JP2010121831A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2010121831A
JP2010121831A JP2008294844A JP2008294844A JP2010121831A JP 2010121831 A JP2010121831 A JP 2010121831A JP 2008294844 A JP2008294844 A JP 2008294844A JP 2008294844 A JP2008294844 A JP 2008294844A JP 2010121831 A JP2010121831 A JP 2010121831A
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
refrigerant
compressor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008294844A
Other languages
Japanese (ja)
Other versions
JP2010121831A5 (en
Inventor
Tomonori Shimura
智紀 志村
Eiji Fukuda
栄二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2008294844A priority Critical patent/JP2010121831A/en
Priority to EP09175357.4A priority patent/EP2187150A3/en
Priority to CN200910226504A priority patent/CN101737987A/en
Publication of JP2010121831A publication Critical patent/JP2010121831A/en
Publication of JP2010121831A5 publication Critical patent/JP2010121831A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle capable of certainly and effectively suppressing excessive increase of a refrigerant temperature at a suction side of a compressor without complicating piping system and a structure of an expansion valve. <P>SOLUTION: This refrigerant cycle includes the compressor 101, a condenser 102, an evaporator 103, an internal heat exchanger 104, and the expansion valve 111. In the internal heat exchanger 104, a heat exchange is performed between a high-temperature refrigerant guided from the condenser 102 to the expansion valve 111 and a low-temperature refrigerant guided from the evaporator 103 to the suction side of the compressor 101. In order to detect temperature and/or pressure of the low-temperature refrigerant guided to the suction side of the compressor 101 after heat exchange in the internal heat exchanger 104, a temperature-sensitive cylinder 70 and/or an external pressure introduction pipe 50 are additionally provided at the expansion valve 111. In the expansion valve 111, a flow rate of the refrigerant guided to the evaporator 103 is adjusted according to the temperature and/or pressure of the low-temperature refrigerant after the heat exchange. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、カーエアコン等に使用される冷凍サイクルに係り、特に、圧縮機、凝縮器、蒸発器、内部熱交換器、及び、膨張弁を備え、内部熱交換器において、凝縮器から膨張弁に導かれる高温の冷媒と蒸発器から圧縮機の吸入側に導かれる低温の冷媒との間で熱交換を行うようにされた冷凍サイクル関する。   The present invention relates to a refrigeration cycle used for a car air conditioner and the like, and in particular, includes a compressor, a condenser, an evaporator, an internal heat exchanger, and an expansion valve. This relates to a refrigeration cycle in which heat is exchanged between the high-temperature refrigerant introduced to the refrigerant and the low-temperature refrigerant introduced from the evaporator to the suction side of the compressor.

カーエアコン等に使用される冷凍サイクルにおいて、冷却能力等を向上させるため、従来、例えば,図9に示される如くのものが提案ないし実用に供されている。すなわち、図示例の冷凍サイクル10は、圧縮機101、凝縮器102、蒸発器103、内部熱交換器104、及び、膨張弁110(後述)を備え、内部熱交換器104において、凝縮器102から膨張弁110に導かれる高温高圧の冷媒(液相)と蒸発器103から圧縮機101の吸入側に導かれる低温低圧の冷媒(気相)との間で熱交換を行うようにしたものである(例えば、下記特許文献1、2も参照)。   In order to improve the cooling capacity and the like in a refrigeration cycle used for a car air conditioner or the like, conventionally, for example, the one shown in FIG. 9 has been proposed or put into practical use. That is, the refrigeration cycle 10 in the illustrated example includes a compressor 101, a condenser 102, an evaporator 103, an internal heat exchanger 104, and an expansion valve 110 (described later), and in the internal heat exchanger 104, from the condenser 102. Heat exchange is performed between the high-temperature and high-pressure refrigerant (liquid phase) guided to the expansion valve 110 and the low-temperature and low-pressure refrigerant (gas phase) guided from the evaporator 103 to the suction side of the compressor 101. (For example, see also Patent Documents 1 and 2 below).

かかる冷凍サイクル10に使用されている膨張弁110の一例を図10に示す。図示例の膨張弁110は、弁本体20の下部に内部熱交換器104からの高温冷媒を導入するための流入口21と弁シート部25(弁口26)を有する弁室24が設けられるとともに、中央部に流出口22が設けられ、また、弁本体20の上部左右に感温用流入口31及び流出口32が設けられ、弁本体20の最上部には、感温用流入口31から流出口32へ流れる冷媒の温度変化及び圧力変化に応動する感温感圧応動手段としてのダイアフラム装置40が取り付けられている。   An example of the expansion valve 110 used in the refrigeration cycle 10 is shown in FIG. The expansion valve 110 of the illustrated example is provided with a valve chamber 24 having an inlet 21 and a valve seat portion 25 (valve port 26) for introducing high-temperature refrigerant from the internal heat exchanger 104 at the lower portion of the valve body 20. In addition, an outlet 22 is provided in the center, temperature-sensitive inlets 31 and outlets 32 are provided on the upper left and right of the valve body 20, and a temperature-sensitive inlet 31 is provided at the top of the valve body 20. A diaphragm device 40 is attached as a temperature-sensitive pressure responsive means that responds to changes in temperature and pressure of the refrigerant flowing to the outlet 32.

前記弁室24には、前記弁口26を開閉するボール弁体30と該ボール弁体30を閉弁方向に付勢するコイルばね27が配在されている。   A ball valve body 30 that opens and closes the valve port 26 and a coil spring 27 that biases the ball valve body 30 in the valve closing direction are arranged in the valve chamber 24.

前記ダイアフラム装置40は、前記ボール弁体30を駆動ロッド35及び連結体36を介して開閉方向(上下方向)に駆動するためのダイアフラム42を有し、該ダイアフラム42を隔壁としてその上下には、上側圧力室43と下側圧力室44とが画成されている。上側圧力室43は所定圧力のガスが封入されてキャップ46で密閉されている。下側圧力室44は、連通開口部45を介して前記感温用流入口31及び流出口32に連通しており、前記ダイアフラム42の下面側には、蒸発器103から内部熱交換器104に導かれる低温冷媒の圧力が作用するようになっている。   The diaphragm device 40 includes a diaphragm 42 for driving the ball valve body 30 in an opening / closing direction (vertical direction) via a drive rod 35 and a connecting body 36, and the diaphragm 42 serves as a partition, An upper pressure chamber 43 and a lower pressure chamber 44 are defined. The upper pressure chamber 43 is sealed with a cap 46 filled with a gas having a predetermined pressure. The lower pressure chamber 44 communicates with the temperature sensing inlet 31 and the outlet 32 through the communication opening 45, and the lower surface side of the diaphragm 42 is connected from the evaporator 103 to the internal heat exchanger 104. The pressure of the introduced low-temperature refrigerant is applied.

なお、前記下側圧力室44、感温用流入口31及び流出口32と前記冷媒流出口22との連通・流通を遮断すべく、弁本体20における駆動ロッド35が通される内部中央付近に穴38が設けられるとともに、この穴38の内周面と駆動ロッド35の外周面との間にはシール材としてのOリング39が介装されている。また、弁室24の下部には、ばね圧調節用ナット28が螺合せしめられ、このばね圧調節用ナット28の非螺合部分と弁室24内周面との間にはシール材としてのOリング29が介装されている。   The lower pressure chamber 44, the temperature sensing inlet 31 and the outlet 32, and the refrigerant outlet 22 are closed in the vicinity of the center of the interior of the valve body 20 through which the drive rod 35 is passed. A hole 38 is provided, and an O-ring 39 as a seal material is interposed between the inner peripheral surface of the hole 38 and the outer peripheral surface of the drive rod 35. A spring pressure adjusting nut 28 is screwed into the lower portion of the valve chamber 24, and a seal material is provided between the non-threaded portion of the spring pressure adjusting nut 28 and the inner peripheral surface of the valve chamber 24. An O-ring 29 is interposed.

したがって、かかる構成の膨張弁110では、流出口22から前記蒸発器103へ導出される冷媒の流量(圧力降下度及び温度降下度)を、前記内部熱交換器104で熱交換を行う前の低温冷媒の温度及び圧力に応じて調整するようになっている。   Therefore, in the expansion valve 110 having such a configuration, the flow rate (pressure drop and temperature drop) of the refrigerant led out from the outlet 22 to the evaporator 103 is set to a low temperature before heat exchange is performed in the internal heat exchanger 104. The temperature is adjusted according to the temperature and pressure of the refrigerant.

特開2000−346466号公報JP 2000-346466 A 特開2007−240041号公報JP 2007-240041 A

しかしながら、前記内部熱交換器104や膨張弁110を備えた冷凍サイクル10では、内部熱交換器104において熱交換が行われることにより、圧縮機101に吸入される冷媒の温度が上昇し、これに伴い圧縮機内部(吐出)温度が高くなり過ぎる場合があり、冷媒中に含まれるオイルが劣化して焼付等の不具合が発生するおそれがあった。   However, in the refrigeration cycle 10 including the internal heat exchanger 104 and the expansion valve 110, the heat exchange is performed in the internal heat exchanger 104, thereby increasing the temperature of the refrigerant sucked into the compressor 101. As a result, the internal (discharge) temperature of the compressor may become too high, and the oil contained in the refrigerant may deteriorate to cause problems such as seizure.

かかる不具合の発生を防止すべく、前記特許文献1には、圧縮機吸入側の冷媒温度を感知して、三方弁で内部熱交換器を流れる冷媒量を調整する方策が提案されているが、かかる方策では、三方弁が必要とされるので、配管系が複雑になるとともに、部品点数等も増加する嫌いがある。   In order to prevent the occurrence of such inconvenience, Patent Document 1 proposes a method of detecting the refrigerant temperature on the compressor suction side and adjusting the amount of refrigerant flowing through the internal heat exchanger with a three-way valve. In such a measure, since a three-way valve is required, the piping system is complicated and the number of parts is increased.

また、前記特許文献2には、膨張弁にバイパス通路を設けて冷媒を冷却する方策が提案されているが、かかる方策では、負荷が変動した場合、圧縮機吸入側の冷媒温度をコントロールすることができないし、膨張弁の構造が複雑になり、コストアップを招く。   Patent Document 2 proposes a measure for cooling the refrigerant by providing a bypass passage in the expansion valve. In this measure, when the load fluctuates, the refrigerant temperature on the compressor suction side is controlled. And the structure of the expansion valve becomes complicated, resulting in an increase in cost.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、配管系や膨張弁の構造を複雑にすることなく、圧縮機吸入側の冷媒温度が過度に上昇することを確実かつ効果的に抑えることのできる冷凍サイクルを提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is to ensure that the refrigerant temperature on the compressor suction side excessively increases without complicating the structure of the piping system and the expansion valve. Another object of the present invention is to provide a refrigeration cycle that can be effectively suppressed.

前記の目的を達成すべく、本発明に係る冷凍サイクルは、基本的には、圧縮機、凝縮器、蒸発器、内部熱交換器、及び、膨張弁を備え、前記内部熱交換器内において前記凝縮器から前記膨張弁に導かれる高温の冷媒と前記蒸発器から前記圧縮機の吸入側に導かれる低温の冷媒との間で熱交換を行うようにされ、前記圧縮機の吸入側に導かれる、前記内部熱交換器で熱交換を行った後の低温冷媒の温度及び/又は圧力を感知すべく、前記膨張弁に感温筒及び/又は外部圧力導入管が付設され、前記膨張弁において、前記蒸発器へ導出される冷媒の流量を前記熱交換後の低温冷媒の温度及び/又は圧力に応じて調整するようにされていることを特徴としている。   In order to achieve the above object, a refrigeration cycle according to the present invention basically includes a compressor, a condenser, an evaporator, an internal heat exchanger, and an expansion valve, and the internal heat exchanger includes the above-mentioned Heat is exchanged between a high-temperature refrigerant led from the condenser to the expansion valve and a low-temperature refrigerant led from the evaporator to the suction side of the compressor, and led to the suction side of the compressor. In order to sense the temperature and / or pressure of the low-temperature refrigerant after heat exchange with the internal heat exchanger, the expansion valve is provided with a temperature sensing tube and / or an external pressure introduction pipe, The flow rate of the refrigerant led out to the evaporator is adjusted according to the temperature and / or pressure of the low-temperature refrigerant after the heat exchange.

好ましい態様では、前記膨張弁は、前記外部圧力導入管を介して導入される熱交換を行った後の低温冷媒の圧力変化に応動して弁体を開閉方向に駆動するダイアフラム装置等の駆動手段を備える。   In a preferred embodiment, the expansion valve is a driving means such as a diaphragm device that drives the valve body in the opening / closing direction in response to a pressure change of the low-temperature refrigerant after performing heat exchange introduced through the external pressure introduction pipe. Is provided.

他の好ましい態様では、前記膨張弁は、前記感温筒により感知される熱交換を行った後の低温冷媒の温度変化に応動して弁体を開閉方向に駆動するダイアフラム装置等の駆動手段を備える。   In another preferred embodiment, the expansion valve includes a driving means such as a diaphragm device that drives the valve body in an opening / closing direction in response to a temperature change of the low-temperature refrigerant after performing heat exchange detected by the temperature sensing cylinder. Prepare.

本発明に係る冷凍サイクルでは、熱交換後の低温冷媒の温度及び圧力は、熱交換前のそれに比して高くなることを考慮して、圧縮機の吸入側に導かれる、内部熱交換器で熱交換を行った後の低温冷媒の温度及び/又は圧力を感知するための感温筒及び/又は外部冷媒圧力導入管が備えられ、膨張弁において、蒸発器へ導出する冷媒の流量(圧力降下度及び温度降下度)を前記熱交換後の低温冷媒の温度及び/又は圧力に応じて調整するようにされているので、配管系や膨張弁の構造を複雑にすることなく、圧縮機吸入側の冷媒温度が過度に上昇することを確実かつ効果的に抑えることができる。そのため、圧縮機内部(吐出)温度が過度に上昇することを未然に防止でき、冷媒中に含まれるオイルが劣化して焼付等の不具合が発生する事態を確実に防止できる。   In the refrigeration cycle according to the present invention, in consideration of the fact that the temperature and pressure of the low-temperature refrigerant after heat exchange are higher than that before heat exchange, an internal heat exchanger led to the suction side of the compressor. A temperature sensing tube and / or an external refrigerant pressure introduction pipe for sensing the temperature and / or pressure of the low-temperature refrigerant after heat exchange is provided, and the refrigerant flow rate (pressure drop) to the evaporator is provided in the expansion valve. The temperature and the temperature drop degree) are adjusted according to the temperature and / or pressure of the low-temperature refrigerant after the heat exchange, so that the compressor intake side can be obtained without complicating the structure of the piping system and the expansion valve. It is possible to reliably and effectively suppress the refrigerant temperature from rising excessively. Therefore, it is possible to prevent an excessive rise in the compressor internal (discharge) temperature, and it is possible to reliably prevent the occurrence of problems such as seizure due to deterioration of the oil contained in the refrigerant.

また、本発明の冷凍サイクルは、既存の冷凍サイクル及びそれに使用されている膨張弁に極僅かに改造を加えるだけで、前記した効果が得られるので、大きなコストアップには繋がらないという利点も有する。   In addition, the refrigeration cycle of the present invention has the advantage that it does not lead to a significant increase in cost because the above-described effect can be obtained by making a slight modification to the existing refrigeration cycle and the expansion valve used therein. .

以下、本発明の冷凍サイクルの実施形態を図面を参照しながら説明する。
図1(A)、(B)、(C)は、本発明に係る冷凍サイクルの第1実施例、第2実施例、第3実施例を示している。また、図2、図3、図4は、それぞれ第1、第2、第3実施例で使用されている膨張弁111、112、113を示している。図1(A)、(B)、(C)に示される冷凍サイクル11、12、13並びに図2〜図4に示される膨張弁111、112、113については、前記した図9、図10に示される従来例の冷凍サイクル10並びに膨張弁110の各部に対応する部分には同一の符号が付されており、以下においては、従来例との相異点を重点的に説明する。
Hereinafter, embodiments of the refrigeration cycle of the present invention will be described with reference to the drawings.
1A, 1B, and 1C show a first embodiment, a second embodiment, and a third embodiment of a refrigeration cycle according to the present invention. 2, 3 and 4 show the expansion valves 111, 112 and 113 used in the first, second and third embodiments, respectively. The refrigeration cycles 11, 12, and 13 shown in FIGS. 1A, 1B, and 1C and the expansion valves 111, 112, and 113 shown in FIGS. 2 to 4 are the same as those shown in FIGS. Parts corresponding to the respective parts of the refrigeration cycle 10 and the expansion valve 110 of the conventional example shown are denoted by the same reference numerals, and differences from the conventional example will be mainly described below.

第1実施例の冷凍サイクル11は、圧縮機101の吸入側に導かれる、内部熱交換器104で熱交換を行った後の低温冷媒の圧力を感知すべく、内部熱交換器104と圧縮機101の吸入側とを結ぶ導管125の途中に外部圧力導入管50の一端部を連結するとともに、外部圧力導入管50の他端部を膨張弁111の下側圧力室44の底部近くに設けられた圧力導入通路54に接続し、膨張弁111において、蒸発器103へ導出される冷媒の流量(圧力降下度及び温度降下度)を前記熱交換後の低温冷媒の圧力に応じて調整するようにしたものである。   In the refrigeration cycle 11 of the first embodiment, the internal heat exchanger 104 and the compressor are guided so as to sense the pressure of the low-temperature refrigerant that is guided to the suction side of the compressor 101 and performs heat exchange with the internal heat exchanger 104. One end portion of the external pressure introduction pipe 50 is connected to the middle of the conduit 125 connecting the suction side of 101, and the other end portion of the external pressure introduction pipe 50 is provided near the bottom of the lower pressure chamber 44 of the expansion valve 111. In the expansion valve 111, the flow rate (pressure drop degree and temperature drop degree) of the refrigerant led to the evaporator 103 is adjusted according to the pressure of the low-temperature refrigerant after the heat exchange. It is a thing.

より詳細には、本第1実施例の冷凍サイクル11で使用される膨張弁111は、図2に示される如くに、下側圧力室44と感温用流入口31及び流出口32との連通を遮断すべく、従来例の連通開口部45を小径のロッド挿通穴62に変更し、このロッド挿通穴62と駆動ロッド35との間にシール材としてのOリング63を介装するとともに、内部熱交換器104で熱交換を行った後の低温冷媒の圧力を前記外部圧力導入管50及び圧力導入通路54を介して前記下側圧力室44に導入するようにされている。   More specifically, the expansion valve 111 used in the refrigeration cycle 11 according to the first embodiment communicates between the lower pressure chamber 44 and the temperature-sensitive inlet 31 and outlet 32 as shown in FIG. In order to shut off, the communication opening 45 of the conventional example is changed to a small-diameter rod insertion hole 62, and an O-ring 63 as a sealing material is interposed between the rod insertion hole 62 and the drive rod 35, and the internal The pressure of the low-temperature refrigerant after heat exchange by the heat exchanger 104 is introduced into the lower pressure chamber 44 through the external pressure introduction pipe 50 and the pressure introduction passage 54.

このように本実施例の冷凍サイクル11では、熱交換後の低温冷媒の温度及び圧力は、熱交換前のそれに比して高くなることを考慮して、圧縮機101の吸入側に導かれる、内部熱交換器104で熱交換を行った後の低温冷媒の圧力を感知するための外部冷媒圧力導入管50が備えられ、膨張弁111において、蒸発器103へ導出する冷媒の流量を前記熱交換後の低温冷媒の圧力に応じて調整するようにされているので、配管系や膨張弁の構造を複雑にすることなく、圧縮機101の吸入側の冷媒温度が過度に上昇することを確実かつ効果的に抑えることができる。そのため、圧縮機内部(吐出)温度が過度に上昇することを未然に防止でき、冷媒中に含まれるオイルが劣化して焼付等の不具合が発生する事態を確実に防止できる。   Thus, in the refrigeration cycle 11 of the present embodiment, the temperature and pressure of the low-temperature refrigerant after heat exchange are led to the suction side of the compressor 101 in consideration of being higher than that before heat exchange. An external refrigerant pressure introduction pipe 50 is provided for sensing the pressure of the low-temperature refrigerant after heat exchange in the internal heat exchanger 104, and the flow rate of the refrigerant led out to the evaporator 103 in the expansion valve 111 is changed to the heat exchange. Since the adjustment is made according to the pressure of the later low-temperature refrigerant, it is ensured that the refrigerant temperature on the suction side of the compressor 101 rises excessively without complicating the structure of the piping system and the expansion valve. It can be effectively suppressed. Therefore, it is possible to prevent an excessive rise in the compressor internal (discharge) temperature, and it is possible to reliably prevent the occurrence of problems such as seizure due to deterioration of the oil contained in the refrigerant.

また、本実施例の冷凍サイクルは、既存の冷凍サイクル及びそれに使用されている膨張弁に極僅かに改造を加えるだけで、前記した効果が得られるので、大きなコストアップには繋がらないという利点も有する。   In addition, the refrigeration cycle of the present embodiment has the advantage that it does not lead to a significant increase in cost because the above-described effects can be obtained by making a slight modification to the existing refrigeration cycle and the expansion valve used therein. Have.

第2実施例の冷凍サイクル12は、圧縮機101の吸入側に導かれる、内部熱交換器104で熱交換を行った後の低温冷媒の温度を感知すべく、感温筒70を内部熱交換器104と圧縮機101の吸入側とを結ぶ導管125に近接配置するとともに、図3に示される如くに、感温筒70と膨張弁112の上側圧力室43とをキャピラリーチューブ72で結び、膨張弁112において、蒸発器103へ導出される冷媒の流量を前記熱交換後の低温冷媒の温度に応じて調整するようにしたものである。   In the refrigeration cycle 12 of the second embodiment, the temperature sensing cylinder 70 is subjected to internal heat exchange so as to sense the temperature of the low-temperature refrigerant after being heat-exchanged by the internal heat exchanger 104 guided to the suction side of the compressor 101. As shown in FIG. 3, the temperature sensing cylinder 70 and the upper pressure chamber 43 of the expansion valve 112 are connected by a capillary tube 72 so as to be expanded. In the valve 112, the flow rate of the refrigerant led out to the evaporator 103 is adjusted according to the temperature of the low-temperature refrigerant after the heat exchange.

このような構成の冷凍サイクル12では、圧縮機101の吸入側に導かれる、内部熱交換器104で熱交換を行った後の低温冷媒の温度を感知するための感温筒70が備えられ、膨張弁112において、蒸発器103へ導出する冷媒の流量を前記熱交換後の低温冷媒の温度に応じて調整するようにされているので、第1実施例と同様に、配管系や膨張弁の構造を複雑にすることなく、圧縮機101の吸入側の冷媒温度が過度に上昇することを確実かつ効果的に抑えることができる。そのため、圧縮機内部(吐出)温度が過度に上昇することを未然に防止でき、冷媒中に含まれるオイルが劣化して焼付等の不具合が発生する事態を確実に防止できる。   In the refrigeration cycle 12 having such a configuration, a temperature sensing cylinder 70 is provided for sensing the temperature of the low-temperature refrigerant after being heat-exchanged by the internal heat exchanger 104, which is guided to the suction side of the compressor 101. In the expansion valve 112, the flow rate of the refrigerant led out to the evaporator 103 is adjusted in accordance with the temperature of the low-temperature refrigerant after the heat exchange. Therefore, as in the first embodiment, the piping system and the expansion valve Without making the structure complicated, the refrigerant temperature on the suction side of the compressor 101 can be reliably and effectively suppressed from rising excessively. Therefore, it is possible to prevent an excessive rise in the compressor internal (discharge) temperature, and it is possible to reliably prevent the occurrence of problems such as seizure due to deterioration of the oil contained in the refrigerant.

また、本実施例の冷凍サイクルは、既存の冷凍サイクル及びそれに使用されている膨張弁に極僅かに改造を加えるだけで、前記した効果が得られるので、大きなコストアップには繋がらないという利点も有する。   In addition, the refrigeration cycle of the present embodiment has the advantage that it does not lead to a significant increase in cost because the above-described effects can be obtained by making a slight modification to the existing refrigeration cycle and the expansion valve used therein. Have.

第3実施例の冷凍サイクル13は、第1実施例の冷凍サイクル11及び第2実施例の冷凍サイクル12を組み合わせたもので、外部圧力導入管50及び感温筒70の両方を備えており、それに使用される膨張弁113の下側圧力室44周りは第1実施例のものと略同様であり、上側圧力室43周りは第2実施例のものと略同様に構成されていて、膨張弁113において、蒸発器103へ導出される冷媒の流量を前記熱交換後の低温冷媒の圧力及び温度に応じて調整するようにしたものである。   The refrigeration cycle 13 of the third embodiment is a combination of the refrigeration cycle 11 of the first embodiment and the refrigeration cycle 12 of the second embodiment, and includes both the external pressure introduction pipe 50 and the temperature sensing cylinder 70, The area around the lower pressure chamber 44 of the expansion valve 113 used therefor is substantially the same as that of the first embodiment, and the area around the upper pressure chamber 43 is substantially the same as that of the second embodiment. In 113, the flow rate of the refrigerant led to the evaporator 103 is adjusted according to the pressure and temperature of the low-temperature refrigerant after the heat exchange.

このような構成の冷凍サイクル13においても、第1実施例及び第2実施例と同様に、
圧縮機内部(吐出)温度が過度に上昇することを未然に防止でき、冷媒中に含まれるオイルが劣化して焼付等の不具合が発生する事態を確実に防止できる。
Also in the refrigeration cycle 13 having such a configuration, as in the first and second embodiments,
It is possible to prevent the compressor internal (discharge) temperature from rising excessively, and to reliably prevent the occurrence of problems such as seizure due to deterioration of the oil contained in the refrigerant.

図5(A)、(B)、(C)は、本発明に係る冷凍サイクルの第4実施例、第5実施例、第6実施例を示している。また、図6は、第4実施例で使用されている膨張弁114を示し、図7は、第5実施例で使用されている膨張弁115を示し、図8は第6実施例で使用されている膨張弁116を示している。図5(A)、(B)、(C)に示される冷凍サイクル14、15、16並びに図6、図7、図8に示される膨張弁114、115、116については、前述した第1、第2、第3実施例の冷凍サイクル11、12、13並びに膨張弁111、112、113の各部に対応する部分には同一の符号が付されており、以下においては、それらとの相異点を重点的に説明する。   5A, 5B, and 5C show a fourth embodiment, a fifth embodiment, and a sixth embodiment of the refrigeration cycle according to the present invention. 6 shows the expansion valve 114 used in the fourth embodiment, FIG. 7 shows the expansion valve 115 used in the fifth embodiment, and FIG. 8 is used in the sixth embodiment. The expansion valve 116 is shown. The refrigeration cycles 14, 15, and 16 shown in FIGS. 5A, 5B, and 5C and the expansion valves 114, 115, and 116 shown in FIGS. 6, 7, and 8 are the first, Parts corresponding to the respective parts of the refrigeration cycles 11, 12, 13 and the expansion valves 111, 112, 113 of the second and third embodiments are denoted by the same reference numerals. Will be explained with emphasis.

第4、第5、第6実施例の冷凍サイクル14、15、16に使用されている膨張弁114、115、116は、前述した第1、第2、第3実施例の冷凍サイクル11、12、13に使用されている膨張弁111、112、113では設けられていた感温用流入口31及び流出口32は設けられておらず、蒸発器103からの低温の冷媒は、膨張弁114、115(116)内を通らずに直接内部熱交換器104に導かれるようになっている。   The expansion valves 114, 115, 116 used in the refrigeration cycles 14, 15, 16 of the fourth, fifth, and sixth embodiments are the same as the refrigeration cycles 11, 12 of the first, second, and third embodiments described above. , 13 is not provided with the temperature-sensitive inlet 31 and outlet 32 provided in the expansion valves 111, 112, and 113, and the low-temperature refrigerant from the evaporator 103 is supplied to the expansion valves 114, 115 (116) without being passed through the internal heat exchanger 104.

第4実施例の冷凍サイクル14は、前述した第2実施例の冷凍サイクル12と同様に、
圧縮機101の吸入側に導かれる、内部熱交換器104で熱交換を行った後の低温冷媒の温度を感知すべく、感温筒70を内部熱交換器104と圧縮機101の吸入側とを結ぶ導管125に近接配置するとともに、図6に示される如くに、感温筒70と膨張弁112の上側圧力室43とをキャピラリーチューブ72で結び、膨張弁114において、蒸発器103へ導出される冷媒の流量を前記熱交換後の低温冷媒の温度に応じて調整するようにしたものである。また、この例で使用されている膨張弁114の弁本体20には、下側圧力室44と流出口22とを連通する内部圧力通路66が設けられている。
The refrigeration cycle 14 of the fourth embodiment is similar to the refrigeration cycle 12 of the second embodiment described above.
In order to sense the temperature of the low-temperature refrigerant after the heat exchange by the internal heat exchanger 104 guided to the suction side of the compressor 101, the temperature sensing cylinder 70 is connected to the internal heat exchanger 104 and the suction side of the compressor 101. As shown in FIG. 6, the temperature sensing cylinder 70 and the upper pressure chamber 43 of the expansion valve 112 are connected by a capillary tube 72, and the expansion valve 114 is led to the evaporator 103. The flow rate of the refrigerant is adjusted according to the temperature of the low-temperature refrigerant after the heat exchange. In addition, the valve body 20 of the expansion valve 114 used in this example is provided with an internal pressure passage 66 that communicates the lower pressure chamber 44 and the outlet 22.

なお、このタイプの膨張弁では、通常、感温筒で蒸発器103の出口近傍の冷媒温度を感知するようにされている(図5(B)参照)が、本実施例は、内部熱交換器104で熱交換を行った後の冷媒温度を感温筒70で感知するようにしたこと、つまり、感温筒70の配置部位を変更したことを特徴としている。   In this type of expansion valve, the temperature of the refrigerant in the vicinity of the outlet of the evaporator 103 is usually sensed by a temperature sensing cylinder (see FIG. 5B), but in this embodiment, internal heat exchange is performed. It is characterized in that the temperature of the refrigerant after the heat exchange in the vessel 104 is sensed by the temperature sensing cylinder 70, that is, the location of the temperature sensing cylinder 70 is changed.

このような構成の冷凍サイクル14おいても、第2実施例の冷凍サイクル12と略同様な作用効果が得られる。   In the refrigeration cycle 14 having such a configuration, substantially the same effect as the refrigeration cycle 12 of the second embodiment can be obtained.

第5実施例の冷凍サイクル15は、前述した第1実施例の冷凍サイクル11と同様に、
圧縮機101の吸入側に導かれる、内部熱交換器104で熱交換を行った後の低温冷媒の圧力を感知すべく、内部熱交換器104と圧縮機101の吸入側とを結ぶ導管125の途中に外部圧力導入管50の一端部を連結するとともに、外部圧力導入管50の他端部を膨張弁115の下側圧力室44と外部とを連通するL形状の圧力導入通路54に接続し、膨張弁115において、蒸発器103へ導出される冷媒の流量を前記熱交換後の低温冷媒の圧力に応じて調整するようにしたものである。なお、ここでは、感温筒70を蒸発器103と内部熱交換器104とを結ぶ導管124(蒸発器103の出口近傍)に近接配置し、感温筒70と膨張弁112の上側圧力室43とがキャピラリーチューブ72で結ばれている。
The refrigeration cycle 15 of the fifth embodiment is similar to the refrigeration cycle 11 of the first embodiment described above.
A conduit 125 that connects the internal heat exchanger 104 and the suction side of the compressor 101 to sense the pressure of the low-temperature refrigerant that is guided to the suction side of the compressor 101 and performs heat exchange in the internal heat exchanger 104. In the middle, one end of the external pressure introduction pipe 50 is connected, and the other end of the external pressure introduction pipe 50 is connected to an L-shaped pressure introduction passage 54 that communicates the lower pressure chamber 44 of the expansion valve 115 with the outside. In the expansion valve 115, the flow rate of the refrigerant led out to the evaporator 103 is adjusted according to the pressure of the low-temperature refrigerant after the heat exchange. Here, the temperature sensing cylinder 70 is disposed close to a conduit 124 (near the outlet of the evaporator 103) connecting the evaporator 103 and the internal heat exchanger 104, and the upper pressure chamber 43 of the temperature sensing cylinder 70 and the expansion valve 112 is disposed. Are connected by a capillary tube 72.

このような構成の冷凍サイクル15おいても、第1実施例の冷凍サイクル11と略同様な作用効果が得られる。   Also in the refrigeration cycle 15 having such a configuration, substantially the same operation and effect as the refrigeration cycle 11 of the first embodiment can be obtained.

第6実施例の冷凍サイクル16は、第4実施例の冷凍サイクル14及び第5実施例の冷凍サイクル14を組み合わせたもので、外部圧力導入管50及び感温筒70の両方を備えており、それに使用される膨張弁113の下側圧力室44周りは第5実施例のものと略同様であり、上側圧力室43周りは第4実施例のものと略同様に構成されていて、膨張弁116において、蒸発器103へ導出される冷媒の流量を前記熱交換後の低温冷媒の圧力及び温度に応じて調整するようにしたものである。   The refrigeration cycle 16 of the sixth embodiment is a combination of the refrigeration cycle 14 of the fourth embodiment and the refrigeration cycle 14 of the fifth embodiment, and includes both the external pressure introduction pipe 50 and the temperature sensing cylinder 70, The periphery of the lower pressure chamber 44 of the expansion valve 113 used therefor is substantially the same as that of the fifth embodiment, and the periphery of the upper pressure chamber 43 is configured substantially the same as that of the fourth embodiment. In 116, the flow rate of the refrigerant led to the evaporator 103 is adjusted according to the pressure and temperature of the low-temperature refrigerant after the heat exchange.

このような構成の冷凍サイクル16においても、第1実施例及び第2実施例と同様に、
圧縮機内部(吐出)温度が過度に上昇することを未然に防止でき、冷媒中に含まれるオイルが劣化して焼付等の不具合が発生する事態を確実に防止できる。
Also in the refrigeration cycle 16 having such a configuration, as in the first and second embodiments,
It is possible to prevent the compressor internal (discharge) temperature from rising excessively, and to reliably prevent the occurrence of problems such as seizure due to deterioration of the oil contained in the refrigerant.

本発明に係る冷凍サイクルの第1実施例(A)、第2実施例(B)、第3実施例(C)を示す概略構成図。The schematic block diagram which shows 1st Example (A), 2nd Example (B), and 3rd Example (C) of the refrigerating cycle based on this invention. 第1実施例の冷凍サイクルで使用されている膨張弁を示す縦断面図。The longitudinal cross-sectional view which shows the expansion valve currently used by the refrigerating cycle of 1st Example. 第2実施例の冷凍サイクルで使用されている膨張弁を示す縦断面図。The longitudinal cross-sectional view which shows the expansion valve currently used by the refrigerating cycle of 2nd Example. 第3実施例の冷凍サイクルで使用されている膨張弁を示す縦断面図。The longitudinal cross-sectional view which shows the expansion valve currently used by the refrigerating cycle of 3rd Example. 本発明に係る冷凍サイクルの第4実施例(A)、第5実施例(B)、第6実施例(C)を示す概略構成図。The schematic block diagram which shows 4th Example (A), 5th Example (B), and 6th Example (C) of the refrigerating cycle based on this invention. 第4実施例の冷凍サイクルで使用されている膨張弁を示す部分切欠縦断面図。The partial notch longitudinal cross-sectional view which shows the expansion valve currently used by the refrigerating cycle of 4th Example. 第5実施例の冷凍サイクルで使用されている膨張弁を示す部分切欠縦断面図。The partial notch longitudinal cross-sectional view which shows the expansion valve currently used by the refrigerating cycle of 5th Example. 第6実施例の冷凍サイクルで使用されている膨張弁を示す部分切欠縦断面図。The partial notch longitudinal cross-sectional view which shows the expansion valve currently used by the refrigerating cycle of 6th Example. 従来の冷凍サイクルの一例を示す概略構成図。The schematic block diagram which shows an example of the conventional freezing cycle. 従来の冷凍サイクルで使用されている膨張弁を示す縦断面図。The longitudinal cross-sectional view which shows the expansion valve currently used with the conventional refrigerating cycle.

符号の説明Explanation of symbols

11〜16 冷凍サイクル
101 圧縮機
102 凝縮器
103 蒸発器
104 内部熱交換器
111〜116 膨張弁
20 弁本体
21 流入口
22 流出口
24 弁室
30 ボール弁体
40 ダイアフラム装置
43 上側圧力室
44 下側圧力室
50 外部圧力導入管
54 圧力導入通路
70 感温筒
72 キャピラリーチューブ
11-16 Refrigeration cycle 101 Compressor 102 Condenser 103 Evaporator 104 Internal heat exchangers 111-116 Expansion valve 20 Valve body 21 Inlet 22 Outlet 24 Valve chamber 30 Ball valve element 40 Diaphragm device 43 Upper pressure chamber 44 Lower side Pressure chamber 50 External pressure introduction tube 54 Pressure introduction passage 70 Temperature sensing tube 72 Capillary tube

Claims (3)

圧縮機、凝縮器、蒸発器、内部熱交換器、及び、膨張弁を備え、前記内部熱交換器内において前記凝縮器から前記膨張弁に導かれる高温の冷媒と前記蒸発器から前記圧縮機の吸入側に導かれる低温の冷媒との間で熱交換を行うようにされた冷凍サイクルであって、
前記圧縮機の吸入側に導かれる、前記内部熱交換器で熱交換を行った後の低温冷媒の温度及び/又は圧力を感知すべく、前記膨張弁に感温筒及び/又は外部圧力導入管が付設され、前記膨張弁において、前記蒸発器へ導出される冷媒の流量を前記熱交換後の低温冷媒の温度及び/又は圧力に応じて調整するようにされていることを特徴とする冷凍サイクル。
A compressor, a condenser, an evaporator, an internal heat exchanger, and an expansion valve, and a high-temperature refrigerant led from the condenser to the expansion valve in the internal heat exchanger and the evaporator to the compressor. A refrigeration cycle adapted to exchange heat with a low-temperature refrigerant guided to the suction side,
In order to sense the temperature and / or pressure of the low-temperature refrigerant, which is guided to the suction side of the compressor and has undergone heat exchange with the internal heat exchanger, the expansion valve is provided with a temperature sensing tube and / or an external pressure introduction pipe. And the expansion valve adjusts the flow rate of the refrigerant led to the evaporator in accordance with the temperature and / or pressure of the low-temperature refrigerant after the heat exchange. .
前記膨張弁は、前記外部圧力導入管を介して導入される熱交換を行った後の低温冷媒の圧力変化に応動して弁体を開閉方向に駆動するダイアフラム装置等の駆動手段を備えていることを特徴とする請求項1に記載の冷凍サイクル。   The expansion valve includes driving means such as a diaphragm device that drives the valve body in the opening / closing direction in response to a pressure change of the low-temperature refrigerant after performing heat exchange introduced through the external pressure introduction pipe. The refrigeration cycle according to claim 1. 前記膨張弁は、前記感温筒により感知される熱交換を行った後の低温冷媒の温度変化に応動して弁体を開閉方向に駆動するダイアフラム装置等の駆動手段を備えていることを特徴とする請求項1又は2に記載の冷凍サイクル。   The expansion valve includes driving means such as a diaphragm device for driving the valve body in the opening / closing direction in response to a temperature change of the low-temperature refrigerant after heat exchange sensed by the temperature sensing cylinder. The refrigeration cycle according to claim 1 or 2.
JP2008294844A 2008-11-18 2008-11-18 Refrigerating cycle Pending JP2010121831A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008294844A JP2010121831A (en) 2008-11-18 2008-11-18 Refrigerating cycle
EP09175357.4A EP2187150A3 (en) 2008-11-18 2009-11-09 Refrigerating Cycle
CN200910226504A CN101737987A (en) 2008-11-18 2009-11-18 refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294844A JP2010121831A (en) 2008-11-18 2008-11-18 Refrigerating cycle

Publications (2)

Publication Number Publication Date
JP2010121831A true JP2010121831A (en) 2010-06-03
JP2010121831A5 JP2010121831A5 (en) 2012-01-05

Family

ID=41818427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294844A Pending JP2010121831A (en) 2008-11-18 2008-11-18 Refrigerating cycle

Country Status (3)

Country Link
EP (1) EP2187150A3 (en)
JP (1) JP2010121831A (en)
CN (1) CN101737987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654284A (en) * 2020-05-12 2021-11-16 浙江三花制冷集团有限公司 Temperature sensing part and refrigerating system with same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8931305B2 (en) 2010-03-31 2015-01-13 Denso International America, Inc. Evaporator unit
CN102530803B (en) * 2012-01-12 2013-06-05 苏权兴 Refrigerant subpackage equipment
CN103017409B (en) * 2013-01-15 2015-12-02 吴秀华 Efficient energy-saving freezes, heats all-in-one
EP2977244B1 (en) * 2014-07-24 2016-06-29 C.R.F. Società Consortile per Azioni Air conditioning system for motor-vehicles
FR3028016A1 (en) * 2014-10-30 2016-05-06 Valeo Systemes Thermiques THERMAL MANAGEMENT DEVICE FOR A MOTOR VEHICLE
FR3028015A1 (en) * 2014-10-30 2016-05-06 Valeo Systemes Thermiques THERMAL MANAGEMENT DEVICE FOR A MOTOR VEHICLE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02561U (en) * 1988-06-13 1990-01-05
JPH06241580A (en) * 1993-02-18 1994-08-30 Nippondenso Co Ltd Freezing cycle device
JP2008122034A (en) * 2006-11-15 2008-05-29 Sanden Corp Air conditioner for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902853B2 (en) * 1992-04-27 1999-06-07 三洋電機株式会社 Air conditioner
KR20000053279A (en) * 1996-11-19 2000-08-25 니센 게오르그 Process for regulating a refrigerating system, refrigerating system and expansion valve
JP2000346466A (en) 1999-06-02 2000-12-15 Sanden Corp Vapor compression type refrigerating cycle
JP4323619B2 (en) * 1999-06-17 2009-09-02 株式会社日本クライメイトシステムズ Air conditioner for vehicles
US6460358B1 (en) * 2000-11-13 2002-10-08 Thomas H. Hebert Flash gas and superheat eliminator for evaporators and method therefor
JP4246189B2 (en) * 2005-09-07 2009-04-02 株式会社デンソー Refrigeration cycle equipment
JP2007240041A (en) * 2006-03-07 2007-09-20 Tgk Co Ltd Expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02561U (en) * 1988-06-13 1990-01-05
JPH06241580A (en) * 1993-02-18 1994-08-30 Nippondenso Co Ltd Freezing cycle device
JP2008122034A (en) * 2006-11-15 2008-05-29 Sanden Corp Air conditioner for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654284A (en) * 2020-05-12 2021-11-16 浙江三花制冷集团有限公司 Temperature sensing part and refrigerating system with same

Also Published As

Publication number Publication date
CN101737987A (en) 2010-06-16
EP2187150A2 (en) 2010-05-19
EP2187150A3 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP2010121831A (en) Refrigerating cycle
CN100567780C (en) The heating power expansion valve of band safety structure
JPWO2011141959A1 (en) Switching device and air conditioner
JP2011208860A (en) Air conditioner
US20080202156A1 (en) Air-conditioning system for vehicles
CN104279804A (en) Gas-liquid separator, air conditioner and air conditioner liquid return control method
CN102589217A (en) Refrigerant quantity control device and method and air conditioning unit with control device
CN104345743A (en) Refrigerant liquid level control method of flooded air-conditioning system
US20190257562A1 (en) Cooling system with adjustable internal heat exchanger
JPWO2006126396A1 (en) Refrigeration cycle equipment
JP2010112616A (en) Thermal expansion valve
CN103913005B (en) The air-conditioning of refrigeration system and control method thereof and this refrigeration system of tool
US7549389B2 (en) Ball valve apparatus having a moisture indicator
JP5157580B2 (en) Refrigeration equipment
JP2007271181A (en) Air conditioner
JP2008051373A (en) Gas-liquid separator
JP2010121831A5 (en)
CN201193710Y (en) Thermostatic expansion valve with safety structure
JP7496817B2 (en) Cooling System
KR100557760B1 (en) Air conditioner
JP2008249157A (en) Reversible thermostatic expansion valve
KR200420568Y1 (en) outlet structure of low prssure of internal heat exchanger
CN105605673B (en) Air conditioning apparatus
JP2008039262A (en) Expansion valve
JP2012163299A (en) Oil returning mechanism of flooded-evaporator, and refrigeration apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015