温度上昇を前記温度センサが検知したときは、前記圧縮機の運転を停止することを特徴とする油供給制御方法。
Gas compression in which oil mixed in compressed gas discharged from a compressor is separated by an oil separator and stored in a sump, and the oil in the sump is supplied to the compressor through an oil supply pipe. In the device
Provided with a temperature sensor for detecting the temperature of the compressed gas flowing through the discharge pipe of the compressor, provided with a three or more suction tubes having different height positions of the inlet merging into the oil supply pipe the oil sump Each of the other suction pipes except the lowermost suction pipe is provided with a normally open solenoid valve, the oil level in the sump is lowered, and the compressed gas enters the suction pipe and is discharged from the compressor. wherein the temperature rise of the compressed gas when the temperature sensor detects sequentially closes the electromagnetic valve, when the temperature sensor the temperature rise of the compressed gas the compressed gas to the suction tube at the bottom from entering detects Stops the operation of the compressor.
請求項1〜のいずれかの油面検知方法及び請求項のいずれかの油供給制御方法の両者又はいずれか一方を備えたことを特徴とする気体圧縮装置。 A gas compression apparatus comprising the oil level detection method according to any one of claims 1 to 3 and / or the oil supply control method according to any one of claims 4 to 6 . 請求項の気体圧縮装置を備えたことを特徴とする空気調和装置。 An air conditioner comprising the gas compression device according to claim 7 .
JP2007246869A 2007-09-25 2007-09-25 Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device Active JP5132232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246869A JP5132232B2 (en) 2007-09-25 2007-09-25 Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246869A JP5132232B2 (en) 2007-09-25 2007-09-25 Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device

Publications (2)

Publication Number Publication Date
JP2009074523A JP2009074523A (en) 2009-04-09
JP5132232B2 true JP5132232B2 (en) 2013-01-30

Family

ID=40609721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246869A Active JP5132232B2 (en) 2007-09-25 2007-09-25 Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device

Country Status (1)

Country Link
JP (1) JP5132232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222829B2 (en) 2019-06-24 2023-02-15 株式会社デンソー Winding device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106895607A (en) * 2017-03-14 2017-06-27 广东志高暖通设备股份有限公司 A kind of air-conditioning, automatic oil-return device and method
CN112752905B (en) * 2018-10-03 2023-05-02 株式会社日立产机系统 Liquid-supply type gas compressor and gas-liquid separator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175881U (en) * 1984-05-02 1985-11-21 株式会社小松製作所 Oil cooling system for oil-cooled compressor
JPH029115Y2 (en) * 1985-06-04 1990-03-06
JPH0633786B2 (en) * 1987-07-27 1994-05-02 松下電器産業株式会社 Scroll gas compressor
JP2517346B2 (en) * 1988-01-29 1996-07-24 三洋電機株式会社 Compressor control device
JP2635392B2 (en) * 1988-11-04 1997-07-30 株式会社日立製作所 Equipment for operation control and inspection of screw compressors
JPH0354389A (en) * 1989-07-21 1991-03-08 Fujitsu General Ltd Compressor
JPH04187890A (en) * 1990-11-21 1992-07-06 Sanyo Electric Co Ltd Oil separating device for closed type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222829B2 (en) 2019-06-24 2023-02-15 株式会社デンソー Winding device

Also Published As

Publication number Publication date
JP2009074523A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
US7494536B2 (en) Method for detecting a fault in an HVAC system
EP1075631B1 (en) Electronic controlled expansion valve
US20050126190A1 (en) Loss of refrigerant charge and expansion valve malfunction detection
JP6101815B2 (en) Refrigeration cycle equipment
CN104296421B (en) Air conditioner and oil return control method thereof
EP1150080B1 (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
JP2006523285A (en) Protection against compressor liquid failure
CN103673398B (en) Compressor oil return system and oil return state detection method of compressor
JP2006292212A (en) Air conditioner
JP2008096002A (en) Air conditioner
JP6508814B2 (en) Unit for compressor, compressor, and refrigerant circuit
JP5132232B2 (en) Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device
CN106895607A (en) A kind of air-conditioning, automatic oil-return device and method
CN102980327A (en) Lubricating oil level detecting device and method in air-conditioning system
JP2010121831A (en) Refrigerating cycle
TW202108943A (en) Refrigerant state detection device, refrigerant state detection method, and temperature control system
CN113310249A (en) Multi-split air conditioning system, oil balance device thereof and oil balance control method
JP4278351B2 (en) Oil level detection method and apparatus for compressor
JP4448390B2 (en) Refrigeration equipment
JP5309105B2 (en) Refrigeration equipment
JP2008039200A (en) Refrigerating device
JP4004356B2 (en) Oil level detection method and apparatus for compressor
CN103512280B (en) The oily balance method of air-conditioner
JP4236163B2 (en) Ammonia refrigeration system using working fluid composition composed of lubricating oil and ammonia refrigerant
CN103512279B (en) Air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250